EP3250733B1 - Production of chromium layers on intaglio printing cylinders - Google Patents

Production of chromium layers on intaglio printing cylinders Download PDF

Info

Publication number
EP3250733B1
EP3250733B1 EP15794193.1A EP15794193A EP3250733B1 EP 3250733 B1 EP3250733 B1 EP 3250733B1 EP 15794193 A EP15794193 A EP 15794193A EP 3250733 B1 EP3250733 B1 EP 3250733B1
Authority
EP
European Patent Office
Prior art keywords
chromium
electrolyte
anode
iii
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15794193.1A
Other languages
German (de)
French (fr)
Other versions
EP3250733A1 (en
Inventor
Thilo VON VOPELIUS
Christoph Gschossmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vopelius Chemie AG
Maschinenfabrik Kaspar Walter GmbH and Co KG
Original Assignee
Vopelius Chemie AG
Maschinenfabrik Kaspar Walter GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vopelius Chemie AG, Maschinenfabrik Kaspar Walter GmbH and Co KG filed Critical Vopelius Chemie AG
Priority to PL15794193T priority Critical patent/PL3250733T3/en
Publication of EP3250733A1 publication Critical patent/EP3250733A1/en
Application granted granted Critical
Publication of EP3250733B1 publication Critical patent/EP3250733B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated

Definitions

  • the invention relates to the use of an electrolyte for the electrolytic deposition of chromium as metal on gravure cylinders, in particular as a hard chrome layer or wear protection layer, a method for the production of chrome layers, in particular hard chrome layers, on gravure cylinders, and an electrolysis cell which is designed for coating a gravure cylinder which contains the electrolyte.
  • the printing form for gravure printing is referred to as gravure cylinders.
  • the basic cylinder is generally a tubular steel core that is first coated with copper in an electrolytic bath and then with chrome after the image data have been applied. This process is carried out by electroplating the gravure cylinder with chrome.
  • Galvanic processes for surface coating on objects have been known for a long time. Such galvanic processes can give objects special functional and / or decorative surface properties, for example hardness, corrosion resistance, metallic appearance, gloss, etc.
  • this metal is deposited on the object connected as a cathode by means of direct current.
  • the object to be coated is usually a metallic material. If this object is not electrically conductive, the surface is metallized beforehand.
  • Electroplating baths that contain chromium are mostly used in technical applications to produce particularly hard, mechanically resistant layers.
  • chrome layer obtained being used either for decorative applications or as a hard layer on objects for technical applications.
  • a bright and highly reflective chrome layer is particularly desirable.
  • the chrome layers applied should be wear-resistant, abrasion-resistant, be heat resistant and corrosion resistant.
  • Such objects to be chrome-plated are, for example, pistons, cylinders, liners or axle bearings.
  • Electroplating is usually done in electroplating baths containing chromium (VI) salts and sulfuric acid, using insoluble lead / antimony or lead / tin anodes.
  • CrO 3 is used as the chromium (VI) salt.
  • This gas development for example, entrains a chromic acid mist, which is extremely harmful to health and requires intensive suction from the surface of the galvanic bath.
  • surface-active substances are used in chrome-plating baths, which reduce the surface tension and form a foam blanket. Such surface-active substances are also referred to as wetting agents.
  • the chromium (VI) electrolytes also have the disadvantage that highly toxic and carcinogenic CrO 3 is used.
  • an electrolyte for the galvanic deposition of chrome layers as hard chrome layers to protect against wear and corrosion and / or as decorative chrome layers which contains a catholyte containing at least one chromium (III) salt and at least one chromium (II) ion-stabilizing compound, and an anolyte comprising a Brönsted acid, wherein the catholyte and the anolyte are separated from one another by an anion-selective membrane.
  • the anolyte circuit is separated from the catholyte circuit by this membrane.
  • the WO 2009/115308 A1 describes a method and a device for processing gravure cylinders which have a metallic surface, cells engraved in the metallic surface, and burrs or ejections produced when the cells are engraved. To remove the burrs or ejections, the gravure cylinders with the engraved cells are immersed in an electrolyte bath in which the burrs or ejections are removed electrochemically.
  • the EP 1 798 313 A2 relates to a method for depositing a functional chromium layer from a chromium-containing electrolyte on a substrate and to an electrolyte composition.
  • the electrolyte composition includes sulfoacetic acid.
  • the method can be operated at current densities between approximately 20 to approximately 150 A / dm2 with a current yield greater than 30%, layers with a hardness greater than 800 HV 0.1 and a corrosion resistance greater than 200 hours being deposited.
  • the present invention is based on the object of making it possible to provide chromium layers which do not have the disadvantages known from the above prior art and which meet the requirements that have been placed specifically on chromium coatings on gravure cylinders.
  • the formic acid present in the electrolyte is used in particular to remove the oxygen formed from the chromium (III) salt by converting it to CO 2 and H 2 O.
  • the amount of formic acid in the electrolyte is advantageously 1.0 mol / l to 3.0 mol / l, based on the electrolyte. With this amount of formic acid in the electrolyte, a particularly favorable removal of oxygen takes place.
  • This quantity refers to the electrolyte before the chromium deposition. In the course of the chromium deposition it is possible that the pH value of the electrolyte changes. Further formic acid can also be added to adjust the pH. This added amount should not be taken into account for the amount of formic acid in the electrolyte, i.e. before the start of the deposition.
  • the compound of formula (I) is sulfoacetic acid. Furthermore, it is preferred that the amount of the compound of the formula (I) in the electrolyte is 0.5 mol / l to 1.5 mol / l, based on the electrolyte.
  • the compound of the formula (I) is used to adjust the pH of the electrolyte, it being possible to adjust the pH in a particularly favorable manner with the amounts indicated.
  • the chromium (III) salt comprises an inorganic and / or an organic chromium (III) salt.
  • chromium (III) salt as used in the present context is understood to mean any chromium (III) salt with which chromium can be deposited as a metal layer on objects.
  • the inorganic chromium (III) salt is preferably potassium chromium alum, ammonium chromium alum, chromium sulfate, chromium nitrate, chromium chloride and mixtures of two or more thereof.
  • At the organic chromium (III) salt can preferably be chromium citrate, chromium formate, chromium oxalate and mixtures of two or more thereof.
  • the amount of the chromium (III) salt is favorably 0.25 mol / l to 2.0 mol / l, based on the electrolyte. With these quantities, chromium layers can be produced in a particularly favorable manner on metallic objects by means of electrolytic deposition.
  • An additive is present as component (d) in the electrolyte. It preferably comprises a complexing agent and / or a wetting agent.
  • wetting agents typically used in the production of chromium layers by electrolytic deposition can be present in the electrolyte. These wetting agents reduce the surface tension so that it is possible for H2 bubbles to detach from the cathode. In this way, the formation of pores can be avoided in a simple and cost-effective manner and thus uniform chrome layers can be produced.
  • the compound N, N-dimethyldithiocarbamylpropylsulfonic acid sodium salt is particularly preferred as complexing agent.
  • DPS dimethyldithiocarbamylpropylsulfonic acid sodium salt
  • the amount of additive present in the electrolyte can be 0.01 g / l to 2.0 g / l, based on the electrolyte.
  • the amount of complexing agent can be 0.5 mol / l to 4.0 mol / l.
  • the amount of the wetting agent can be 0 mol / l to 0.5 mol / l.
  • the application also relates to a method for producing a chrome layer on a gravure cylinder.
  • the electrolyte can be used in the method according to the invention.
  • the chromium layer has proven to be particularly favorable for gravure cylinders, since it meets the high requirements for chromium layers on such gravure cylinders.
  • the electrolytic deposition of chromium layers can be carried out in an electrolytic cell which is filled with the electrolyte. This is the electrolyte described above.
  • the anode and cathode are immersed in the electrolyte.
  • the chromium is deposited on the gravure cylinder. This is connected as a cathode, ie the object to be coated is the cathode. If it is not metallically conductive, it can be made electrically conductive by a pretreatment.
  • this structure is varied in such a way that an electrolysis cell is provided in which the electrolyte is separated into a catholyte (electrolyte in the cathode compartment) and an anolyte (electrolyte in the anode compartment) by a semipermeable membrane.
  • the substrate ie the cathode as the object to be coated, is immersed in the catholyte, which contains the chromium ions to be deposited.
  • a voltage is applied, a current flows via the anolyte through the membrane into the catholyte.
  • the anode used in the electrolysis cell can be an insoluble anode, e.g. a mixed oxide anode.
  • the anode can have a pocket which is designed, for example, as an anode basket.
  • the pocket can be open at the top and is used to hold metallic chrome elements, such as chrome pellets.
  • the chromium layer can be produced at a pH of 2.0 to 4.5.
  • the pH can be adjusted using the above compound of the formula (I).
  • the chromium layer can be produced at a temperature of from 20.degree. C. to 60.degree. This can be achieved, for example, in that the temperature of the electrolyte is set to a value within this range by means of appropriate heating and cooling devices.
  • the chromium layer can be produced at a current density of 5 to 60 A / dm 2.
  • the electrolyte can be moved, for example in such a way that there is a circulation of five bath volumes, i.e. volume of the electrolyte, per hour. Since devices known per se for depositing chromium layers on objects can be used for the method according to the invention, the volumes of the electrolyte baths of these devices known per se serve as the basis for determining the bath volumes in the method according to the invention.
  • the gravure cylinder can be moved at a speed of 1 to 20 cm / s.
  • chromium coatings of very particularly excellent quality are obtained which, surprisingly, meet the requirements placed on gravure printing cylinders.
  • smooth, uniform surfaces are obtained which have essentially no pores, poxes or craters.
  • the layer thickness of the chromium layers obtained can be thicker than in the case of layers previously available. In particular, layer thicknesses of 100 ⁇ m and more can be obtained.
  • chrome layers of high hardness can be produced, in particular of over 900 HV.
  • the chromium layers obtainable using the electrolyte or using the method according to the invention are corrosion-resistant, wear-resistant, have favorable friction properties and are thermally and chemically resistant. Further the available chrome layers are bright and reflective, so that they are also suitable for decorative purposes.
  • the chrome coating can be applied in a simple, quick and inexpensive manner using the electrolyte according to the invention or with the method according to the invention.
  • a chromium layer which was produced using the electrolyte or using the method according to the invention has a greater thickness than previously available layers, a smooth, uniform surface that is in particular free of pores, smallpox and craters, and a very great hardship.
  • the chromium layers obtained with the electrolyte or the method according to the invention have a lattice constant of 2.92 Angstroms or more and can therefore be referred to as amorphous layers.
  • the chromium layers obtainable with the electrolyte or with the process according to the invention differs from chromium layers which can be produced with other electrolytes and / or other processes according to the prior art.
  • the Figure 1 shows the diffractogram of the chrome-plated brass sample.
  • the chrome layer thickness (18 ⁇ m) is so great that no more signals appear from the background (brass).
  • the lattice constant was calculated from the lattice plane spacing: 292.32 pm (JCPDF database: 288.39 pm). The lattice constant of 292.32 pm corresponds to 2..9232 ⁇ as stated above.
  • an electrolytic cell containing an anode, a cathode and an electrolyte, as described in detail above, is the subject of the invention, the electrolytic cell according to the invention being designed so that gravure cylinders can be coated with it, in particular gravure cylinders or gravure cylinders, such as they are used, for example, in printing processes.
  • Fig. 2 a bath device in a schematic representation during a cylinder change phase
  • Fig. 3 the bath device according to Fig. 2 during an electroplating phase.
  • the Figs. 2 and 3 show a bath device in different process states, namely on the one hand at the time of a cylinder change ( Fig. 2 ), when a gravure cylinder 21 has just been inserted into the bathing device by means of a crane (not shown) and is held by bearing bridges 22 belonging to a storage facility, and in a galvanizing phase ( Fig. 3 ), in which the outer surface of the gravure cylinder 21 is to be coated with chrome. Since the components in the Figs. 2 and 3 are essentially identical, they are identified by the same reference numerals.
  • the bath device has an upper tub 23 and a lower tub 24 arranged below it.
  • a liquid electrolyte 25 which is pumped from the lower tub 24 into the upper tub 23 by means of a pump 26 and flows back into the lower tub 24 via an overflow 27 that is vertically movable in at least two positions.
  • a vertically movable anode device is also arranged in the upper hull 23, which essentially consists of an anode rail 28 and an anode basket 29 which is electrically and mechanically coupled to the anode rail 28 and serves as a metal holding device.
  • the anode basket 29 can also consist of several assembled anode baskets or grids or be designed as an anode pocket.
  • the Anode basket 29 made of titanium and filled with chrome pellets as metal elements 29a.
  • the anode basket 29 can also be part of an insoluble anode.
  • the metallic chromium available at the anode is dissolved in the electrolyte 25 and thus enriches the electrolyte 25.
  • the two bearing brackets 22 can be moved on rails 30a, 30b in the axial direction of the gravure cylinder 21 by means of spindles or other suitable adjustment mechanisms, so that they clamp the gravure cylinder 21 between them and hold it rotatably.
  • Fig. 3 shows the bath device in the electroplating phase, in which the gravure cylinder 21 is almost completely immersed.
  • immersion depths of more than 65% can be achieved with large cylinders (circumference 1500 mm) and up to about 80% with smaller cylinders (circumference 800 mm).
  • the anode basket 29 is pulled up at the side so that it forms a basket surface that is approximately 50% larger than the known semi-submerged bath.
  • the anode bar 28 with the anode basket 29 is moved down into the upper tub 23, as in FIG Fig. 2 shown.
  • the overflow 27 is lowered so that the electrolyte 25 flows off into the lower pan 24 up to the level 31.
  • the upper trough 23 is tapered in the lower area.
  • the taper can be, for. B. with the help of additionally inserted metal sheets 33 or by appropriate adaptation of the walls of the upper tub. It is also possible to use blocks or boxes to displace volume. Limiting or reducing the volume of the upper tub 23 has the advantage that an excessive amount of electrolyte 25 does not have to be pumped upwards from the lower tub 24. Accordingly, there is no risk that the lower pan 24 will be completely emptied and the pump 26 will run dry.
  • the electrolysis cell has a catholyte and an anolyte, the electrolyte according to the invention being present in the catholyte.
  • the electrolytic cell in the context of the present invention is expressly understood as an electrolytic cell which contains the electrolyte as described in detail above.
  • a container that can be used as an electrolysis cell any vessel that is suitable for the person skilled in the art can be used, as is usually used in particular in electroplating technology.
  • the object to be coated on which the chromium layer is to be deposited, ie the gravure cylinder, usually serves as the cathode.
  • Anodes known per se to the person skilled in the art can be used as anode.
  • the anode can be a flat material, plate material, sintered material or expanded material.
  • the insoluble anodes used are, for example, those made of a material selected from the group consisting of platinum-coated titanium, graphite, stainless steel, titanium coated with iridium-transition metal mixed oxide, tantalum or niobium or special carbon material and combinations of these anodes. It is possible if a titanium, niobium or tantalum sheet coated with mixed metal oxides is used as the anode material. Furthermore, mixed metal oxide anodes, in particular made of iridium-ruthenium mixed oxide, iridium-ruthenium-titanium mixed oxide or iridium-tantalum mixed oxide, can be used. Furthermore, the Anode can be a mixed oxide anode in which titanium is coated with platinum, iridium or palladium oxide as the base material of the anode. A person skilled in the art can adapt the shape of the anode to the respective purpose.
  • the anode system can for example be one in which the anode is in direct contact with a membrane, ie the anode is coated with a membrane. It is a so-called direct contact membrane anode, as it is from the DE 10 2010 055 143 A1 is known.
  • polymers can be used favorably as the polymer membrane: polypyrene membranes, olefin polymer membranes, sulfonated polystyrene membranes, fluorinated / perfluorinated sulfonated polymer membranes (PFSA membranes), S-PEEK-S-PSU, PSU-CI, ICVT- Membranes, aryl polymer membranes, polyether ketone membranes, polybenzimidazole membranes, thermoplastic polymer membranes, perfluorosulfonic acid polymer membranes, perfluorocarboxylate ionomers, polyamides, polyamines, poly (vinyl alcohol) membranes, and perfluorophosphonate membranes.
  • Cation-permeable membranes can be used here. For further details on these membranes, please refer to DE 10 2010 055 143 A1 referenced, to which reference is made in its entirety.
  • the electrolyte can be used in a particularly favorable manner or the method according to the invention can be carried out in a particularly favorable manner, so that chromium layers with the above properties can be obtained in a particularly favorable manner on gravure cylinders.
  • additives indicated in the table were added to the electrolyte in the amounts indicated in the table.
  • the chrome plating system had a container in which the gravure cylinders to be coated could be hung vertically in such a way that they can be moved at different speeds.
  • Three anodes (direct contact anodes) were attached in a ring around the cylinder so that the distance between anode and cylinder could be varied.
  • Direct contact anodes are anodes in which an ion-permeable membrane is applied directly to the anode plate.
  • the following polymers can be used favorably as the polymer membrane: polypyrene membranes, olefin polymer membranes, sulfonated polystyrene membranes, fluorinated / perfluorinated sulfonated polymer membranes (PFSA membranes), S-PEEK-S-PSU, PSU-CI, ICVT- Membranes, aryl polymer membranes, polyether ketone membranes, polybenzimidazole membranes, thermoplastic polymer membranes, perfluorosulfonic acid polymer membranes, perfluorocarboxylate ionomers, polyamides, polyamines, poly (vinyl alcohol) membranes, and perfluorophosphonate membranes.
  • Cation-permeable membranes can be used here. For further details on these membranes, please refer to DE 10 2010 055 143 A1
  • a circulation pump for the electrolyte was installed in the system, the pumping capacity of which could also be varied.
  • a filter is built into the electrolyte circuit to keep the electrolyte clean.
  • a heating and cooling device is used to keep the temperature constant.
  • a pH sensor permanently measures the pH value, which is kept in the desired range by adding formic acid. The temperature and pH value set in the specific case are given in the table.
  • the above-mentioned base electrolyte was used for all experiments. A layer thickness of about 10 ⁇ m was always deposited.
  • the anodes used were coated with a special ion-selective membrane (Navion®). This prevented the oxidation of Cr (III) to Cr (VI), which brings the chromium deposition to a standstill.
  • Navion® ion-selective membrane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

