EP1717353A1 - Alkaline galvanizing bath comprising a filtration membrane - Google Patents

Alkaline galvanizing bath comprising a filtration membrane Download PDF

Info

Publication number
EP1717353A1
EP1717353A1 EP05009127A EP05009127A EP1717353A1 EP 1717353 A1 EP1717353 A1 EP 1717353A1 EP 05009127 A EP05009127 A EP 05009127A EP 05009127 A EP05009127 A EP 05009127A EP 1717353 A1 EP1717353 A1 EP 1717353A1
Authority
EP
European Patent Office
Prior art keywords
filtration membrane
bath
electroplating bath
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05009127A
Other languages
German (de)
French (fr)
Other versions
EP1717353B1 (en
Inventor
Karlheinz Arzt
Jens-Eric Geissler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35530823&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1717353(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Priority to DE502005007138T priority Critical patent/DE502005007138D1/en
Priority to ES09152660.8T priority patent/ES2574158T3/en
Priority to AT05009127T priority patent/ATE429528T1/en
Priority to EP05009127A priority patent/EP1717353B1/en
Priority to ES05009127T priority patent/ES2324169T3/en
Priority to EP09152660.8A priority patent/EP2050841B1/en
Priority to KR1020077019889A priority patent/KR101301275B1/en
Priority to CNA2006800094924A priority patent/CN101146934A/en
Priority to CN201510173898.7A priority patent/CN104911676B/en
Priority to PCT/EP2006/003883 priority patent/WO2006114305A1/en
Priority to BRPI0610765A priority patent/BRPI0610765B1/en
Priority to CN201510173915.7A priority patent/CN104911651A/en
Priority to JP2008508150A priority patent/JP4955657B2/en
Priority to US11/912,591 priority patent/US8293092B2/en
Priority to CA2600273A priority patent/CA2600273C/en
Publication of EP1717353A1 publication Critical patent/EP1717353A1/en
Publication of EP1717353B1 publication Critical patent/EP1717353B1/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/06Filtering particles other than ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/22Regeneration of process solutions by ion-exchange

Definitions

  • the invention relates to an alkaline electroplating bath for applying zinc alloys to substrates, in which the anode space and the cathode space are separated from one another by a filtration membrane.
  • zinc alloys can be deposited on substrates in a consistently high quality.
  • the electroplating bath is operated with zinc alloy baths containing organic additives such as brighteners and wetting agents and complexing agents in addition to soluble zinc salts and optionally other metal salts selected from iron, nickel, cobalt and tin salts.
  • Bath dilution reduces the concentration of impurities in proportion to the degree of dilution.
  • a dilution is easy to carry out, but has the disadvantage that the amount of electrolyte removed from the bath has to be supplied to cost-intensive disposal.
  • a complete new approach of the bath can be considered in this context as a special case of Badver Mednung.
  • Activated carbon treatment by stirring 0.5-2 g / l of activated carbon into the bath followed by filtration reduces the concentration of impurities by adsorption on the coal. Disadvantage of this method is that it is laborious is and causes only a relatively small reduction.
  • Alkaline Zn baths contain a factor of 5 to 10 lower proportion of organic additives as acidic baths. Accordingly, contamination by decomposition products is generally less critical. In the case of alkaline alloy baths, however, the addition of significant amounts of organic complexing agents is required to complex the alloying additive (Fe, Co, Ni, Sn). These are oxidatively degraded at the anode and the accumulated decomposition products have a negative effect on the production process.
  • the EP 1 369 505 A2 discloses a method for purifying a zinc-nickel electrolyte in a galvanic process in which a portion of the process bath used in the process is evaporated until phase separation into a lower phase, at least one middle phase and an upper phase occurs, and the lower one and the upper phase are separated. This process requires several stages and is disadvantageous in terms of its energy requirements from a cost point of view.
  • the WO 00/06807 and WO 01/96631 describe electroplating baths for applying zinc-nickel coatings. To avoid the undesirable decomposition of additives at the anode, it is proposed to separate the anode from the alkaline electrolyte through an ion exchange membrane.
  • the baths known in the prior art have the disadvantage that in the anodic decomposition of the nitrogen-containing complexing agent cyanide is formed and accumulates in non-negligible concentration.
  • the invention has for its object to provide an alkaline electroplating bath, which does not have the aforementioned disadvantages.
  • the life of the bath is to be increased, the anodic decomposition of organic constituents of the bath to be minimized and, when it is used, a layer thickness of consistently high quality to be obtained on the coated substrate.
  • the invention relates to an alkaline electroplating bath for applying zinc alloys on substrates having a cathode and an anode, which has a filtration membrane which separates the anode space and the cathode space of the bath from each other.
  • filtration membranes are used.
  • the size of the pores of these filtration membranes is generally in a range from 0.0001 to 1.0 ⁇ m and from 0.001 to 1.0 ⁇ m, depending on the type of membrane (nano- or ultrafiltration membrane).
  • the pore size is in a range of 0.1 to 0.3 microns.
  • the filtration membrane contained in the alkaline electroplating bath according to the invention may consist of various organic or inorganic, alkali-resistant materials. These materials are, for example, ceramics, polytetrafluoroethylene (PTFE), polysulfones and polypropylene.
  • PTFE polytetrafluoroethylene
  • polysulfones polysulfones
  • polypropylene polypropylene
  • filtration membranes made of polypropylene.
  • the filtration membrane in the alkaline electroplating bath according to the invention is designed as a flat membrane.
  • the alkaline electroplating bath according to the invention can also be realized with other membrane forms, examples being hoses, capillaries and hollow fibers.
  • Such baths are for example in US 5,417,840 .
  • US 4,421,611 US 4,877,496 or US 6,652,728 described.
  • the alkaline electroplating bath according to the invention has the advantage that in it also baths for the deposition of zinc alloys can be used, which are suitable for use in the from WO 00/06807 and WO 01/96631 known alkaline zinc-nickel bath with an ion exchange membrane are not suitable.
  • sold by the applicant bath "Protedur Ni-75" to call which is characterized by a particularly high efficiency.
  • the previously used anodes can be used further. These are mostly nickel anodes.
  • the use of these anodes is less expensive than that from the WO 00/06807 known electroplating bath, in which special platinum-plated titanium anodes must be used in addition.
  • the anode space is preferably made smaller than the cathode space, since the essential processes take place there.
  • Both baths were operated with and without filtration membrane in 5-liter tanks.
  • the filtration membrane used was the Abwa-Tec polymer membrane P150F, which has a pore size of 0.12 ⁇ m.
  • the membrane was placed in the anode to cathode bath with the anolyte and catholyte being identical, ie, no special anolyte was added.
  • iron sheets (7 ⁇ 10 cm), which are usually used for Hull cell tests, were used as workpieces to be coated and coated at a current density of 2 A / dm 2 .
  • the baths were operated in serial connection. The movement of the iron sheets was mechanical, at a speed of 1.4 m / min.
  • Table 2 shows the Hull cell layer thickness in a new approach and old approach depending on the throughput with and without filtration membrane. The layer thickness measurements were made after adjustment of the baths.
  • the dots lie on the Hullzellenblechen 3 cm from the bottom and 2.5 cm from the left and right lateral edge. On the left side is the high current density (point A) and on the right the low current density (point B).
  • the average layer thickness is about 35% higher in a new batch in the high current density range and about 19% higher in the low current density range as if one had not used a filtration membrane. In the old batch, it is on average 17% and 12% higher than without filtration membrane.
  • a filtration membrane is produced after a throughput of> 1000 Ah / l introduced after a short time comparable to a new approach current efficiency.
  • Table 3 shows the average consumption (1 / 10,000 Ah) of the electrolyte in the bath for filtration membrane electroplating baths according to the invention and baths which do not have this membrane.
  • the organic consumption was reduced between 12 and 29% depending on the additive.
  • Complexing agent quadrol, polyethylenimine Brilliant addition: pyridine-N-propane-3-sulfonic acid
  • composition of the aforementioned baths were analyzed according to the tests described above. Of particular interest was their cyanide content. This was much lower when using the baths according to the invention with a filtration membrane as baths without membrane. As shown in Table 4 below, a bath without the membrane had a cyanide content of 680 mg / L (new batch) and 790 mg / L (bath of> 1000 Ah / L), respectively, while the corresponding membrane baths contained a cyanide Content of 96 mg / L or 190 mg / L.
  • the cyanide content of an old batch ie a bath with> 1000 Ah / l can be reduced when it is provided with a filtration membrane and operated.
  • the cyanide content was reduced from 670 mg / l to 190 mg / l.
  • the color of the baths was also evaluated. It was found that the color of a freshly prepared bath without membrane changed from initially violet-orange to brown within 15 Ah / l, whereby it remained purple or violet-orange over the entire time when using a filtration membrane. The old batch remained brown without using a membrane and the color changed to orange-brown after 15 Ah / l using a filtration membrane. Violet is also the color of freshly applied baths, which then turn to orange (after a few Ah / l) and at high throughput in brown.
  • the voltage between anode and cathode was measured. It was about 3 V and was only about 50-100 mV higher in both approaches using a filtration membrane. Is used instead of the filtration membrane an ion exchange membrane, as in the WO 00/06807 described is, the voltage is higher by at least 500 mV. This again shows the advantage of using a filtration membrane instead of an ion exchange membrane.
  • the use of filtration membranes over the use of ion exchange membranes offers many advantages.
  • the coating process carried out therewith is more cost-effective, since no platinized anodes have to be used, catholyte and anolyte can have the same composition, and thus no circulation for the anolyte is required.

