EP1729000B1 - Auf einem erweiterten Kalmanfilter basiertes Verfahren zur Abschätzung des Kraftstoff/Luft-Verhältnisses in einem Zylinder eines Verbrennungsmotors - Google Patents

Auf einem erweiterten Kalmanfilter basiertes Verfahren zur Abschätzung des Kraftstoff/Luft-Verhältnisses in einem Zylinder eines Verbrennungsmotors Download PDF

Info

Publication number
EP1729000B1
EP1729000B1 EP06290557A EP06290557A EP1729000B1 EP 1729000 B1 EP1729000 B1 EP 1729000B1 EP 06290557 A EP06290557 A EP 06290557A EP 06290557 A EP06290557 A EP 06290557A EP 1729000 B1 EP1729000 B1 EP 1729000B1
Authority
EP
European Patent Office
Prior art keywords
richness
cylinders
air
exhaust
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06290557A
Other languages
English (en)
French (fr)
Other versions
EP1729000A1 (de
Inventor
Jonathan Chauvin
Philippe Moulin
Gilles Corde
Nicolas Petit
Pierre Rouchon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1729000A1 publication Critical patent/EP1729000A1/de
Application granted granted Critical
Publication of EP1729000B1 publication Critical patent/EP1729000B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1417Kalman filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the present invention relates to a method for estimating the fuel richness of each cylinder of an internal combustion engine injection, from a measurement of the richness downstream of the collector and an extended Kalman filter.
  • the knowledge of wealth characterized by the ratio of the mass of fuel on the air mass, is important for all vehicles, whether they are petrol engines because it conditions a good combustion of the mixture when it is close of 1, or for vehicles with diesel engines for which the interest of the knowledge of the wealth is different since they work with poor mixture (wealth lower than 1).
  • catalysts using a NOx trap lose their effectiveness over time. In order to return to optimum efficiency, the richness must be kept close to 1 for a few seconds, then return to normal operation at a lean mixture. Depollution by DeNOx catalysis therefore requires precise control of the cylinder-by-cylinder richness.
  • a probe placed at the outlet of the turbine (turbocharged engine) and upstream of the NOx trap, gives a measure of the average richness by the exhaust process. This measurement, being very filtered and noisy, is used for the control of the masses injected into the cylinders during the phases of richness equal to 1, each cylinder then receiving the same mass of fuel.
  • An engine control can thus, from the reconstructed wealth, adapt the fuel masses injected into each of the cylinders so that the wealth is balanced in all the cylinders.
  • the object of the present invention is to model the exhaust process more finely so as, on the one hand, to dispense with the identification step, and on the other hand to bring more robustness to the wealth estimation model. , and this for all operating points of the engine.
  • the invention also makes it possible to perform a measurement every 6 ° of rotation of the crankshaft and thus to have a high frequency information of the measurement of richness, without falling into the measurement noise.
  • the physical model can comprise at least the following four variables: the total mass of gas in the exhaust manifold ( M T ), the fresh air mass in the exhaust manifold (M air ) the wealth measured by said sensor ( ⁇ ) and the wealth in each of the cylinders ( ⁇ i ).
  • This mode can then comprise at least the two following output data: the total mass of gas in the exhaust manifold ( M T ) and mass flow rates out of said cylinders (d;).
  • the measured richness ( ⁇ ) can be estimated as a function of the total mass of gas in the exhaust manifold ( M T ) and the fresh air mass in the exhaust manifold ( M air ).
  • the estimation of the value of the richness in each of the cylinders may then comprise a real-time correction of the estimate of the total mass of gas in the exhaust manifold ( M T ), the estimation of the mass of the fresh air in the exhaust manifold ( M air ) and estimating the value of the richness in each of the cylinders ( ⁇ i ).