Die Erfindung betrifft die Verwendung eines Elektrolyten zur elektrolytischen Abscheidung von Chrom als Metall auf Tiefdruckzylindern, insbesondere als Hartchromschicht bzw. Verschleißschutzschicht, ein Verfahren zur Herstellung von Chromschichten, insbesondere Hartchromschichten, auf Tiefdruckzylindern, sowie eine Elektrolysezelle, die zur Beschichtung eines Tiefdruckzylinders ausgebildet ist, die den Elektrolyt enthält.The invention relates to the use of an electrolyte for the electrolytic deposition of chromium as metal on gravure cylinders, in particular as a hard chrome layer or wear protection layer, a method for the production of chrome layers, in particular hard chrome layers, on gravure cylinders, and an electrolysis cell which is designed for coating a gravure cylinder which contains the electrolyte.

Mit Tiefdruckzylindern wird die Druckform für den Tiefdruck bezeichnet. Der Grundzylinder ist im Allgemeinen ein Stahlrohrkern, der in einem elektrolytischen Bad zuerst mit Kupfer und nach dem Aufbringen der Bilddaten mit Chrom beschichtet wird. Dieser Vorgang erfolgt durch eine galvanische Beschichtung des Tiefdruckzylinders mit Chrom.The printing form for gravure printing is referred to as gravure cylinders. The basic cylinder is generally a tubular steel core that is first coated with copper in an electrolytic bath and then with chrome after the image data have been applied. This process is carried out by electroplating the gravure cylinder with chrome.

Galvanische Prozesse zur Oberflächenbeschichtung auf Gegenstände sind seit langem bekannt. Durch solche galvanische Prozesse können Gegenständen spezielle funktionelle und/oder dekorative Oberflächeneigenschaften verliehen werden, beispielsweise Härte, Korrosionsbeständigkeit, metallisches Aussehen, Glanz usw.Galvanic processes for surface coating on objects have been known for a long time. Such galvanic processes can give objects special functional and / or decorative surface properties, for example hardness, corrosion resistance, metallic appearance, gloss, etc.

Dabei wird aus einem galvanischen Bad, welches das abzuscheidende Metall als Salz in Lösung enthält, dieses Metall mittels Gleichstrom auf dem als Kathode geschalteten Gegenstand abgeschieden. Der zu beschichtende Gegenstand ist meist ein metallisches Material. Sofern dieser Gegenstand nicht elektrisch leitend ist, wird vorher eine Metallisierung der Oberfläche durchgeführt.From an electroplating bath, which contains the metal to be deposited as a salt in solution, this metal is deposited on the object connected as a cathode by means of direct current. The object to be coated is usually a metallic material. If this object is not electrically conductive, the surface is metallized beforehand.

Galvanische Bäder, die Chrom enthalten, dienen bei technischen Anwendungen zumeist zur Erzeugung besonders harter mechanisch widerstandsfähiger Schichten.Electroplating baths that contain chromium are mostly used in technical applications to produce particularly hard, mechanically resistant layers.

Die Aufbringung von Chrom auf Gegenständen ist hierbei von besonderer technischer Relevanz, wobei die erhaltene Chromschicht entweder für dekorative Anwendungen oder als Hartschicht auf Gegenstände für technische Anwendungen dient. Bei dekorativen Anwendungen wird insbesondere eine helle und hoch reflektierende Chromschicht gewünscht. Für solche technische Anwendungen sollen die aufgebrachten Chromschichten verschleißarm, abrasionsstabil, hitzebeständig und korrosionsbeständig sein. Solche zu verchromende Gegenstände sind beispielsweise Kolben, Zylinder, Laufbuchsen oder Achslager.The application of chrome to objects is of particular technical relevance, the chrome layer obtained being used either for decorative applications or as a hard layer on objects for technical applications. For decorative applications, a bright and highly reflective chrome layer is particularly desirable. For such technical applications, the chrome layers applied should be wear-resistant, abrasion-resistant, be heat resistant and corrosion resistant. Such objects to be chrome-plated are, for example, pistons, cylinders, liners or axle bearings.