Abstract

The alkaline electroplating bath has an anode and a cathode. The anode region and cathode region are separated by a filtration membrane. An independent claim is also included for use of filtration membrane.

Description

Die Erfindung betrifft ein alkalisches Galvanikbad zum Aufbringen von Zinklegierungen auf Substraten, bei dem der Anodenraum und der Kathodenraum voneinander durch eine Filtrationsmembran getrennt sind. Mit dem erfindungsgemäßen alkalischen Galvanikbad können Zinklegierungen in gleichbleibend hoher Qualität auf Substraten abgeschieden werden. Das Galvanikbad wird mit Zinklegierungsbädern betrieben, die organische Zusätze wie Glanzmittel und Netzmittel sowie Komplexbildner neben löslichen Zinksalzen und gegebenenfalls weiteren Metallsalzen, ausgewählt aus Eisen-, Nickel-, Kobalt- und Zinnsalzen, enthalten.The invention relates to an alkaline electroplating bath for applying zinc alloys to substrates, in which the anode space and the cathode space are separated from one another by a filtration membrane. With the alkaline electroplating bath according to the invention, zinc alloys can be deposited on substrates in a consistently high quality. The electroplating bath is operated with zinc alloy baths containing organic additives such as brighteners and wetting agents and complexing agents in addition to soluble zinc salts and optionally other metal salts selected from iron, nickel, cobalt and tin salts.

Um die Abscheidung funktionaler Schichten aus Zinkbädern zu ermöglichen, werden dem Bad organische Glanzbildner und Netzmittel zugesetzt. Des Weiteren enthält das Bad Komplexbilder, um die Abscheidung weiterer Metalle der Zinklegierung zu ermöglichen. Der Komplexbildner dient dazu das Potenzial zu regulieren und die Metalle in Lösung zu halten, so dass die gewünschte Legierungszusammensetzung erreicht wird. Die Verwendung der vorgenannten organischen Bestandteile führt jedoch bei Betrieb der Bäder zu Problemen, wie sie beispielsweise in der WO 00/06807 beschrieben werden. Dort wird insbesondere als nachteilig empfunden, dass diese Bäder nach einigen Stunden Betrieb eine Farbänderung von ursprünglich blau-violett nach braun zeigen. Die braune Farbe rührt von Zersetzungsprodukten her, deren Menge im Laufe des Betriebs des Bades zunimmt. Nach mehreren Wochen bzw. Monaten verstärkt sich diese Färbung. Dies bewirkt erhebliche Störungen der Beschichtung der Werkstücke, wie beispielsweise ungleichmäßige Schichtdicken oder Bläschenbildung. Eine kontinuierliche Reinigung des Bades ist somit unumgänglich. Diese ist aber zeit- und kostenaufwendig (vgl. Seite 2, Zeilen 3 bis 10 der WO 00/06807 ).In order to allow the deposition of functional layers of zinc baths, organic brighteners and wetting agents are added to the bath. Furthermore, the bath contains complexing to allow the deposition of other metals of the zinc alloy. The complexing agent serves to regulate the potential and keep the metals in solution so that the desired alloy composition is achieved. However, the use of the aforementioned organic components leads to operation of the baths to problems, as for example in the WO 00/06807 to be discribed. There is felt in particular as a disadvantage that these baths after a few hours of operation a color change of originally blue-violet after brown show. The brown color comes from decomposition products, the amount of which increases in the course of the operation of the bath. After several weeks or months, this staining intensifies. This causes considerable disruption of the coating of the workpieces, such as uneven layer thicknesses or blistering. A continuous cleaning of the bath is therefore essential. However, this is time consuming and costly (see page 2, lines 3 to 10 of WO 00/06807 ).

Mit der Phasentrennung und mit steigendem Gehalt organischer Verunreinigungen treten zunehmende dekorative Probleme bei der Beschichtung auf und führen zu verminderter Produktivität. Zur Verminderung der dekorativen Probleme werden in der Regel erhöhte Dosierungen der organischen Badzusätze vorgenommen, wodurch der Gehalt an Abbauprodukten weiter ansteigt.With phase separation and increasing content of organic contaminants, increasing decorative problems of coating occur and result in decreased productivity. To reduce the decorative problems usually increased dosages of organic bath additives are made, whereby the content of degradation products continues to increase.

Als Abhilfemaßnahmen sind mehrere Methoden bekannt, die nachstehend beschrieben sind:Remedies are several methods that are described below:

Eine Badverdünnung vermindert die Konzentration der Verunreinigungen proportional dem Verdünnungsgrad. Eine Verdünnung ist einfach durchführbar, hat jedoch den Nachteil, dass die dem Bad entnommene Elektrolytmenge der kostenintensiven Entsorgung zugeführt werden muss. Ein kompletter Neuansatz des Bades kann in diesem Zusammenhang als Spezialfall der Badverdünnung betrachtet werden.Bath dilution reduces the concentration of impurities in proportion to the degree of dilution. A dilution is easy to carry out, but has the disadvantage that the amount of electrolyte removed from the bath has to be supplied to cost-intensive disposal. A complete new approach of the bath can be considered in this context as a special case of Badverdünnung.

Eine Aktivkohlebehandlung durch Einrühren von 0,5-2 g/l Aktivkohle ins Bad und anschließende Filtration vermindert die Konzentration an Verunreinigungen durch Adsorption an der Kohle. Nachteil dieser Methode ist, dass sie arbeitsaufwendig ist und nur eine relativ geringe Absenkung bewirkt.Activated carbon treatment by stirring 0.5-2 g / l of activated carbon into the bath followed by filtration reduces the concentration of impurities by adsorption on the coal. Disadvantage of this method is that it is laborious is and causes only a relatively small reduction.

Alkalische Zn-Bäder enthalten einen um den Faktor 5 bis 10 geringeren Anteil organischer Zusätze als saure Bäder. Entsprechend ist die Verunreinigung durch Abbauprodukte in der Regel weniger kritisch. Im Falle alkalischer Legierungsbäder ist allerdings zur Komplexierung des Legierungszusatzes (Fe, Co, Ni, Sn) die Zugabe erheblicher Mengen organischer Komplexbildner erforderlich. Diese werden an der Anode oxidativ abgebaut und die akkumulierten Zersetzungsprodukte wirken sich negativ auf den Produktionsprozess aus.Alkaline Zn baths contain a factor of 5 to 10 lower proportion of organic additives as acidic baths. Accordingly, contamination by decomposition products is generally less critical. In the case of alkaline alloy baths, however, the addition of significant amounts of organic complexing agents is required to complex the alloying additive (Fe, Co, Ni, Sn). These are oxidatively degraded at the anode and the accumulated decomposition products have a negative effect on the production process.

Die EP 1 369 505 A2 offenbart ein Verfahren zum Reinigen eines Zink/Nickel-Elektrolyten in einem galvanischen Prozess, bei dem ein Teil des in dem Prozess verwendeten Prozessbades eingedampft wird, bis eine Phasentrennung in eine untere Phase, mindestens eine mittlere Phase und eine obere Phase erfolgt, und die untere und die obere Phase abgetrennt werden. Dieses Verfahren erfordert mehrere Stufen und ist aufgrund seines Energiebedarfs unter Kostengesichtspunkten nachteilig.The EP 1 369 505 A2 discloses a method for purifying a zinc-nickel electrolyte in a galvanic process in which a portion of the process bath used in the process is evaporated until phase separation into a lower phase, at least one middle phase and an upper phase occurs, and the lower one and the upper phase are separated. This process requires several stages and is disadvantageous in terms of its energy requirements from a cost point of view.