  • the method can be applied to an engine control to adapt the fuel masses injected into each of the cylinders to adjust the richness in all the cylinders.
  • the composition of the exhaust gas depends on the amount of fuel and air introduced into the combustion chamber, the fuel composition and the development of the combustion.
  • the richness probe measures the concentration of O 2 inside a diffusion chamber, connected to the exhaust pipe by a diffusion barrier made of porous materials. This configuration may induce differences depending on the location of the chosen probe, in particular because of temperature variations and / or pressures in the vicinity of the richness probe.
  • the measured wealth ( ⁇ ) is connected to the mass of air (or to the air flow) around the probe and to the total mass ( or at the total rate).
  • the model is based on a three-gas approach: air, fuel and flue gas.
  • the lean mixture richness formula is used in the estimator, at the level of integration of richness in equation (7), neglecting a very small portion of the air ( ⁇ 3%).
  • the invention is not limited to this mode, in fact, the formula is continuous in the vicinity of a richness equal to 1, and its inversion does not pose a problem for rich mixtures.
  • AMESim is a 0D modeling software, particularly well suited to thermal and hydraulic phenomena. It allows to model volumes, behaviors or restrictions.
  • the basic tubing, restriction and volume modeling blocks are described in the AMESim "Thermal Pneumatic Library" user manual. Standard equations are used to calculate a flow through a restriction and energy and mass conservations. In addition, the model takes into account gas inertia, which is important for studying the dynamics of gas composition.
  • a unique real-time physical model is defined for modeling the overall system, that is to say the entire path of the exhaust gases, from the cylinders to the downstream exhaust from the turbine, through the collector.
  • the exhaust manifold is modeled according to a volume in which there is conservation of the mass. It is assumed that the temperature is substantially constant, and determined from an abacus function of the load and the engine speed.
  • Model to determine the flow passing through the turbine model of the turbine
  • the turbine is modeled according to a flow passing through a flow restriction.
  • the flow rate in the turbine is generally given by mapping (abacus) as a function of the turbine speed and the upstream / downstream pressure ratio of the turbine.
  • the first equation contains an unknown: M T.
  • the second contains two: M air and ⁇ i . This leads to the additional assumptions described below.
  • the measured richness at the sensor is calculated from the richness in the cylinders, the air flow at the cylinder output and the total gas flow rate.
  • This structure is hardly used in a Kalman filter, because it is necessary to estimate the entries of the model.
  • the model is therefore completed by the addition of entries, M T and ⁇ (Mohinder S. Grewal: "Kalman Filtering Theory and Practice” Prentice Hall 1993).
  • the response dynamics of the richness sensor are taken into account, and the transfer function of the measurement probe (of the "UEGO" probe type) is modeled according to a first-order filter.
  • the real-time physical model RTM can be put in the following matrix form from equations (3), (5) and (6):
  • p M T ⁇ i 1 not cyl 1 - ⁇ i . d i ⁇ - M air .
  • the unknowns of the physical model are ultimately M T , M air , ⁇ and ⁇ i .
  • the output data of the physical model is M T and d i .
  • a process (x) is governed by a nonlinear stochastic equation ( f ).
  • a measure ( y ) is given by a nonlinear observation equation h .
  • h h x k ⁇ v k
  • the random variables w k and v k respectively represent the model noises and the measurement noises.
  • the different elements are initialized thanks to the values obtained in simulation with AmeSim.
  • the index of the time step k has not been indicated, even if these matrices are actually different at each step.
  • the richness is measured, the total gas mass is the result of the calculation of the model (7) in parallel with the Kalman filter.
