EP0052292B1 - Process and device for advancing a slidable shuttering - Google Patents

Process and device for advancing a slidable shuttering Download PDF

Info

Publication number
EP0052292B1
EP0052292B1 EP81109414A EP81109414A EP0052292B1 EP 0052292 B1 EP0052292 B1 EP 0052292B1 EP 81109414 A EP81109414 A EP 81109414A EP 81109414 A EP81109414 A EP 81109414A EP 0052292 B1 EP0052292 B1 EP 0052292B1
Authority
EP
European Patent Office
Prior art keywords
formwork
tunnel
concrete
gallery
formwork structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81109414A
Other languages
German (de)
French (fr)
Other versions
EP0052292A1 (en
Inventor
Heinz-Theo Dipl.-Ing. Walbröhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OFFERTA DI LICENZA AL PUBBLICO
Original Assignee
Walbrohl Heinz-Theo Dipl-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walbrohl Heinz-Theo Dipl-Ing filed Critical Walbrohl Heinz-Theo Dipl-Ing
Priority to AT81109414T priority Critical patent/ATE6803T1/en
Publication of EP0052292A1 publication Critical patent/EP0052292A1/en
Application granted granted Critical
Publication of EP0052292B1 publication Critical patent/EP0052292B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/102Removable shuttering; Bearing or supporting devices therefor

Definitions

  • the invention relates to a method for driving a sliding formwork when expanding a tunnel or tunnel according to the type laid down in the preamble of claim 1, and an apparatus for carrying out this method.
  • a rigid formwork body consisting of formwork skin and stiffeners is advanced by means of hydraulic presses which are supported against holding devices which are clamped in the past, already switched off concrete lining of the tunnel or tunnel.
  • the front of the annular space just mentioned is closed with a front formwork which forms part of the slide formwork, which as a rule moves with the slide formwork, but can be moved forward with respect to the rest of the slide formwork alone to introduce reinforcements if necessary.
  • a continuously advancing sliding formwork must have at least such an axial length that the in-situ concrete coming at its rear end has reached sufficient strength to at least temporarily exert the pressure of the surrounding soil exerted on it from the outside, i.e. H. to be able to take up until it is supported by a support formwork installed behind the sliding formwork, which remains installed until the concrete has reached its final load-bearing capacity.
  • the sliding formwork to be driven as a quasi-one-piece body must be moved at least in its rear area inside a ring made of in-situ concrete that is already hardened to such an extent that it behaves as an inelastic, rigid body. Since the inner diameter or the clear width of this rigid concrete ring zone is subject to certain manufacturing tolerances, there can be increased constraining forces when the sliding formwork is pushed forward because the concrete can no longer deflect. These forces can lead to cracking and breaking in the in-situ concrete. The same applies to the constraining forces that occur when the sliding formwork, which is relatively long in the axial direction, has to be advanced through a tunnel or tunnel section with a curved longitudinal axis.
  • the invention has for its object to provide a method of the type mentioned and an apparatus for performing this method, in which the risk of damage to the concrete lining the tunnel or tunnel due to occurring between these concrete and the sliding formwork when moving the sliding formwork Forces are largely reduced.
  • the invention provides the features set out in claims 1 and 5 (method) and in claim 7 (device).
  • the formwork body is replaced by an appropriate one Support with the help of the elastic instead of the rigid transmission links on the support structure so that it still absorbs the high forces that are exerted on it by the concrete, which is not yet load-bearing, and this concrete surrounding soil can be exercised, but if these forces exceed a predetermined level due to the occurrence of constraints or adhesive stress, they can yield in an elastic manner and thus avoid excessive stress on the rigid, fragile concrete.
  • the method according to the invention can advantageously be used with two fundamentally different types of advance of the sliding formwork, namely both with continuous and with discontinuous advance.
  • the front parts of the formwork body which constantly migrate with the zone of the still liquid or uncured concrete, are practically rigidly supported, while the rear areas, which are constantly surrounded by an already solidified concrete ring, are continuously over the elastic transmission links rest on the support structure.
  • the elastic transmission elements in the front area of the sliding formwork and the rigid transmission elements in the rear area will generally not be expedient, since the sliding formwork must always be expected to come to a standstill for a long time and then have to be started again, which then corresponds to a discontinuous feed operation.
  • the entire sliding formwork can initially be rigidly supported; the transition to elastic support takes place over the entire length of the sliding formwork, either simultaneously or gradually, when the concrete adjacent to the respective areas has achieved sufficient strength.
  • elastic support is switched to at the latest when the sliding formwork to be set in motion is to be set in motion again.
  • a good criterion for switching from rigid to elastic support is given by the time at which the concrete has reached its so-called green stability in the area in question. This is the strength at which the freshly cast vault can not yet take over the existing loads in a self-supporting manner, but is nevertheless so firm that the slip formwork can be temporarily removed and replaced by a subsequent supporting formwork.
  • the formwork body is divided into segments lying next to one another in the circumferential direction, for a short time to lift off individual segments from the concrete and to inject them with a lubricant in order to further reduce the adhesive stresses between the sliding formwork and the hardened concrete .
  • the sliding formwork is advanced by the pressure of the concrete pressed in behind the front formwork.
  • the entire already hardened concrete lining serves as an abutment, over the circumference of which the reaction forces attack very evenly, so that the local pressure loads remain relatively low. Damage to the already hardened concrete lining is impossible with this procedure.
  • a sealing device is provided according to claim 9 between the outer peripheral edge of the face formwork and the excavation wall of the tunnel or tunnel or an outer formwork attached there, to avoid pressure loss and one excessive wear during the continuous advance of the sliding formwork according to claim 10 consists of at least two sealing elements arranged one behind the other in the direction of advance, one of which is always pressed against the wall of the excavation and deforms as part of its inherent elasticity due to the forward movement of the forehead formwork, while the other Sealing elements move freely with the front formwork without deformation.
  • the sealing elements are formed by hoses extending with their longitudinal axis in the direction of the circumference of the end formwork, which can be pressed against the wall of the excavation by increasing their internal pressure and can be withdrawn from the wall of the excavation by lowering this internal pressure.
  • these hoses advantageously have a rectangular profile when viewed in radial section.
  • the actual formwork body consists of a formlining 5 lying against the concrete 4 and stiffeners or formwork elements 6 which act on the relatively thin formwork facing to accommodate those from the outside Give the required rigidity to the forces.
  • a support structure 7 is provided in the interior of the tunnel or tunnel, which in the present example is formed from individual annular support elements 8 spaced apart in the longitudinal direction, the shape of which is adapted in the transverse direction to the shape of the tunnel profile is. In the longitudinal direction, these support elements 8 are rigidly connected to one another by guide bars 9, which are designed as hollow profiles with a rectangular inner cross section.
  • the transmission of the forces exerted on the formwork body 5 consisting of formlining 5 and stiffeners 6 from the outside by the load of the concrete 4 and the soil surrounding them from outside to the support elements 8 are groups of between the stiffeners 6 and the support elements 8 at suitable locations Transfer elements 11 and 12 are arranged, each of these groups comprising at least one transmission element 11 which transmits the forces from the associated stiffening 6 to the respective support element 8 in operation in a rigid manner and in parallel thereto at least one transmission element 12 which transmits these forces in operation in an elastic manner.
  • the rigid transmission members 11 are formed by hydraulic pistons or presses, which, viewed in the transverse direction of the tunnel, are each arranged between two rubber-silicone blocks forming the elastic transmission members 12.
  • the dimensions of the rubber-silent blocks 12 are such that the hydraulic pistons or presses 11 completely support the braces 6 on the support elements 8 in the extended state, so that a rigid power transmission is ensured in this operating state.
  • the hydraulic pistons 11 can be depressurized by a pressure control device (not shown in FIG. 1), so that the rubber-silent blocks 12 arranged next to them elastically transmit the forces exerted by the concrete and the rock on the formwork body to the supporting elements 8.
  • the hydraulic pistons or presses 11 each arranged on a support element 8 can be connected to one another by a pressure line (not shown) in such a way that they can be pressurized or depressurized at the same time.
  • a pressure line not shown
  • the hydraulic presses or cylinders 11 of a support element 8 can be controlled individually or in groups.
  • the pressure ratios of hydraulic pistons or presses 11 mounted on different support elements 8 can preferably be controlled independently of one another.
  • the formwork body is divided into individual segments 14 in the circumferential direction both in the case of a circular or rounded and in the case of an angular tunnel or tunnel cross-sectional profile.
  • the formlining 5 seen in the circumferential direction, consists of individual formwork panels 15 which are arranged directly next to one another in the circumferential direction.
  • the joints between these individual formwork panels 15 are bridged by seals 16 made of plastic or rubber, which enables a certain relative mobility of the formwork panels with respect to one another.
  • the stiffeners 6 also consist of individual stiffening elements 17 arranged next to one another in the circumferential direction of the tunnel, each of which is assigned to a formwork panel 15.
  • each stiffening element 17 is supported on a corresponding support element 8 via two groups of transmission members 11 and 12.
  • the annular cavity enclosed between the tunnel or tunnel excavation wall 3 or an outer formwork and the formlining 5 is closed at its front end by a front formwork 20, which consists of the actual formwork elements 21 and one this formwork elements bearing ring structure 22.
  • the end formwork ring 22 is connected via longitudinal beams 23 to the support structure 7 of the sliding formwork 2 consisting of the support elements 8 in that the longitudinal beams 23 are guided in the longitudinal bars 9 of the support structure 7 so as to be displaceable in the longitudinal direction.
  • the longitudinal beams 23 are rigidly connected to the longitudinal spars 9, so that the entire sliding formwork can be driven like a one-piece body.
  • the rigid connection between the front formwork 20 and the supporting structure 7 can be released and the front formwork 20 with the help of non-illustrated, between the longitudinal beams 23 and the longitudinal spars 9 only for those cases in which a section of the tunnel wall to be concreted must be provided with reinforcements acting pneumatic or hydraulic presses are advanced with respect to the support structure 7 alone.
  • the front formwork 20 and the support structure 7 remain firmly connected to one another.
  • the hardened in-situ concrete 4 that closes this annular space to the rear serves as an abutment.
  • This type of tunneling is particularly advantageous because it makes it unnecessary to provide any abutments for advancing the sliding formwork 2 within the precast concrete cross-section, thereby avoiding the spatial constriction associated therewith and also the risk of damage to the already finished in-situ concrete. It is also possible in this way to achieve extraordinarily good compression or compaction of the liquid concrete freshly filled into the annular cavity 31 between the tunnel excavation wall 3 and the formlining 5.
  • Fig. 3 the sealing device 27, which is only shown in general in Fig. 2, is shown on an enlarged scale so that its construction according to the invention is clear.
  • the support according to the invention of the formwork shell 5 and bracing 6 on the support elements 8 via mutually parallel, optionally operational rigid and elastic transmission members 11 and 12 can be carried out not only regardless of whether the advance of the sliding formwork 2 continuously or discontinuously takes place, but also regardless of whether it is carried out in a known manner with the help of hydraulic or pneumatic presses, which are supported on the one hand on abutments installed in the finished tunnel and on the other hand on the support structure 7, or whether the driving forces in the invention according to the particular are preferably generated by the pressure of the liquid concrete pressed in behind the face formwork 20.
  • a sealing device 27 is used for this purpose, which comprises a first inflatable tube element 28, which extends in the circumferential direction of the front formwork 20 and is rectangular in its cross section shown in FIG. 3, and which is firmly connected to the end formwork 20 in its radially inner region protrudes beyond its radial outer edge in the inflated state to such an extent that its radial outer surface is firmly pressed against the wall 3 of the tunnel.
  • the radial outer surface of the hose element 28 does not rub against the breakout wall 3 when the front formwork 20 moves further in the direction of arrow V, which leads to a pressure loss behind the front formwork 20 could lead and a very heavy wear of the hose element 28 would result, according to the invention, in the axial direction, in addition to the first hose element 28, at least one further hose element 29, basically constructed in the same way, is fastened to the peripheral edge of the front formwork 20.
  • This second hose element 29 remains depressurized for as long and is therefore not in contact with the breakout wall 3 as long as the first hose element 28 is under pressure and assumes the required sealing function.
  • the second hose element 29 now resting on the breakout wall 3 is deformed in the manner shown in FIG. 3 for the hose element 28. If this deformation has progressed to such an extent that the outer surface of the hose element 29 could slide against the breakout wall 3 again, the third hose element 30 is pressurized, which now takes over the sealing function, while the hose element 29 is relieved again.
  • the front formwork can also be subdivided into segments to which the concrete is fed separately.
  • a separate pressure control can be provided for the hose elements of each segment in order to enable a certain directional control of the face formwork 20 if it is to be pushed forward, for example, in a tunnel or gallery with a curved longitudinal axis.
  • the hydraulic press forming a rigid transmission member 11 comprises a double-acting piston 33 which can be pushed back and forth in a cylinder 2 and which, for example, bears a plunger 34 which can be pressed against a stiffener 6 and retractable therefrom, during Cylinder 32 is connected to a base plate 40, which rests, for example, on a support element 8.
  • the interior of the cylinder 32 can either be connected in front of or behind the piston 33 via lines 35 or 36 to a pressure source 37 in order to press the plunger 34 against the stiffener 6 or to pull it back from the stiffener.
  • shut-off valve 38 From the line 35 a branch leads via a shut-off valve 38 to a gas cushion 39 which, in parallel to the hydraulic press 11 instead of or in addition to the rubber-silent blocks 12 shown in FIGS. 1 and 2, acts as an elastic transmission member between the formwork body 5, 6 and the support structure 7 can be arranged.
  • the shut-off valve 38 With the help of the shut-off valve 38, it is possible to shut off the line leading from the hydraulic pump 37 to the gas cushion 39 and to build up the hydraulic pressure required for the rigid support of the formwork body 5, 6 in the hydraulic cylinder 32. If the shut-off valve 38 is then opened, the connection to the gas cushion 39 ensures elastic support.