Die WO 00/06807 und WO 01/96631 beschreiben Galvanikbäder zum Aufbringen von Zink-Nickel-Überzügen. Um die unerwünschte Zersetzung von Zusätzen an der Anode zu vermeiden, wird vorgeschlagen, die Anode von dem alkalischen Elektrolyten durch eine Ionenaustauschermembran zu trennen.The WO 00/06807 and WO 01/96631 describe electroplating baths for applying zinc-nickel coatings. To avoid the undesirable decomposition of additives at the anode, it is proposed to separate the anode from the alkaline electrolyte through an ion exchange membrane.

Die Erfindungen haben jedoch den Nachteil, dass der Einsatz solcher Membranen kostenintensiv und wartungsanfällig ist.However, the inventions have the disadvantage that the use of such membranes is cost-intensive and maintenance-prone.

Weiterhin müssen die aus der WO 00/06807 sowie WO 01/96631 bekannten Galvanikbäder mit Anolyten und Katholyten betrieben werden, die stofflich verschieden sind. So wird in der WO 00/06807 als Anolyt Schwefelsäurelösung verwendet, in WO 01/96631 eine basische Lösung, bevorzugt Natriumhydroxid, sodass ein gesonderter Anolytkreislauf erforderlich ist.Furthermore, from the WO 00/06807 such as WO 01/96631 operated electroplating baths with anolyte and catholyte operated which are materially different. So will in the WO 00/06807 used as the anolyte sulfuric acid solution, in WO 01/96631 a basic solution, preferably sodium hydroxide, so that a separate anolyte circuit is required.

Des Weiteren weisen die im Stand der Technik bekannten Bäder den Nachteil auf, dass bei der anodischen Zersetzung der stickstoffhaltigen Komplexbildner Cyanid entsteht und sich in nicht vernachlässigbarer Konzentration anreichert.Furthermore, the baths known in the prior art have the disadvantage that in the anodic decomposition of the nitrogen-containing complexing agent cyanide is formed and accumulates in non-negligible concentration.

Der Erfindung liegt die Aufgabe zugrunde ein alkalisches Galvanikbad bereitzustellen, das die vorgenannten Nachteile nicht aufweist. Insbesondere soll die Lebensdauer des Bades erhöht, die anodische Zersetzung organischer Bestandteile des Bades minimiert und bei seiner Verwendung eine Schichtdicke von gleichbleibend hoher Qualität auf dem beschichteten Substrat erhalten werden.The invention has for its object to provide an alkaline electroplating bath, which does not have the aforementioned disadvantages. In particular, the life of the bath is to be increased, the anodic decomposition of organic constituents of the bath to be minimized and, when it is used, a layer thickness of consistently high quality to be obtained on the coated substrate.

Gegenstand der Erfindung ist ein alkalisches Galvanikbad zum Aufbringen von Zinklegierungen auf Substraten mit einer Kathode und einer Anode, das eine Filtrationsmembran aufweist, die den Anodenraum und den Kathodenraum des Bads voneinander trennt.The invention relates to an alkaline electroplating bath for applying zinc alloys on substrates having a cathode and an anode, which has a filtration membrane which separates the anode space and the cathode space of the bath from each other.

Bei dem erfindungsgemäßen Bad werden an sich bekannte Filtrationsmembranen eingesetzt. Die Größe der Poren dieser Filtrationsmembranen liegt im Allgemeinen in Abhängigkeit von der Art der Membran (Nano- bzw. Ultrafiltrationsmembran) in einem Bereich von 0,0001 bis 1,0 µm bzw. 0,001 bis 1,0 µm. Vorzugsweise werden bei dem alkalischen Galvanikbad Filtrationsmembranen mit einer Porengröße im Bereich von 0,05 bis 0,5 µm eingesetzt. Besonders bevorzugt liegt die Porengröße in einem Bereich von 0,1 bis 0,3 µm.In the bath according to the invention known filtration membranes are used. The size of the pores of these filtration membranes is generally in a range from 0.0001 to 1.0 μm and from 0.001 to 1.0 μm, depending on the type of membrane (nano- or ultrafiltration membrane). Preferably, in the alkaline electroplating bath, filtration membranes having a pore size in the range of 0.05 to 0.5 microns used. Particularly preferably, the pore size is in a range of 0.1 to 0.3 microns.

Die in dem erfindungsgemäßen alkalischen Galvanikbad enthaltenen Filtrationsmembran kann aus verschiedenen organischen oder anorganischen, alkalibeständigen Materialien bestehen. Diese Materialien sind beispielsweise Keramik, Polytetrafluorethylen (PTFE), Polysulfone und Polypropylen.The filtration membrane contained in the alkaline electroplating bath according to the invention may consist of various organic or inorganic, alkali-resistant materials. These materials are, for example, ceramics, polytetrafluoroethylene (PTFE), polysulfones and polypropylene.

Besonders bevorzugt ist die Verwendung von Filtrationsmembranen aus Polypropylen.Particularly preferred is the use of filtration membranes made of polypropylene.

Im Allgemeinen ist die Filtrationsmembran in dem erfindungsgemäßen alkalischen Galvanikbad als Flachmembran ausgestaltet. Das erfindungsgemäße alkalische Galvanikbad kann jedoch auch mit anderen Membranformen realisiert werden, wobei beispielsweise Schläuche, Kapillaren und Hohlfasern zu nennen sind.In general, the filtration membrane in the alkaline electroplating bath according to the invention is designed as a flat membrane. However, the alkaline electroplating bath according to the invention can also be realized with other membrane forms, examples being hoses, capillaries and hollow fibers.

In dem erfindungsgemäßen alkalischen Galvanikbad können übliche Zinklegierungsbäder eingesetzt werden. Diese sind in der Regel wie folgt zusammengesetzt:

  • 80-250 g/l NaOH bzw. KOH
  • 5-20 g/l Zink in Form des löslichen Zinksalzes
  • 0,02-10 g/l des Legierungsmetalls Ni, Fe, Co, Sn in Form der löslichen Metallsalze
  • 2-200 g/l Komplexbildner ausgewählt aus Polyalkenylaminen, Alkanolaminen, Polyhydroxycarboxylaten
  • 0,1-5 g/l aromatischer bzw. heteroaromatischer Glanzbildner
In the alkaline electroplating bath according to the invention, customary zinc alloy baths can be used. These are usually composed as follows:
  • 80-250 g / l NaOH or KOH
  • 5-20 g / l zinc in the form of the soluble zinc salt
  • 0.02-10 g / l of the alloying metal Ni, Fe, Co, Sn in the form of the soluble metal salts
  • 2-200 g / l complexing agent selected from polyalkenylamines, alkanolamines, polyhydroxycarboxylates
  • 0.1-5 g / l aromatic or heteroaromatic brightener

Solche Bäder sind beispielsweise in US 5,417,840 , US 4,421,611 , US 4,877,496 oder US 6,652,728 beschrieben.Such baths are for example in US 5,417,840 . US 4,421,611 . US 4,877,496 or US 6,652,728 described.

Das erfindungsgemäße alkalische Galvanikbad weist den Vorteil auf, dass in ihm auch Bäder zur Abscheidung von Zinklegierungen verwendet werden können, die zur Verwendung in dem aus der WO 00/06807 und WO 01/96631 bekannten alkalischen Zink-Nickelbad mit einer Ionenaustauschermembran nicht geeignet sind. In diesem Zusammenhang ist beispielsweise das von der Anmelderin vertriebene Bad "Protedur Ni-75" zu nennen, das sich durch einen besonders hohen Wirkungsgrad auszeichnet.The alkaline electroplating bath according to the invention has the advantage that in it also baths for the deposition of zinc alloys can be used, which are suitable for use in the from WO 00/06807 and WO 01/96631 known alkaline zinc-nickel bath with an ion exchange membrane are not suitable. In this context, for example, sold by the applicant bath "Protedur Ni-75" to call, which is characterized by a particularly high efficiency.

Mit einer üblicherweise verwendeten Ionenaustauschermembran und einem Anolyten aus 100g/l Schwefelsäurelösung ließen sich aus einem Neuansatz des Bads Protedur Ni-75 keine funktionellen Schichten abscheiden. Ein bereits 50 Ah/l betriebener Ansatz ließ sich nach weiteren 10 Ah/l nicht mehr betreiben. Der Prozess benötigt offensichtlich eine gewisse Menge anodisch produzierter Abbauprodukte, die durch den Einsatz von Ionentauschermembranen verhindert werden.With a commonly used ion exchange membrane and an anolyte of 100 g / l sulfuric acid solution could be deposited from a fresh approach of the bath Protedur Ni-75 no functional layers. An already 50 Ah / l powered approach could no longer operate after another 10 Ah / l. The process obviously requires a certain amount of anodically produced degradation products, which are prevented by the use of ion exchange membranes.