  • This estimator based on a Kalman filter allows, ultimately, an estimation of the cylinder to cylinder richness from the measurement of wealth by the sensor located behind the turbine.
  • the estimator thus constructed, makes it possible to correct in real time M T , M air , ⁇ i and ⁇ , from a first value of M T provided by the RTM model (7) and from the measurement of wealth performed. by the probe.
  • the Kalman filter is solved numerically in real time, the calculator using explicit Euler discretization, which is well known to those skilled in the art.
  • the 4 cylinders are successively unbalanced by introducing 80 ⁇ s of injection into the cylinder, and the cylinder 1 and 4 are unbalanced in the same way.
  • the Figures 2A and 2B show below the wealth of references ⁇ i ref given by AmeSim as a function of time (T) and at the top the results of the estimator ( ⁇ i ) as a function of time (T).
  • the four curves correspond to each of the four cylinders.
  • the performance of the estimator based on the Kalman filter is very good. However, there is a slight difference in phase, due to the inertia of the gas which is not taken into account in the present model. It is therefore proposed to complete the model and the estimator by an estimator of the exhaust delay time.
  • the estimator implemented as described above does not allow the estimation method to take into account the delay time between the cylinder exhaust and the signal acquired by the probe.
  • the delay time comes from several sources: transport time in the pipes and through the volumes, dead time of the measuring probe.
  • the penalty is given by ⁇ . If there is a positive variation in the estimated wealth value for cylinder 2, then the delay time between the estimator and the measurements is positive. If there is a variation on cylinder 3, the delay is negative and the penalty is negative. A variation of the cylinder 4 can be considered as a consequence of a positive or negative delay.
  • the delay D applied to the output variables of the RTM model is an additive delay, it is computed by least squares by minimizing J k .
  • the criterion J k is controlled to zero by a PI (Proportional Integral) controller on the delay of the estimator.
  • PI Proportional Integral
  • FIGS 4A to 4F illustrate the estimation of the cylinder-to-cylinder richness by the estimator described above on two points of operation 2000tr / min high load, 9 bar, ( Figures 4A to 4C ) and 2500 rpm low load, 3 bar, ( Figures 4D to 4F ).
  • These figures show up the wealth of references ⁇ i ref as a function of time (T) and at the bottom the results of the estimator ( ⁇ i ) as a function of time (T).
  • the four curves correspond to each of the four cylinders.
  • the present invention relates to an estimation method comprising the construction of an estimator, making it possible, from the measurement of the richness of the probe ( ⁇ ) and the total mass of gas information inside the collector ( M T ), to estimate the wealth at the output of the four cylinders ( ⁇ i ).
  • the estimator thus produced is efficient, and above all does not require any additional adjustment in the case of change of the operating point. No identification phase is necessary, only a measurement and model noise adjustment must be carried out, once and only once.
  • a delay time controller is put in parallel with the estimator, making it possible to reset the delay time following a step of injection time on a cylinder. This allows optimal calibration of the estimator, for example before a rich phase equal to 1.
  • the invention also makes it possible to perform a measurement every 6 ° of rotation of the crankshaft and thus to have a high frequency information of the measurement of richness, without falling into the measurement noise.
  • the high frequency representation makes it possible to take into account the pulsating effect of the system.
  • the modeled system is periodic and makes it possible to obtain an estimator with a better dynamics: one anticipates the pulsation of the escapement.
  • the invention makes it possible to reduce the calculation time by a factor of about 80 compared to the previous methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (8)