Abstract

A method and apparatus for forming continuous concrete walls in tunnels or galleries is provided. More particularly, the invention relates to a form that is slidable through the gallery or tunnel. The form is an elongated supported tubular structure generally conforming to the shape of the gallery or tunnel. The outermost surface of the form is spaced from the wall of the gallery or tunnel a sufficient distance to enable an appropriate amount of concrete to be poured or pressed therein. The form is adapted to have the concrete pumped into the annular spaced provided for it, and to have the force of the concrete against the leading edge of the form cause the form to slidably advance through the gallery or tunnel.

Description

Die Erfindung betrifft ein Verfahren zum Vortrieb einer Gleitschalung beim Ausbau eines Stollens oder Tunnels gemäß der im Oberbegriff des Anspruches 1 niedergelegten Art, sowie eine Vorrichtung zur Durchführung dieses Verfahrens.The invention relates to a method for driving a sliding formwork when expanding a tunnel or tunnel according to the type laid down in the preamble of claim 1, and an apparatus for carrying out this method.

Bei den bisher bekannten Verfahren dieser Art wird ein starrer, aus Schalhaut und Aussteifungen bestehender Schalungskörper mittels hydraulischer Pressen vorgeschoben, die gegen Haltevorrichtungen abgestützt sind, die in der zurückliegenden, bereits ausgeschalten Betonauskleidung des Stollens bzw. Tunnels eingespannt sind. Dabei ist es prinzipiell wünschenswert, diesen Vortrieb der Gleitschalung möglichst kontinuierlich mit einer Geschwindigkeit durchzuführen, die an die Aushärtgeschwindigkeit des in den Ringraum zwischen der Ausbruchswandung des Tunnels bzw. einer dort angebrachten Außenschalung und der Schalhaut der Gleitschalung eingefüllten bzw. eingepreßten Betons angepaßt ist.In the previously known methods of this type, a rigid formwork body consisting of formwork skin and stiffeners is advanced by means of hydraulic presses which are supported against holding devices which are clamped in the past, already switched off concrete lining of the tunnel or tunnel. In principle, it is desirable to carry out this advance of the sliding formwork as continuously as possible at a speed that is adapted to the hardening speed of the concrete filled or pressed in into the annular space between the excavation wall of the tunnel or an external formwork attached there and the formwork skin of the sliding formwork.

Die Vorderseite des eben genannten Ringraums ist dabei mit einer einen Teil der Gleitschalung bildenden Stirnschalung verschlossen, die sich im Regelfall mit der Gleitschalung mitbewegt, zum Einbringen von Armierungen jedoch erforderlichenfalls bezüglich der übrigen Gleitschalung alleine nach vorne verschoben werden kann.The front of the annular space just mentioned is closed with a front formwork which forms part of the slide formwork, which as a rule moves with the slide formwork, but can be moved forward with respect to the rest of the slide formwork alone to introduce reinforcements if necessary.

Eine kontinuierlich vorrückende Gleitschalung muß zumindest eine solche axiale Länge besitzen, daß der an ihrem hinteren Ende zur Ausschalung kommende Ortbeton eine genügende Festigkeit erreicht hat, um den von außen herauf ihn ausgeübten Druck des umgebenden Erdreichs zumindest kurzfristig, d. h. solange aufnehmen zu können, bis er durch eine hinter der Gleitschalung eingebrachte Stützschalung abgestützt wird, die solange eingebaut bleibt, bis der Beton seine endgültige Belastbarkeit erreicht hat.A continuously advancing sliding formwork must have at least such an axial length that the in-situ concrete coming at its rear end has reached sufficient strength to at least temporarily exert the pressure of the surrounding soil exerted on it from the outside, i.e. H. to be able to take up until it is supported by a support formwork installed behind the sliding formwork, which remains installed until the concrete has reached its final load-bearing capacity.

Das bedeutet, daß die als quasi einstückiger Körper vorzutreibende Gleitschalung zumindest in ihrem hinteren Bereich im Inneren eines sie umgebenden Rings aus Ortbeton vorwärts bewegt werden muß, der bereits soweit ausgehärtet ist, daß er sich als unelastischer, starrer Körper verhält. Da der Innendurchmesser bzw. die lichte Weite dieser starren Betonringzone gewissen Fertigungstoleranzen unterliegt, kann es beim Vorschieben der Gleitschalung zu hoben Zwangskräften kommen, da der Beton nicht mehr ausweichen kann. Diese Zwangskräfte können zu einer Riß- und Bruchbildung im Ortbeton führen. Gleiches gilt für die Zwangskräfte, die dann auftreten, wenn die in axialer Richtung relativ lange Gleitschalung-durch einen Stollen- bzw. Tunnelabschnitt mit einer gekrümmten Längsachse vorgeschoben werden muß.This means that the sliding formwork to be driven as a quasi-one-piece body must be moved at least in its rear area inside a ring made of in-situ concrete that is already hardened to such an extent that it behaves as an inelastic, rigid body. Since the inner diameter or the clear width of this rigid concrete ring zone is subject to certain manufacturing tolerances, there can be increased constraining forces when the sliding formwork is pushed forward because the concrete can no longer deflect. These forces can lead to cracking and breaking in the in-situ concrete. The same applies to the constraining forces that occur when the sliding formwork, which is relatively long in the axial direction, has to be advanced through a tunnel or tunnel section with a curved longitudinal axis.