Bei Versuchen mit Filtrationsmembran wurde festgestellt, dass ab einer Porengröße von 0,2 µm auch bei diesem Badtypen noch genügend Abbauprodukte gebildet werden, um einen problemlosen Betrieb zu ermöglichen. Dabei war der Wirkungsgrad noch höher als ohne Filtrationsmembran und der Verbrauch der organischen Zusätze deutlich geringer. Vergleiche hierzu Tabelle 1. Tabelle 1: Protedur Ni-75 ohne Filtrationsmembran mit Filtrationsmembran Wirkungsgrad: 64% 73% Verbrauch Ergänzungslösung 4,5 l/10.000 Ah 2,8 l/10.000 Ah Verbrauch Glanzzusatz 3,0 l/10.000 Ah 1,7 l/10.000 Ah Verbrauch Tiefenstreuer 1,1 l/10.000 Ah 0,8 l/10.000 Ah In experiments with filtration membrane was found that from a pore size of 0.2 microns even with this type of bath enough decomposition products are formed to allow trouble-free operation. The efficiency was even higher than without filtration membrane and the consumption of organic additives significantly lower. Compare Table 1. <b><u> Table 1: </ u></b> Protedur Ni-75 without filtration membrane with filtration membrane efficiency: 64% 73% Consumption supplementary solution 4.5 l / 10,000 Ah 2.8 l / 10,000 Ah Consumption Brilliant addition 3.0 l / 10,000 Ah 1.7 l / 10,000 Ah Consumption depth shaker 1.1 l / 10,000 Ah 0.8 l / 10,000 Ah

In dem erfindungsgemäßen alkalischen Galvanikbad können die bisher eingesetzten Anoden weiter verwendet werden. Dies sind zumeist Nickelanoden. Der Einsatz dieser Anoden ist kostengünstiger gegenüber dem aus der WO 00/06807 bekannten Galvanikbad, bei dem zusätzlich spezielle platinierte Titananoden verwendet werden müssen.In the alkaline electroplating bath according to the invention, the previously used anodes can be used further. These are mostly nickel anodes. The use of these anodes is less expensive than that from the WO 00/06807 known electroplating bath, in which special platinum-plated titanium anodes must be used in addition.

Die Erfindung wird durch die als Anlage beigefügten Figuren näher erläutert:

  • Figur 1 zeigt schematisch das erfindungsgemäße Galvanikbad. Hierin bedeutet (1) das Bad, (2) die Anoden und (3) die Kathode bzw. das zu beschichtende Werkstück. Weiter dargestellt sind der die Anode umgebende Anolyt (4) und der die Kathode umgebende Katholyt (5). Anolyt und Katholyt sind durch eine Filtrationsmembran (6) voneinander getrennt. Die Filtrationsmembran ermöglicht den Betrieb des Bades, begrenzt aber gleichzeitig die Zersetzung der in dem Katholyten befindlichen organischen Bestandteile, insbesondere des Komplexbildners, durch Wanderung an die Anode bzw. in den Anodenraum. Die Komplexbildner können nur vermindert an der Anode reagieren, d.h. sie werden begrenzt zu Carbonaten, Oxalaten, Nitrilen bzw. Cyaniden umgesetzt. Daher beobachtet man bei Betrieb des erfindungsgemäßen Galvanikbads auch keine Phasentrennung. Eine kontinuierliche Reinigung des Bades ist mithin nicht erforderlich.
The invention is explained in more detail by the figures attached as an annex:
  • FIG. 1 shows schematically the electroplating bath according to the invention. Here, (1) means the bath, (2) the anodes, and (3) the cathode or the workpiece to be coated. Also shown are the anolyte (4) surrounding the anode and the catholyte (5) surrounding the cathode. Anolyte and catholyte are separated by a filtration membrane (6). The filtration membrane allows the operation of the bath, but at the same time limits the decomposition of the organic constituents present in the catholyte, in particular of the complexing agent, by migration to the anode or into the anode space. The complexing agents can react only reduced at the anode, ie they are limited to carbonates, oxalates, nitriles or cyanides implemented. Therefore observed when operating the electroplating bath according to the invention also no phase separation. A continuous cleaning of the bath is therefore not required.

Bei dem erfindungsgemäßen Bad ist der Anodenraum vorzugsweise kleiner ausgestaltet als der Kathodenraum, da dort die wesentlichen Prozesse ablaufen.In the case of the bath according to the invention, the anode space is preferably made smaller than the cathode space, since the essential processes take place there.

Die Erfindung wird durch die nachfolgenden Ausführungsbeispiele näher erläutert.The invention will be explained in more detail by the following embodiments.

BeispieleExamples

Zunächst wurde ein Bad der zur Abscheidung von Zink-Nickel-Legierungen, mit untenstehender Zusammensetzung mit einem Durchsatz von 5 Ah/l betrieben, sodass sich der zunächst höhere Verbrauch nach Beginn des Betriebs des Bades stabilisierte. Hierdurch werden unerwünschte Abscheidungsprozesse vermieden. Dieses Bad wird im Folgenden als "Neuansatz" bezeichnet.Initially, a bath of zinc-nickel alloy composition having the composition below was operated at a rate of 5 Ah / l, so that the initially higher consumption stabilized after the start of the operation of the bath. As a result, unwanted deposition processes are avoided. This bath is hereafter referred to as a "new approach".

Es besteht aus folgenden Komponenten:

  • Zink 10,4 g/l (als lösliches ZnO)
  • Nickel 1,2 g/l (als Nickelsulfat)
  • NaOH 120 g/l
  • Quadrol 35 g/l
  • Pyridinium-N-propan-3-sulfonsäure 1,25 g/l
  • Polyethylenimin 5 g/l
It consists of the following components:
  • Zinc 10.4 g / l (as soluble ZnO)
  • Nickel 1.2 g / l (as nickel sulphate)
  • NaOH 120 g / l
  • Quadrol 35 g / l
  • Pyridinium N-propane-3-sulfonic acid 1.25 g / l
  • Polyethyleneimine 5 g / l

Des Weiteren wurde ein Bad des gleichen Typs verwendet, das bereits länger betrieben worden war, d.h. einen Durchsatz von > 1000 Ah/l aufwies. Dieses Bad wird im Folgenden als "Altansatz" bezeichnet.Furthermore, a bath of the same type was used, which had been operated for a long time, ie a throughput of> 1000 Ah / l. This bath is hereafter referred to as "old approach".

Beide Bäder wurden jeweils mit und ohne Filtrationsmembran in 5-1-Tanks betrieben Als Filtrationsmembran wurde die von Abwa-Tec erhältlich Polymer-Membran P150F, die eine Porengröße von 0.12 µm aufweist, verwendet. Die Membran wurde in das Bad zwischen Anode und Kathode eingebracht, wobei Anolyt und Katholyt stofflich identisch waren, d.h. es wurde kein spezieller Anolyt zugegeben. Anschließend wurden Eisenbleche (7 x 10 cm), die üblicherweise für Hullzellen-Tests verwendet werden, als zu beschichtende Werkstücke eingesetzt und bei einer Stromdichte von 2 A/dm2 beschichtet. Die Bäder wurden in Seriellschaltung betrieben. Die Bewegung der Eisenbleche erfolgte mechanisch, mit einer Geschwindigkeit von 1,4 m/min.Both baths were operated with and without filtration membrane in 5-liter tanks. The filtration membrane used was the Abwa-Tec polymer membrane P150F, which has a pore size of 0.12 μm. The membrane was placed in the anode to cathode bath with the anolyte and catholyte being identical, ie, no special anolyte was added. Subsequently, iron sheets (7 × 10 cm), which are usually used for Hull cell tests, were used as workpieces to be coated and coated at a current density of 2 A / dm 2 . The baths were operated in serial connection. The movement of the iron sheets was mechanical, at a speed of 1.4 m / min.

Anschließend wurden die Bäder analysiert und regelmäßig ergänzt. Die Nachdosierung der Bäder erfolgte gemäß den Ergebnissen von Hullzellen-Tests jeweils nach ca. 5 Ah/l. Eine bei Produktionsbädern übliche Verschleppung von 12 1 Bad/10.000 Ah wurde ebenfalls berücksichtigt und die Badbestandteile entsprechend ergänzt.Subsequently, the baths were analyzed and supplemented regularly. The replenishment of the baths was carried out according to the results of Hull cell tests after about 5 Ah / l. A carry-over of 12 1 bath / 10,000 Ah, which was common in production baths, was also taken into account and the bath components were supplemented accordingly.