Die galvanische Verchromung erfolgt üblicherweise in galvanischen Bädern, welche Chrom(VI)-Salze und Schwefelsäure enthalten, unter Verwendung unlöslicher Blei/Antimon- oder Blei/Zinn-Anoden. Als Chrom(VI)-Salz wird dabei insbesondere CrO3 eingesetzt. Ein wesentliches Problem bei galvanischen Anwendungen, wie etwa der Verchromung mittels Chrom(VI)-Lösungen ist eine aufgrund des geringen Wirkungsgrades von 15 % bis 25 % auftretende Gasentwicklung, insbesondere von Wasserstoff, und in geringem Maß auch durch die anodische Sauerstoffentwicklung, die zur Bildung saurer, korrodierender und zum Teil auch toxischer Sprühnebel führt. Durch diese Gasentwicklung wird beispielsweise ein Chromsäurenebel mitgerissen, der stark gesundheitsschädigend ist und eine intensive Absaugung der Oberfläche des galvanischen Bades erforderlich macht. Um diesen auftretenden Chromsäurenebel einzuschränken, werden oberflächenaktive Substanzen in Verchromungsbäder eingesetzt, die die Oberflächenspannung unter Bildung einer Schaumdecke herabsetzen. Solche oberflächenaktiven Substanzen werden auch als Netzmittel bezeichnet.Electroplating is usually done in electroplating baths containing chromium (VI) salts and sulfuric acid, using insoluble lead / antimony or lead / tin anodes. In particular, CrO 3 is used as the chromium (VI) salt. A major problem in electroplating applications, such as chrome plating using chromium (VI) solutions, is the development of gas, especially hydrogen, and, to a lesser extent, the anodic oxygen development that leads to the formation, due to the low efficiency of 15% to 25% acidic, corrosive and sometimes toxic spray mist. This gas development, for example, entrains a chromic acid mist, which is extremely harmful to health and requires intensive suction from the surface of the galvanic bath. In order to limit this occurring chromic acid mist, surface-active substances are used in chrome-plating baths, which reduce the surface tension and form a foam blanket. Such surface-active substances are also referred to as wetting agents.

Die Chrom(VI)-Elektrolyte haben ferner den Nachteil, dass dabei hochgiftiges und karzinogenes CrO3 verwendet wird.The chromium (VI) electrolytes also have the disadvantage that highly toxic and carcinogenic CrO 3 is used.

Um diese Nachteile der Verchromung zu vermeiden, wurden in der Vergangenheit zahlreiche Anstrengungen unternommen.To avoid these disadvantages of chrome plating, numerous efforts have been made in the past.

So sind beispielsweise Verfahren zur Abscheidung von Chromschichten aus Bädern, die ungiftige Chrom(III)-Salze enthalten, bekannt.For example, processes for the deposition of chromium layers from baths which contain non-toxic chromium (III) salts are known.

Doch alle diese Verfahren haben erhebliche Nachteile. Entweder lassen sich nur Chromschichten in zu geringer Schichtstärke abscheiden, oder der Anlagenaufbau ist so kompliziert, dass eine industrielle Verwendung nicht möglich ist.However, all of these methods have significant disadvantages. Either only chromium layers that are too thin can be deposited, or the system structure is so complicated that industrial use is not possible.

Aus der WO 2008/014987 A2 ist ein Elektrolyt zur galvanischen Abscheidung von Chromschichten als Hartchromschichten zum Schutz gegen Verschleiß und Korrosion und/oder als dekorative Chromschichten bekannt, die einen Katholyt, der mindestens ein Chrom(III)-Salz und mindestens eine Chrom(II)-Ionen stabilisierende Verbindung enthält, und einen Anolyten, umfassend eine Brönstedsäure, aufweist, wobei der Katholyt und der Anolyt durch eine anionenselektive Membran voneinander getrennt sind. Hier werden also der Anolytkreislauf vom Katholytkreislauf durch diese Membran voneinander getrennt. Damit soll erreicht werden, dass die im Elektrolyten enthaltenen Chrom(III)-Salze nicht zu Chrom(VI) oxidiert werden. Der Nachteil an der technischen Lehre aus der WO 2008/014987 A2 ist, dass sich keine Chromschichten abscheiden lassen, die den industriell geforderten Ansprüchen genügen, da die Qualität der Chromschichten nicht ausreichend ist, d.h. sie weisen Poren, Pocken und Krater auf.From the WO 2008/014987 A2 an electrolyte for the galvanic deposition of chrome layers as hard chrome layers to protect against wear and corrosion and / or as decorative chrome layers is known, which contains a catholyte containing at least one chromium (III) salt and at least one chromium (II) ion-stabilizing compound, and an anolyte comprising a Brönsted acid, wherein the catholyte and the anolyte are separated from one another by an anion-selective membrane. Here the anolyte circuit is separated from the catholyte circuit by this membrane. This is to ensure that the chromium (III) salts contained in the electrolyte are not oxidized to chromium (VI). The disadvantage of the technical teaching from the WO 2008/014987 A2 is that no chromium layers can be deposited that meet the industrial requirements, since the quality of the chromium layers is not sufficient, ie they have pores, smallpox and craters.

Die WO 2009/115308 A1 beschreibt ein Verfahren und eine Vorrichtung zur Bearbeitung von Tiefdruckzylindern, die eine metallische Oberfläche, in die metallische Oberfläche eingravierte Näpfchen, sowie beim Eingravieren der Näpfchen entstandene Grate oder Auswerfungen aufweisen. Zum Entfernen der Grate oder Auswerfungen werden die Tiefdruckzylinder mit den eingravierten Näpfchen in ein Elektrolytbad eingetaucht, in dem die Grate oder Auswerfungen elektrochemisch abgetragen werden.The WO 2009/115308 A1 describes a method and a device for processing gravure cylinders which have a metallic surface, cells engraved in the metallic surface, and burrs or ejections produced when the cells are engraved. To remove the burrs or ejections, the gravure cylinders with the engraved cells are immersed in an electrolyte bath in which the burrs or ejections are removed electrochemically.

Die EP 1 798 313 A2 betrifft ein Verfahren zur Abscheidung einer funktionellen Chromschicht aus einem chromhaltigen Elektrolyten auf einem Substrat sowie eine Elektrolytzusammensetzung. Die Elektrolytzusammensetzung weist Sulfoessigsäure auf. Das Verfahren lässt sich bei Stromdichten zwischen ungefähr 20 bis ungefähr 150 A/dm2 mit eine Stromausbeute größer 30% betreiben, wobei Schichten mit einer Härte größer 800 HV 0,1 und einer Korrosionsbeständigkeit größer 200 Stunden abgeschieden werden.The EP 1 798 313 A2 relates to a method for depositing a functional chromium layer from a chromium-containing electrolyte on a substrate and to an electrolyte composition. The electrolyte composition includes sulfoacetic acid. The method can be operated at current densities between approximately 20 to approximately 150 A / dm2 with a current yield greater than 30%, layers with a hardness greater than 800 HV 0.1 and a corrosion resistance greater than 200 hours being deposited.