Diese bereits beim kontinuierlichen Vorschub der Gleitschalung auftretenden Probleme werden noch verschärft, wenn es zu Stockungen bzw. einem Stillstand der Vorwärtsbewegung der Gleitschalung kommt. In diesen Fällen kann es geschehen, daß die Gleitschalung gerade solange nicht weiter vorgeschoben werden kann, bis der gesamte an ihr anliegende Beton in etwa soweit ausgehärtet ist, daß er bei einem Wiederanfahren der Gleitschalung den von dieser ausgeübten Kräften nicht mehr in plastischer oder elastischer Weise nachzugeben vermag, andererseits aber zumindest in seinen vordersten Teilen noch nicht fest genug ist, um allein die von außen wirkenden Kräfte aufzunehmen. Ein Abnehmen der Gleitschalung in diesem Zustand ist also unzulässig und es ist zur Fortsetzung der Betonierarbeiten erforderlich, die Gleitschalung aus ihrer gegebenen Position heraus wieder in Bewegung zu setzen. Zu den hierbei unter Umständen über die gesamte Länge der Gleitschalung hinweg auftretenden und somit erhöhten Zwangskräften treten noch die Haftspannungen hinzu, die zwischen dem ausgehärteten Beton und der Schalungshaut herrschen, so daß in diesen Fällen eine stark erhöhte Gefahr einer Rißbildung bzw. eines Brechens des Ortbetons besteht.These problems, which already arise with the continuous advancement of the sliding formwork, are exacerbated when the forward movement of the sliding formwork comes to a standstill or comes to a standstill. In these cases it can happen that the sliding formwork cannot be advanced until the entire concrete in contact with it has hardened to such an extent that when the sliding formwork is restarted it no longer plastically or elastically exerts the forces exerted by it can yield, but on the other hand, at least in its foremost parts, is not yet firm enough to absorb only the forces acting from outside. Removing the sliding formwork in this state is therefore not permitted and it is necessary to continue the concreting work to set the sliding formwork in motion again from its given position. In addition to the constraining forces that may occur over the entire length of the sliding formwork and thus increased constraining forces, there are also the adhesive stresses that prevail between the hardened concrete and the formwork skin, so that in these cases there is a greatly increased risk of cracking or breaking of the in-situ concrete consists.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art sowie eine Vorrichtung zur Durchführung dieses Verfahrens anzugeben, bei dem die Gefahr einer Beschädigung des den Stollen bzw. Tunnel auskleidenden Betons aufgrund von zwischen diesen Beton und der Gleitschalung beim Vorwärtsbewegen der Gleitschalung auftretenden Kräften weitgehend verringert ist.In contrast, the invention has for its object to provide a method of the type mentioned and an apparatus for performing this method, in which the risk of damage to the concrete lining the tunnel or tunnel due to occurring between these concrete and the sliding formwork when moving the sliding formwork Forces are largely reduced.

Zur Lösung dieser Aufgabe sieht die Erfindung die in den Ansprüchen 1 und 5 (Verfahren) bzw. im Anspruch 7 (Vorrichtung) niedergelegten Merkmale vor.To achieve this object, the invention provides the features set out in claims 1 and 5 (method) and in claim 7 (device).

Durch diese Maßnahmen wird erreicht, daß der Schalungskörper überall dort, wo er sehr genau positioniert werden muß, um kleine Fertigungstoleranzen zu erzielen, d. h. also in dem Bereich, wo der Ortbeton gerade erst eingefüllt wird bzw. noch flüssig oder nur sehr wenig erhärtet ist, in starrer Weise abgestützt werden kann, so daß hier die Aufnahme auch sehr hoher Kräfte ohne eine Abweichung der Position der Schalhaut von der Sollstellung möglich wird. Zwangskräfte zwischen Beton und Schalhaut können in diesen Bereichen noch nicht auftreten, da hier der Beton ohne weiteres nachzugeben vermag.These measures ensure that the formwork body wherever it has to be positioned very precisely in order to achieve small manufacturing tolerances, i. H. So in the area where the in-situ concrete is just being poured or is still liquid or only very little hardened, it can be supported in a rigid manner, so that the absorption of very high forces is possible here without a deviation of the position of the formlining from the desired position becomes. Coercive forces between the concrete and the formlining cannot yet occur in these areas, since the concrete can easily give way here.

In den Bereichen dagegen, in denen der Beton bereits soweit ausgehärtet ist, daß er von der Gleitschalung beim Vortrieb ausgeübten Kräften weder plastisch noch elastisch nachgeben kann, in denen also die Gefahr einer Rißbildung oder eines Brechens des Betons besteht, wird der Schalungskörper durch ein entsprechendes Abstützen mit Hilfe der elastischen statt der starren Übertragungsglieder auf der Stützkonstruktion so gelagert, daß er zwar immer noch die hohen Kräfte aufnimmt, die auf ihn von dem selbst noch nicht tragfähigen Beton und dem diesen Beton umgebenden Erdreich ausgeübt werden, daß er aber dann, wenn diese Kräfte aufgrund des Auftretens von Zwängungen oder Haftspannungen ein vorgegebenes Maß übersteigen, in elastischer Weise nachgeben und somit eine übermäßige Beanspruchung des starren, bruchgefährdeten Betons vermeiden kann.In contrast, in areas in which the concrete has already hardened to such an extent that it cannot yield plastically or elastically from the forces exerted by the sliding formwork during driving, in which there is therefore a risk of cracking or breaking of the concrete, the formwork body is replaced by an appropriate one Support with the help of the elastic instead of the rigid transmission links on the support structure so that it still absorbs the high forces that are exerted on it by the concrete, which is not yet load-bearing, and this concrete surrounding soil can be exercised, but if these forces exceed a predetermined level due to the occurrence of constraints or adhesive stress, they can yield in an elastic manner and thus avoid excessive stress on the rigid, fragile concrete.

Besondere Vorteile des erfindungsgemäßen Verfahrens sind darin zu sehen, daß es sich mit einem sehr geringen technischen Aufwand durchführen läßt und daß es wegen der Vermeidung bzw. wesentlichen Verringerung der Zwangskräfte zwischen Beton und Gleitschalung ein Durchfahren von Tunnel- bzw. Stollenabschnitten mit gekrümmter Längsachse beträchtlich erleichtert.Particular advantages of the method according to the invention can be seen in the fact that it can be carried out with very little technical effort and that it considerably facilitates driving through tunnel or tunnel sections with a curved longitudinal axis because of the avoidance or substantial reduction in the constraining forces between concrete and sliding formwork .

Das erfindungsgemäße Verfahren läßt sich mit Vorteil bei zwei grundsätzlich verschiedenen Vortriebsarten der Gleitschalung, nämlich sowohl beim kontinuierlichen als auch beim diskontinuierlichen Vortrieb einsetzen.The method according to the invention can advantageously be used with two fundamentally different types of advance of the sliding formwork, namely both with continuous and with discontinuous advance.

Im ersten Fall sind nach Anspruch 2 die vorderen Teile des Schalungskörpers, die mit der Zone des noch flüssigen bzw. nicht ausgehärteten Betons ständig mitwandern, praktisch fortwährend starr abgestützt, während die hinteren Bereiche, die ständig von einem bereits erstarrten Betonring umgeben sind, fortwährend über die elastischen Übertragungsglieder auf der Stützkonstruktion aufliegen. Theoretisch könnte man also hier im vorderen Bereich der Gleitschalung auf die elastischen und im hinteren Bereich auf die starren Übertragungsglieder verzichten. Dies wird allerdings im allgemeinen nicht zweckmäßig sein, da immer damit gerechnet werden muß, daß die Gleitschalung für längere Zeit zum Stillstand kommt und dann erneut angefahren werden muß, was dann einem diskontinuierlichen Vorschubbetrieb entspricht.In the first case, the front parts of the formwork body, which constantly migrate with the zone of the still liquid or uncured concrete, are practically rigidly supported, while the rear areas, which are constantly surrounded by an already solidified concrete ring, are continuously over the elastic transmission links rest on the support structure. In theory, one could do without the elastic transmission elements in the front area of the sliding formwork and the rigid transmission elements in the rear area. However, this will generally not be expedient, since the sliding formwork must always be expected to come to a standstill for a long time and then have to be started again, which then corresponds to a discontinuous feed operation.

In diesem zweiten Fall kann gemäß Anspruch 3 die gesamte Gleitschalung zunächst starr abgestützt werden ; der Übergang zur elastischen Abstützung erfolgt über die gesamte Länge der Gleitschalung entweder gleichzeitig oder nach und nach, wenn der an die jeweiligen Bereiche angrenzende Beton eine ausreichende Festigkeit erreicht hat.In this second case, the entire sliding formwork can initially be rigidly supported; the transition to elastic support takes place over the entire length of the sliding formwork, either simultaneously or gradually, when the concrete adjacent to the respective areas has achieved sufficient strength.

Vorteilhafterweise wird in den Bereichen, in denen der Beton bereits erstarrt ist, nach Anspruch 4 spätestens dann zur elastischen Abstützung übergegangen, wenn die bis dahin stehende Gleitschalung erneut in Bewegung gesetzt werden soll.Advantageously, in areas in which the concrete has already solidified, elastic support is switched to at the latest when the sliding formwork to be set in motion is to be set in motion again.

Ein gutes Kriterium für das Umschalten von starrer auf elastische Abstützung ist durch den Zeitpunkt gegeben, in dem der Beton in dem betreffenden Bereich seine sogenannte Grünstandsfestigkeit erreicht hat. Das ist diejenige Festigkeit, bei der das frisch gegossene Gewölbe zwar noch nicht selbsttragend die vorhandenen Lasten übernehmen kann, aber doch so fest ist, daß die Gleitschalung kurzzeitig weggezogen und durch eine nachfolgende Stützschalung ersetzt werden kann.A good criterion for switching from rigid to elastic support is given by the time at which the concrete has reached its so-called green stability in the area in question. This is the strength at which the freshly cast vault can not yet take over the existing loads in a self-supporting manner, but is nevertheless so firm that the slip formwork can be temporarily removed and replaced by a subsequent supporting formwork.

In diesem Stadium ist es erfingungsgemäß auch möglich, dann, wenn der Schalungskörper gemäß Anspruch 8 in in Umfangsrichtung nebeneinanderliegende Segmente unterteilt ist, einzelne dieser Segmente kurzfristig vom Beton abzuheben und mit einem Gleitmittel zu hinterspritzen, um die Haftspannungen zwischen Gleitschalung und ausgehärtetem Beton weiter zu verringern.At this stage, according to the invention, it is also possible, if the formwork body is divided into segments lying next to one another in the circumferential direction, for a short time to lift off individual segments from the concrete and to inject them with a lubricant in order to further reduce the adhesive stresses between the sliding formwork and the hardened concrete .

Ein weiteres erhebliches Beschädigungsrisiko für die fertig gegossene Betonauskleidung eines Stollens bzw. Tunnels entsteht bei den herkömmlichen Vortriebsverfahren für eine Gleitschalung dadurch, daß die zum Vorschieben der Schalung erforderlichen Kräfte von hydraulischen Pressen aufgebracht werden, die sich an Widerlagern abstützen, die in die eben erst fertiggestellte Betonauskleidung eingespannt werden. Diese Verankerung erfolgt mehr oder weniger punktförmig, so daß an diesen Stellen von der Betonauskleidung sehr hohe Reaktionsdrücke aufgenommen werden müssen, die zu einer Rißbildung oder ähnlichen Beschädigungen des Betons führen können.Another considerable risk of damage to the cast concrete lining of a tunnel or tunnel arises in the conventional tunneling method for sliding formwork in that the forces required for advancing the formwork are applied by hydraulic presses which are supported on abutments which are only in the one just completed Concrete lining to be clamped. This anchoring is more or less punctiform, so that very high reaction pressures have to be taken up at these points by the concrete lining, which can lead to cracking or similar damage to the concrete.