Die Tabelle 2 zeigt die Hullzellen-Schichtdicke bei einem Neuansatz und Altansatz in Abhängigkeit des Durchsatzes mit und ohne Filtrationsmembran. Die Schichtdickenmessungen erfolgten nach Einstellung der Bäder.Table 2 shows the Hull cell layer thickness in a new approach and old approach depending on the throughput with and without filtration membrane. The layer thickness measurements were made after adjustment of the baths.

Es wurde sowohl an Punkten hoher als auch niedriger Stromdichte gemessen. Die Punkte liegen auf den Hullzellenblechen 3 cm vom unteren Rand und 2,5 cm vom linken bzw. rechten seitlichen Rand. Hierbei ist links die hohe Stromdichte (Punkt A) und rechts die niedrige Stromdichte (Punkt B). Tabelle 2: Hullzellen: Neuansatz ohne Filtrationsmembran Neuansatz mit Filtrationsmembran Altansatz ohne Filtrationsmembran Altansatz mit Filtrationsmembran 1Ax10min Punkt A Punkt B Punkt A Punkt B Punkt A Punkt B Punkt A Punkt B 0-Probe 3,00 1,00 3,00 1,00 2,00 0,80 2,00 0,80 5 Ah/l 2,65 1,10 3,20 1,25 2,10 0,95 2,20 0,95 10 Ah/l 2,55 1,05 3,25 1,20 2,30 0,90 2,40 0,95 15 Ah/l 2,50 1,00 3,20 1,15 2,40 0,90 2,60 0,95 20 Ah/l 2,60 0,95 3,30 1,20 2,30 0,85 2,60 0,95 25 Ah/l 2,65 0,90 3,45 1,10 2,25 0,80 2,55 0,90 30 Ah/l 2,55 1,00 3,40 1,20 2,25 0,85 2,65 0,95 35 Ah/l 2,50 1,05 3,35 1,20 2,30 0,90 2,75 1,00 40 Ah/l 2,30 0,95 3,50 1,15 2,20 0,85 2,85 1,05 45 Ah/l 2,20 0,90 3,65 1,10 2,00 0,80 2,95 1,00 Durchschnitt: 2,50 0,99 3,37 1,17 2,23 0,87 2,62 0,97 Zunahme 35% 19% 17% 12% It was measured at both high and low current density points. The dots lie on the Hullzellenblechen 3 cm from the bottom and 2.5 cm from the left and right lateral edge. On the left side is the high current density (point A) and on the right the low current density (point B). <b><u> Table 2: </ u></b> Hull cell: New batch without filtration membrane New batch with filtration membrane Old batch without filtration membrane Old batch with filtration membrane 1Ax10min point a Point B point a Point B point a Point B point a Point B 0-sample 3.00 1.00 3.00 1.00 2.00 0.80 2.00 0.80 5 Ah / l 2.65 1.10 3.20 1.25 2.10 0.95 2.20 0.95 10 Ah / l 2.55 1.05 3.25 1.20 2.30 0.90 2.40 0.95 15 Ah / l 2.50 1.00 3.20 1.15 2.40 0.90 2.60 0.95 20 Ah / l 2.60 0.95 3.30 1.20 2.30 0.85 2.60 0.95 25 Ah / l 2.65 0.90 3.45 1.10 2.25 0.80 2.55 0.90 30 Ah / l 2.55 1.00 3.40 1.20 2.25 0.85 2.65 0.95 35 Ah / l 2.50 1.05 3.35 1.20 2.30 0.90 2.75 1.00 40 Ah / l 2.30 0.95 3.50 1.15 2.20 0.85 2.85 1.05 45 Ah / l 2.20 0.90 3.65 1.10 2.00 0.80 2.95 1.00 Average: 2.50 0.99 3.37 1.17 2.23 0.87 2.62 0.97 increase 35% 19% 17% 12%

Überraschenderweise wurde gefunden, dass die Schichtdicke beim Neuansatz ohne Filtrationsmembran abnimmt, während sie beim Altansatz mit Filtrationsmembran stetig zunimmt.Surprisingly, it was found that the layer thickness decreases in the new batch without filtration membrane, while it steadily increases in the old batch with filtration membrane.

So liegt bei Verwendung einer Filtrationsmembran die durchschnittliche Schichtdicke bei einem Neuansatz im hohen Stromdichtebereich um ca. 35% und im niedrigen Stromdichtebereich um ca. 19% höher als hätte man keine Filtrationsmembran verwendet. Beim Altansatz liegt sie um durchschnittlich 17% bzw. 12% höher als ohne Filtrationsmembran.Thus, when using a filtration membrane, the average layer thickness is about 35% higher in a new batch in the high current density range and about 19% higher in the low current density range as if one had not used a filtration membrane. In the old batch, it is on average 17% and 12% higher than without filtration membrane.

Erstaunlicherweise stellt sich bei einem Altansatz, in den nach einem Durchsatz von > 1000 Ah/l eine Filtrationsmembran eingebracht wurde nach kurzer Zeit eine mit einem Neuansatz vergleichbare Stromausbeute ein.Surprisingly, in the case of an old batch, a filtration membrane is produced after a throughput of> 1000 Ah / l introduced after a short time comparable to a new approach current efficiency.

Die Tabelle 3 zeigt den Durchschnittsverbrauch (1/10.000 Ah) des in dem Bad befindlichen Elektrolyten für erfindungsgemäße Galvanikbäder mit Filtrationsmembran und solche Bäder, die diese Membran nicht aufweisen. Durch den Einsatz der Filtrationsmembrane wurde der Organikverbrauch je nach Zusatz zwischen 12 und 29% verringert. Tabelle 3: Reflectalloy ZNA: Komplexbildner Glanzzusatz Ohne Filtrationsmembran 4,1 2,8 Mit Filtrationsmembran 3,6 2,0 Differenz: -12% -29% Komplexbildner: Quadrol, Polyethylenimin
Glanzzusatz: Pyridin-N-propan-3-sulfonsäure
Table 3 shows the average consumption (1 / 10,000 Ah) of the electrolyte in the bath for filtration membrane electroplating baths according to the invention and baths which do not have this membrane. By using the filtration membrane, the organic consumption was reduced between 12 and 29% depending on the additive. <b><u> Table 3: </ u></b> Reflectalloy ZNA: complexing brightener Without filtration membrane 4.1 2.8 With filtration membrane 3.6 2.0 Difference: -12% -29% Complexing agent: quadrol, polyethylenimine
Brilliant addition: pyridine-N-propane-3-sulfonic acid

Die Zusammensetzung der vorgenannten Bäder wurden nach den oben beschriebenen Tests analysiert. Von besonderem Interesse war dabei ihr Cyanid-Gehalt. Dieser war bei Verwendung der erfindungsgemäßen Bäder mit einer Filtrationsmembran viel geringer als bei Bädern ohne Membran. Ausweislich der nachstehenden Tabelle 4 wies ein Bad ohne die Membran einen Cyanid-Gehalt von 680 mg/l (Neuansatz) bzw. 790 mg/l (Bad mit > 1000 Ah/l), während die entsprechenden, mit einer Membran versehenen Bäder einen Cyanid-Gehalt von 96 mg/l bzw. 190 mg/l aufwiesen.The composition of the aforementioned baths were analyzed according to the tests described above. Of particular interest was their cyanide content. This was much lower when using the baths according to the invention with a filtration membrane as baths without membrane. As shown in Table 4 below, a bath without the membrane had a cyanide content of 680 mg / L (new batch) and 790 mg / L (bath of> 1000 Ah / L), respectively, while the corresponding membrane baths contained a cyanide Content of 96 mg / L or 190 mg / L.

