EP1727964A1 - Advancement of pipe elements in the ground - Google Patents

Advancement of pipe elements in the ground

Info

Publication number
EP1727964A1
EP1727964A1 EP05706512A EP05706512A EP1727964A1 EP 1727964 A1 EP1727964 A1 EP 1727964A1 EP 05706512 A EP05706512 A EP 05706512A EP 05706512 A EP05706512 A EP 05706512A EP 1727964 A1 EP1727964 A1 EP 1727964A1
Authority
EP
European Patent Office
Prior art keywords
expansion
elements
measured
fluid
expansion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05706512A
Other languages
German (de)
French (fr)
Other versions
EP1727964B1 (en
Inventor
Stefan Trümpi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1727964A1 publication Critical patent/EP1727964A1/en
Application granted granted Critical
Publication of EP1727964B1 publication Critical patent/EP1727964B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/005Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by forcing prefabricated elements through the ground, e.g. by pushing lining from an access pit
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating
    • E21D11/385Sealing means positioned between adjacent lining members
    • E21D11/386Sealing means positioned between adjacent lining members inflatable sealing means

Definitions

  • the invention relates to a method for determining the driving force, the eccentricity with respect to the neutral axis and / or the direction of advance when driving pipe elements to create an elongated structure in a soft, stony and / or rocky subsoil, wherein a pressing device and in the joints of the front Pipe string arranged, fluid-filled expansion elements are used.
  • the invention further relates to a method for controlling the driving force, the eccentricity and the feed direction, and an application of the method.
  • the pipe string is pressed into the ground by successively laying pipe elements, with a controllable head piece pointing the way.
  • the new pipe elements are lowered into a press shaft and driven forward with a press device until the next pipe section can be inserted.
  • the pipe elements have a diameter of up to several meters, a pipe string of pipe elements of, for example, 1 to 4 m in diameter can reach a length of 1 to 2 km or more.
  • the head piece of the pipe string can be removed in a target shaft and the necessary termination devices and lines can be added.
  • the required pre-pressing forces increase due to the skin friction of the tubular elements.
  • intermediate pressing stations or intermediate shafts can be created for further pressing devices, with which the range can be increased accordingly.
  • the earth material removed from the conveyor head must be discharged in the opposite direction to the mostly horizontal pipe jacking. This can be done in a manner known per se with conveyor belts, rubble wagons or the like. With appropriate soil, thin-current production in closed pipes is also possible.
  • the tubular elements are subjected to heavy loads in both the axial and radial directions.
  • the pre-compression forces must overcome the chest resistance and the friction between the pipe jacket and the soil.
  • Directional corrections lead, in addition to an increase in the pre-pressing forces, above all to an uneven distribution of the compressive stresses of the pipe end faces and in the pipe element itself.
  • the tubes also stress in the radial direction.
  • CH 574023 A5 describes a joint seal for a pipe run that is produced by press jacking.
  • An expansion element which forms a closed cavity, is arranged between the end faces of the individual tubular elements. This is the case with a pressurized filler can be squeezed out so that the end faces of the adjacent components are pressed apart.
  • the inventor has set himself the task of creating a method of the type mentioned at the outset with which at least one of the three parameters of propulsive force, eccentricity with respect to the neutral axis and direction of propulsion is optimally determined and optionally stored and / or used for process control.
  • the object is achieved according to the invention in that in at least a part of the expansion elements distributed over the entire length of the pipe string the fluid pressure and / or the joints measure the deformation, the propulsion force and the eccentricity are calculated from these parameters and the values are stored and / or compared with stored standard values.
  • the deformation is measured in at least one part of the expansion elements distributed over the entire length of the pipe string, the deformation, the propulsive force and the eccentricity are calculated from these parameters, and the values in control commands for the pressing direction and / or the individual Fluid supply to or the individual fluid outflow from the expansion elements converted.
  • the records can also be used for quality assurance, which is traceable qualitatively and quantitatively.
  • the construction progress can also be compared at any time with a configured setpoint for the pipe path.
  • an ongoing process control can be used until the specified standard values again meet the setpoints for the planned pipe path. This is done in the sense of rolling planning of the process flow.
  • the English expression fluid has also become common in the German language, meaning a fluid medium, in particular a gas, a liquid of low or high viscosity, a gel, a pasty mass or the like.
  • An expansion element with a measuring device is preferably arranged in each joint. While - as mentioned - an expansion element must be arranged in each joint, the measuring elements can also be partially omitted, preferably periodically.
  • a measuring device for the pressure can be arranged in every 2nd, 3rd, 4th expansion element.
  • a regular arrangement is not mandatory, but advantageous.
  • the deformation can be measured in the same or different joints, this usually being done by measuring the expansion of the joints. However, the shear deformation and / or other parameters known per se can also be measured. This is preferably done at at least three points regularly distributed over the circumference, so in the case of the strain measurement, the geometry of the expansion plane of a joint can be determined.
  • the fluid pressure in the expansion elements is expediently measured using a manometer. If a deviation of the fluid pressure from the target value is determined on the basis of the measured parameters, a corresponding control command initiates a supply or an outflow of fluid, or the driving force is increased or decreased accordingly.
  • the control commands can be given individually to a specific actuator, but also in groups to several actuators. ren.
  • the expansion element can assume any customary geometric shape with regard to the cross section. In the simplest case, this is circular. However, the cross-sectional shape can also be square, rectangular, with the same or different wall thicknesses. Elastic materials are suitable as materials, which can also be fiber-reinforced and whose mechanical properties can be adapted to the object-specific forces and geometric conditions.
  • the geometrical property has that in the case of pre-upsets of the expansion elements that are produced without stress, their contact widths on the pipe end face are only slightly dependent on the compressions that occur under force.
  • the specific forces transmitted by the expansion elements vary only slightly along the circumference of the pipe, even with strongly inclined expansion levels in the joints, and thus the eccentricities of the driving force with respect to the neutral axis of the pipes remain low, which is a strong contrast to the joints used most often from wood-based materials.
  • the ratio of the force K1 to the permissible force K2 can be monitored by periodically or continuously calculating the ratio. If the ratio reaches or exceeds 1, an alarm is automatically triggered and / or the relevant position is shown on a display, the operator can intervene immediately.
  • the expansion element inserted between the rearmost pipe element of the pipe string and the newly introduced pipe element is preferably pre-compressed and the parameters measured in the process are stored.
  • the geometric cross-section of the expansion element is determined during pre-upsetting.
  • the evaluation is preferably carried out in real time, that is, not with a time shift.
  • FIG. 1 shows a vertical section through a press shaft with a pipe string
  • FIG. 2 shows the course of a pipe string below a street section
  • FIG. 3 shows an axial section through two pipe elements lying against one another on the end face
  • FIG. 4 shows a radial section through an expansion element
  • 5 shows a detail of a butt connection of two tubular elements with a measuring and filling device, according to V of FIG. 3
  • FIG. 6 shows different cross-sectional shapes of tubular elements
  • FIG. 7 shows different cross-sectional shapes of expansion elements
  • FIG. 8 shows a variant of FIG. 3 with sectoral subdivision of the expansion element
  • FIG. 9 shows a variant according to FIG. 3 with expansion measurement.
  • a pipe string 14 is driven, which runs approximately parallel to the earth's surface 16 at a depth of a few meters.
  • the individual tubular elements 18 are lowered into the press shaft 12 by means of a lifting device 20.
  • a pressure ring 26 presses on the front onto the rearmost tubular element 18 and presses the entire tubular string 14 in the feed direction 28 by the length I. of a tubular element 18 forward. Then the pressure ring 26 is withdrawn, a new tubular element 18 is lowered and precisely placed with the interposition of an expansion element 44 (FIG. 3). Then insert another tube length I.
  • the displaced soil is mined by a head piece 30 in a manner known per se. This is done, for example, by means of a built-in excavator 32, a milling machine or another working device known in mining. With a treadmill, not shown, the removed soil 34 is conveyed in the direction of the press shaft 24, that is against the direction of advance 28.