Um im Rahmen der der Erfindung zugrundeliegenden Aufgabe dieses Risiko zu beseitigen, ist gemäß Anspruch 5 vorgesehen, daß die Gleitschalung durch den Druck des hinter die Stirnschalung eingepreßten Betons vorgeschoben wird. Als Widerlager dient dabei die ganze bereits ausgehärtete Betonauskleidung, über deren Umfang die Reaktionskräfte sehr gleichmäßig verteilt angreifen, so daß die örtlichen Druckbelastungen relativ niedrig bleiben. Eine Beschädigung der bereits ausgehärteten Betonauskleidung ist bei dieser Verfahrensweise ausgeschlossen.In order to eliminate this risk within the scope of the object on which the invention is based, it is provided according to claim 5 that the sliding formwork is advanced by the pressure of the concrete pressed in behind the front formwork. The entire already hardened concrete lining serves as an abutment, over the circumference of which the reaction forces attack very evenly, so that the local pressure loads remain relatively low. Damage to the already hardened concrete lining is impossible with this procedure.

Ein besonderer Vorteil dieser Vortriebsart ist darin zu sehen, daß sie zu einer sehr guten und gleichförmigen Verdichtung des hinter die Stirnschalung eingepreßten flüssigen Betons führt.A particular advantage of this type of jacking can be seen in the fact that it leads to a very good and uniform compaction of the liquid concrete pressed in behind the face formwork.

Damit sich hinter der Stirnschalung der zur Erzeugung der Vortriebskräfte erforderliche Druck aufbauen kann, ist gemäß Anspruch 9 zwischen der äußeren Umfangskante der Stirnschalung und der Ausbruchswandung des Stollens bzw. Tunnels bzw. einer dort angebrachten Außenschalung eine Dichtvorrichtung vorgesehen, die zur Vermeidung eines Druckverlustes und einer zu starken Abnutzung beim kontinuierlichen Vorschub der Gleitschalung gemäß Anspruch 10 aus wenigstens zwei in Vortriebsrichtung hintereinander angeordneten Dichtelementen besteht, von denen immer eines unverschieblich an die Ausbruchswandung angepreßt ist und sich dabei im Rahmen seiner Eigenelastizität aufgrund der Vorwärtsbewegung der Stirnschalung verformt, während das oder die anderen Dichtelemente sich ohne Verformung frei mit der Stirnschalung mitbewegen. Ist das momentan die Dichtfunktion ausübende Dichtelement soweit verformt, daß es bei einer wesentlichen weiteren Relativbewegung zwischen seiner mit der Stirnschalung fest verbundenen radialen Innenseite und seiner fest an die Ausbruchswandung angepreßten radialen Außenseite anfangen würde, mit dieser Außenseite an der Ausbruchswandung entlangzureiben, so wird das andere oder eines der anderen bis dahin nicht verformten Dichtelemente an die Ausbruchswandung angepreßt, so daß es die Dichtfunktion übernimmt, während das bisher angedrückte Dichtelement von der ' Ausbruchswandung zurückgenommen wird, so daß es sich in seine unverformte Lage zurückbewegen kann.So that the pressure required to generate the driving forces can build up behind the face formwork, a sealing device is provided according to claim 9 between the outer peripheral edge of the face formwork and the excavation wall of the tunnel or tunnel or an outer formwork attached there, to avoid pressure loss and one excessive wear during the continuous advance of the sliding formwork according to claim 10 consists of at least two sealing elements arranged one behind the other in the direction of advance, one of which is always pressed against the wall of the excavation and deforms as part of its inherent elasticity due to the forward movement of the forehead formwork, while the other Sealing elements move freely with the front formwork without deformation. Is the sealing element currently performing the sealing function deformed to such an extent that it would start with this outside on the outbreak wall in the event of a further substantial relative movement between its radial inside firmly connected to the face formwork and its radial outside pressed firmly against the wall of the excavation rubbing along, the other or one of the other previously undeformed sealing elements is pressed against the breakout wall, so that it takes over the sealing function, while the previously pressed sealing element is withdrawn from the 'breakout wall, so that it can move back into its undeformed position.

Auf diese Weise kann also auch bei einer sich mit der gesamten Gleitschalung kontinuierlich vorwärts bewegenden Stirnschalung ständig ein druckdichter Abschluß für den hinter der Stirnschalung zwischen der Ausbruchswandung und der Schalhaut der Gleitschalung eingeschlossenen Ringraum aufrechterhalten werden, ohne daß irgendwelche Dichtelemente an der Ausbruchswandung bzw. der Außenschalung entlanggleiten.In this way, a pressure-tight seal for the annular space enclosed behind the front formwork between the excavation wall and the formwork skin of the sliding formwork can be maintained continuously, even with a front formwork continuously moving forward with the entire sliding formwork, without any sealing elements on the excavation wall or the outer formwork slide along.

Vorteilhafterweise werden die Dichtelemente von sich mit ihrer Längsachse in Richtung des Umfangs der Stirnschalung erstreckenden Schläuchen gebildet, die durch eine Erhöhung ihres Innendrucks gegen die Ausbruchswandung angedrückt und durch eine Erniedrigung dieses Innendrucks von der Ausbruchswandung zurückgezogen werden können.Advantageously, the sealing elements are formed by hoses extending with their longitudinal axis in the direction of the circumference of the end formwork, which can be pressed against the wall of the excavation by increasing their internal pressure and can be withdrawn from the wall of the excavation by lowering this internal pressure.

Um eine großflächige Verbindung dieser Schläuche sowohl mit der Umfangskante der Stirnschalung als auch mit der Ausbruchswandung sicherzustellen, weisen diese Schläuche vorteilhafterweise im Radialschnitt gesehen ein rechteckiges Profil auf.In order to ensure a large-area connection of these hoses both to the peripheral edge of the face formwork and to the wall of the excavation, these hoses advantageously have a rectangular profile when viewed in radial section.

Es sei ausdrücklich darauf hingewiesen, daß diese Art des Vortriebs der Gleitschalung auch dann ausgeführt werden kann, wenn der Schalungskörper der Gleitschalung nicht sowohl in starrer als auch elastischer Weise auf der Stützkonstruktion abstützbar ist.It should be expressly pointed out that this type of advance of the sliding formwork can also be carried out when the formwork body of the sliding formwork cannot be supported on the supporting structure in a rigid as well as elastic manner.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung beschrieben ; in dieser zeigt :

  • Figur 1 in schematisierter Weise in ihrer linken Hälfte einen Querschnitt durch einen Tunnel mit kreisförmigem Profil und in ihrer rechten Hälfte einen Querschnitt durch einen Tunnel mit rechteckigem Profil, wobei jeweils im Inneren des Tunnels eine erfindungsgemäße Gleitschalung angeordnet ist,
  • Figur 2 einen Längsschnitt durch einen Stollen bzw. Tunnel mit einer erfindungsgemä-Ben Gleitschalung,
  • Figur 3 ein Detail aus Fig. 2, wobei ein in der gleichen Richtung verlaufender Schnitt durch eine an der Umfangskante der Stirnschalung angeordnete Dichtvorrichtung gemäß der Erfindung wiedergegeben ist, und
  • Figur 4 eine weitere Möglichkeit der erfindungsgemäßen Ausbildung von starren und elastischen Übertragungsgliedern.
The invention is described below using exemplary embodiments with reference to the drawing; in this shows:
  • 1 schematically shows in its left half a cross-section through a tunnel with a circular profile and in its right half a cross-section through a tunnel with a rectangular profile, with sliding formwork according to the invention being arranged in each case inside the tunnel,
  • FIG. 2 shows a longitudinal section through a tunnel or tunnel with a sliding formwork according to the invention,
  • 3 shows a detail from FIG. 2, a section running in the same direction being reproduced by a sealing device according to the invention arranged on the peripheral edge of the end formwork, and
  • Figure 4 shows another possibility for the formation of rigid and elastic transmission members according to the invention.

Bei der in Fig. 1 dargestellten, im Inneren eines Tunnels bzw. Stollens 1 angeordneten Gleitschalung 2 besteht der eigentliche Schalungskörper aus einer am Beton 4 anliegenden Schalhaut 5 und Aussteifungen bzw. Schalelementen 6, die der relativ dünnen Schalhaut die zur Aufnahme der von außen einwirkenden Kräfte erforderliche Steifigkeit verleihen.In the case of the sliding formwork 2 shown in FIG. 1, which is arranged inside a tunnel or gallery 1, the actual formwork body consists of a formlining 5 lying against the concrete 4 and stiffeners or formwork elements 6 which act on the relatively thin formwork facing to accommodate those from the outside Give the required rigidity to the forces.

Zur Abstützung des von Schalhaut 5 und Aussteifungen 6 gebildeten Schalungskörpers ist im Inneren des Stollens bzw. Tunnels eine Stützkonstruktion 7 vorgesehen, die im vorliegenden Beispiel aus einzelnen in Längsrichtung voneinander beabstandeten ringförmigen Stützelementen 8 gebildet wird, deren Form in Querrichtung an die Form des Tunnelprofils angepaßt ist. In Längsrichtung sind diese Stützelemente 8 durch Führungsholme 9 starr miteinander verbunden, die als Hohlprofile mit rechteckigem Innenquerschnitt ausgebildet sind.To support the formwork body formed by the formlining 5 and bracing 6, a support structure 7 is provided in the interior of the tunnel or tunnel, which in the present example is formed from individual annular support elements 8 spaced apart in the longitudinal direction, the shape of which is adapted in the transverse direction to the shape of the tunnel profile is. In the longitudinal direction, these support elements 8 are rigidly connected to one another by guide bars 9, which are designed as hollow profiles with a rectangular inner cross section.