  1. Verfahren zur Schätzung des Kraftstoff/Luft-Verhältnisses in jedem der Zylinder eines Verbrennungsmotors, umfassend eine Abgasleitung, umfassend mindestens Zylinder, die mit einem Krümmer und einem Sensor zur Messung des Kraftstoff/Luft-Verhältnisses (λ) vor dem Krümmer verbunden sind, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
    - es wird eine Schätzung des vom Sensor gemessenen Kraftstoff/Luft-Verhältnisses (λ) ausgehend von mindestens einer Variablen des Modells definiert;
    - es wird eine Modellierung der Transferfunktion dieses Sensors durchgeführt, wobei die Schätzung der Messung des gemessenen Kraftstoff/Luft-Verhältnisses berücksichtigt wird;
    - es wird ein physikalisches Echtzeitmodell des Gasdurchlaufs in dieser Abgasleitung bis zum Sensor erzeugt, in welchem die Modellierung der Transferfunktion berücksichtigt wird, und das umfasst:
    - ein physikalisches Modell des Gasausstoßes in jedem dieser Zylinder;
    - ein physikalisches Modell einer Abgasmasse in diesem Auspuffkrümmer;
    - ein physikalisches Modell des Durchsatzes, der eine Turbine durchläuft;
    - ein Modell der Verzögerungszeit vom Auslass bis zum Sensor;
    - dieses Modell wird mit einem nichtlinearen erweiterten Kalman-Filter gekoppelt;
    - es wird eine Echtzeitschätzung des Werts des Kraftstoff/Luft-Verhältnisses in jedem der Zylinder ausgehend vom nichtlinearen erweiterten Kalman-Filter durchgeführt.
  2. Verfahren nach Anspruch 1, wobei die Modellierung der Transferfunktion mit einem Filter erster Ordnung durchgeführt wird.
  3. Verfahren nach einem der vorherigen Ansprüche, wobei eine Verzögerungszeit, die auf die Durchlaufzeit der Gase und die Ansprechzeit des Sensors zurückzuführen ist, geschätzt wird, indem eine Teststörung in einem bestimmten Zylinder erzeugt wird und ihr Einfluss auf den Sensor gemessen wird.
  4. Verfahren nach einem der vorherigen Ansprüche, wobei das physikalische Modell mindestens die folgenden vier Arten von Variablen aufweist: Die Gesamtgasmasse im Auspuffkrümmer (Mr), die Frischluftmasse im Auspuffkrümmer (Mair), das Kraftstoff/Luft-Verhältnis (λ), das vom Sensor gemessen wurde, und die Kraftstoff/Luft-Verhältnisse (λi) in jedem der Zylinder.
  5. Verfahren nach einem der vorherigen Ansprüche, wobei das physikalische Modell mindestens die folgenden zwei Arten von Ausgangsdaten aufweist: Die Gesamtgasmasse im Auspuffkrümmer (Mr) und die aus den Zylindern austretenden Massenströme (di).
  6. Verfahren nach einem der vorherigen Ansprüche, wobei das gemessene Kraftstoff/Luft-Verhältnis (λ) von der Gesamtgasmasse im Auspuffkrümmer (Mr) und der Frischluftmasse im Auspuffkrümmer (Mair) abhängig geschätzt wird.
  7. Verfahren nach einem der vorherigen Ansprüche, wobei die Schätzung des Werts des Kraftstoff/Luft-Verhältnisses in jedem der Zylinder eine Echtzeitkorrektur der Schätzung der Gesamtgasmasse im Auspuffkrümmer (Mr), der Schätzung der Frischluftmasse im Auspuffkrümmer (Mair) und der Schätzung des Werts des Kraftstoff/Luft-Verhältnisses (λi) in jedem der Zylinder umfasst.
  8. Anwendung des Verfahrens nach einem der vorherigen Ansprüche auf eine Motorsteuerung zur Anpassung der Kraftstoffmassen, die in jeden der Zylinder eingespritzt werden, um das Kraftstoff/Luft-Verhältnis in allen Zylindern zu regeln.
EP06290557A 2005-05-30 2006-04-03 Auf einem erweiterten Kalmanfilter basiertes Verfahren zur Abschätzung des Kraftstoff/Luft-Verhältnisses in einem Zylinder eines Verbrennungsmotors Expired - Fee Related EP1729000B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0505443A FR2886346B1 (fr) 2005-05-30 2005-05-30 Methode d'estimation par un filtre de kalman etendu de la richesse dans un cylindre d'un moteur a combustion