Demzufolge liegt der vorliegenden Erfindung die Aufgabe zugrunde, die Bereitstellung von Chromschichten zu ermöglichen, die nicht die aus vorstehendem Stand der Technik bekannten Nachteile aufweisen und den Anforderungen genügen, die speziell an Chrombeschichtungen auf Tiefdruckzylindern gestellt wurden.Accordingly, the present invention is based on the object of making it possible to provide chromium layers which do not have the disadvantages known from the above prior art and which meet the requirements that have been placed specifically on chromium coatings on gravure cylinders.

Erfindungsgemäß wird dies durch die Verwendung eines Elektrolyten zur elektrolytischen Abscheidung von Chrom als Metall auf einem Tiefdruckzylinder erreicht, wobei der Elektrolyt umfasst:

  1. (a) ein Chrom(III)-Salz,
  2. (b) eine Verbindung der Formel (I)
    Figure imgb0001
    wobei R für SO3H steht und n eine ganze Zahl von 1 bis 3 ist
  3. (c) Ameisensäure und
  4. (d) mindestens ein Additiv.
According to the invention, this is achieved through the use of an electrolyte for the electrolytic deposition of chromium as a metal on a gravure cylinder, the electrolyte comprising:
  1. (a) a chromium (III) salt,
  2. (b) a compound of the formula (I)
    Figure imgb0001
    where R is SO 3 H and n is an integer from 1 to 3
  3. (c) formic acid and
  4. (d) at least one additive.

Die im Elektrolyten vorhandene Ameisensäure dient insbesondere dazu, den aus dem Chrom(III)-Salz entstehenden Sauerstoff zu entfernen, indem die Umsetzung zu CO2 und H2O erfolgt.The formic acid present in the electrolyte is used in particular to remove the oxygen formed from the chromium (III) salt by converting it to CO 2 and H 2 O.

Die Menge der Ameisensäure im Elektrolyten beträgt günstigerweise 1,0 mol/l bis 3,0 mol/l, bezogen auf den Elektrolyt. Mit dieser Menge der Ameisensäure im Elektrolyten erfolgt eine besonders günstige Entfernung von Sauerstoff. Diese Mengenangabe bezieht sich auf den Elektrolyt vor der Chromabscheidung. Im Laufe der Chromabscheidung ist es möglich, dass sich der pH-Wert des Elektrolyten ändert. Zur Einstellung des pH-Wertes kann auch weitere Ameisensäure zugesetzt werden. Diese zugegebene Menge soll für die Menge der Ameisensäure im Elektrolyten, also vor Beginn der Abscheidung, nicht berücksichtigt werden.The amount of formic acid in the electrolyte is advantageously 1.0 mol / l to 3.0 mol / l, based on the electrolyte. With this amount of formic acid in the electrolyte, a particularly favorable removal of oxygen takes place. This quantity refers to the electrolyte before the chromium deposition. In the course of the chromium deposition it is possible that the pH value of the electrolyte changes. Further formic acid can also be added to adjust the pH. This added amount should not be taken into account for the amount of formic acid in the electrolyte, i.e. before the start of the deposition.

Vorzugsweise ist die Verbindung der Formel (I) Sulfoessigsäure. Ferner ist es bevorzugt, dass im Elektrolyten die Menge der Verbindung der Formel (I) 0,5 mol/l bis 1,5 mol/l, bezogen auf den Elektrolyt, beträgt.Preferably the compound of formula (I) is sulfoacetic acid. Furthermore, it is preferred that the amount of the compound of the formula (I) in the electrolyte is 0.5 mol / l to 1.5 mol / l, based on the electrolyte.

Die Verbindung der Formel (I) dient zur Einstellung des pH-Wertes des Elektrolyten, wobei mit den angegebenen Mengen der pH-Wert in besonders günstiger Weise eingestellt werden kann.The compound of the formula (I) is used to adjust the pH of the electrolyte, it being possible to adjust the pH in a particularly favorable manner with the amounts indicated.

In einer Ausführungsform des erfindungsgemäßen Elektrolyten umfasst das Chrom(III)-Salz ein anorganisches und/oder ein organisches Chrom(III)-Salz. Unter dem Begriff "Chrom(III)-Salz" wie er vorliegend verwendet wird, wird jedes Chrom(III)-Salz verstanden, mit dem Chrom als Metallschicht auf Gegenständen abgeschieden werden kann. Vorzugsweise handelt es sich bei dem anorganischen Chrom(III)-Salz um Kaliumchromalaun, Ammoniumchromalaun, Chromsulfat, Chromnitrat, Chromchlorid und Mischungen von zwei oder mehreren davon. Bei dem organischen Chrom(III)-Salz kann es sich um vorzugsweise Chromcitrat, Chromformiat, Chromoxalat und Mischungen von zwei oder mehreren davon handeln.In one embodiment of the electrolyte according to the invention, the chromium (III) salt comprises an inorganic and / or an organic chromium (III) salt. The term “chromium (III) salt” as used in the present context is understood to mean any chromium (III) salt with which chromium can be deposited as a metal layer on objects. The inorganic chromium (III) salt is preferably potassium chromium alum, ammonium chromium alum, chromium sulfate, chromium nitrate, chromium chloride and mixtures of two or more thereof. At the organic chromium (III) salt can preferably be chromium citrate, chromium formate, chromium oxalate and mixtures of two or more thereof.

Günstigerweise beträgt die Menge des Chrom(III)-Salzes 0,25 mol/l bis 2,0 mol/l, bezogen auf den Elektrolyt. Mit diesen Mengen können in besonders günstiger Weise Chromschichten auf metallischen Gegenständen durch elektrolytische Abscheidungen hergestellt werden.The amount of the chromium (III) salt is favorably 0.25 mol / l to 2.0 mol / l, based on the electrolyte. With these quantities, chromium layers can be produced in a particularly favorable manner on metallic objects by means of electrolytic deposition.

Im Elektrolyten liegt als Komponente (d) ein Additiv vor. Vorzugsweise umfasst es einen Komplexbildner und/oder ein Netzmittel.An additive is present as component (d) in the electrolyte. It preferably comprises a complexing agent and / or a wetting agent.

Als Netzmittel können üblicherweise bei der Herstellung von Chromschichten durch elektrolytische Abscheidung verwendete Netzmittel im Elektrolyten vorliegen. Diese Netzmittel bewirken die Herabsetzung der Oberflächenspannung, so dass es ermöglicht wird, dass sich H2-Bläschen von der Kathode ablösen. Dadurch kann in einfacher und günstiger Weise die Porenbildung vermieden und somit gleichmäßige Chromschichten hergestellt werden.As wetting agents, wetting agents typically used in the production of chromium layers by electrolytic deposition can be present in the electrolyte. These wetting agents reduce the surface tension so that it is possible for H2 bubbles to detach from the cathode. In this way, the formation of pores can be avoided in a simple and cost-effective manner and thus uniform chrome layers can be produced.

Bei den Komplexbildnern handelt es sich vorzugsweise um Verbindungen mit kurzkettigen Alkylketten (1 - 4 C-Atome) mit 1 oder 2 Carboxylgruppen oder deren Derivaten und mit 1 oder 2 Thio- und/oder Sulfon-Gruppen oder die folgende Verbindung

Figure imgb0002
wobei

  • n eine ganze Zahl von 1 bis 5, insbesondere 3,
  • R1 ein C1-C5-Alkylrest, insbesondere CH3CH2-, und
  • X ein Metallion zum Ausgleich der negativen Ladung, insbesondere Na+,K+,Ca2+, Mg2+ ist.
The complexing agents are preferably compounds with short-chain alkyl chains (1-4 carbon atoms) with 1 or 2 carboxyl groups or their derivatives and with 1 or 2 thio and / or sulfone groups or the following compound
Figure imgb0002
in which
  • n is an integer from 1 to 5, in particular 3,
  • R 1 is a C1-C5-alkyl radical, in particular CH 3 CH 2 -, and
  • X is a metal ion to balance the negative charge, in particular Na + , K + , Ca 2+ , Mg 2+ .