  • the advance is gradual.
  • One step involves the insertion of a tubular element 18, the advancement of the tubular string 14 by the length I of the tubular element 18 in the advancing direction 28.
  • the advancing force 40 (FIG. 3) is transferred from the tubular element to the tubular element 18 via the expansion elements 44 (FIG. 3) shown below transfer.
  • the pipe string 14 generally runs approximately parallel to the surface of the earth 16. However, the pipe string 14 can also run at any other angle.
  • eccentricities can occur during the advancement of a pipe string 18, as is shown in detail in FIG. 3.
  • the head piece 30 usually has a locating device 36, so the position can be determined at any time and any necessary corrections can be made. Furthermore, an auxiliary shaft can be lifted out precisely if a repair or replacement of the head piece 30 is necessary.
  • the pipe string 14 is guided through the S-piece with the largest possible bending radius, the planned pipe path runs as straight as possible. By measuring and process control according to the present invention, the pipe string 14 can largely follow the planned pipe path.
  • Fig. 3 shows the end faces 42 of two tubular elements 18, on which a driving force 40 is exerted.
  • the two end faces 42 of the tubular elements 18 are pushed through an expansion element 44 designed as a hollow profile.
  • the cavity of the expansion element 44 is filled with a pressure-resistant fluid 46, the pressure p can rise to far more than 100 bar.
  • connection area of the two tubular elements 18 is covered with a sleeve 48, which has a guiding and sealing function.
  • the sealing function is supported by an inserted O-ring 50.
  • Eccentricities 52 of the feed force 40 with respect to the neutral axis N of the pipe string 14 can occur during the feeding of a pipe string 14 made of pipe elements 18.
  • the reasons for this lie in the different frictional relationships along the contact surface 54 of the tubular elements 18 and the base 10, but mainly in planned and unforeseen control movements and inaccurate dimensions in the tubular elements 18, in particular when using joint elements made of wood-based materials, which are pronounced non-linear, irreversible Have load-deformation characteristics.
  • the eccentricities 52 mentioned generate torques about axes which lie in a plane perpendicular to the direction of advance 28. In order to maintain the equilibrium, the mobilization of torques which are opposed to these moments and are of equal magnitude by means of earth pressures acting at right angles to the direction of advance 28 is necessary. These earth pressures represent significant loads which, in extreme cases, lead to the breakage of tubular elements 18.
  • all cavities of the expansion elements 44 are all over Pipe string 14 connected via a pressure line 56, as shown in FIGS. 4 and 5.
  • This pressure line 56 is connected via a filling valve 58 to the fitting 60 of each connected expansion element 54.
  • the filling tap 58 can be opened with a lever 62.
  • the fitting 60 is also equipped with a pressure measuring device 64 and a vent valve 66, via which excess fluid can be drained into the interior of the pipe string 14.
  • the expansion element 44 is made of an elastomer tubular.
  • the surrounding hose has no division into sections. Except for the geodesic difference, the pressure is therefore always the same all around, even with the greatest pressure application, which is shown in FIG. 5 with the dotted, deformed expansion element 44.
  • tubular elements 18 can for example be round, square, rectangular, rectangular with a transverse wall or vaulted.
  • the elements have a diameter or a corresponding linear dimension of one or more meters. They consist, for example, of concrete, fiber concrete or a metal.
  • Fig. 7 shows cross sections of expansion elements 44. These are circular, square, elliptical, rounded with a long rectangle, cassette-shaped and convex on both sides. There is a large variety of cross-sections, the walls can be partially reinforced.
  • the circumferential expansion element 44 is divided into three sections A, B, C of the same size, which are not hydraulically connected to one another.
  • Each section of the expansion element 44 can have a fitting with a filling tap 58 and a venting tap 66.
  • An active change of direction can take place.
  • the guide head 30 (FIG. 1) can be controlled directly with an expansion element 44 according to FIG. 8. Three to six sectors are common.
  • the elongation between the end faces 42 of the tubular elements 18 is measured with an extensometer 68.
  • the measurement data management of pressure and deformation, in particular the expansion, is carried out in the pipe string 18 or outside of it with a processor.
  • the fill valve 58 and the vent valve 66 can also be controlled by a processor via corresponding actuators.
  • the data transmission from and to the processor takes place via electrical or optical cables or via radio, also using the Internet.
  • the cavities of all actuatable expansion elements 44 can be communicatively connected to one another via the pressure line 56.
  • the pressure line 56 which extends over the entire length inside the pipe string 14, can be connected to all of the expansion elements 54 or only a part thereof.
  • the cavity of an expansion element 44 is expediently filled with a pressure-resistant liquid, also called fluid 46, before the propelling force 40 is applied, and at the same time vented through at least one vent tap 66.
  • the expansion plane in a joint 70 is determined with the aid of at least three point measurements of the expansion of joints 70 in the direction of advance 28. Due to the parameter pressure of the fluid 46 obtained and the geometry of the expansion plane in the joint 70, the size and eccentricity 72 of the resulting driving force 40 can be determined in place and amount with the aid of a reversible load-deformation law of the joint function described. From this, the magnitude and direction of the earth pressures transversely to the neutral axis N can be determined and thus knowledge of the magnitude of the risk of damage or even breakage of the tubular elements 18 in the transverse direction can be obtained. This provides a reliable and accurate method for monitoring and control of the driving forces 40 available, which manages with simple, economical and robust means. According to a variant not shown, the joint 70 can also run concentrically, spirally or according to a more complicated geometrical shape, which, however, does not generate any transverse forces.
  • the expansion element 44 By compressing the expansion element 44 in the joint 70, during which the described filling valve 58 and / or ventilation valve 66 are open and thus the fluid 46 can freely enter and exit into the cavity of the expansion element 44, the expansion element 44 is deformed without the pressure in the cavity of the expansion element 44 changes.
  • the force-transmitting contact surface of the expansion element 44 on the end faces 42 of the tubular elements and thus also the driving force 40 can be increased.
  • the deformation behavior of the expansion element 44 can thus be controlled within certain limits in accordance with the requirements by means of a specific pre-compression.
  • Sectioned expansion elements 44 represent independent hydraulic vessels which can have different internal pressures from one another. These sections only have the geometry of the strain plane as a common parameter. By controlling the pressure or the amount of fluid 46 present in the cavity of the individual sections of the expansion element 44, the position and amount of the resulting driving force 40 are influenced. With a targeted application of this property, the divided expansion element 40, the position and size of the eccentricity 52 of the driving force 40 can be precisely controlled and controlled.
  • the fluid pressure p in the cavity of the expansion element 44 is the same everywhere, and the size of the force transmitted via the expansion element 44 per unit length of the expansion element 44 measured in the circumferential direction is only dependent on the size of the contact width of the expansion element 44 dependent on the end faces of the elements and particularly independent of the rest of the geometry of the expansion element 44.
  • the eccentricity 52 of the resulting propulsive force 40 can thus also be made independent of the expansion of the expansion element 44 or can be kept within small limits. This represents a significant improvement in the properties of the expansion elements 44 described.
  • the internal pressure of the expansion element 44 is reduced and this expanded from the interior of the building created.
  • the expansion element 44 can thus be used again.
  • the expansion element 44 remains installed and is used as a structural seal for the final state.
  • the pressure of the fluid 46 within the expansion element 44 is further monitored and controlled, and thus the sealing performance of the expansion element 44 is controlled.
  • the fluid 46 in the expansion element can be exchanged with a hardening liquid, for example with a cement suspension. This is pressed into the cavity of the expansion element 44 under a certain pressure and, after hardening, is used for a permanent prestress and a sealing pressure.
  • a hardening liquid for example with a cement suspension. This is pressed into the cavity of the expansion element 44 under a certain pressure and, after hardening, is used for a permanent prestress and a sealing pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Control Of Metal Rolling (AREA)
  • Electric Cable Installation (AREA)
  • Earth Drilling (AREA)