Publications (2)

Publication Number Publication Date
EP1729000A1 EP1729000A1 (de) 2006-12-06
EP1729000B1 true EP1729000B1 (de) 2008-07-02

Family

ID=35063001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06290557A Expired - Fee Related EP1729000B1 (de) 2005-05-30 2006-04-03 Auf einem erweiterten Kalmanfilter basiertes Verfahren zur Abschätzung des Kraftstoff/Luft-Verhältnisses in einem Zylinder eines Verbrennungsmotors

Country Status (5)

Country Link
US (1) US7581535B2 (de)
EP (1) EP1729000B1 (de)
JP (1) JP4703488B2 (de)
DE (1) DE602006001609D1 (de)
FR (1) FR2886346B1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886345B1 (fr) 2005-05-30 2010-08-27 Inst Francais Du Petrole Methode d'estimation par un filtre non-lineaire adaptatif de la richesse dans un cylindre d'un moteur a combustion
FR2886346B1 (fr) * 2005-05-30 2010-08-27 Inst Francais Du Petrole Methode d'estimation par un filtre de kalman etendu de la richesse dans un cylindre d'un moteur a combustion
US8386121B1 (en) 2009-09-30 2013-02-26 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Optimized tuner selection for engine performance estimation
JP5516349B2 (ja) * 2010-11-15 2014-06-11 トヨタ自動車株式会社 内燃機関の制御装置
FR2989428B1 (fr) * 2012-04-11 2015-10-02 Peugeot Citroen Automobiles Sa Procede d'estimation de la richesse dans un moteur a combustion de vehicule automobile
US10030593B2 (en) * 2014-05-29 2018-07-24 Cummins Inc. System and method for detecting air fuel ratio imbalance
US10415492B2 (en) 2016-01-29 2019-09-17 Garrett Transportation I Inc. Engine system with inferential sensor
GB2550597B (en) * 2016-05-24 2020-05-13 Delphi Automotive Systems Lux Method of modelling afr to compensate for wraf sensor
JP6900034B2 (ja) * 2017-07-19 2021-07-07 国立研究開発法人 海上・港湾・航空技術研究所 エンジン状態観測器を用いたエンジン制御方法、エンジン制御プログラム及びエンジン制御装置
JP7232532B2 (ja) * 2020-08-13 2023-03-03 国立研究開発法人 海上・港湾・航空技術研究所 エンジン状態観測器を用いたエンジン制御方法、エンジン制御プログラム及びエンジン制御装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553570B1 (de) * 1991-12-27 1998-04-22 Honda Giken Kogyo Kabushiki Kaisha Verfahren zum Feststellen und Steuern des Luft/Kraftstoffverhältnisses in einer Brennkraftmaschine
US5535135A (en) * 1993-08-24 1996-07-09 Motorola, Inc. State estimator based exhaust gas chemistry measurement system and method
US5600056A (en) * 1994-06-20 1997-02-04 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio detection system for multicylinder internal combustion engine
EP0724073B1 (de) 1995-01-27 2005-11-16 Matsushita Electric Industrial Co., Ltd. Luft-Kraftstoffverhältnis-Steuerungssystem
US5715796A (en) * 1995-02-24 1998-02-10 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system having function of after-start lean-burn control for internal combustion engines
JP3217689B2 (ja) * 1995-02-25 2001-10-09 本田技研工業株式会社 内燃機関の燃料噴射制御装置
JP3729295B2 (ja) * 1996-08-29 2005-12-21 本田技研工業株式会社 内燃機関の空燃比制御装置
JPH1047134A (ja) * 1997-05-02 1998-02-17 Honda Motor Co Ltd 内燃機関の気筒別空燃比推定装置および制御装置
JP3304844B2 (ja) * 1997-08-29 2002-07-22 本田技研工業株式会社 プラントの制御装置
JP3304845B2 (ja) * 1997-08-29 2002-07-22 本田技研工業株式会社 プラントの制御装置
JP3340058B2 (ja) * 1997-08-29 2002-10-28 本田技研工業株式会社 多気筒エンジンの空燃比制御装置
JPH1185719A (ja) * 1997-09-03 1999-03-30 Matsushita Electric Ind Co Ltd パラメータ推定装置
FR2773847B1 (fr) * 1998-01-19 2000-03-24 Sagem Dispositif d'estimation de richesse de systeme d'injection pour moteur a combustion interne
JP3361316B2 (ja) * 2000-08-24 2003-01-07 本田技研工業株式会社 内燃機関の気筒別空燃比推定装置および制御装置
FR2834314B1 (fr) 2001-12-31 2005-01-07 Peugeot Citroen Automobiles Sa Procede d'estimation de la richesse en carburant d'un melange combustible consomme par un moteur a injection, utilisable quel que soit le regime moteur
US6882929B2 (en) * 2002-05-15 2005-04-19 Caterpillar Inc NOx emission-control system using a virtual sensor
JP4357863B2 (ja) * 2003-04-14 2009-11-04 株式会社デンソー 多気筒内燃機関の気筒別空燃比算出装置
JP4314573B2 (ja) * 2003-07-30 2009-08-19 株式会社デンソー 多気筒内燃機関の気筒別空燃比算出装置
FR2867232B1 (fr) * 2004-03-05 2006-05-05 Inst Francais Du Petrole Methode d'estimation de la richesse en carburant dans un cylindre d'un moteur a combustion
JP4420288B2 (ja) * 2005-04-25 2010-02-24 株式会社デンソー 内燃機関の気筒別空燃比制御装置
FR2886346B1 (fr) * 2005-05-30 2010-08-27 Inst Francais Du Petrole Methode d'estimation par un filtre de kalman etendu de la richesse dans un cylindre d'un moteur a combustion
FR2886345B1 (fr) * 2005-05-30 2010-08-27 Inst Francais Du Petrole Methode d'estimation par un filtre non-lineaire adaptatif de la richesse dans un cylindre d'un moteur a combustion