Überraschenderweise wurde gefunden, dass der Cyanid-Gehalt eines Altansatzes, d.h. eines Bades mit > 1000 Ah/l verringert werden kann, wenn dieses mit einer Filtrationsmembran versehen und betrieben wird. Bei einem solchen Bad wurde beispielsweise der Cyanid-Gehalt von 670 mg/l auf 190 mg/l verringert. Tabelle 4: Cyanid Gesamt: Startwert nach 50Ah/l mit Filtrationsmembran nach 50Ah/l ohne Filtrationsmembran Neuansatz (nach 5 Ah/l) 33 mg/l 96 mg/l 680 mg/l Altansatz (> 10.000 Ah/l) 670 mg/l 190 mg/l 790 mg/l Surprisingly, it was found that the cyanide content of an old batch, ie a bath with> 1000 Ah / l can be reduced when it is provided with a filtration membrane and operated. In such a bath, for example, the cyanide content was reduced from 670 mg / l to 190 mg / l. <b><u> Table 4: </ u></b> Total cyanide: start value after 50 Ah / l with filtration membrane after 50 Ah / l without filtration membrane New approach (after 5 Ah / l) 33 mg / l 96 mg / l 680 mg / l Old approach (> 10,000 Ah / l) 670 mg / l 190 mg / l 790 mg / l

Bei der Durchführung der vorbeschriebenen Tests wurde auch die Farbe der Bäder beurteilt. Dabei wurde festgestellt, dass sich die Farbe eines frisch angesetzten Bades ohne Membran von anfangs violett-orange in braun innerhalb von 15 Ah/l änderte, wobei sie bei Verwendung einer Filtrationsmembran über die gesamte Zeit hin violett bzw. violett-orange blieb. Der Altansatz blieb ohne Verwendung einer Membran braun und die Farbe schlug nach orange-braun nach 15 Ah/l bei Verwendung einer Filtrationsmembran um. Violett ist auch die Farbe frisch angesetzter Bäder, die dann nach orange (nach einigen Ah/l) und bei hohem Durchsatz in braun umschlägt.In carrying out the above tests, the color of the baths was also evaluated. It was found that the color of a freshly prepared bath without membrane changed from initially violet-orange to brown within 15 Ah / l, whereby it remained purple or violet-orange over the entire time when using a filtration membrane. The old batch remained brown without using a membrane and the color changed to orange-brown after 15 Ah / l using a filtration membrane. Violet is also the color of freshly applied baths, which then turn to orange (after a few Ah / l) and at high throughput in brown.

Schließlich wurde die Spannung zwischen Anode und Kathode gemessen. Sie betrug etwa 3 V und lag bei beiden Ansätzen nur etwa 50-100 mV höher bei Verwendung einer Filtrationsmembran. Verwendet man anstelle der Filtrationsmembran eine Ionenaustauschermembran, wie sie in der WO 00/06807 beschrieben ist, so liegt die Spannung um mindestens 500 mV höher. Dies zeigt wiederum den Vorteil der Verwendung einer Filtrationsmembran anstelle einer Ionenaustauschermembran.Finally, the voltage between anode and cathode was measured. It was about 3 V and was only about 50-100 mV higher in both approaches using a filtration membrane. Is used instead of the filtration membrane an ion exchange membrane, as in the WO 00/06807 described is, the voltage is higher by at least 500 mV. This again shows the advantage of using a filtration membrane instead of an ion exchange membrane.

Zusammenfassend lässt sich feststellen, dass die Verwendung von Filtrationsmembranen gegenüber der Verwendung von Ionenaustauschermembranen zahlreiche Vorteile bietet. So ist das damit durchgeführte Beschichtungsverfahren kostengünstiger, da keine platinierten Anoden verwendet werden müssen, Katholyt und Anolyt die gleiche Zusammensetzung aufweisen können und somit auch kein Kreislauf für den Anolyten erforderlich ist.In summary, the use of filtration membranes over the use of ion exchange membranes offers many advantages. Thus, the coating process carried out therewith is more cost-effective, since no platinized anodes have to be used, catholyte and anolyte can have the same composition, and thus no circulation for the anolyte is required.

Im Vergleich zu dem Betrieb eines Galvanikbads ohne Membran ist die Stromausbeute höher und der Verbrauch geringer. Schließlich können Zersetzungsprodukte und insbesondere Cyanide verringert bzw. deren Konzentration herabgesetzt und die Qualität der aus dem Bad abgeschiedenen Schichten verbessert werden.Compared to the operation of a plating bath without a membrane, the current efficiency is higher and the consumption is lower. Finally, decomposition products and in particular cyanides can be reduced or their concentration lowered and the quality of the layers deposited from the bath can be improved.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

(1)(1)
Alkalisches GalvanikbadAlkaline electroplating bath
(2)(2)
Anodeanode
(3)(3)
Kathodecathode
(4)(4)
Anolytanolyte
(5)(5)
Katholytcatholyte
(6)(6)
Filtrationsmembranfiltration membrane

Claims (11)

Alkalisches Galvanikbad zum Aufbringen von Zinklegierungen auf Substraten mit einer Anode und einer Kathode, dadurch gekennzeichnet, dass der Anodenraum und der Kathodenraum voneinander durch eine Filtrationsmembran getrennt sind.Alkaline electroplating bath for applying zinc alloys on substrates having an anode and a cathode, characterized in that the anode space and the cathode space are separated from each other by a filtration membrane. Alkalisches Galvanikbad nach Anspruch 1, dadurch gekennzeichnet, dass die Größe der Poren der Filtrationsmembran im Bereich von 0,0001 bis 1,0 µm liegt.Alkaline electroplating bath according to claim 1, characterized in that the size of the pores of the filtration membrane in the range of 0.0001 to 1.0 microns. Alkalisches Galvanikbad nach Anspruch 2, dadurch gekennzeichnet, dass die Größe der Poren der Filtrationsmembran bevorzugt im Bereich von 0,1 bis 0,3 µm liegt.Alkaline electroplating bath according to claim 2, characterized in that the size of the pores of the filtration membrane is preferably in the range of 0.1 to 0.3 microns. Alkalisches Galvanikbad nach Anspruch 1, dadurch gekennzeichnet, dass die Filtrationsmembran aus einem Material ausgewählt aus Keramik, PTFE, Polysulfonen oder Polypropylen besteht.Alkaline electroplating bath according to claim 1, characterized in that the filtration membrane consists of a material selected from ceramic, PTFE, polysulfones or polypropylene. Alkalisches Galvanikbad nach Anspruch 1, dadurch gekennzeichnet, dass die Filtrationsmembran als Flachmembran ausgestaltet ist.Alkaline electroplating bath according to claim 1, characterized in that the filtration membrane is designed as a flat membrane. Alkalisches Galvanikbad nach Anspruch 1, dadurch gekennzeichnet, dass der im Anodenraum befindliche Anolyt die gleiche Zusammensetzung wie der im Kathodenraum befindliche Katholyt aufweist.Alkaline electroplating bath according to claim 1, characterized in that the anolyte located in the anode compartment has the same composition as the catholyte located in the cathode compartment. Verwendung einer Filtrationsmembran zur Trennung eines alkalischen Galvanikbads mit einer Anode und einer Kathode in einem Anoden- und Kathodenraum zur Erhöhung der Lebensdauer des Bads, zur Vermeidung der anodischen Zersetzung organischer Bestandteile des Bads und zum Erhalt von Schichten mit gleichbleibend hoher Qualität.Use of a filtration membrane for separating an alkaline electroplating bath with an anode and a cathode in an anode and cathode space to increase the life of the bath, to avoid the anodic decomposition of organic components of the bath and to obtain layers of consistently high quality. Verfahren zum Aufbringen von Zinklegierungen auf Substraten, dadurch gekennzeichnet , dass man das Substrat als Kathode in ein alkalisches Galvanikbad nach den Ansprüchen 1 bis 7 einbringt und das Substrat galvanisch mit der Zinklegierung beschichtet.Method of applying zinc alloys to substrates, characterized in that the substrate is introduced as a cathode into an alkaline electroplating bath according to claims 1 to 7 and the substrate is galvanically coated with the zinc alloy. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man als Elektrolyt eine Lösung verwendet, die folgende Komponenten umfasst: • 80-250 g/l NaOH bzw. KOH • 5-20 g/l Zink in Form des löslichen Zinksalzes • 0,02-10 g/l des Legierungsmetalls Ni, Fe, Co, Sn in Form der löslichen Metallsalze • 2-200 g/l Komplexbildner ausgewählt aus Polyalkenylaminen, Alkanolaminen, Polyhydroxycarboxylaten • 0,1-5 g/l aromatischer bzw. heteroaromatischer Glanzbildner A method according to claim 8, characterized in that the electrolyte used is a solution comprising the following components: • 80-250 g / l NaOH or KOH • 5-20 g / l zinc in the form of the soluble zinc salt 0.02-10 g / l of the alloying metal Ni, Fe, Co, Sn in the form of the soluble metal salts • 2-200 g / l complexing agent selected from polyalkenylamines, alkanolamines, polyhydroxycarboxylates • 0.1-5 g / l aromatic or heteroaromatic brightener Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man die Beschichtung bei einer Temperatur von 10 bis 60°C, bevorzugt 20° bis 30°C durchführt.A method according to claim 8, characterized in that one carries out the coating at a temperature of 10 to 60 ° C, preferably 20 ° to 30 ° C. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man das Bad bei einer Stromdichte von 0,25 bis 10 A/dm2, bevorzugt 1 bis 3 A/dm2 betreibt.A method according to claim 8, characterized in that the bath at a current density of 0.25 to 10 A / dm 2 , preferably 1 to 3 A / dm 2 operates.
EP05009127A 2005-04-26 2005-04-26 Alkaline galvanizing bath comprising a filtration membrane Active EP1717353B1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
DE502005007138T DE502005007138D1 (en) 2005-04-26 2005-04-26 Alkaline electroplating bath with a filtration membrane
ES09152660.8T ES2574158T3 (en) 2005-04-26 2005-04-26 Galvanic alkaline bath with a filtration membrane
AT05009127T ATE429528T1 (en) 2005-04-26 2005-04-26 ALKALINE GALVANIC BATH WITH A FILTRATION MEMBRANE
EP05009127A EP1717353B1 (en) 2005-04-26 2005-04-26 Alkaline galvanizing bath comprising a filtration membrane
ES05009127T ES2324169T3 (en) 2005-04-26 2005-04-26 ALCALINE GALVANIC BATHROOM WITH A FILTRATION MEMBRANE.
EP09152660.8A EP2050841B1 (en) 2005-04-26 2005-04-26 Alkaline electroplating bath with a filtration membrane
CN201510173898.7A CN104911676B (en) 2005-04-26 2006-04-26 Alkaline electro plating bath with filtration membrane
US11/912,591 US8293092B2 (en) 2005-04-26 2006-04-26 Alkaline electroplating bath having a filtration membrane
KR1020077019889A KR101301275B1 (en) 2005-04-26 2006-04-26 Alkaline Electroplating Bath Having a Filtration Membrane
PCT/EP2006/003883 WO2006114305A1 (en) 2005-04-26 2006-04-26 Alkaline electroplating bath having a filtration membrane
BRPI0610765A BRPI0610765B1 (en) 2005-04-26 2006-04-26 electroplating alkaline bath having a filtration membrane
CN201510173915.7A CN104911651A (en) 2005-04-26 2006-04-26 Alkaline electroplating bath having a filtration membrane
JP2008508150A JP4955657B2 (en) 2005-04-26 2006-04-26 Alkaline electroplating bath with filtration membrane
CNA2006800094924A CN101146934A (en) 2005-04-26 2006-04-26 Alkaline galvanizing bath comprising a filtration membrane
CA2600273A CA2600273C (en) 2005-04-26 2006-04-26 Alkaline electroplating bath having a filtration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05009127A EP1717353B1 (en) 2005-04-26 2005-04-26 Alkaline galvanizing bath comprising a filtration membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09152660.8A Division EP2050841B1 (en) 2005-04-26 2005-04-26 Alkaline electroplating bath with a filtration membrane