Besonders bevorzugt ist als Komplexbildner die Verbindung N, N-Dimethyldithiocarbamylpropylsulfonsäure-Natriumsalz (DPS). Bei Verwendung von DPS werden besonders gute Chromschichten erhalten.The compound N, N-dimethyldithiocarbamylpropylsulfonic acid sodium salt (DPS) is particularly preferred as complexing agent. When using DPS, particularly good chrome layers are obtained.

Die Menge des im Elektrolyten vorliegenden Additivs kann 0,01 g/l bis 2,0 g/l, bezogen auf den Elektrolyt, betragen. Dabei kann die Menge des Komplexbildners 0,5 mol/l bis 4,0 mol/l betragen. Die Menge des Netzmittels kann 0 mol/l bis 0,5 mol/l betragen.The amount of additive present in the electrolyte can be 0.01 g / l to 2.0 g / l, based on the electrolyte. The amount of complexing agent can be 0.5 mol / l to 4.0 mol / l. The amount of the wetting agent can be 0 mol / l to 0.5 mol / l.

Gegenstand der Anmeldung ist ferner ein Verfahren zur Herstellung einer Chromschicht auf einem Tiefdruckzylinder. Dabei kann der Elektrolyt in dem erfindungsgemäßen Verfahren verwendet werden.The application also relates to a method for producing a chrome layer on a gravure cylinder. The electrolyte can be used in the method according to the invention.

Dabei hat sich die Chromschicht als besonders günstig für Tiefdruckzylinder erwiesen, da sie die hohen Anforderungen an Chromschichten auf solchen Tiefdruckzylindern erfüllt.The chromium layer has proven to be particularly favorable for gravure cylinders, since it meets the high requirements for chromium layers on such gravure cylinders.

Die elektrolytische Abscheidung von Chromschichten kann in einer Elektrolysezelle durchgeführt werden, die mit dem Elektrolyten gefüllt ist. Dabei handelt es sich um den vorstehend beschriebenen Elektrolyt. In dem Elektrolyten sind Anode und Kathode eingetaucht. Bei Anlegen einer Gleichspannung an diese beiden Elektroden, d.h. Anode und Kathode, wird das Chrom auf den Tiefdruckzylinder abgeschieden. Dabei ist dieser als Kathode geschaltet, d.h. bei dem zu beschichtenden Gegenstand handelt es sich um die Kathode. Ist er nicht metallisch leitend, kann er durch eine Vorbehandlung elektrisch leitend gemacht werden. In manchen Fällen wird dieser Aufbau dahingehend variiert, dass eine Elektrolysezelle bereitgestellt wird, in der der Elektrolyt durch eine semipermeable Membran in einen Katholyt (Elektrolyt im Kathodenraum) und einen Anolyt (Elektrolyt im Anodenraum) getrennt ist. Das Substrat, d.h. die Kathode als zu beschichtender Gegenstand, taucht in den Katholyt ein, der die abzuscheidenden Chrom-Ionen enthält. Bei Anlegen einer Spannung fließt ein Strom über den Anolyt durch die Membran in den Katholyten. Ein solches System aus Katholyt und Anolyt ist beispielsweise in der WO 2008/014987 A2 beschrieben, wobei hinsichtlich der weiteren Details dieser Art von Elektrolysezelle in vollem Umfang auf die WO 2008/014987 A2 ausdrücklich Bezug genommen wird.The electrolytic deposition of chromium layers can be carried out in an electrolytic cell which is filled with the electrolyte. This is the electrolyte described above. The anode and cathode are immersed in the electrolyte. When a direct voltage is applied to these two electrodes, ie anode and cathode, the chromium is deposited on the gravure cylinder. This is connected as a cathode, ie the object to be coated is the cathode. If it is not metallically conductive, it can be made electrically conductive by a pretreatment. In some cases, this structure is varied in such a way that an electrolysis cell is provided in which the electrolyte is separated into a catholyte (electrolyte in the cathode compartment) and an anolyte (electrolyte in the anode compartment) by a semipermeable membrane. The substrate, ie the cathode as the object to be coated, is immersed in the catholyte, which contains the chromium ions to be deposited. When a voltage is applied, a current flows via the anolyte through the membrane into the catholyte. Such a system of catholyte and anolyte is for example in the WO 2008/014987 A2 described, with regard to the further details of this type of electrolytic cell in full on the WO 2008/014987 A2 is expressly referred to.

Die in der Elektrolysezelle zum Einsatz kommende Anode kann eine unlösliche Anode, z.b. eine Mischoxidanode sein. Die Anode kann eine Tasche aufweisen, die z.B. als Anodenkorb ausgebildet ist. Die Tasche kann nach oben offen sein und dient zur Aufnahme von metallischen Chromelementen, z.B. Chrompellets.The anode used in the electrolysis cell can be an insoluble anode, e.g. a mixed oxide anode. The anode can have a pocket which is designed, for example, as an anode basket. The pocket can be open at the top and is used to hold metallic chrome elements, such as chrome pellets.

In einer Ausführungsform des erfindungsgemäßen Verfahrens kann die Herstellung der Chromschicht bei einem pH-Wert von 2,0 bis 4,5 erfolgen. Wie bereits vorstehend in Zusammenhang mit der Zusammensetzung des Elektrolyten beschrieben wurde, kann die Einstellung des pH-Werts durch die vorstehende Verbindung der Formel (I) erfolgen.In one embodiment of the method according to the invention, the chromium layer can be produced at a pH of 2.0 to 4.5. As has already been described above in connection with the composition of the electrolyte, the pH can be adjusted using the above compound of the formula (I).

In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens kann die Herstellung der Chromschicht bei einer Temperatur von 20°C bis 60°C erfolgen. Dies kann beispielsweise dadurch erreicht werden, dass die Temperatur des Elektrolyten mittels entsprechenden Heiz- und Kühlvorrichtungen auf einen Wert innerhalb dieses Bereichs eingestellt wird.In another embodiment of the method according to the invention, the chromium layer can be produced at a temperature of from 20.degree. C. to 60.degree. This can be achieved, for example, in that the temperature of the electrolyte is set to a value within this range by means of appropriate heating and cooling devices.

In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens kann die Chromschicht bei einer Stromdichte von 5 bis 60 A/dm2 hergestellt werden.In another embodiment of the method according to the invention, the chromium layer can be produced at a current density of 5 to 60 A / dm 2.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens kann der Elektrolyt bewegt werden, und zwar beispielsweise so, dass eine Umwälzung von fünf Badvolumen, d.h. Volumen des Elektrolyten, pro Stunde erfolgt. Da für das erfindungsgemäße Verfahren an sich bekannte Vorrichtungen zur Abscheidung von Chromschichten auf Gegenstände eingesetzt werden können, dienen die Volumina der Elektrolytbäder dieser an sich bekannten Vorrichtungen als Grundlage für die Ermittlung der Badvolumen im erfindungsgemäßen Verfahren.In a further embodiment of the method according to the invention, the electrolyte can be moved, for example in such a way that there is a circulation of five bath volumes, i.e. volume of the electrolyte, per hour. Since devices known per se for depositing chromium layers on objects can be used for the method according to the invention, the volumes of the electrolyte baths of these devices known per se serve as the basis for determining the bath volumes in the method according to the invention.