Abstract

The aim of the invention is to advance pipe elements (18) for constructing an elongate structure in a soft, stony, rocky, and/or monolithic ground. Said aim is achieved by determining the force of advancement (40), the eccentricity (52) thereof in relation to the neutral axis (N), and/or the direction of advancement (28) with the aid of a pressing device (24) and extension elements (44) which are filled with fluid and are disposed on the face of the joints (70) of the tubing (14). The fluid pressure (p) is measured in at least one portion of the extension elements (44) which extends along the entire length of the tubing (14), and/or the deformation is measured in some of the joints (70). The force of advancement (40) and the eccentricity (52) are calculated from said parameters, and the values are stored and/or are compared to stored standard values. According to a variant, the eccentricity (52) is calculated, and the values are converted into control commands for the pressing device (24) and/or the individual fluid supply to or the individual fluid discharge from the extension elements (44).

Description

Vortrieb von Rohrelementen im UntergrundDriving pipe elements underground
Die Erfindung betrifft ein Verfahren zum Ermitteln der Vortriebskraft, deren Exzentrizität bezüglich der neutralen Achse und/oder der Vortriebsrichtung beim Vortrieb von Rohrelementen zum Erstellen eines länglichen Bauwerks in einem weichen, steinigen und/oder felsigen Untergrund, wobei eine Pressvorrichtung und stirnseitig in den Fugen des Rohrstrangs angeordnete, fluidgefüllte Dehn- elemente eingesetzt werden. Weiter betrifft die Erfindung ein Verfahren zum Steuern der Vortriebskraft, der Exzentrizität und der Vorschubrichtung, sowie eine Anwendung des Verfahrens.The invention relates to a method for determining the driving force, the eccentricity with respect to the neutral axis and / or the direction of advance when driving pipe elements to create an elongated structure in a soft, stony and / or rocky subsoil, wherein a pressing device and in the joints of the front Pipe string arranged, fluid-filled expansion elements are used. The invention further relates to a method for controlling the driving force, the eccentricity and the feed direction, and an application of the method.
Das klassische Verlegen von Rohrleitungen erfolgt in Gräben, wo sie Stück für Stück in ein Bett eingelegt, abgedichtet und wieder eingedeckt werden.The classic laying of pipelines takes place in trenches, where they are laid piece by piece in a bed, sealed and covered again.
In einem überbauten, coupierten oder sonstwie im oberen Bereich schwierigen ' Gelände bietet sich als an sich bekannte Alternative an, aus einem abgeteuften Schacht einen Rohrstrang in das Erdreich zu treiben. Es wird ein möglichst ge- rade verlaufender Sollweg für den Rohrstrang projektiert, wobei alifällige Hindernisse in einem möglichst grossen Kurvenradius umgangen werden.In a built-up, hilly Toggenburg or otherwise at the top of challenging 'terrain offers itself as a known alternative to drive a shaft sunk a tubing string into the ground. A target path that is as straight as possible is planned for the pipe string, whereby all due obstacles are avoided in the largest possible curve radius.
Der Rohrstrang wird durch sukzessives Anlegen von Rohrelementen in das Erdreich gepresst, wobei ein steuerbares Kopfstück den Weg weist. Die neuen Rohrelemente werden in einen Pressschacht abgesenkt und mit einer Pressvorrichtung vorwärts getrieben, bis das nächste Rohrstück eingesetzt werden kann. Die Rohrelemente haben einen Durchmesser von bis zu mehreren Metern, ein Rohrstrang aus Rohrelementen von beispielsweise 1 bis 4 m Durchmesser kann eine Länge von 1 bis 2 km oder mehr erreichen.The pipe string is pressed into the ground by successively laying pipe elements, with a controllable head piece pointing the way. The new pipe elements are lowered into a press shaft and driven forward with a press device until the next pipe section can be inserted. The pipe elements have a diameter of up to several meters, a pipe string of pipe elements of, for example, 1 to 4 m in diameter can reach a length of 1 to 2 km or more.
In einem Zielschacht kann das Kopfstück des Rohrstrangs entnommen und die notwendigen Abschlussvorrichtungen und -leitungen zugefügt werden. Mit zunehmender Vortriebslänge nehmen die erforderlichen Vorpresskräfte infolge der Mantelreibung der Rohrelemente zu. Je nach der Länge des Rohrstrangs und der anzuwendenden Presskraft können Zwischenpressstationen oder Zwischenschächte für weitere Pressvorrichtungen erstellt werden, mit welchen die Reichweite entsprechend erhöht werden kann.The head piece of the pipe string can be removed in a target shaft and the necessary termination devices and lines can be added. As the length of the jacking increases, the required pre-pressing forces increase due to the skin friction of the tubular elements. Depending on the length of the pipe string and the pressing force to be used, intermediate pressing stations or intermediate shafts can be created for further pressing devices, with which the range can be increased accordingly.
Das vom Förderkopf abgetragene Erdmaterial muss in Gegenrichtung zum meist etwa horizontalen Rohrvortrieb abgeführt werden, dies kann in an sich bekannter Weise mit Förderbändern, Schuttwagen oder dgl. erfolgen. Weiter ist bei entsprechendem Erdreich eine Dünnstromförderung in geschlossenen Rohren möglich.The earth material removed from the conveyor head must be discharged in the opposite direction to the mostly horizontal pipe jacking. This can be done in a manner known per se with conveyor belts, rubble wagons or the like. With appropriate soil, thin-current production in closed pipes is also possible.
Die hohen Vortriebskräfte müssen möglichst gleichmässig und ohne lokale Spannungskonzentrationen stirnseitig von Rohrelement zu Rohrelement übertragen werden, was im Direktkontakt nicht ohne Beschädigungen möglich wäre. Es ist bekannt, dem Rohrquerschnitt entsprechende Druckübertragungsringe aus Holzwerkstoffen einzulegen.The high driving forces have to be transmitted as evenly as possible and without local stress concentrations on the end face from tube element to tube element, which would not be possible without damage in direct contact. It is known to insert pressure transmission rings made of wood materials corresponding to the pipe cross section.
Beim Pressvortrieb werden die Rohrelemente sowohl in axialer als auch in radialer Richtung stark beansprucht. Die Vorpresskräfte müssen den Brustwiderstand und die Reibung zwischen dem Rohrmantel und dem Erdreich überwinden. Richtungskorrekturen führen, neben einer Zunahme der Vorpresskräfte, vor allem zu einer ungleichförmigen Verteilung der Druckspannungen der Rohr- Stirnseiten und im Rohrelement selbst. Weitere Einwirkungen, wie z. B. Zwän- gungskräfte und Eigengewicht, beanspruchen die Rohre auch in radialer Richtung.During press jacking, the tubular elements are subjected to heavy loads in both the axial and radial directions. The pre-compression forces must overcome the chest resistance and the friction between the pipe jacket and the soil. Directional corrections lead, in addition to an increase in the pre-pressing forces, above all to an uneven distribution of the compressive stresses of the pipe end faces and in the pipe element itself. B. constraining forces and dead weight, the tubes also stress in the radial direction.
In der CH 574023 A5 wird eine Fugendichtung für einen Rohrstrang beschrie- ben, der im Pressvortrieb hergestellt wird. Zwischen den Stirnseiten der einzelnen Rohrelemente wird ein Dehnelement angeordnet, das einen geschlossenen Hohlraum bildet. Dieser ist mit einem unter Druck stehenden Füllmittel so auspressbar, dass die Stirnseiten der benachbarten Bauelemente auseinandergedrückt werden.CH 574023 A5 describes a joint seal for a pipe run that is produced by press jacking. An expansion element, which forms a closed cavity, is arranged between the end faces of the individual tubular elements. This is the case with a pressurized filler can be squeezed out so that the end faces of the adjacent components are pressed apart.
Der Erfinder hat sich die Aufgabe gestellt, ein Verfahren der eingangs genann- ten Art zu schaffen, mit welchem wenigstens einer der drei Parameter Vortriebskraft, Exzentrizität bezüglich der neutralen Achse und Vortriebsrichtung optimal ermittelt wird und wahlweise gespeichert und/oder zur Prozesssteuerung eingesetzt werden kann.The inventor has set himself the task of creating a method of the type mentioned at the outset with which at least one of the three parameters of propulsive force, eccentricity with respect to the neutral axis and direction of propulsion is optimally determined and optionally stored and / or used for process control.
Bezüglich der Ermittlung der Parameter wird die Aufgabe erfindungsgemäss dadurch gelöst, dass in wenigstens einem über die ganze Länge des Rohrstrangs verteilten Teil der Dehnelemente der Fluiddruck und/oder der Fugen die Verformung gemessen, aus diesen Parametern die Vortriebskraft und die Exzentrizität berechnet und die Werte gespeichert und/oder mit gespeicherten Standardwerten verglichen werden. Zur Prozesssteuerung werden in wenigstens einem über die ganze Länge des Rohrstrangs verteilten Teil der Dehnelemente der Fluiddruck und/oder der Fugen die Verformung gemessen, aus diesen Parametern die Vortriebskraft und die Exzentrizität berechnet, und die Werte in Steuerbefehle für die Pressrichtung und/oder die individuelle Fluidzu- fuhr zu bzw. den individuellen Fluidabfluss von den Dehnelementen umgewandelt. Spezielle und weiterbildende Ausführungsformen des Verfahrens sind Gegenstand von abhängigen Patentansprüchen.With regard to the determination of the parameters, the object is achieved according to the invention in that in at least a part of the expansion elements distributed over the entire length of the pipe string the fluid pressure and / or the joints measure the deformation, the propulsion force and the eccentricity are calculated from these parameters and the values are stored and / or compared with stored standard values. For process control, the deformation is measured in at least one part of the expansion elements distributed over the entire length of the pipe string, the deformation, the propulsive force and the eccentricity are calculated from these parameters, and the values in control commands for the pressing direction and / or the individual Fluid supply to or the individual fluid outflow from the expansion elements converted. Special and further developing embodiments of the method are the subject of dependent patent claims.
Mit dem erfindungsgemässen Verfahren kann eine lückenlose, jederzeit repro- duzierbare Bauwerksdokumentation aufgezeichnet und erstellt werden.With the method according to the invention, a complete building documentation that can be reproduced at any time can be recorded and created.
Die Aufzeichnungen können auch zur Qualitätssicherung verwendet werden, welche qualitativ und quantitativ nachvollziehbar ist. Weiter kann der Baufortschritt jederzeit mit einem projektierten Sollwert für den Rohrweg verglichen werden.The records can also be used for quality assurance, which is traceable qualitatively and quantitatively. The construction progress can also be compared at any time with a configured setpoint for the pipe path.