Also Published As

Publication number Publication date
FR2886346A1 (fr) 2006-12-01
EP1729000A1 (de) 2006-12-06
US7581535B2 (en) 2009-09-01
FR2886346B1 (fr) 2010-08-27
JP4703488B2 (ja) 2011-06-15
DE602006001609D1 (de) 2008-08-14
JP2006336645A (ja) 2006-12-14
US20060271270A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
EP1729001B1 (de) Verfahren zur Abschätzung mit einem nichtlinearen adaptiven Filter des Luft/Kraftstoffverhältnisses in einem Zylinder einer Brennkraftmaschine
EP1729000B1 (de) Auf einem erweiterten Kalmanfilter basiertes Verfahren zur Abschätzung des Kraftstoff/Luft-Verhältnisses in einem Zylinder eines Verbrennungsmotors
EP1571318B1 (de) Verfahren zur Abschätziung des Luft/Kraftstoffverhältnisses in einem Zylinder einer Brennraftmaschine
EP3619412B1 (de) Verfahren zur filterung eines luft-kraftstoff-verhältnissignals eines abgassensors eines motors
FR3065990A1 (fr) Procede de reactualisation d’une dynamique d’adaptation d’une valeur de richesse a une consigne dans un moteur
EP2148979B1 (de) Verfahren zur steuerung der verbrennung eines dieselmotors
EP2414658A1 (de) Steuersystem und verfahren zur schätzung des durchflusses von rückgeführten abgasen in einem verbrennungsmotor
EP3060784A1 (de) System und verfahren zur schätzung des flusses von stickoxiden im abgas einer brennkraftmaschine für ein kraftfahrzeug
EP2195519B1 (de) Schätzung der statusparameter eines motors mit messung des innendrucks eines zylinders
EP2829711A1 (de) Verfahren und Vorrichtung zur Bestimmung der Konzentration von Abgasen, die am Eingang zum Verteiler der Ansaugluft eines Verbrennungsmotors rückgeführt werden
EP2182196B1 (de) Verfahren zur Verbrennungskontrolle eines Motors, dessen Zündung über ein Verbrennungsphasenplanungs-Steuergerät gesteuert wird
FR2898936A1 (fr) Procede d'estimation de la richesse d'un melange air/carburant
EP1662121A1 (de) Verfahren zur Regelung eines Ansaugsystems einer Brennkraftmaschine und Kraftfahrzeug zur Durchführung des Verfahrens
EP2507491B1 (de) System und verfahren zur schätzung der masse von in einem partikelfilter aufbewahrten partikeln eines kraftfahrzeugs
FR2927368A1 (fr) Procede et dispositif d'estimation du debit d'air frais admis dans un moteur a combustion interne de vehicule automobile
WO2008043952A2 (fr) Systeme de determination du debit massique d'oxydes d'azote emis dans les gaz d'echappement d'un moteur a combustion interne
EP1647692A1 (de) Ansaugluftsteuerverfahren für eine Brennkraftmaschine und Kraftfahrzeug zur Anwendung dieses Verfahrens
WO2014095052A1 (fr) Procédé de détermination du débit d'air recycle et de la quantité d'oxygène disponible a l'entrée d'un cylindre d'un moteur a combustion interne
EP0639704A1 (de) Verfahren zur Berechnung der einer Brennkraftmaschine zugeführten Luftmasse
EP2811140A1 (de) System und Verfahren zur Bestimmung des Massenanteils von frischem Gas im Ansaugrohr eines Kraftfahrzeug-Verbrennungsmotors
WO2008043953A1 (fr) Systeme de determination du debit massique d'oxydes d'azote emis dans les gaz d'echappement d'un moteur a combustion interne
FR2999648A1 (fr) Procede de determination de la concentration en oxydes d'azote a la sortie d'un moteur a combustion interne
FR2923536A3 (fr) Optimisation de la modelisation d'un groupe moteur de vehicule automobile
FR2931892A1 (fr) Procede d'estimation du debit de recirculation des gaz d'echappement sur un moteur bi-plenum avec volet de turbulence
FR2931891A1 (fr) Procede d'estimation du debit de recirculation des gaz d'echappement sur un moteur bi plenum avec volet de turbulence.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070606

17Q First examination report despatched

Effective date: 20070705

AKX Designation fees paid

Designated state(s): DE GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602006001609

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006001609

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110421

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130430

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130418

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006001609

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006001609

Country of ref document: DE

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140403