In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens kann der Tiefdruckzylinder mit einer Geschwindigkeit von 1 bis 20 cm/s bewegt werden.In another embodiment of the method according to the invention, the gravure cylinder can be moved at a speed of 1 to 20 cm / s.

Mit der erfindungsgemäßen Verwendung sowie dem erfindungsgemäßen Verfahren werden Chrombeschichtungen von ganz besonders hervorragender Qualität erhalten, die überraschenderweise die an Tiefdruckzylindern gestellten Anforderungen genügen. Insbesondere werden glatte, gleichmäßige Oberflächen erhalten, die im Wesentlichen keine Poren, Pocken oder Krater aufweisen. Die Schichtdicke der erhaltenen Chromschichten kann dicker als bei bisher erhältlichen Schichten sein. Insbesondere können Schichtdicken von 100 µm und mehr erhalten werden. Ferner können Chromschichten von hoher Härte hergestellt werden, insbesondere von über 900 HV. Die unter Verwendung des Elektrolyten bzw. unter Einsatz des erfindungsgemäßen Verfahrens erhältlichen Chromschichten sind korrosionsbeständig, verschleißfest, weisen günstige Reibungseigenschaften auf und sind thermisch und chemisch beständig. Ferner sind die erhältlichen Chromschichten hell und gut reflektierend, so dass sie sich auch für dekorative Zwecke eignen. Ferner kann die Chrombeschichtung unter Verwendung des erfindungsgemäßen Elektrolyten oder mit dem erfindungsgemäßen Verfahren in einfacher, schneller und kostengünstiger Weise aufgebracht werden.With the use according to the invention and the method according to the invention, chromium coatings of very particularly excellent quality are obtained which, surprisingly, meet the requirements placed on gravure printing cylinders. In particular, smooth, uniform surfaces are obtained which have essentially no pores, poxes or craters. The layer thickness of the chromium layers obtained can be thicker than in the case of layers previously available. In particular, layer thicknesses of 100 μm and more can be obtained. Furthermore, chrome layers of high hardness can be produced, in particular of over 900 HV. The chromium layers obtainable using the electrolyte or using the method according to the invention are corrosion-resistant, wear-resistant, have favorable friction properties and are thermally and chemically resistant. Further the available chrome layers are bright and reflective, so that they are also suitable for decorative purposes. Furthermore, the chrome coating can be applied in a simple, quick and inexpensive manner using the electrolyte according to the invention or with the method according to the invention.

Wie bereits vorstehend ausgeführt wurde, weist eine Chromschicht, die unter Verwendung des Elektrolyten oder unter Einsatz des erfindungsgemäßen Verfahrens hergestellt wurde, eine größere Dicke als bisher erhältliche Schichten, eine glatte, gleichmäßige Oberfläche, die insbesondere frei von Poren, Pocken und Krater ist, sowie eine sehr große Härte auf. Mit einer üblichen Röntgendiffraktometrie-Untersuchung konnte gezeigt werden, dass die mit dem Elektrolyt bzw. dem erfindungsgemäßen Verfahren erhaltenen Chromschichten eine Gitterkonstante von 2,92 Angström oder mehr aufweisen und somit als amorphe Schichten bezeichnet werden können. Somit unterscheidet sich die mit dem Elektrolyten oder mit dem erfindungsgemäßen Verfahren erhältlichen Chromschichten von Chromschichten, die mit anderen Elektrolyten und/oder anderen Verfahren gemäß des Standes der Technik hergestellt werden können.As already stated above, a chromium layer which was produced using the electrolyte or using the method according to the invention has a greater thickness than previously available layers, a smooth, uniform surface that is in particular free of pores, smallpox and craters, and a very great hardship. With a customary X-ray diffractometry investigation, it was possible to show that the chromium layers obtained with the electrolyte or the method according to the invention have a lattice constant of 2.92 Angstroms or more and can therefore be referred to as amorphous layers. Thus, the chromium layers obtainable with the electrolyte or with the process according to the invention differs from chromium layers which can be produced with other electrolytes and / or other processes according to the prior art.

Zur Bestimmung der Gitterkonstante der Chrombeschichtung wurden Röntgendiffraktometrie-Untersuchungen an einer verchromten Messingprobe (18µm Schichtdicke) durchgeführt. Die Messung erfolgte im glatteren Bereich der Chromabscheidung in der Mitte der Probe.To determine the lattice constant of the chrome coating, X-ray diffractometry investigations were carried out on a chrome-plated brass sample (18 μm layer thickness). The measurement was made in the smoother area of the chromium deposit in the middle of the sample.

Die Figur 1 zeigt das Diffraktogramm der verchromten Messingprobe. Die Chrom-Schichtdicke (18 µm) ist so groß, dass vom Untergrund (Messing) keine Signale mehr erscheinen. Die obere Kurve ist die Messkurve ohne Abzug des Untergrundes, die untere mit. Es ist nur ein breiter Peak bei einem Winkel 2θ=43,76° zu erkennen, entsprechend den Netzebenen (110), für die Netzebenen (200), (211) und (220) konnte kein Peaks beobachtet werden. Aus der Breite des Peaks (100) wurde die Kristallitgröße zu 2-3 nm berechnet, d.h., das Chrom ist röntgenamorph. Aus dem Netzebenenabstand wurde die Gitterkonstante berechnet: 292,32 pm (JCPDF-Datenbank: 288,39 pm). Die Gitterkonstante mit 292,32 pm entsprechen 2,9232 Å, wie sie oben angegeben wurde.The Figure 1 shows the diffractogram of the chrome-plated brass sample. The chrome layer thickness (18 µm) is so great that no more signals appear from the background (brass). The upper curve is the measurement curve without subtracting the background, the lower one with. Only one broad peak can be seen at an angle 2θ = 43.76 °, corresponding to the lattice planes (110), for the lattice planes (200), (211) and (220) no peak could be observed. From the width of the peak (100), the crystallite size was calculated to be 2-3 nm, ie the chromium is X-ray amorphous. The lattice constant was calculated from the lattice plane spacing: 292.32 pm (JCPDF database: 288.39 pm). The lattice constant of 292.32 pm corresponds to 2..9232 Å as stated above.

Ferner ist eine Elektrolysezelle, die eine Anode, eine Kathode und einen Elektrolyten enthält, wie er vorstehend im Detail beschrieben wurde, Gegenstand der Erfindung, wobei die erfindungsgemäße Elektrolysezelle so ausgebildet ist, dass damit Tiefdruckzylinder beschichtet werden können, insbesondere Tiefdruckzylinder bzw. Tiefdruckwalzen, wie sie beispielsweise bei Druckprozessen eingesetzt werden.Furthermore, an electrolytic cell containing an anode, a cathode and an electrolyte, as described in detail above, is the subject of the invention, the electrolytic cell according to the invention being designed so that gravure cylinders can be coated with it, in particular gravure cylinders or gravure cylinders, such as they are used, for example, in printing processes.

Ein Beispiel einer Elektrolysevorrichtung, die speziell zur Beschichtung von Tiefdruck ausgebildete ist, wird nachfolgend beschrieben. Dabei zeigtAn example of an electrolysis device specially designed for coating gravure printing is described below. It shows

Fig. 2 eine Badvorrichtung in schematischer Darstellung während einer Zylinderwechselphase; und Fig. 2 a bath device in a schematic representation during a cylinder change phase; and

Fig. 3 die Badvorrichtung gemäß Fig. 2 während einer Galvanisierungsphase. Fig. 3 the bath device according to Fig. 2 during an electroplating phase.