Bei Abweichungen kann jederzeit die Variante nach der vorliegenden Erfindung, eine laufende Prozesssteuerung, eingesetzt werden, bis die vorgegebenen Standardwerte wieder die Sollwerte für den projektierten Rohrweg einhalten. Dies erfolgt im Sinne einer rollenden Planung des Prozessablaufs.In the event of deviations, the variant according to the present invention, an ongoing process control can be used until the specified standard values again meet the setpoints for the planned pipe path. This is done in the sense of rolling planning of the process flow.
Selbstverständlich können beide erfindungsgemässen Prozesse, das Ermitteln der Parameter und die Steuerung gleichzeitig ablaufen.Of course, both processes according to the invention, the determination of the parameters and the control can run simultaneously.
Der englische Ausdruck Fluid ist auch in der deutschen Sprache üblich geworden, damit wird ein fliessfähiges Medium bezeichnet, insbesondere ein Gas, eine Flüssigkeit niedriger oder hoher Viskosität, ein Gel, eine pastöse Masse oder dgl. *The English expression fluid has also become common in the German language, meaning a fluid medium, in particular a gas, a liquid of low or high viscosity, a gel, a pasty mass or the like. *
Vorzugsweise ist in jeder Fuge ein Dehnelement mit einer Messvorrichtung angeordnet. Während - wie erwähnt - in jeder Fuge ein Dehnelement angeordnet sein muss, können die Messelemente auch teilweise weggelassen werden, vorzugsweise periodisch. Beispielsweise kann in jedem 2., 3., 4 n. Dehnelement eine Messvorrichtung für den Druck angeordnet sein. Selbstverständlich ist eine regelmässige Anordnung nicht zwingend, aber vorteilhaft. In den gleichen oder unterschiedlichen Fugen kann die Verformung gemessen werden, wobei dies in der Regel mittels Messung der Dehnung der Fugen besteht. Es können jedoch auch die Scherverformung und/oder andere an sich bekannte Parameter gemessen werden. Dies erfolgt vorzugsweise an mindestens drei regelmässig über den Umfang verteilten Stellen, so kann im Falle der Dehnungsmessung die Geometrie der Dehnungsebene einer Fuge bestimmt wer- den.An expansion element with a measuring device is preferably arranged in each joint. While - as mentioned - an expansion element must be arranged in each joint, the measuring elements can also be partially omitted, preferably periodically. For example, a measuring device for the pressure can be arranged in every 2nd, 3rd, 4th expansion element. Of course, a regular arrangement is not mandatory, but advantageous. The deformation can be measured in the same or different joints, this usually being done by measuring the expansion of the joints. However, the shear deformation and / or other parameters known per se can also be measured. This is preferably done at at least three points regularly distributed over the circumference, so in the case of the strain measurement, the geometry of the expansion plane of a joint can be determined.
Der Fluiddruck in den Dehnelementen wird zweckmässig mittels eines Manometers gemessen. Wird aufgrund der gemessenen Parameter eine Abweichung des Fluiddrucks vom Sollwert festgestellt, veranlasst ein entsprechender Steu- erbefehl eine Zufuhr oder einen Abfluss von Fluid, oder die Vortriebskraft wird entsprechend erhöht oder erniedrigt. Die Steuerbefehle können individuell an einen spezifischen Aktor erfolgen, jedoch auch gruppenweise an mehrere Akto- ren.The fluid pressure in the expansion elements is expediently measured using a manometer. If a deviation of the fluid pressure from the target value is determined on the basis of the measured parameters, a corresponding control command initiates a supply or an outflow of fluid, or the driving force is increased or decreased accordingly. The control commands can be given individually to a specific actuator, but also in groups to several actuators. ren.
Das Dehnelement kann bezüglich des Querschnitts jede übliche geometrische Form annehmen. Im einfachsten Fall ist dies kreisförmig. Die Querschnittsform kann jedoch auch quadratisch, rechteckig, mit gleichen oder unterschiedlichen Wanddicken sein. Als Material bieten sich elastische Werkstoffe an, welche auch faserverstärkt sein können und deren mechanische Eigenschaften an die objektspezifischen Kräfte und geometrischen Verhältnisse anpassbar sind.The expansion element can assume any customary geometric shape with regard to the cross section. In the simplest case, this is circular. However, the cross-sectional shape can also be square, rectangular, with the same or different wall thicknesses. Elastic materials are suitable as materials, which can also be fiber-reinforced and whose mechanical properties can be adapted to the object-specific forces and geometric conditions.
In Bezug auf den Querschnitt kreisförmige, ovale, elliptische oder rechteckige Dehnelemente haben die geometrische Eigenschaft, dass bei spannungsfrei erzeugten Vorstauchungen der Dehnelemente deren Auflagebreiten auf der Rohrstirnfläche nur in geringem Masse abhängig sind von den unter Kraft auftretenden Stauchungen. Dies hat zur Folge, dass auch bei stark schiefen Deh- nungsebenen in den Fugen die spezifischen, von den Dehnelementen übertragenen Kräfte entlang des Rohrumfangs nur geringfügig variieren und damit die Exzentrizitäten der Vortriebskraft bezüglich der neutralen Achse der Rohre gering bleiben, was einen starken Gegensatz zu den bisher meist verwendeten Fugen aus Holzwerkstoffen bedeutet.With regard to the cross-section of circular, oval, elliptical or rectangular expansion elements, the geometrical property has that in the case of pre-upsets of the expansion elements that are produced without stress, their contact widths on the pipe end face are only slightly dependent on the compressions that occur under force. As a result, the specific forces transmitted by the expansion elements vary only slightly along the circumference of the pipe, even with strongly inclined expansion levels in the joints, and thus the eccentricities of the driving force with respect to the neutral axis of the pipes remain low, which is a strong contrast to the joints used most often from wood-based materials.
Weiter kann das Verhältnis der ausgeübten Kraft K1 zur zulässigen Kraft K2 durch periodische oder kontinuierliche Berechnung des Verhältnisses überwacht werden. Falls das Verhältnis 1 erreicht oder überschreitet, wird automatisch ein Alarm ausgelöst und/oder die betreffende Stelle auf einem Display an- gezeigt, der Operator kann sofort einschreiten.Furthermore, the ratio of the force K1 to the permissible force K2 can be monitored by periodically or continuously calculating the ratio. If the ratio reaches or exceeds 1, an alarm is automatically triggered and / or the relevant position is shown on a display, the operator can intervene immediately.
Schliesslich wird im Pressschacht das zwischen das hinterste Rohrelement des Rohrstrangs und das neu eingeführte Rohrelement eingelegte Dehnelement vorzugsweise vorgestaucht und die dabei gemessenen Parameter gespeichert. Mit anderen Worten wird beim Vorstauchen der geometrische Querschnitt des Dehnelements festgelegt. Wie bei allen übrigen Messungen erfolgt das Auswerten vorzugsweise in Echtzeit, also nicht zeitverschoben. Die Erfindung, insbesondere auch die dazu notwendigen Vorrichtungen, werden anhand von in der Zeichnung dargestellten Ausführungsbeispiele, welche auch Gegenstand von abhängigen Patentansprüchen sind, näher erläutert. Es zeigen schematisch:Finally, the expansion element inserted between the rearmost pipe element of the pipe string and the newly introduced pipe element is preferably pre-compressed and the parameters measured in the process are stored. In other words, the geometric cross-section of the expansion element is determined during pre-upsetting. As with all other measurements, the evaluation is preferably carried out in real time, that is, not with a time shift. The invention, in particular also the devices necessary for this, are explained in more detail with reference to exemplary embodiments shown in the drawing, which are also the subject of dependent patent claims. They show schematically:
- Fig. 1 einen Vertikalschnitt durch einen Pressschacht mit einem Rohrstrang, - Fig. 2 den Verlauf eines Rohrstrangs unterhalb eines Strassenab- Schnitts, - Fig. 3 einen Axialschnitt durch zwei stirnseitig aneinanderliegende Rohrelemente, - Fig. 4 einen Radialschnitt durch ein Dehnelement, - Fig. 5 ein Detail einer Stossverbindung zweier Rohrelemente mit einer Mess- und Fülleinrichtung, gemäss V von Fig. 3, - Fig. 6 verschiedene Querschnittsformen von Rohrelementen, - Fig. 7 verschiedene Querschnittformen von Dehnelementen, - Fig. 8 eine Variante von Fig. 3 mit sektorieller Unterteilung des Dehnelements, und - Fig. 9 eine Variante gemäss Fig. 3 mit Dehnungsmessung.1 shows a vertical section through a press shaft with a pipe string, FIG. 2 shows the course of a pipe string below a street section, FIG. 3 shows an axial section through two pipe elements lying against one another on the end face, FIG. 4 shows a radial section through an expansion element, 5 shows a detail of a butt connection of two tubular elements with a measuring and filling device, according to V of FIG. 3, FIG. 6 shows different cross-sectional shapes of tubular elements, FIG. 7 shows different cross-sectional shapes of expansion elements, FIG. 8 shows a variant of FIG. 3 with sectoral subdivision of the expansion element, and FIG. 9 shows a variant according to FIG. 3 with expansion measurement.
Im Untergrund 10, vom weichen Erdreich bis zum monolithischen Fels, wird ausgehend von einem Pressschacht 12 ein Rohrstrang 14 vorgetrieben, welcher in einigen Metern Tiefe etwa parallel zur Erdoberfläche 16 verläuft. Die einzelnen Rohrelemente 18 werden mittels einer Hebevorrichtung 20 in den Pressschacht 12 abgesenkt.In the subsoil 10, from the soft soil to the monolithic rock, starting from a press shaft 12, a pipe string 14 is driven, which runs approximately parallel to the earth's surface 16 at a depth of a few meters. The individual tubular elements 18 are lowered into the press shaft 12 by means of a lifting device 20.
Eine sich auf ein Widerlager 22 abstützende Pressvorrichtung 24 ist auf den Rohrstrang 14 ausgerichtet. Vorliegend handelt es sich um Hydraulikpressen, es können jedoch auch pneumatische Pressen oder Hubspindeln eingesetzt werden. Ein Druckring 26 drückt stirnseitig auf das hinterste Rohrelement 18 und drückt den ganzen Rohrstrang 14 in Vorschubrichtung 28 um die Länge I eines Rohrelements 18 vorwärts. Dann wird der Druckring 26 zurückgezogen, ein neues Rohrelement 18 abgesenkt und unter Zwischenlage eines Dehnelements 44 (Fig. 3) präzis angesetzt. Dann erfolgt der Einschub um eine weitere Rohrlänge I.A pressing device 24, which is supported on an abutment 22, is aligned with the pipe string 14. These are hydraulic presses, but pneumatic presses or lifting spindles can also be used. A pressure ring 26 presses on the front onto the rearmost tubular element 18 and presses the entire tubular string 14 in the feed direction 28 by the length I. of a tubular element 18 forward. Then the pressure ring 26 is withdrawn, a new tubular element 18 is lowered and precisely placed with the interposition of an expansion element 44 (FIG. 3). Then insert another tube length I.