Die Übertragung der auf den aus Schalhaut 5 und Aussteifungen 6 bestehenden Schalungskörper von außen her durch die Last des Betons 4 und des diesen von außen umgebenden Erdreichs ausgeübten Kräfte auf die Stützelemente 8 sind zwischen den Aussteifungen 6 und den Stützelementen 8 an geeignten Stellen jeweils Gruppen von Übertragungsgliedern 11 bzw. 12 angeordnet, wobei jede dieser Gruppen wenigstens ein die Kräfte von der zugehörigen Aussteifung 6 an das betreffende Stützelement 8 im Betrieb in starrer Weise weitergebendes Übertragungsglied 11 und parallel hierzu wenigstens ein diese Kräfte im Betrieb in elastischer Weise weitergebendes Übertragungsglied 12 umfaßt.The transmission of the forces exerted on the formwork body 5 consisting of formlining 5 and stiffeners 6 from the outside by the load of the concrete 4 and the soil surrounding them from outside to the support elements 8 are groups of between the stiffeners 6 and the support elements 8 at suitable locations Transfer elements 11 and 12 are arranged, each of these groups comprising at least one transmission element 11 which transmits the forces from the associated stiffening 6 to the respective support element 8 in operation in a rigid manner and in parallel thereto at least one transmission element 12 which transmits these forces in operation in an elastic manner.

Bei dem in den Fig. 1 und 2 wiedergegebenen Ausführungsbeispiel werden die starren Übertragungsglieder 11 von hydraulischen Kolben bzw. Pressen gebildet, die in Querrichtung des Tunnels gesehen jeweils zwischen zwei die elastischen Übertragungsglieder 12 bildenden Gummisilent-Blöcken angeordnet sind. Dabei sind die Abmessungen der Gummisilent-Blöcke 12 so getroffen, daß die hydraulischen Kolben bzw. Pressen 11 im ausgefahrenen Zustand vollständig die Abstützung der Aussteifungen 6 auf den Stützelementen 8 übernehmen, so daß in diesem Betriebszustand eine starre Kraftübertragung gewährleistet ist.In the exemplary embodiment shown in FIGS. 1 and 2, the rigid transmission members 11 are formed by hydraulic pistons or presses, which, viewed in the transverse direction of the tunnel, are each arranged between two rubber-silicone blocks forming the elastic transmission members 12. The dimensions of the rubber-silent blocks 12 are such that the hydraulic pistons or presses 11 completely support the braces 6 on the support elements 8 in the extended state, so that a rigid power transmission is ensured in this operating state.

Durch eine in Fig. 1 nicht dargestellte Drucksteuerungsvorrichtung können jedoch die hydraulischen Kolben 11 drucklos gemacht werden, so daß die neben ihnen angeordneten Gummisilent-Blöcke 12 die vom Beton und dem Gebirge auf den Schalungskörper ausgeübten Kräfte in elastischer Weise auf die Stützelemente 8 übertragen.However, the hydraulic pistons 11 can be depressurized by a pressure control device (not shown in FIG. 1), so that the rubber-silent blocks 12 arranged next to them elastically transmit the forces exerted by the concrete and the rock on the formwork body to the supporting elements 8.

Die jeweils an einem Stützelement 8 angeordneten hydraulischen Kolben bzw. Pressen 11 können durch eine (nicht dargestellte) Druckleitung so miteinander verbunden sein, daß sie gleichzeitig unter Druck gesetzt oder druckfrei gemacht werden können. Alternativ hierzu kann vorgesehen sein, daß die hydraulischen Pressen bzw. Zylinder 11 eines Stützelementes 8 einzeln oder gruppenweise steuerbar sind.The hydraulic pistons or presses 11 each arranged on a support element 8 can be connected to one another by a pressure line (not shown) in such a way that they can be pressurized or depressurized at the same time. Alternatively, it can be provided that the hydraulic presses or cylinders 11 of a support element 8 can be controlled individually or in groups.

Die Druckverhältnisse von auf verschiedenen Stützelementen 8 angebrachten hydraulischen Kolben bzw. Pressen 11 sind vorzugsweise voneinander unabhängig steuerbar.The pressure ratios of hydraulic pistons or presses 11 mounted on different support elements 8 can preferably be controlled independently of one another.

Wie man der Fig. 1 weiterhin entnimmt, ist sowohl bei einem kreisförmigen bzw. abgerundeten als auch bei einem eckigen Stollen- bzw. Tunnel-Querschnittsprofil der Schalungskörper in Umfangsrichtung in einzelne Segmente 14 unterteilt. Das bedeutet, daß zunächst einmal die Schalhaut 5 in Umfangsrichtung gesehen aus einzelnen Schaltafeln 15 besteht, die in Umfangsrichtung unmittelbar aneinander anschließend angeordnet sind. Die zwischen diesen einzelnen Schaltafeln 15 bestehenden Fugen sind durch Dichtungen 16 aus Kunststoff oder Gummi überbrückt, wodurch eine gewisse Relativbeweglichkeit der Schaltafeln gegeneinander ermöglicht wird. Weiterhin bestehen auch die Aussteifungen 6 aus einzelnen in Umfangsrichtung des Tunnels nebeneinander angeordneten Aussteifungselementen 17, die jeweils einer Schaltafel 15 zugeordnet sind.As can be seen from FIG. 1, is the formwork body is divided into individual segments 14 in the circumferential direction both in the case of a circular or rounded and in the case of an angular tunnel or tunnel cross-sectional profile. This means that, first of all, the formlining 5, seen in the circumferential direction, consists of individual formwork panels 15 which are arranged directly next to one another in the circumferential direction. The joints between these individual formwork panels 15 are bridged by seals 16 made of plastic or rubber, which enables a certain relative mobility of the formwork panels with respect to one another. Furthermore, the stiffeners 6 also consist of individual stiffening elements 17 arranged next to one another in the circumferential direction of the tunnel, each of which is assigned to a formwork panel 15.

Bei dem in Fig. 1 wiedergegebenen Beispiel ist jedes Aussteifungselement 17 über zwei Gruppen von Übertragungsgliedern 11 und 12 an einem entsprechenden Stützelement 8 abgestützt.In the example shown in FIG. 1, each stiffening element 17 is supported on a corresponding support element 8 via two groups of transmission members 11 and 12.

Wie man insbesondere der Fig. 2 entnimmt, wird der zwischen der Tunnel- bzw. Stollen-Ausbruchswandung 3 bzw. einer Außenschalung und der Schalhaut 5 eingeschlossene ringförmige Hohlraum an seinem vorderen Ende durch eine Stirnschalung 20 verschlossen, die aus den eigentlichen Schalungselementen 21 und einer diese Schalungselemente tragenden Ringkonstruktion 22 besteht. Der Stirnschalungsring 22 ist über Längsträger 23 mit der aus den Stützelementen 8 bestehenden Stützkonstruktion 7 der Gleitschalung 2 dadurch verbunden, daß die Längsträger 23 in den Längsholmen 9 der Stützkonstruktion 7 in Längsrichtung verschieblich geführt sind.As can be seen in particular from FIG. 2, the annular cavity enclosed between the tunnel or tunnel excavation wall 3 or an outer formwork and the formlining 5 is closed at its front end by a front formwork 20, which consists of the actual formwork elements 21 and one this formwork elements bearing ring structure 22. The end formwork ring 22 is connected via longitudinal beams 23 to the support structure 7 of the sliding formwork 2 consisting of the support elements 8 in that the longitudinal beams 23 are guided in the longitudinal bars 9 of the support structure 7 so as to be displaceable in the longitudinal direction.

Im allgemeinen sind dabei die Längsträger 23 mit den Längsholmen 9 starr verbunden, so daß die gesamte Gleitschalung wie ein einstückiger Körper vorgetrieben werden kann.In general, the longitudinal beams 23 are rigidly connected to the longitudinal spars 9, so that the entire sliding formwork can be driven like a one-piece body.

Lediglich für die Fälle, in denen ein Teilabschnitt der zu betonierenden Tunnelwand mit Armierungen versehen werden muß, kann die starre Verbindung zwischen der Stirnschalung 20 und der Stützkonstruktion 7 gelöst und die Stirnschalung 20 mit Hilfe von nicht dargestellten, zwischen den Längsträgern 23 und den Längsholmen 9 wirkenden pneumatischen oder hydraulischen Pressen bezüglich der Stützkonstruktion 7 alleine vorgeschoben werden.The rigid connection between the front formwork 20 and the supporting structure 7 can be released and the front formwork 20 with the help of non-illustrated, between the longitudinal beams 23 and the longitudinal spars 9 only for those cases in which a section of the tunnel wall to be concreted must be provided with reinforcements acting pneumatic or hydraulic presses are advanced with respect to the support structure 7 alone.

In all den Fällen, in denen dies nicht erforderlich ist, bleiben die Stirnschalung 20 und die Stützkonstruktion 7 fest miteinander verbunden. Hierdurch wird es möglich, die gesamte Gleitschalung mit Hilfe des Drucks des flüssigen Betons voranzuschieben, der durch eine Betonpumpe 25 über Druckleitungen 26 vom Stirnende her in den zwischen Tunnelinnenwandung 3 und Schalhaut 5 eingeschlossenen ringförmigen Hohlraum 31 eingepreßt wird. Dabei dient im wesentlichen der diesen Ringraum nach hinten abschließende, bereits ausgehärtete Ortbeton 4 als Widerlager.In all cases in which this is not necessary, the front formwork 20 and the support structure 7 remain firmly connected to one another. This makes it possible to advance the entire sliding formwork with the help of the pressure of the liquid concrete, which is pressed by a concrete pump 25 via pressure lines 26 from the front end into the annular cavity 31 enclosed between the tunnel inner wall 3 and formlining 5. Essentially, the hardened in-situ concrete 4 that closes this annular space to the rear serves as an abutment.

Diese Vortriebsart ist vor allem deswegen besonders vorteilhaft, weil sie es unnötig macht, innerhalb des fertigbetonierten Tunnelquerschnitts irgendwelche Widerlager zum Vorschieben der Gleitschalung 2 vorzusehen, wodurch die hiermit verbundene räumliche Beengung und auch die dabei entstehende Beschädigungsgefahr für den bereits fertiggestellten Ortbeton vermieden werden. Auch läßt sich auf diese Weise eine außerordentlich gute Komprimierung bzw. Verdichtung des frisch in den Ringhohlraum 31 zwischen Tunnelausbruchswandung 3 und Schalhaut 5 eingefüllten flüssigen Betons erzielen.This type of tunneling is particularly advantageous because it makes it unnecessary to provide any abutments for advancing the sliding formwork 2 within the precast concrete cross-section, thereby avoiding the spatial constriction associated therewith and also the risk of damage to the already finished in-situ concrete. It is also possible in this way to achieve extraordinarily good compression or compaction of the liquid concrete freshly filled into the annular cavity 31 between the tunnel excavation wall 3 and the formlining 5.