Publications (2)

Publication Number Publication Date
EP1717353A1 true EP1717353A1 (en) 2006-11-02
EP1717353B1 EP1717353B1 (en) 2009-04-22

Family

ID=35530823

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05009127A Active EP1717353B1 (en) 2005-04-26 2005-04-26 Alkaline galvanizing bath comprising a filtration membrane
EP09152660.8A Revoked EP2050841B1 (en) 2005-04-26 2005-04-26 Alkaline electroplating bath with a filtration membrane

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09152660.8A Revoked EP2050841B1 (en) 2005-04-26 2005-04-26 Alkaline electroplating bath with a filtration membrane

Country Status (11)

Country Link
US (1) US8293092B2 (en)
EP (2) EP1717353B1 (en)
JP (1) JP4955657B2 (en)
KR (1) KR101301275B1 (en)
CN (3) CN101146934A (en)
AT (1) ATE429528T1 (en)
BR (1) BRPI0610765B1 (en)
CA (1) CA2600273C (en)
DE (1) DE502005007138D1 (en)
ES (2) ES2574158T3 (en)
WO (1) WO2006114305A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044266A2 (en) * 2007-10-05 2009-04-09 Create New Technology S.R.L. System and method of plating metal alloys by using galvanic technology
EP2184384A1 (en) 2008-11-11 2010-05-12 Enthone, Inc. Galvanic bath and method for deposition of zinc-containing layers
EP2384800A1 (en) 2010-05-07 2011-11-09 Dr.Ing. Max Schlötter GmbH & Co. KG Regeneration of alkaline zinc electrolytes by removing cyanidiones
EP3358045A1 (en) 2017-02-07 2018-08-08 Dr.Ing. Max Schlötter GmbH & Co. KG Method for the galvanic deposition of zinc and zinc alloy layers from an alkaline coating bath with reduced degradation of organic bath additives
EP3415665A1 (en) 2017-06-14 2018-12-19 Dr.Ing. Max Schlötter GmbH & Co. KG Method for the galvanic deposition of zinc-nickel alloy layers from an alkaline zinc-nickel alloy bath with reduced degradation of additives

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090107545A1 (en) * 2006-10-09 2009-04-30 Soltaix, Inc. Template for pyramidal three-dimensional thin-film solar cell manufacturing and methods of use
US8177944B2 (en) * 2007-12-04 2012-05-15 Ebara Corporation Plating apparatus and plating method
IT1405319B1 (en) * 2010-12-27 2014-01-03 Fontana R D S R L COATING PROCESS OF THREADED METAL PARTS
KR101420865B1 (en) * 2012-10-12 2014-07-18 주식회사 익스톨 Metal Plating Device
EP2784189A1 (en) 2013-03-28 2014-10-01 Coventya SAS Electroplating bath for zinc-iron alloys, method for depositing zinc-iron alloy on a device and such a device
US11649558B2 (en) 2015-03-13 2023-05-16 Okuno Chemical Industries Co., Ltd. Electrolytic stripping agent for jig
JP5830202B1 (en) 2015-07-22 2015-12-09 ディップソール株式会社 Zinc alloy plating method
MX368366B (en) * 2015-07-22 2019-09-30 Dipsol Chem Zinc alloy plating method.
EP3464684A4 (en) * 2016-05-24 2020-03-11 Coventya Inc. Ternary zinc-nickel-iron alloys and alkaline electrolytes for plating such alloys
WO2018018161A1 (en) * 2016-07-29 2018-02-01 Simon Fraser University Methods of electrochemical deposition
PL3461933T3 (en) * 2017-09-28 2020-03-31 Atotech Deutschland Gmbh Method for electrolytically depositing a zinc-nickel alloy layer on at least a substrate to be treated
US11165091B2 (en) 2018-01-23 2021-11-02 City University Of Hong Kong Battery system and a method of forming a battery
US20220119978A1 (en) * 2019-01-24 2022-04-21 Atotech Deutschland Gmbh Membrane anode system for electrolytic zinc-nickel alloy deposition
EP3715506A4 (en) 2019-02-15 2021-04-14 Dipsol Chemicals Co., Ltd. Zinc or zinc alloy electroplating method and system
RU2712582C1 (en) * 2019-07-16 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" Electrolyte for electrodeposition of zinc-iron coatings
EP4273303A1 (en) * 2022-05-05 2023-11-08 Atotech Deutschland GmbH & Co. KG Method for depositing a zinc-nickel alloy on a substrate, an aqueous zinc-nickel deposition bath, a brightening agent and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974049A (en) * 1973-08-03 1976-08-10 Parel. Societe Anonyme Electrochemical process
EP1365046A1 (en) * 2002-05-16 2003-11-26 UNIVERSITE PAUL SABATIER (TOULOUSE III) Etablissement public a caractère scientifique, culturel et professionnel Process for protecting a steel substrate or an alluminium alloy substrate against corrosion, permitting to provide it with good tribological properties, and resulting substrate
WO2005073438A1 (en) * 2003-12-31 2005-08-11 Coventya Sas Zinc or zinc alloy deposition installation