Gleichzeitig mit dem Einpressen des Rohrstrangs 18 in den Untergrund 10 wird durch ein Kopfstück 30 in an sich bekannter Weise das verdrängte Erdreich abgebaut. Dies erfolgt beispielsweise durch einen eingebauten Bagger 32, eine Fräse oder einem anderen im Bergbau bekannten Arbeitsgerät. Mit einem nicht gezeichneten Laufband wird das abgetragene Erdreich 34 in Richtung des Pressschachts 24, also entgegen der Vortriebsrichtung 28, gefördert.Simultaneously with the pressing of the pipe string 18 into the subsoil 10, the displaced soil is mined by a head piece 30 in a manner known per se. This is done, for example, by means of a built-in excavator 32, a milling machine or another working device known in mining. With a treadmill, not shown, the removed soil 34 is conveyed in the direction of the press shaft 24, that is against the direction of advance 28.
Der Vortrieb erfolgt wie erwähnt schrittweise. Ein Schritt beinhaltet das Einsetzen eines Rohrelements 18, den Vorschub des Rohrstrangs 14 um die Länge I des Rohrelements 18 in Vorschubrichtung 28. Die Vorschubkraft 40 (Fig. 3) wird über die nachstehend gezeigten Dehnelemente 44 (Fig. 3) von Rohrelement zu Rohrelement 18 übertragen.As mentioned, the advance is gradual. One step involves the insertion of a tubular element 18, the advancement of the tubular string 14 by the length I of the tubular element 18 in the advancing direction 28. The advancing force 40 (FIG. 3) is transferred from the tubular element to the tubular element 18 via the expansion elements 44 (FIG. 3) shown below transfer.
Wie erwähnt, verläuft der Rohrstrang 14 in der Regel etwa parallel zur Erdober- fläche 16. Der Rohrstrang 14 kann aber auch in jedem beliebigen anderen Winkel verlaufen.As mentioned, the pipe string 14 generally runs approximately parallel to the surface of the earth 16. However, the pipe string 14 can also run at any other angle.
Aus verschiedenen Gründen kann es während dem Vorschieben eines Rohrstrangs 18 zu Exzentrizitäten kommen, wie dies in Fig. 3 im Detail dargestellt wird.For various reasons, eccentricities can occur during the advancement of a pipe string 18, as is shown in detail in FIG. 3.
Das Kopfstück 30 weist meist ein Ortungsgerät 36 auf, so kann die Lage jederzeit festgestellt und allenfalls notwendige Korrekturen vorgenommen werden. Weiter kann bei einer allenfalls notwendigen Reparatur oder Auswechslung des Kopfstücks 30 ein Hilfsschacht präzis ausgehoben werden.The head piece 30 usually has a locating device 36, so the position can be determined at any time and any necessary corrections can be made. Furthermore, an auxiliary shaft can be lifted out precisely if a repair or replacement of the head piece 30 is necessary.
In Fig. 2 ist ein S-Stück einer Strasse 38 mit darunter liegendem Rohrstrang 14 angedeutet. Der Rohrstrang 14 wird mit möglichst grossem Biegeradius durch das S-Stück geführt, der projektierte Rohrweg verläuft möglichst gerade. Durch Messen und Prozesssteuerung gemäss der vorliegenden Erfindung kann der Rohrstrang 14 dem projektierten Rohrweg weitestgehend folgen.2 is an S-piece of a street 38 with a pipe string 14 underneath indicated. The pipe string 14 is guided through the S-piece with the largest possible bending radius, the planned pipe path runs as straight as possible. By measuring and process control according to the present invention, the pipe string 14 can largely follow the planned pipe path.
Fig. 3 zeigt die Stirnseiten 42 zweier Rohrelemente 18, auf welche eine Vortriebskraft 40 ausgeübt wird. Die beiden Stirnseiten 42 der Rohrelemente 18 werden durch ein als Hohlprofil ausgebildetes Dehnelement 44 gestossen. Der Hohlraum des Dehnelements 44 ist mit einem druckfesten Fluid 46 gefüllt, der Druck p kann auf weit mehr als 100 bar ansteigen.Fig. 3 shows the end faces 42 of two tubular elements 18, on which a driving force 40 is exerted. The two end faces 42 of the tubular elements 18 are pushed through an expansion element 44 designed as a hollow profile. The cavity of the expansion element 44 is filled with a pressure-resistant fluid 46, the pressure p can rise to far more than 100 bar.
Der Verbindungsbereich der beiden Rohrelemente 18 ist mit einer Manschette 48 abgedeckt, welche eine Führungs- und Dichtungsfunktion hat. Die Dichtungsfunktion wird durch einen eingelegten O-Ring 50 unterstützt.The connection area of the two tubular elements 18 is covered with a sleeve 48, which has a guiding and sealing function. The sealing function is supported by an inserted O-ring 50.
Es kann während dem Vorschieben eines Rohrstrangs 14 aus Rohrelementen 18 zu Exzentrizitäten 52 der Vorschubkraft 40 bezüglich der neutralen Achse N des Rohrstrangs 14 kommen. Die Gründe dafür liegen in den unterschiedlichen Reibungsverhältnissen entlang der Kontaktfläche 54 der Rohrelemente 18 und dem Untergrund 10, hauptsächlich aber in geplanten und unvorhergesehenen Steuerbewegungen sowie Massungenauigkeiten in den Rohrelementen 18, insbesondere bei der Verwendung von Fugenelementen aus Holzwerkstoffen, welche eine ausgeprägte nicht lineare, irreversible Last-Verformungs-Charakteristik aufweisen. Die erwähnten Exzentrizitäten 52 erzeugen Drehmomente um Achsen, die in einer senkrecht zur Vortriebsrichtung 28 stehenden Ebene liegen. Zur Erhaltung des Gleichgewichts wird die Mobilisierung von zu diesen Momenten gegenläufigen, betragsmässig gleich grossen Drehmomenten durch rechtwinklig zur Vortriebsrichtung 28 wirkende Erddrücken notwendig. Diese Erddrücke stellen bedeutende Belastungen dar, welche im Extremfall zu einem Bruch von Rohrelementen 18 führen.Eccentricities 52 of the feed force 40 with respect to the neutral axis N of the pipe string 14 can occur during the feeding of a pipe string 14 made of pipe elements 18. The reasons for this lie in the different frictional relationships along the contact surface 54 of the tubular elements 18 and the base 10, but mainly in planned and unforeseen control movements and inaccurate dimensions in the tubular elements 18, in particular when using joint elements made of wood-based materials, which are pronounced non-linear, irreversible Have load-deformation characteristics. The eccentricities 52 mentioned generate torques about axes which lie in a plane perpendicular to the direction of advance 28. In order to maintain the equilibrium, the mobilization of torques which are opposed to these moments and are of equal magnitude by means of earth pressures acting at right angles to the direction of advance 28 is necessary. These earth pressures represent significant loads which, in extreme cases, lead to the breakage of tubular elements 18.
Erfindungsgemäss sind alle Hohlräume der Dehnelemente 44 über den ganzen Rohrstrang 14 über eine Druckleitung 56 verbunden, wie dies in Fig. 4 und 5 gezeigt wird. Diese Druckleitung 56 ist über einen Füllhahn 58 mit der Armatur 60 jedes angeschlossenen Dehnelements 54 verbunden. Mit einem Hebel 62 kann der Füllhahn 58 geöffnet werden. Die Armatur 60 ist auch mit einem Druckmessgerät 64 und einem Entlüftungshahn 66 bestückt, über welchen überflüssiges Fluid in den Innenraum des Rohrstrangs 14 abgelassen werden kann.According to the invention, all cavities of the expansion elements 44 are all over Pipe string 14 connected via a pressure line 56, as shown in FIGS. 4 and 5. This pressure line 56 is connected via a filling valve 58 to the fitting 60 of each connected expansion element 54. The filling tap 58 can be opened with a lever 62. The fitting 60 is also equipped with a pressure measuring device 64 and a vent valve 66, via which excess fluid can be drained into the interior of the pipe string 14.
In der Ausführungsform nach Fig. 4 ist das Dehnelement 44 aus einem Elasto- mer schlauchförmig ausgebildet. Der umlaufende Schlauch hat keine Aufteilung in Sektionen. Der Druck ist deshalb, bis auf den geodätischen Unterschied, immer rundherum gleich, auch bei grösster Druckanwendung, was in Fig. 5 mit dem punktierten, verformten Dehnelement 44 dargestellt ist.In the embodiment according to FIG. 4, the expansion element 44 is made of an elastomer tubular. The surrounding hose has no division into sections. Except for the geodesic difference, the pressure is therefore always the same all around, even with the greatest pressure application, which is shown in FIG. 5 with the dotted, deformed expansion element 44.
In Fig. 6 sind einige mögliche Querschnitte von Rohrelementen 18 dargestellt. Diese können beispielsweise rund, quadratisch, rechteckig, rechteckig mit einer Querwand oder gewölbeartig ausgebildet sein. Die Elemente haben einen Durchmesser bzw. ein entsprechendes Linearmass von einem oder mehreren Metern. Sie bestehen beispielsweise aus Beton, Faserbeton oder einem Metall.6 shows some possible cross sections of tubular elements 18. These can for example be round, square, rectangular, rectangular with a transverse wall or vaulted. The elements have a diameter or a corresponding linear dimension of one or more meters. They consist, for example, of concrete, fiber concrete or a metal.
Fig. 7 zeigt Querschnitte von Dehnelementen 44. Diese sind kreisförmig, quadratisch, elliptisch, langrechteckig abgerundet, kassettenförmig und beidseits konvex ausgebildet. Es gibt eine grosse Vielfalt von Querschnitten, die Wände können teilweise verstärkt ausgebildet sein.Fig. 7 shows cross sections of expansion elements 44. These are circular, square, elliptical, rounded with a long rectangle, cassette-shaped and convex on both sides. There is a large variety of cross-sections, the walls can be partially reinforced.
In der Ausführungsform nach Fig. 8 ist das umlaufende Dehnelement 44 in drei gleich grosse Sektionen A, B, C aufgeteilt, welche hydraulisch nicht miteinander verbunden sind. Jede Sektion des Dehnelements 44 kann eine Armatur mit einem Füllhahn 58 und einem Entlüftungshahn 66 aufweisen. Es kann eine aktive Richtungsänderung erfolgen. Mit einem Dehnelement 44 gemäss Fig. 8 kann bei entsprechender Anordnung direkt der Führungskopf 30 (Fig. 1) gesteuert werden. Üblich sind drei bis sechs Sektoren. In der Ausführungsform gemäss Fig. 9 wird die Dehnung zwischen den Stirnseiten 42 der Rohrelemente 18 mit einem Dehnungsmesser 68 gemessen.In the embodiment according to FIG. 8, the circumferential expansion element 44 is divided into three sections A, B, C of the same size, which are not hydraulically connected to one another. Each section of the expansion element 44 can have a fitting with a filling tap 58 and a venting tap 66. An active change of direction can take place. With an appropriate arrangement, the guide head 30 (FIG. 1) can be controlled directly with an expansion element 44 according to FIG. 8. Three to six sectors are common. In the embodiment according to FIG. 9, the elongation between the end faces 42 of the tubular elements 18 is measured with an extensometer 68.