In Fig. 3 ist die in Fig. 2 nur pauschal eingezeichnete Dichteinrichtung 27 im vergrößerten Maßstab so dargestellt, daß ihr erfindungsgemäßer Aufbau deutlich wird. Die erfindungsgemäße Abstützung des aus Schalhaut 5 und Aussteifungen 6 bestehenden Schalungskörpers auf den Stützelementen 8 über zueinander parallel angeordnete, wahlweise in Betrieb nehmbare starre und elastische Übertragungsglieder 11 bzw. 12 kann nicht nur unabhängig davon vorgenommen werden, ob der Vortrieb der Gleitschalung 2 kontinuierlich oder diskontinuierlich erfolgt, sondern auch unabhängig davon, ob er in an sich bekannter Weise mit Hilfe von hydraulischen oder pneumatischen Pressen durchgeführt wird, die sich einerseits an im fertig ausgebauten Tunnel angebrachten Widerlagern und andererseits an der Stützkonstruktion 7 abstützen, oder ob die Vortriebskräfte in der erfindungsgemäß besonders bevorzugten Weise durch den Druck des hinter die Stirnschalung 20 eingepreßten flüssigen Betons erzeugt werden.In Fig. 3, the sealing device 27, which is only shown in general in Fig. 2, is shown on an enlarged scale so that its construction according to the invention is clear. The support according to the invention of the formwork shell 5 and bracing 6 on the support elements 8 via mutually parallel, optionally operational rigid and elastic transmission members 11 and 12 can be carried out not only regardless of whether the advance of the sliding formwork 2 continuously or discontinuously takes place, but also regardless of whether it is carried out in a known manner with the help of hydraulic or pneumatic presses, which are supported on the one hand on abutments installed in the finished tunnel and on the other hand on the support structure 7, or whether the driving forces in the invention according to the particular are preferably generated by the pressure of the liquid concrete pressed in behind the face formwork 20.

Im letzteren Fall ist es wichtig, daß, wie in Fig. 3 dargestellt, eine gute Dichtung zwischen der Ausbruchswandung 3 des Tunnels oder Stollens bzw. der dort angebrachten Außenschalung und der Umfangskante der Stirnschalung 20 aufrechterhalten wird. Diese Dichtung muß einerseits fest genug sein, um den erforderlichen Druckaufbau hinter der Stirnschalung 20 zu ermöglichen und andererseits die nötige Flexibilität besitzen, um ein Vorwärtsbewegen der Gleitschalung 2 zu ermöglichen und dabei einen Ausgleich zwischen der im wesentlichen starren und unveränderlichen Außenkante der Stirnschalung 20 und der aufgrund von Fertigungs- bzw. Arbeitstoleranzen nicht völlig gleichmäßigen Innenkontur der Ausbruchswandung 3 bzw. der dort angebrachten Außenschalung sicherzustellen.In the latter case, it is important that, as shown in Fig. 3, a good seal between the wall 3 of the tunnel or tunnel or the outer formwork attached there and the peripheral edge of the end formwork 20 is maintained. This seal must be strong enough on the one hand to allow the necessary pressure build-up behind the face formwork 20 and on the other hand have the necessary flexibility to allow the sliding formwork 2 to move forward and thereby a balance between the substantially rigid and unchangeable outer edge of the face formwork 20 and the Ensure that the inner contour of the excavation wall 3 or the outer formwork attached there is not completely uniform due to manufacturing or working tolerances.

Gemäß der Erfindung dient hierzu eine Dichteinrichtung 27, die ein erstes, sich in Umfangsrichtung der Stirnschalung 20 erstreckendes, in seinem in Fig. 3 dargestellten Querschnitt rechteckiges, aufblasbares Schlauchelement 28 umfaßt, das in seinem radial inneren Bereich fest mit der Stirnschalung 20 verbunden ist und über deren radiale Außenkante im aufgeblasenen Zustand soweit vorsteht, daß es mit seiner radialen Außenfläche fest gegen die Ausbruchswandung 3 des Tunnels angepreßt ist.According to the invention, a sealing device 27 is used for this purpose, which comprises a first inflatable tube element 28, which extends in the circumferential direction of the front formwork 20 and is rectangular in its cross section shown in FIG. 3, and which is firmly connected to the end formwork 20 in its radially inner region protrudes beyond its radial outer edge in the inflated state to such an extent that its radial outer surface is firmly pressed against the wall 3 of the tunnel.

Wird nun bei fortschreitendem Ausbau des Tunnels die Gleitschalung 2 und mit ihr die Stirnschalung 20 in Richtung des Pfeils V vorgetrieben, so muß zumindest bei einem kontinuierlichen Vortrieb das Schlauchelement 28 während der Vorwärtsbewegung an die Ausbruchswandung 3 angepreßt bleiben, damit der diese Vorwärtsbewegung bewirkende Druck hinter der Stirnschalung 20 aufrechterhalten wird. Dies führt zunächst zu der in Fig. 3 wiedergegebenen Verformung des Schlauchelementes 28. Damit bei einer weiteren Vorwärtsbewegung der Stirnschalung 20 in Richtung des Pfeiles V die radial äußere Fläche des Schlauchelementes 28 nicht an der Ausbruchswandung 3 entlangreibt, was zu einem Druckverlust hinter der Stirnschalung 20 führen könnte und einen sehr starken Verschleiß des Schlauchelementes 28 zur Folge hätte, ist gemäß der Erfindung in axialer Richtung neben dem ersten Schlauchelement 28 wenigstens ein weiteres, prinzipiell genauso aufgebautes Schlauchelement 29 an der Umfangskante der Stirnschalung 20 befestigt. Dieses zweite Schlauchelement 29 bleibt solange drucklos und liegt somit so lange nicht an der Ausbruchswandung 3 an, wie das erste Schlauchelement 28 unter Druck steht und die erforderliche Dichtfunktion übernimmt. Erst wenn das unter Druck stehende und deshalb an der Ausbruchswandung 3 anliegende erste Schlauchelement 28 aufgrund der Vorwärtsbewegung der Stirnschalung 20 soweit verformt worden ist, daß es bei einer weiteren Vorwärtsbewegung der Stirnschalung anfangen würde, an der Ausbruchswandung 3 entlangzureiben, wird das zweite Schlauchelement 29 unter Druck gesetzt, so daß es sich in dichtender Weise an die Ausbruchswandung 3 anlegt. Hierauf wird der Druck im ersten Schlauchelement 28 soweit abgesenkt, daß es sich in radialer Richtung verkürzt und von der Ausbruchswandung 3 freikommt. Aufgrund seiner Elastizität wird dabei die.in Fig. 3 dargestellt Verformung des Schlauchelementes 28 rückgängig gemacht und es nimmt wieder seine Ausgangslage ein, die in Fig. 3 für das Schlauchelement 29 und ein drittes, axial hinter dem Schlauchelement 29 angeordnetes Schlauchelement 30 dargestellt ist. Bei der weiteren Vorwärtsbewegung der Stirnschalung 20 wird das nunmehr an der Ausbruchswandung 3 anliegende zweite Schlauchelement 29 in der in Fig. 3 für das Schlauchelement 28 wiedergegebenen Weise verformt. Ist diese Verformung soweit fortgeschritten, daß auch hier wieder ein Entlangrutschen der Außenfläche des Schlauchelementes 29 an der Ausbruchswandung 3 einsetzen könnte, wird das dritte Schlauchelement 30 unter Druck gesetzt, das nunmehr die Dichtfunktion übernimmt, während das Schlauchelement 29 wieder entlastet wird.Now, as the tunnel progresses, the sliding formwork 2 and, with it, the front formwork 20 in the direction of the arrow V will move forward driven, the hose element 28 must remain pressed against the breakout wall 3 during the forward movement, at least in the case of a continuous advance, so that the pressure behind the front formwork 20 which causes this forward movement is maintained. This initially leads to the deformation of the hose element 28 shown in FIG. 3, so that the radial outer surface of the hose element 28 does not rub against the breakout wall 3 when the front formwork 20 moves further in the direction of arrow V, which leads to a pressure loss behind the front formwork 20 could lead and a very heavy wear of the hose element 28 would result, according to the invention, in the axial direction, in addition to the first hose element 28, at least one further hose element 29, basically constructed in the same way, is fastened to the peripheral edge of the front formwork 20. This second hose element 29 remains depressurized for as long and is therefore not in contact with the breakout wall 3 as long as the first hose element 28 is under pressure and assumes the required sealing function. Only when the first hose element 28, which is under pressure and therefore bears against the breakout wall 3, has been deformed to such an extent that it would start to rub along the breakout wall 3 due to the forward movement of the end formwork 20, does the second hose element 29 become underneath Pressure set so that it bears in a sealing manner on the breakout wall 3. Then the pressure in the first hose element 28 is reduced to such an extent that it shortens in the radial direction and is released from the breakout wall 3. Due to its elasticity, the deformation of the hose element 28 shown in FIG. 3 is reversed and it returns to its starting position, which is shown in FIG. 3 for the hose element 29 and a third hose element 30 arranged axially behind the hose element 29. During the further forward movement of the front formwork 20, the second hose element 29 now resting on the breakout wall 3 is deformed in the manner shown in FIG. 3 for the hose element 28. If this deformation has progressed to such an extent that the outer surface of the hose element 29 could slide against the breakout wall 3 again, the third hose element 30 is pressurized, which now takes over the sealing function, while the hose element 29 is relieved again.