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB381931A (en) * 1931-07-11 1932-10-11 Mond Nickel Co Ltd Improvements relating to electro-plating and the electrodeposition of metals
US3945900A (en) 1972-05-02 1976-03-23 Dorr-Oliver Incorporated Electro ultrafiltration process and apparatus
US4250002A (en) * 1979-09-19 1981-02-10 Hooker Chemicals & Plastics Corp. Polymeric microporous separators for use in electrolytic processes and devices
US4421611A (en) 1982-09-30 1983-12-20 Mcgean-Rohco, Inc. Acetylenic compositions and nickel plating baths containing same
JPS6353285A (en) 1986-08-22 1988-03-07 Nippon Hyomen Kagaku Kk Zinc-nickel alloy plating solution
JPH01116094A (en) * 1987-10-28 1989-05-09 Eagle Ind Co Ltd Diaphragm plating method
JPH02141596A (en) * 1988-11-21 1990-05-30 Yuken Kogyo Kk Zincate-type zinc alloy plating bath
JPH0444375A (en) * 1990-06-12 1992-02-14 Zexel Corp Alignment device for laser oscillator
US5443727A (en) 1990-10-30 1995-08-22 Minnesota Mining And Manufacturing Company Articles having a polymeric shell and method for preparing same
US5082538A (en) 1991-01-09 1992-01-21 Eltech Systems Corporation Process for replenishing metals in aqueous electrolyte solutions
CN2175238Y (en) * 1993-09-29 1994-08-24 北京科技大学 Positive plate of electroplating bath made of zinc-nickel alloy
US5417840A (en) 1993-10-21 1995-05-23 Mcgean-Rohco, Inc. Alkaline zinc-nickel alloy plating baths
US5631102A (en) * 1996-02-12 1997-05-20 Wilson Greatbatch Ltd. Separator insert for electrochemical cells
JPH11200099A (en) 1998-01-08 1999-07-27 Toyo Kohan Co Ltd Plating method and plating apparatus using insoluble anode
DE19834353C2 (en) * 1998-07-30 2000-08-17 Hillebrand Walter Gmbh & Co Kg Alkaline zinc-nickel bath
DE19840019C1 (en) 1998-09-02 2000-03-16 Atotech Deutschland Gmbh Aqueous alkaline cyanide-free bath for the electrodeposition of zinc or zinc alloy coatings and method
JP2000087299A (en) * 1998-09-08 2000-03-28 Ebara Corp Substrate plating apparatus
US6383352B1 (en) 1998-11-13 2002-05-07 Mykrolis Corporation Spiral anode for metal plating baths
JP4060012B2 (en) * 1999-07-19 2008-03-12 日本エレクトロプレイテイング・エンジニヤース株式会社 Cup type plating equipment
DE60023190T3 (en) 2000-06-15 2016-03-10 Coventya, Inc. ZINC-NICKEL-electroplating
DE10225203A1 (en) 2002-06-06 2003-12-18 Goema Ag Method and device for returning rinsing water and cleaning a process bath
WO2004011698A1 (en) 2002-07-25 2004-02-05 Shinryo Electronics Co., Ltd. Tin-silver-copper plating solution, plating film containing the same, and method for forming the plating film
AU2003239929A1 (en) * 2003-06-03 2005-01-04 Coventya Sas Zinc and zinc-alloy electroplating
JP4120497B2 (en) * 2003-06-27 2008-07-16 Jfeスチール株式会社 Electro-galvanized steel sheet
US7442286B2 (en) * 2004-02-26 2008-10-28 Atotech Deutschland Gmbh Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974049A (en) * 1973-08-03 1976-08-10 Parel. Societe Anonyme Electrochemical process
EP1365046A1 (en) * 2002-05-16 2003-11-26 UNIVERSITE PAUL SABATIER (TOULOUSE III) Etablissement public a caractère scientifique, culturel et professionnel Process for protecting a steel substrate or an alluminium alloy substrate against corrosion, permitting to provide it with good tribological properties, and resulting substrate
WO2005073438A1 (en) * 2003-12-31 2005-08-11 Coventya Sas Zinc or zinc alloy deposition installation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044266A2 (en) * 2007-10-05 2009-04-09 Create New Technology S.R.L. System and method of plating metal alloys by using galvanic technology
WO2009044266A3 (en) * 2007-10-05 2010-01-21 Create New Technology S.R.L. System and method of plating metal alloys by using galvanic technology
US8668817B2 (en) 2007-10-05 2014-03-11 Creat New Technology S.R.L. System and method of plating metal alloys by using galvanic technology
EP2184384A1 (en) 2008-11-11 2010-05-12 Enthone, Inc. Galvanic bath and method for deposition of zinc-containing layers
EP2384800A1 (en) 2010-05-07 2011-11-09 Dr.Ing. Max Schlötter GmbH & Co. KG Regeneration of alkaline zinc electrolytes by removing cyanidiones
EP3358045A1 (en) 2017-02-07 2018-08-08 Dr.Ing. Max Schlötter GmbH & Co. KG Method for the galvanic deposition of zinc and zinc alloy layers from an alkaline coating bath with reduced degradation of organic bath additives
WO2018146041A1 (en) 2017-02-07 2018-08-16 Dr.-Ing. Max Schlötter Gmbh & Co. Kg Method for electrodepositing zinc and zinc alloy coatings from an alkaline coating bath with reduced depletion of organic bath additives
EP3415665A1 (en) 2017-06-14 2018-12-19 Dr.Ing. Max Schlötter GmbH & Co. KG Method for the galvanic deposition of zinc-nickel alloy layers from an alkaline zinc-nickel alloy bath with reduced degradation of additives

Also Published As

Publication number Publication date
CN104911676A (en) 2015-09-16
CA2600273C (en) 2014-08-12
EP2050841A1 (en) 2009-04-22
EP2050841B1 (en) 2016-05-11
ATE429528T1 (en) 2009-05-15
CN101146934A (en) 2008-03-19
BRPI0610765B1 (en) 2017-04-04
DE502005007138D1 (en) 2009-06-04
CN104911676B (en) 2017-11-17
US20090107845A1 (en) 2009-04-30
US8293092B2 (en) 2012-10-23
KR101301275B1 (en) 2013-08-29
ES2324169T3 (en) 2009-07-31
BRPI0610765A2 (en) 2010-07-20
KR20070122454A (en) 2007-12-31
JP4955657B2 (en) 2012-06-20
EP1717353B1 (en) 2009-04-22
JP2008539329A (en) 2008-11-13
CN104911651A (en) 2015-09-16
CA2600273A1 (en) 2006-11-02
WO2006114305A1 (en) 2006-11-02
ES2574158T3 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
EP1717353B1 (en) Alkaline galvanizing bath comprising a filtration membrane
EP2116634B1 (en) Modified copper-tin electrolyte and method of depositing bronze layers
EP1408141B1 (en) Process and electrolyte for the galvanic deposition of bronze
DE102015107748A1 (en) Electroplating cell and method of forming a metal coating
DE4023444A1 (en) Cyanide-free copper plating process - where a portion of the plating bath is electrolysed by an independently-controlled insol. anode to reduce bath impurities
EP3481976B1 (en) Method for the galvanic deposition of zinc and zinc alloy layers from an alkaline coating bath with reduced degradation of organic bath additives
EP2235236B1 (en) Galvanic bath, method for galvanic deposition, and use of a bipolar membrane for separating in a galvanic bath
DE102010044551A1 (en) Anode and their use in an alkaline electroplating bath
EP1213372B1 (en) Process and arrangement for the galvanic deposition of nickel, cobalt, nickel alloys or cobalt alloys with periodic current pulses and use of the process
EP0797693A1 (en) Laminated material for sliding components and method and means for its production
EP3250733B1 (en) Production of chromium layers on intaglio printing cylinders
WO2012059473A1 (en) Method for depositing hard chromium from cr(vi)-free electrolytes
DE3029364A1 (en) PROCESS FOR THE MANUFACTURE OF LOW HYDROGEN OVERVOLTAGE CATHODE AND THEIR USE
EP0801692A2 (en) Electroplating plant
EP3666928A1 (en) Process of fabricating a metal band having a chromium and chromium oxide coating using a trivalent chromium containing electrolyte
DE2527386A1 (en) CATHODE SURFACES WITH LOW HYDROGEN OVERVOLTAGE
DE102009023124A1 (en) Process for the galvanic copper coating and apparatus for carrying out such a process
EP1080252B1 (en) Method for electro copperplating substrates
EP2384800B1 (en) Regeneration of alkaline zinc nickel electrolytes by removing cyanide ions
DE102019202899B3 (en) Aqueous formulation for producing a layer of gold and silver
DE2929305C2 (en) Process and device for the continuous electrodeposition of manganese on steel
DE102012004348A1 (en) Additive for improving the layer thickness distribution in galvanic drum electrolytes
EP2878711A1 (en) Method for the galvanic deposition of nickel and corresponding electrolyte
WO2023041670A1 (en) Chromium-indium, chromium-bismuth and chromium-antimony coatings, method for the production and use thereof
AT222969B (en) Method and solution for the electrolytic deposition of an alloy on metal surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060926

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070803

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005007138

Country of ref document: DE

Date of ref document: 20090604

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2324169

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

BERE Be: lapsed

Owner name: ATOTECH DEUTSCHLAND G.M.B.H.

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090822

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090722

26N No opposition filed

Effective date: 20100125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090722

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230426

Year of fee payment: 19

Ref country code: FR

Payment date: 20230420

Year of fee payment: 19

Ref country code: ES

Payment date: 20230627

Year of fee payment: 19

Ref country code: DE

Payment date: 20230420

Year of fee payment: 19

Ref country code: CZ

Payment date: 20230419

Year of fee payment: 19