Die Messdatenverwaltung von Druck und Verformung, insbesondere der Dehnung, erfolgt im Rohrstrang 18 oder ausserhalb davon mit einem Prozessor. Der Füllhahn 58 und der Entlüftungshahn 66 können über entsprechende Aktoren ebenfalls von einem Prozessor gesteuert werden. Die Datenübertragung vom und zum Prozessor erfolgt über elektrische oder optische Kabel bzw. über Funk, auch unter Einsatz des Internets. Diese wie üblich verwendeten elektronischen Bauteile sind der Übersichtlichkeit wegen nicht gezeichnet.The measurement data management of pressure and deformation, in particular the expansion, is carried out in the pipe string 18 or outside of it with a processor. The fill valve 58 and the vent valve 66 can also be controlled by a processor via corresponding actuators. The data transmission from and to the processor takes place via electrical or optical cables or via radio, also using the Internet. These electronic components, which are used as usual, are not drawn for the sake of clarity.
Von wesentlicher Bedeutung ist dagegen, dass die Hohlräume aller betätigbaren Dehnelemente 44 über die Druckleitung 56 kommunizierend miteinander verbunden werden können. Die sich im Innern des Rohrstrangs 14 über die ganze Länge erstreckende Druckleitung 56 kann mit allen Dehnelementen 54 oder nur einem Teil davon verbunden sein. Durch den Füllhahn 58 wird der Hohlraum eines Dehnelements 44 vor dem Aufbringen der Vortriebskraft 40 zweckmässig mit einer drucksteifen Flüssigkeit, auch Fluid 46 genannt, gefüllt und durch mindestens einen Entlüftungshahn 66 gleichzeitig entlüftet. Über diese beiden Hahnen 58, 66 besteht auch die Möglichkeit, den vorhandenen Innendruck des Fluids 46 mit einem Druckmessgerät 64 zu messen. Mit Hilfe von mindesten drei punktuellen Messungen der Dehnung von Fugen 70 in Vortriebsrichtung 28 wird die Dehnungsebene in einer Fuge 70 bestimmt. Durch den erhaltenen Parameterdruck des Fluids 46 und die Geometrie der Dehnungsebene in der Fuge 70 kann mit Hilfe eines reversiblen Last-Verformungsgesetzes der beschriebenen Fugenfunktion die Grosse und Exzentrizität 72 der resultierenden Vortriebskraft 40 in Ort und Betrag ermittelt werden. Daraus kann wiederum die Grosse und Richtung der Erddrücke quer zur neutralen Achse N ermittelt und damit die Kenntnis über die Grosse der Gefährdung einer Beschädigung oder gar eines Bruchs der Rohrelemente 18 in Querrichtung gewonnen werden. Somit steht eine zuverlässige und genaue Methode zur Über- wachung und Steuerung der Vortriebskräfte 40 zur Verfügung, welche mit einfachen, wirtschaftlichen und robusten Mitteln auskommt. Die Fuge 70 kann nach einer nicht dargestellten Variante auch konzentrisch, spiralförmig oder nach einer komplizierteren, jedoch keine Querkräfte erzeugenden geometri- sehen Form verlaufen.On the other hand, it is essential that the cavities of all actuatable expansion elements 44 can be communicatively connected to one another via the pressure line 56. The pressure line 56, which extends over the entire length inside the pipe string 14, can be connected to all of the expansion elements 54 or only a part thereof. Through the filling tap 58, the cavity of an expansion element 44 is expediently filled with a pressure-resistant liquid, also called fluid 46, before the propelling force 40 is applied, and at the same time vented through at least one vent tap 66. With these two cocks 58, 66 there is also the possibility of measuring the existing internal pressure of the fluid 46 with a pressure measuring device 64. The expansion plane in a joint 70 is determined with the aid of at least three point measurements of the expansion of joints 70 in the direction of advance 28. Due to the parameter pressure of the fluid 46 obtained and the geometry of the expansion plane in the joint 70, the size and eccentricity 72 of the resulting driving force 40 can be determined in place and amount with the aid of a reversible load-deformation law of the joint function described. From this, the magnitude and direction of the earth pressures transversely to the neutral axis N can be determined and thus knowledge of the magnitude of the risk of damage or even breakage of the tubular elements 18 in the transverse direction can be obtained. This provides a reliable and accurate method for monitoring and control of the driving forces 40 available, which manages with simple, economical and robust means. According to a variant not shown, the joint 70 can also run concentrically, spirally or according to a more complicated geometrical shape, which, however, does not generate any transverse forces.
Durch eine Stauchung des Dehnelements 44 in der Fuge 70, während der die beschriebenen Füllhahn 58 und/oder Entlüftungshahn 66 geöffnet sind und somit das Fluid 46 frei in den Hohlraum des Dehnelements 44 ein- und austreten kann, wird das Dehnelement 44 deformiert, ohne dass sich der Druck im Hohlraum des Dehnelements 44 ändert. Durch eine solche Vorstauchung kann die kraftübertragende Auflagefläche des Dehnelements 44 auf den Stirnseiten 42 der Rohrelemente und damit auch die Vortriebskraft 40 erhöht werden. Durch eine gezielte Vorstauchung kann somit das Deformationsverhalten des Dehn- elements 44 in gewissen Grenzen gemäss den Anforderungen gesteuert werden.By compressing the expansion element 44 in the joint 70, during which the described filling valve 58 and / or ventilation valve 66 are open and thus the fluid 46 can freely enter and exit into the cavity of the expansion element 44, the expansion element 44 is deformed without the pressure in the cavity of the expansion element 44 changes. By means of such pre-compression, the force-transmitting contact surface of the expansion element 44 on the end faces 42 of the tubular elements and thus also the driving force 40 can be increased. The deformation behavior of the expansion element 44 can thus be controlled within certain limits in accordance with the requirements by means of a specific pre-compression.
In mehrere Abschnitte unterteilte, d. h. sektionierte Dehnelemente 44 stellen unabhängige hydraulische Gefässe dar, die zueinander unterschiedliche Innen- drücke aufweisen können. Als gemeinsamen Parameter weisen diese Abschnitte lediglich die Geometrie der Dehnungsebene auf. Durch das Steuern des Druckes, bzw. der vorhandenen Menge Fluid 46 im Hohlraum der einzelnen Abschnitte des Dehnelements 44 wird die Lage der resultierenden Vortriebskraft 40 in Ort und Betrag beeinflusst. Mit einer gezielten Anwendung dieser Eigenschaft kann das unterteilte Dehnelement 40 die Lage und Grosse der Exzentrizität 52 der Vortriebskraft 40 genau kontrolliert und gesteuert werden.Divided into several sections, i. H. Sectioned expansion elements 44 represent independent hydraulic vessels which can have different internal pressures from one another. These sections only have the geometry of the strain plane as a common parameter. By controlling the pressure or the amount of fluid 46 present in the cavity of the individual sections of the expansion element 44, the position and amount of the resulting driving force 40 are influenced. With a targeted application of this property, the divided expansion element 40, the position and size of the eccentricity 52 of the driving force 40 can be precisely controlled and controlled.
Fehlen bei einem Dehnelement 44 diese Unterteilungen, so ist der Fluiddruck p im Hohlraum des Dehnelements 44 überall gleich gross, und die Grosse der über das Dehnelement 44 übertragenen Kraft je Längeneinheit des Dehnelements 44 in Umfangrichtung gemessen ist nur von der Grosse der Auflagebreite des Dehnelements 44 auf den Stirnseiten der Elemente abhängig und insbe- sondere von der übrigen Geometrie des Dehnelements 44 unabhängig. Durch eine geschickte Wahl von Eigenschaften und Geometrie, sowie Vorstauchung des Dehnelements 44 gelingt es, die Abhängigkeit der stirnseitigen Fugenaufla- gefläche je Längeneinheit von der Stauchung des Dehnelements 44 klein zu halten. Damit kann auch die Exzentrizität 52 der resultierenden Vortriebskraft 40 von der Dehnung des Dehnelements 44 unabhängig gemacht oder in kleinen Grenzen gehalten werden. Dies stellt eine bedeutende Verbesserung der Eigenschaften der beschriebenen Dehnelemente 44 dar.If these subdivisions are absent in the case of an expansion element 44, the fluid pressure p in the cavity of the expansion element 44 is the same everywhere, and the size of the force transmitted via the expansion element 44 per unit length of the expansion element 44 measured in the circumferential direction is only dependent on the size of the contact width of the expansion element 44 dependent on the end faces of the elements and particularly independent of the rest of the geometry of the expansion element 44. Through a clever choice of properties and geometry, as well as pre-compression of the expansion element 44, it is possible to keep the dependency of the end-face joint support surface per unit length on the compression of the expansion element 44 small. The eccentricity 52 of the resulting propulsive force 40 can thus also be made independent of the expansion of the expansion element 44 or can be kept within small limits. This represents a significant improvement in the properties of the expansion elements 44 described.
Nach erfolgtem Vortrieb bestehen für die Weiterverwendung des beschriebenen Dehnelements 44 im wesentlichen zwei Möglichkeiten:After the advance has been carried out, there are essentially two possibilities for the further use of the expansion element 44 described:
- Der Innendruck des Dehnelements 44 wird abgesenkt und diese vom Innenraum des erstellten Bauwerks her ausgebaut. Damit kann das Dehnelement 44 wieder verwendet werden.- The internal pressure of the expansion element 44 is reduced and this expanded from the interior of the building created. The expansion element 44 can thus be used again.
- Das Dehnelement 44 bleibt eingebaut und wird als Bauwerksabdichtung für den Endzustand weiterverwendet.- The expansion element 44 remains installed and is used as a structural seal for the final state.
Der Druck des Fluids 46 innerhalb des Dehnelements 44 wird weiter überwacht und gesteuert und damit die Dichtungsleistung des Dehnelements 44 kontrolliert.The pressure of the fluid 46 within the expansion element 44 is further monitored and controlled, and thus the sealing performance of the expansion element 44 is controlled.
Das Fluid 46 im Dehnelement kann mit einer sich erhärtenden Flüssigkeit ausgetauscht werden, beispielsweise mit einer Zement-Suspension. Diese wird unter einem bestimmten Druck in den Hohlraum des Dehnelements 44 einge- presst und so nach erfolgter Erhärtung für eine dauerhafte Vorspannung und einen Dichtdruck verwendet.The fluid 46 in the expansion element can be exchanged with a hardening liquid, for example with a cement suspension. This is pressed into the cavity of the expansion element 44 under a certain pressure and, after hardening, is used for a permanent prestress and a sealing pressure.
Zusammenfassend kann festgestellt werden, dass erfindungsgemäss die Mög- lichkeit besteht, mit dem beschriebenen Aufbau des Dehnelements 44 das ganze Bauwerk auf einfache Art und Weise zu überbrücken, bzw. vorzuspannen, mit all den damit verbundenen Vorteilen. In summary, it can be stated that, according to the invention, there is the possibility, with the described construction of the expansion element 44, of bridging or prestressing the entire structure in a simple manner, with all the advantages associated therewith.