Somit läßt sich also durch ein in Richtung des Pfeiles D, d. h. entgegengesetzt zur Vortriebsrichtung V erfolgendes, alternierendes Unterdrucksetzen der an der Umfangskante der Stirnschaltung 20 angebrachten Schlauchelemente 28, 29 und 30 auch bei einem kontinuierlichen Vortrieb der Gleitschalung 2 ein ständig dichter Abschluß des zwischen Ausbruchswandung 3, Stirnschalung 20 und Schalhaut 5 der Gleitschalung 2 eingeschlossenen Ringraumes zur Aufrechterhaltung des dort herrschenden Vortriebs-Drucks sicherstellen, ohne daß es zu einem Entlangreiben der Dichteinrichtung 27 an der Ausbruchswandung 3 des Tunnels oder Stollens kommt.So it can be in the direction of arrow D, d. H. opposite to the direction of advance V, alternating pressurization of the hose elements 28, 29 and 30 attached to the circumferential edge of the face circuit 20, even with continuous advancement of the sliding formwork 2, ensures a continuously sealed closure of the annular space enclosed between the breakout wall 3, front formwork 20 and formwork skin 5 of the sliding formwork 2 Ensure the prevailing jacking pressure is maintained without the sealing device 27 rubbing against the wall 3 of the tunnel or tunnel.

Erfindungsgemäß muß bei der Anwendung dieses Vortreibsverfahrens auch eine druckdichte Verbindung zwischen der Stirnschalung 20 und dem sich von ihr aus axial nach hinten erstreckenden Schalungskörper 5, 6 bestehen. Erfindungsgemäß kann auch eine Unterteilung der Stirnschalung in Segmente vorgesehen werden, denen der Beton jeweils getrennt zugeführt wird. In vorteilhafter Weise kann dabei für die Schlauchelemente eines jeden Segmentes eine eigene Drucksteuerung vorgesehen werden, um eine gewisse Richtungssteuerung der Stirnschalung 20 zu ermöglichen, wenn diese beispielsweise in einem Tunnel bzw. Stollen mit gekrümmter Längsachse vorwärts geschoben werden soll.According to the invention, when using this advance method, there must also be a pressure-tight connection between the face formwork 20 and the formwork body 5, 6 extending axially from it. According to the invention, the front formwork can also be subdivided into segments to which the concrete is fed separately. In an advantageous manner, a separate pressure control can be provided for the hose elements of each segment in order to enable a certain directional control of the face formwork 20 if it is to be pushed forward, for example, in a tunnel or gallery with a curved longitudinal axis.

In Fig. 4 ist eine weitere Möglichkeit der erfindungsgemäßen Ausbildung der zwischen dem Schalungskörper 5, 6 und den Stützelementen 8 der Stützkonstruktion 7 angeordneten starren und elastischen Übertragungsglieder wiedergegeben.4 shows a further possibility of the inventive design of the rigid and elastic transmission elements arranged between the formwork body 5, 6 and the support elements 8 of the support structure 7.

Wie man der Fig. 4 entnimmt, umfaßt die ein starres Übertragungsglied 11 bildende hydraulische Presse einen in einem Zylinder 2 hin- und herverschieblichen, doppelt wirkenden Kolben 33, der einen beispielsweise gegen eine Aussteifung 6 anpreßbaren und von dieser zurückziehbaren Stempel 34 trägt, während der Zylinder 32 mit einer Grundplatte 40 verbunden ist, die beispielsweise auf einem Stützelement 8 aufliegt. Der Innenraum des Zylinders 32 kann entweder vor oder hinter dem Kolben 33 über Leitungen 35 bzw. 36 mit einer Druckquelle 37 verbunden werden, um den Stempel 34 gegen die Aussteifung 6 anzudrücken oder ihn von der Aussteifung zurückzuziehen. Von der Leitung 35 führt ein Abzweig über einen Absperrhahn 38 zu einem Gaspolster 39, das parallel zur hydraulischen Presse 11 anstelle von oder zusätzlich zu den in den Fig. 1 und 2 dargestellten Gummisilent-Blöcken 12 als elastisches Übertragungsglied zwischen dem Schalungskörper 5, 6 und der Stützkonstruktion 7 angeordnet sein kann. Mit Hilfe des Absperrhahnes 38 ist es möglich, die von der Hydraulikpumpe 37 zum Gaspolster 39 führende Leitung abzusperren und im Hydraulikzylinder 32 den für die starre Abstützung des Schalungskörpers 5, 6 erforderlichen Hydraulikdruck aufzubauen. Wenn dann der Absperrhahn 38 geöffnet wird, ist durch die Verbindung zum Gaspolster 39 eine elastische Abstützung gewährleistet. Durch diese Anordnung kann auch im Fall der elastischen Abstützung der gleiche Druck wie bei der starren Abstützung aufrechterhalten werden, wobei der wesentliche Unterschied darin besteht, daß bei der elastischen Abstützung diesen Druck übersteigende Kräfte, die beispielsweise bei zwischen Gleitschalung 2 und erhärtetem Beton 4 auftretenden Zwängungen erzeugt werden, durch elastische Verformungen aufgenommen werden können.As can be seen from FIG. 4, the hydraulic press forming a rigid transmission member 11 comprises a double-acting piston 33 which can be pushed back and forth in a cylinder 2 and which, for example, bears a plunger 34 which can be pressed against a stiffener 6 and retractable therefrom, during Cylinder 32 is connected to a base plate 40, which rests, for example, on a support element 8. The interior of the cylinder 32 can either be connected in front of or behind the piston 33 via lines 35 or 36 to a pressure source 37 in order to press the plunger 34 against the stiffener 6 or to pull it back from the stiffener. From the line 35 a branch leads via a shut-off valve 38 to a gas cushion 39 which, in parallel to the hydraulic press 11 instead of or in addition to the rubber-silent blocks 12 shown in FIGS. 1 and 2, acts as an elastic transmission member between the formwork body 5, 6 and the support structure 7 can be arranged. With the help of the shut-off valve 38, it is possible to shut off the line leading from the hydraulic pump 37 to the gas cushion 39 and to build up the hydraulic pressure required for the rigid support of the formwork body 5, 6 in the hydraulic cylinder 32. If the shut-off valve 38 is then opened, the connection to the gas cushion 39 ensures elastic support. With this arrangement, the same pressure as in the case of the rigid support can also be maintained in the case of the elastic support, the main difference being that in the elastic support this pressure exceeds the forces which occur, for example, between the sliding formwork 2 and hardened concrete 4 Squeezes are generated that can be absorbed by elastic deformations.

Claims (11)

1. Procedure for advancing a sliding formwork (2) during the emplacement of the permanent lining of a gallery or tunnel, this formwork comprising a formwork structure (5, 6) which extends in the longitudinal direction of the gallery or tunnel, essentially parallel to its as-excavated wall, and which can be pushed forward in the direction in which the gallery or tunnel is being driven, an end-form (20) which closes the front of the annular space enclosed between the formwork structure and the as-excavated wall of the gallery or tunnel, or an outer formwork which may, if appropriate, be fixed to the as-excavated wall, and a supporting system (7) which, at least, carries the formwork structure, characterised in that the portions of the formwork structure (5, 6) which are to be backfilled with liquid concrete, and the portions which are bearing against concrete which has not yet hardened, are rigidly supported on the supporting system (7), at least in the ceiling zone of the gallery or tunnel, and in that, following adequate hardening of the concrete, a transition is made to supporting the formwork structure, on the supporting system, in a resilient manner.
2. Procedure according to Claim 1, in which the sliding formwork is continuously advanced, at a speed which is matched to the rate at which the concrete hardens, characterised in that the front portions of the formwork structure (5, 6) are rigidly supported on the supporting system (7), in the region where the concrete is still liquid, or has yet to harden adequately, while its rear portions are resiliently supported, on the supporting system (7), in the region where the concrete has hardened adequately.
3. Procedure according to Claim 1, in which the sliding formwork is advanced intermittently, characterised in that, following adequate hardening of the concrete which is resting on those portions of the formwork structure (5, 6) which are initially supported in a rigid manner, a transition is made to supporting these portions of the formwork structure in a resilient manner.
4. Procedure according to Claim 3, characterised in that the transition to resilient support is made no later than the moment at which a sliding formwork which, from time to time, ceases to move, starts to move again.
5. Procedure for advancing a sliding formwork (2) during the emplacement of the permanent lining of a gallery or tunnel, this formwork comprising a formwork structure (5, 6) which extends in the longitudinal direction of the gallery or tunnel, essentially parallel to its as-excavated wall, and which can be pushed forward in the direction in which the gallery or tunnel is being driven, an end-form (20) which closes the front of the annular space between the formwork structure and the as-excavated wall, or an outer formwork which may, if appropriate, be fixed to the as-excavated wall, and a supporting system which, at least, carries the formwork structure, in particular according to one or more of Claims 1 to 4, characterised in that the sliding formwork is moved forwards with the aid of the pressure of the concrete which has been injected into that portion of the annular space which is located behind the end-form.
6. Appliance for implementing the procedure according to one or more of the preceding claims, characterised in that, in order to support at least portions of the formwork structure (5, 6) on the supporting system (7), both rigid (11) and resilient (12) transfer members are arranged between the formwork structure (5, 6) and the supporting system (7), these members acting parallel to one another, and in that a change-over device is provided which makes it possible to select the activation of either the rigid (11) transfer members, or of the resilient (12) transfer members.
7. Appliance according to Claim 6, characterised in that the rigid transfer members are formed by hydraulic jacks (11), and that the resilient transfer members incorporate silent block-type rubber/metal pads (12) or cushions (39) which can be pressed into contact by pneumatic or hydraulic means.
8. Appliance according to one of the preceding claims, characterised in that the formwork structure (5, 6) is subdivided into individual segments (14) which are located side-by-side in the peripheral direction, their joints being bridged by sealing elements (16) which permit a certain relative movement between the individual segments (14).
9. Appliance according to one of the preceding claims, characterised in that a sealing device (27) is located between the outer edge of the end-form (20) and the as-excavated wall (3) of the gallery or tunnel, or an outer formwork which may, if appropriate, by fixed to the as-excavated wall.
10. Appliance according to Claim 9, characterised in that the sealing device (27) comprises at least two flexible tubes (28, 29, 30) which are arranged one behind another in the direction of advance, which extend in the peripheral direction of the end-form (20), which can be shifted, when not in the inflated state, relative to the as-excavated wall (3) or, as the case may be, relative to the outer formwork, and which, when in the inflated state, bear firmly against the as-excavated wall (3) or, as the case may be, against the outer formwork, and in that these flexible tubes (28, 29, 30) can be inflated individually or deflated individually, as required.
11. Appliance according to Claim 9 or 10, characterised in that the end-form (20) is subdivided into segments, each of which can be supplied separately with liquid concrete, and in that the flexible tubes (28, 29, 30) of each segment of the end-form (20) can be pressurised or, as appropriate, vented independently of the flexible tubes (28, 29, 30) of all the other segments of the end-form (20), in order to control the direction in which the sliding formwork (2) moves.
EP81109414A 1980-11-17 1981-10-30 Process and device for advancing a slidable shuttering Expired EP0052292B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81109414T ATE6803T1 (en) 1980-11-17 1981-10-30 METHOD AND DEVICE FOR DRIVING A SLIPFORM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3043312 1980-11-17
DE3043312A DE3043312C2 (en) 1980-11-17 1980-11-17 Sliding formwork for inserting an in-situ concrete lining as well as a method for inserting in-situ concrete in gallery and tunnel construction

Publications (2)

Publication Number Publication Date
EP0052292A1 EP0052292A1 (en) 1982-05-26
EP0052292B1 true EP0052292B1 (en) 1984-03-21

Family

ID=6116980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81109414A Expired EP0052292B1 (en) 1980-11-17 1981-10-30 Process and device for advancing a slidable shuttering

Country Status (8)

Country Link
US (1) US4437788A (en)
EP (1) EP0052292B1 (en)
JP (1) JPS57112599A (en)
AT (1) ATE6803T1 (en)
CA (1) CA1182654A (en)
DE (2) DE3043312C2 (en)
ES (1) ES507137A0 (en)
PT (1) PT74002B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3201087A1 (en) * 1982-01-15 1983-07-28 Erich 6312 Laubach Bingießer "COMBINED TUNNEL OR SHAFT DRILLING MACHINE WITH SIMULTANEOUS SHELLING AND REINFORCEMENT OF THE SHAFT TUNNEL AND RETURN TRANSPORT OF THE EXCAVATION MATERIAL"
FI73046C (en) * 1983-06-13 1987-08-10 Tampella Oy Ab FOERFARANDE OCH APPARAT FOER INMATNING AV GJUTMEDEL I ETT BORRHAOL VID GJUTBULTNING AV BERG.
DE3406980C1 (en) * 1984-02-25 1985-04-04 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Method and device for continuously lining a tunnel with in-situ concrete
US4793736A (en) * 1985-08-19 1988-12-27 Thompson Louis J Method and apparatus for continuously boring and lining tunnels and other like structures
DE3529998A1 (en) * 1985-08-22 1987-02-26 Hochtief Ag Hoch Tiefbauten METHOD AND DEVICE FOR CONTINUOUSLY LINING A TUNNEL WITH EXTRUDED CONCRETE
US4710058A (en) * 1987-02-25 1987-12-01 Han Man Y Concrete lining machine
US4769192A (en) * 1987-03-27 1988-09-06 Blaw Knox Corporation Pulsating slip form apparatus and method
DE3732598A1 (en) * 1987-04-24 1988-11-03 Wasserversorgung Abwasse METHOD AND DE-MIXING-FREE CONCRETE FOR THE RENOVATION OF UNDERGROUND CANALS
DD279796A3 (en) * 1987-04-24 1990-06-20 Wasserversorgung Abwasse SOLID BODY INSULATION FOR THE REHABILITATION OF UNDERGROUND CHANNELS
DE3724769A1 (en) * 1987-07-25 1989-02-02 Hochtief Ag Hoch Tiefbauten FORMWORK FOR A TUNNEL LINING WITH LOCAL CONCRETE
EP0303775B1 (en) * 1987-08-13 1992-03-04 Hochtief Aktiengesellschaft Vorm. Gebr. Helfmann Method for making a tunnel by using a driving shield
DE3729560A1 (en) * 1987-09-04 1989-03-16 Mts Minitunnelsysteme Gmbh METHOD AND DEVICE FOR PRODUCING A PIPELINE IN A HOLE DESIGNED IN THE GROUND
EP0476037B1 (en) * 1989-06-09 1993-09-01 Heinz-Theo Dipl.-Ing. Walbröhl Device for opening and supporting a headway
DE4002669A1 (en) * 1990-01-30 1991-08-01 Walbroehl H T SELF-PROCESSING SUPPORT AND SLIDING CIRCUIT FOR PUTTING A LOCAL CONCRETE LINING
GB2291099B (en) * 1994-07-02 1997-12-17 George Henry Slade Tunnel lining
NO20004536D0 (en) * 2000-09-12 2000-09-12 Knut Fossum Sliding molding, formwork when casting with spray concrete
NL1018500C2 (en) * 2001-07-09 2003-01-14 Ind Tunnelbouw Methode C V Formwork and working method for building a covered tunnel.
ES2338289B8 (en) * 2007-05-14 2011-07-18 Dragados, S.A. "MACHINE TO DRILL AND CONCRETE A CONTINUOUS TUNNEL".
CN102735581B (en) * 2012-07-19 2014-03-26 先进储能材料国家工程研究中心有限责任公司 Device and method for lossless and continuous detection of density uniformity of belt-shaped material
CN106917627B (en) * 2017-03-24 2019-06-11 中建交通建设集团有限公司 The advanced support method of pilot tunnel under a kind of water rich strata boring construction
US20240052743A1 (en) * 2020-12-23 2024-02-15 Hinfra S.R. L. Automated method and processing train for lining tunnels
CN115288726A (en) * 2022-08-25 2022-11-04 浙大城市学院 Inflatable folding type reinforcing structure for tunnel and construction method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1534599A1 (en) * 1966-02-26 1969-07-31 Berger Dr Ing Hermann Process for the production of seamless formwork concrete in galleries and tunnels
AT287052B (en) * 1967-02-20 1971-01-11 G Proektno Izyskatelsky I Metr Device for the production of a monolithic concrete lining
BE792501A (en) * 1971-12-22 1973-03-30 Walbroehl H T PROCEDURE AND FORMWORK FOR THE REALIZATION OF CONCRETE COATING OF GALLERIES, TUNNELS, WELLS, ETC.
FR2230806A1 (en) * 1973-05-23 1974-12-20 Buffet Paul Three track railway tunnel relining system - canopy is erected over central track, allowing this to remain in use
DE2725827C2 (en) * 1977-06-08 1985-10-24 Gewerkschaft Eisenhütte Westfalia, 4670 Lünen Knife shield propulsion device
DE2706244C2 (en) * 1977-02-15 1986-01-02 Gewerkschaft Eisenhütte Westfalia, 4670 Lünen Knife driving method and knife for driving tunnels, galleries and the like with simultaneous introduction of a concrete lining
DE2844953C2 (en) * 1978-10-16 1983-01-05 Gosudarstvennyj proektno-izyskatel'skij institut Metrogiprotrans, Moskva Tunnel advance shield with formwork that can be towed to insert an in-situ concrete lining
GB2063977A (en) * 1979-11-27 1981-06-10 Markham & Co Ltd Improvements in Tunnelling or Mining Canopies

Also Published As

Publication number Publication date
JPS6257797B2 (en) 1987-12-02
JPS57112599A (en) 1982-07-13
ATE6803T1 (en) 1984-04-15
PT74002B (en) 1983-07-01
EP0052292A1 (en) 1982-05-26
ES8304258A1 (en) 1983-02-16
CA1182654A (en) 1985-02-19
DE3043312A1 (en) 1982-07-08
ES507137A0 (en) 1983-02-16
PT74002A (en) 1981-12-01
DE3043312C2 (en) 1986-10-09
DE3162826D1 (en) 1984-04-26
US4437788A (en) 1984-03-20

Similar Documents

Publication Publication Date Title
EP0052292B1 (en) Process and device for advancing a slidable shuttering
DE2550050C2 (en) Device for driving tunnels or the like. by means of a shoring sign with the introduction of an in-situ concrete lining
EP2910687B1 (en) Device and method for the fabrication of a tunnel having multiple tunnel sections
EP0513083B1 (en) Automatically advancing supporting and sliding form for introducing an in-situ concrete lining
CH646490A5 (en) METHOD AND DEVICE FOR APPLYING A CONCRETE LINING WHILE DRIVING UNDERGROUND CAVES.
DE2547021C3 (en) Shoring sign
EP0205853B1 (en) Method for producing a pipelike underground cavity, e.g. a tunnel, gallery or the like, by means of shield driving, and device for carrying out the method
DE2505980A1 (en) Tunnel tube section forwarding - uses hydraulic or pneumatic pressure from pressure pipe between component and abutment
DE3025922C2 (en)
DE2742332B2 (en) Method for controlling the propulsion device of a knife shield as well as a knife shield propulsion device and a propulsion knife for carrying out such a method
DE2857475C1 (en) Device and method for the expansion of a tunnel driven in the shield drive
EP1650402B1 (en) Method and apparatus for making tunnels by means of shield advancement
DE2706244A1 (en) Tunnel driving system with simultaneous concreting - has segments formed in succession in peripheral direction using internal shuttering only
DE3336153C2 (en) Hollow body that can be filled with building material
EP1904716B1 (en) Underground construction of a pipeline
DE102009033834B3 (en) Device for lifting base plate corresponding to foundation element, comprises empty annular space, which is formed around lifting element, where annular space is limited by exterior seal made of plastic or rubber
DE19744146C1 (en) Method for driving tunnel through ground
DE1534678C (en) Device for the production of tubular, underground structures
DE1409903A1 (en) Method and device for driving a tunnel and for supporting earth structures
DE1759847C (en) Method as well as jacking and laying shield for the construction of an underground cavity of circular cross-section
AT242185B (en) Method and device for lining galleries, tunnels, etc.
DE2522029C3 (en) Driving shield for simultaneous continuous driving and lining of tunnels
DE2429805C3 (en) Formwork equipment for the expansion of routes and tunnels
DE2619510B2 (en)
EP1835126A1 (en) Sealing process and sealing joint for driving pipes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19820609

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 6803

Country of ref document: AT

Date of ref document: 19840415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3162826

Country of ref document: DE

Date of ref document: 19840426

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890719

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890810

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890912

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891031

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901031

Ref country code: BE

Effective date: 19901031

BERE Be: lapsed

Owner name: WALBROHL HEINZ-THEO

Effective date: 19901031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
ITTA It: last paid annual fee
ITPR It: changes in ownership of a european patent

Owner name: OFFERTA DI LICENZA AL PUBBLICO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920929

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921016

Year of fee payment: 12

Ref country code: CH

Payment date: 19921016

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930210

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931031

Ref country code: CH

Effective date: 19931031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81109414.3

Effective date: 19910603