Claims

Patentansprüche claims
1. Verfahren zum Ermitteln der Vortriebskraft (40), deren Exzentrizität (52) bezüglich der neutralen Achse (N) und/oder der Vortriebsrichtung (28) beim Vortrieb von Rohrelementen (18) zum Erstellen eines länglichen Bauwerks in weichem, steinigem und/oder felsigem Untergrund, wobei eine Pressvorrichtung (24) und stirnseitig in den Fugen (70) des Rohrstrangs (14) angeordnete, fluidgefüllte Dehnelemente (44) eingesetzt werden, dadurch gekennzeichnet, dass in wenigstens einem über die ganze Länge des Rohrstrangs (14) verteilten Teil der Dehnelemente (44) der Fluiddruck (p) und/oder der Fugen (70) die Verformung gemessen, aus diesen Parametern die Vortriebskraft (40) und die Exzentrizität (52) berechnet und die Werte gespeichert und/oder mit gespeicherten Standardwerten verglichen werden.1. A method for determining the driving force (40), the eccentricity (52) thereof with respect to the neutral axis (N) and / or the direction of advance (28) when driving pipe elements (18) to create an elongated structure in soft, stony and / or rocky subsoil, a pressing device (24) and fluid-filled expansion elements (44) arranged on the end face in the joints (70) of the pipe string (14), characterized in that in at least one part distributed over the entire length of the pipe string (14) the expansion elements (44) the fluid pressure (p) and / or the joints (70) measured the deformation, the driving force (40) and the eccentricity (52) are calculated from these parameters and the values are stored and / or compared with stored standard values.
2. Verfahren zum Steuern der Vortriebskraft (40), Minimalisieren von deren Exzentrizität (52) bezüglich der neutralen Achse (N) und/oder der Vortriebsrichtung (28) beim Vortrieb von Rohrelementen (28) zum Erstellen eines länglichen Bauwerks in weichem, steinigem und/oder felsigem Untergrund (10) , wobei eine Pressvorrichtung (24) und stirnseitig in den Fugen (70) des Rohrstrangs (14) angeordnete, fluidgefüllte Dehnelemente (44) eingesetzt werden, dadurch gekennzeichnet, dass in wenigstens einem über die ganze Länge des Rohrstrangs (14) verteilten Teil der Dehnelemente (44) der Fluiddruck (p) und/oder der Fugen (70) die Verformung gemessen, aus diesen Parametern die Vortriebskraft (40) und die Exzentrizität (52) berechnet, und die Werte in Steuerbefehle für die Pressvorrichtung (24) und/oder die individuelle Fluidzufuhr zu bzw. den individuellen Fluidabfluss von den Dehnelementen (44) umgewandelt werden.2. A method for controlling the driving force (40), minimizing its eccentricity (52) with respect to the neutral axis (N) and / or the direction of advance (28) when driving pipe elements (28) to create an elongated structure in soft, stony and / or rocky subsoil (10), a press device (24) and fluid-filled expansion elements (44) arranged on the end face in the joints (70) of the pipe string (14), characterized in that in at least one over the entire length of the pipe string (14) distributed part of the expansion elements (44) the fluid pressure (p) and / or the joints (70) measured the deformation, calculated from these parameters the driving force (40) and the eccentricity (52), and the values in control commands for the Press device (24) and / or the individual fluid supply to or the individual fluid outflow from the expansion elements (44) can be converted.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verformung, vorzugsweise die Dehnung oder die Scherverformung, in allen Fugen (70) gemessen wird.3. The method according to claim 1 or 2, characterized in that the deformation, preferably the elongation or the shear deformation, is measured in all joints (70).
4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Verformung, vorzugsweise die Dehnung in einer Fuge (70) an wenigstens drei Stellen, vorzugsweise regelmässig über den Umfang verteilt, gemessen und die Geometrie der Dehnungsebene der Fuge (70) bestimmt wird.4. The method according to any one of claims 1 or 2, characterized in that the deformation, preferably the expansion in a joint (70) at least three locations, preferably distributed regularly over the circumference, measured and the geometry of the plane of expansion of the joint (70) is determined.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Fluiddruck (p) in jedem Abschnitt (A, B, C) eines sektoriell unterteilten Dehnelements (44) gemessen und bei entsprechendem Steuerbefehl, abschnittweise eine individuelle Fluidmenge zu- oder abgeführt wird.5. The method according to any one of claims 1 to 4, characterized in that the fluid pressure (p) in each section (A, B, C) of a sectorally divided expansion element (44) measured and with an appropriate control command, sections of an individual amount of fluid is dissipated.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass mit dem vordersten Dehnelement (44) ein Kopfstück (30) gesteuert wird.6. The method according to claim 5, characterized in that a head piece (30) is controlled with the foremost expansion element (44).
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Fluiddruck (p) in einem mit einer drucksteifen Flüssigkeit gefüllten Dehnelement (44) gemessen wird.7. The method according to any one of claims 1 to 6, characterized in that the fluid pressure (p) is measured in an expansion element (44) filled with a pressure-resistant liquid.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Fluiddruck (p) in einem im Querschnitt kreisförmigen, ovalen, elliptischen oder in Richtung wenigstens einer Stirnseite (42) der Rohrelemente (18) runden Dehnelement (44) gemessen wird.8. The method according to any one of claims 1 to 7, characterized in that the fluid pressure (p) in a circular in cross-section, oval, elliptical or in the direction of at least one end face (42) of the tubular elements (18) round expansion element (44) is measured ,
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Verhältnis von ausgeübter Kraft (K-ι) zu zulässiger Kraft (K2) perio- disch oder kontinuierlich berechnet und überwacht, und bei — > 1 κ2 vorzugsweise Alarm ausgelöst wird.9. The method according to any one of claims 1 to 8, characterized in that the ratio of the force exerted (K-ι) to the permissible force (K 2 ) perio- calculated or monitored continuously or continuously, and at -> 1 κ 2 preferably alarm is triggered.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die beim Vorstauchen des Dehnelementes (44) im Pressschacht (12) gemessenen Parameter gespeichert werden.10. The method according to any one of claims 1 to 9, characterized in that the parameters measured when pre-upsetting the expansion element (44) in the press shaft (12) are stored.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Auswertung in Echtzeit erfolgt.11. The method according to any one of claims 1 to 10, characterized in that the evaluation takes place in real time.
12. Anwendung des Verfahrens nach Anspruch 1 zur Qualitätssicherung. 12. Application of the method according to claim 1 for quality assurance.
EP05706512A 2004-02-19 2005-02-17 Advancement of pipe elements in the ground Active EP1727964B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2712004 2004-02-19
PCT/CH2005/000090 WO2005080753A1 (en) 2004-02-19 2005-02-17 Advancement of pipe elements in the ground

Publications (2)

Publication Number Publication Date
EP1727964A1 true EP1727964A1 (en) 2006-12-06
EP1727964B1 EP1727964B1 (en) 2008-03-05

Family

ID=34866024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05706512A Active EP1727964B1 (en) 2004-02-19 2005-02-17 Advancement of pipe elements in the ground

Country Status (12)

Country Link
US (1) US8231306B2 (en)
EP (1) EP1727964B1 (en)
JP (1) JP4767871B2 (en)
KR (1) KR101181882B1 (en)
CN (1) CN1973113B (en)
AT (1) ATE388302T1 (en)
AU (1) AU2005214470B2 (en)
CA (1) CA2556370C (en)
DE (1) DE502005003096D1 (en)
HK (1) HK1106812A1 (en)
MX (1) MXPA06009421A (en)
WO (1) WO2005080753A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018050556A1 (en) * 2016-09-15 2018-03-22 Jackcontrol Ag Measurement signal evaluation method
WO2019172753A1 (en) * 2018-03-06 2019-09-12 Fugro N.V. Position monitoring of a gasket between tunnel segments

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835126A1 (en) 2006-03-16 2007-09-19 Sika Technology AG Sealing process and sealing joint for driving pipes
DE202006005297U1 (en) * 2006-04-01 2006-06-14 Baumgartner, Franz, Dipl.-Ing. Pressure compensation ring
DE202012101383U1 (en) * 2012-04-16 2012-05-07 Elke Baumgartner Pressure compensation ring for the arrangement between two jacking pipes of an underground pipe jacking
EP2674569A1 (en) 2012-06-15 2013-12-18 Stefan Trümpi Gap seal for pipe jacking
CH709476A1 (en) * 2014-04-07 2015-10-15 Stefan Trümpi A method for sealing joints during the pressing pipe jacking.
CN104565534B (en) * 2014-11-24 2017-06-06 余澄玉 A kind of method that component is laid in weak soil
JP6990668B2 (en) * 2019-02-26 2022-01-12 公益財団法人鉄道総合技術研究所 Ground exploration equipment
GB2595270B (en) 2020-05-20 2022-09-28 Namaya Ltd Systems and methods of constructing intake-output assemblies for water desalination plants
GB2595716A (en) 2020-06-04 2021-12-08 Namaya Ltd Systems assemblies and methods of pipe ramming prefabricated members with a structured layout

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388724A (en) * 1965-04-05 1968-06-18 Exxon Research Engineering Co Submarine insulated lng pipeline
CH574023A5 (en) * 1973-07-24 1976-03-31 Schmitter Adolf Junction seal for channels or conduits - has ring expansion member anchored to one channel inflated to force ends apart
US3881776A (en) * 1973-11-23 1975-05-06 Us Navy Vermiculating polytoroidal thruster
US4095435A (en) * 1975-04-08 1978-06-20 Koichi Uemura Method of advancing a plurality of longitudinally arranged movable constructional units forwardly successively in a self-running manner and apparatus for performing same
US4095655A (en) * 1975-10-14 1978-06-20 Still William L Earth penetration
JPS563796A (en) 1979-06-16 1981-01-16 Marcon Int Ltd Method of lining tunnel and tunnel lining piece assembly
CA1151436A (en) * 1979-06-16 1983-08-09 Michael A. Richardson Installation of tunnel linings
DE3414180A1 (en) * 1984-04-14 1985-10-24 Georg Prinzing GmbH & Co KG Betonformen- und Maschinenfabrik, 7902 Blaubeuren Sealing device for abutting components which are at least approximately pipe-shaped, in particular for concrete mouldings
JPS60219395A (en) * 1984-04-16 1985-11-02 株式会社 イセキ開発工機 Pipe propelling apparatus
JPS60246993A (en) * 1984-05-22 1985-12-06 植村 厚一 Method and apparatus for propelling underground pipe
JPS621996A (en) 1985-05-23 1987-01-07 トピー栄進建設株式会社 Method of curve propulsion construction of propulsion pipe
DE3539897A1 (en) * 1985-11-11 1987-05-21 Kev Metro Koezlekedesi Es Metr Method and arrangement for producing underground structural objects guided rectilinearly in a closed profile, in particular tunnel-like structures under the turf level, by pressing tube elements into the ground
US4718459A (en) * 1986-02-13 1988-01-12 Exxon Production Research Company Underwater cryogenic pipeline system
JP2576978B2 (en) * 1986-12-15 1997-01-29 株式会社 青木建設 Connection device for propulsion pipe for curved propulsion method
AU612831B2 (en) * 1988-06-08 1991-07-18 Kidoh Construction Co., Ltd. Method and apparatus for laying pipes in the ground with advance of propulsion shafts installed with pipe-supporting attachments
JP3575527B2 (en) * 1998-12-02 2004-10-13 大日本土木株式会社 Thrust monitoring device
EP1531959B1 (en) * 2002-07-17 2008-03-05 Shell Internationale Researchmaatschappij B.V. Method of joining expandable tubulars
CN1257342C (en) * 2003-03-19 2006-05-24 钱奂云 Tunnellers and constructing method thereof
CN100510320C (en) * 2003-03-20 2009-07-08 黄恩总 Tunneling method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005080753A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018050556A1 (en) * 2016-09-15 2018-03-22 Jackcontrol Ag Measurement signal evaluation method
WO2019172753A1 (en) * 2018-03-06 2019-09-12 Fugro N.V. Position monitoring of a gasket between tunnel segments
NL2020541B1 (en) * 2018-03-06 2019-09-13 Fugro N V Position Monitoring of a Gasket between Tunnel Segments
US12066103B2 (en) 2018-03-06 2024-08-20 Fnv Ip B.V. Position monitoring of a gasket between tunnel segments

Also Published As

Publication number Publication date
CN1973113A (en) 2007-05-30
CA2556370A1 (en) 2005-09-01
KR101181882B1 (en) 2012-09-11
AU2005214470B2 (en) 2010-07-15
KR20060129484A (en) 2006-12-15
ATE388302T1 (en) 2008-03-15
CN1973113B (en) 2011-02-09
WO2005080753A1 (en) 2005-09-01
MXPA06009421A (en) 2007-03-23
EP1727964B1 (en) 2008-03-05
AU2005214470A1 (en) 2005-09-01
US8231306B2 (en) 2012-07-31
US20070280786A1 (en) 2007-12-06
HK1106812A1 (en) 2008-03-20
JP2007523276A (en) 2007-08-16
DE502005003096D1 (en) 2008-04-17
JP4767871B2 (en) 2011-09-07
CA2556370C (en) 2012-06-12

Similar Documents

Publication Publication Date Title
EP1727964B1 (en) Advancement of pipe elements in the ground
DE3009837C2 (en) Device for laying pipes underground
EP0052292B1 (en) Process and device for advancing a slidable shuttering
EP0860638B1 (en) Device and process of laying ceramic tubes without excavation
DE2911419C2 (en) Device for the direction-controlled production of boreholes in loose rock
EP3513039B1 (en) Measurement signal evaluation method
EP2674569A1 (en) Gap seal for pipe jacking
EP1930506B1 (en) Load-testing element
DE3626988C2 (en)
EP1807645B1 (en) Method for operating a sheeting machine for laying pipes, and sheeting machine
DE102006042500A1 (en) Building material`s i.e. mortar, property testing device, has passage provided in container for grouting of building material, where container has lower part and upper part comprising frame
DE2505980A1 (en) Tunnel tube section forwarding - uses hydraulic or pneumatic pressure from pressure pipe between component and abutment
DE3729560A1 (en) METHOD AND DEVICE FOR PRODUCING A PIPELINE IN A HOLE DESIGNED IN THE GROUND
EP1904716B1 (en) Underground construction of a pipeline
WO2011026632A2 (en) Method for operating a propping device, and propping device
CH704231A2 (en) Pipeline for use in digging pit, comprises two pipe elements, where each has front side, where joint is provided, which is formed between front sides
DE102008038964B4 (en) Mobile device unit for generating a survey in trays and fillings
DE2105432C3 (en) Process for the production of a longitudinally prestressed composite pile
DE102009033834B3 (en) Device for lifting base plate corresponding to foundation element, comprises empty annular space, which is formed around lifting element, where annular space is limited by exterior seal made of plastic or rubber
EP1835126A1 (en) Sealing process and sealing joint for driving pipes
DE19527608C2 (en) Underwater composite piles
WO2023017129A1 (en) Device for the internal bending of pipes for pipelines
CH716935B1 (en) Casing, strand product and combination ring with integrated sliding seal for pipe jacking and method for its manufacture.
DE1173034B (en) Driving head for pressing a pipe into the ground

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20060919

17Q First examination report despatched

Effective date: 20070316

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005003096

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080616

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG WINTERTHUR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

26N No opposition filed

Effective date: 20081208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200219

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRUEMPI, STEFAN, CH

Free format text: FORMER OWNER: TRUEMPI, STEFAN, CH

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220217

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230223

Year of fee payment: 19

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 388302

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 20

Ref country code: CH

Payment date: 20240301

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240219

Year of fee payment: 20