Die Fig. 2 und 3 zeigen eine Badvorrichtung in unterschiedlichen Verfahrenszuständen, nämlich zum einen zum Zeitpunkt eines Zylinderwechsels (Fig. 2), wenn ein Tiefdruckzylinder 21 soeben mittels eines nicht dargestellten Krans in die Badvorrichtung eingesetzt und durch zu einer Lagereinrichtung gehörende Lagerbrücken 22 gehalten wird sowie in einer Galvanisierungsphase (Fig. 3), in der die Mantelfläche des Tiefdruckzylinders 21 mit Chrom beschichtet werden soll. Da die Bauelemente in den Fig. 2 und 3 im Wesentlichen identisch sind, sind sie mit gleichen Bezugszeichen gekennzeichnet.The Figs. 2 and 3 show a bath device in different process states, namely on the one hand at the time of a cylinder change ( Fig. 2 ), when a gravure cylinder 21 has just been inserted into the bathing device by means of a crane (not shown) and is held by bearing bridges 22 belonging to a storage facility, and in a galvanizing phase ( Fig. 3 ), in which the outer surface of the gravure cylinder 21 is to be coated with chrome. Since the components in the Figs. 2 and 3 are essentially identical, they are identified by the same reference numerals.

Die Badvorrichtung weist eine Oberwanne 23 sowie eine darunter angeordnete Unterwanne 24 auf. In der Oberwanne 23 und in der Unterwanne 24 befindet sich ein flüssiger Elektrolyt 25, der mittels einer Pumpe 26 aus der Unterwanne 24 in die Oberwanne 23 gepumpt wird und über einen vertikal in wenigstens zwei Stellungen beweglichen Überlauf 27 wieder zurück in die Unterwanne 24 fließt. Alternativ ist es auch möglich, zwei wechselseitig offenbare Überläufe auf unterschiedlichen Höhenniveaus anzuordnen.The bath device has an upper tub 23 and a lower tub 24 arranged below it. In the upper tub 23 and in the lower tub 24 there is a liquid electrolyte 25, which is pumped from the lower tub 24 into the upper tub 23 by means of a pump 26 and flows back into the lower tub 24 via an overflow 27 that is vertically movable in at least two positions. Alternatively, it is also possible to arrange two mutually open overflows at different height levels.

In der Oberwanne 23 ist weiterhin eine vertikal bewegliche Anodeneinrichtung angeordnet, die im Wesentlichen aus einer Anodenschiene 28 und einem mit der Anodenschiene 28 elektrisch und mechanisch gekoppelten und als Metallhalteeinrichtung dienenden Anodenkorb 29 besteht. Der Anodenkorb 29 kann auch aus mehreren zusammengesetzten Anodenkörben bzw. -gittern bestehen bzw. als Anodentasche ausgebildet sein. Üblicherweise wird der Anodenkorb 29 aus Titan hergestellt und mit Chrompellets als Metallelementen 29a gefüllt. Bei Strombeaufschlagung zersetzt sich das Chrom, so dass Chromionen über den Elektrolyt 25 zur Oberfläche des als Kathode geschalteten Tiefdruckzylinders 21 wandern und sich dort in Form eines Chromüberzugs absetzen.A vertically movable anode device is also arranged in the upper hull 23, which essentially consists of an anode rail 28 and an anode basket 29 which is electrically and mechanically coupled to the anode rail 28 and serves as a metal holding device. The anode basket 29 can also consist of several assembled anode baskets or grids or be designed as an anode pocket. Usually the Anode basket 29 made of titanium and filled with chrome pellets as metal elements 29a. When a current is applied, the chromium decomposes, so that chromium ions migrate via the electrolyte 25 to the surface of the gravure cylinder 21, which is connected as a cathode, and are deposited there in the form of a chromium coating.

Der Anodenkorb 29 kann auch Teil einer unlöslichen Anode sein. Das an der Anode verfügbare metallische Chrom wird im Elektrolyten 25 gelöst und reichert so den Elektrolyten 25 an.The anode basket 29 can also be part of an insoluble anode. The metallic chromium available at the anode is dissolved in the electrolyte 25 and thus enriches the electrolyte 25.

Von den Lagerbrücken 22 ist in den Fig. 2 und 3 nur eine dargestellt. Die beiden Lagerbrücken 22 sind auf Schienen 30a, 30b in Achsrichtung des Tiefdruckzylinders 21 mittels Spindeln oder anderer geeigneter Verstellmechanismen bewegbar, so dass sie den Tiefdruckzylinder 21 zwischen sich einklemmen und drehbar halten.Of the storage bridges 22 is in the Figs. 2 and 3 only one shown. The two bearing brackets 22 can be moved on rails 30a, 30b in the axial direction of the gravure cylinder 21 by means of spindles or other suitable adjustment mechanisms, so that they clamp the gravure cylinder 21 between them and hold it rotatably.

Wie in den Fig. 2 und 3 erkennbar ist, bleibt durch die einseitig tragenden Lagerbrücken 22 etwa eine Hälfte der Oberwanne 23 oben frei zugänglich, so dass die dort sich parallel zur Achsrichtung des Tiefdruckzylinders 21 erstreckende Anodenschiene 28 frei vertikal bewegbar ist. Die Vertikalbewegung der Anodenschiene 28 mit dem Anodenkorb 29 ist im Übrigen bekannt, so dass eine weitere Beschreibung und Darstellung nicht erforderlich ist.As in the Figs. 2 and 3 can be seen, about half of the upper tub 23 remains freely accessible at the top due to the bearing bridges 22 on one side, so that the anode rail 28 extending there parallel to the axial direction of the gravure cylinder 21 is freely vertically movable. The vertical movement of the anode rail 28 with the anode basket 29 is otherwise known, so that no further description or illustration is required.

Der Füllungsgrad des Elektrolyts 25 in der Oberwanne 23, d. h., das Höhenniveau des Elektrolyts 25, lässt sich mit Hilfe des vertikal beweglichen Überlaufs 27 einstellen zwischen einem Höhenniveau 31 in der Zylinderwechselphase und einem Höhenniveau 32 in der Galvanisierungsphase.The degree of filling of the electrolyte 25 in the upper tub 23, i.e. That is, the height level of the electrolyte 25 can be adjusted with the aid of the vertically movable overflow 27 between a height level 31 in the cylinder change phase and a height level 32 in the electroplating phase.

Fig. 3 zeigt die Badvorrichtung in der Galvanisierungsphase, bei der der Tiefdruckzylinder 21 fast vollständig eingetaucht ist. Insbesondere lassen sich Tauchtiefen bei großen Zylindern (Umfang 1500 mm) von mehr als 65% und bei kleineren Zylindern (Umfang 800 mm) bis etwa 80% erreichen. Fig. 3 shows the bath device in the electroplating phase, in which the gravure cylinder 21 is almost completely immersed. In particular, immersion depths of more than 65% can be achieved with large cylinders (circumference 1500 mm) and up to about 80% with smaller cylinders (circumference 800 mm).

Der Anodenkorb 29 ist seitlich hochgezogen, so dass er gegenüber dem bekannten halbtauchenden Bad eine etwa um 50% größere Korboberfläche bildet.The anode basket 29 is pulled up at the side so that it forms a basket surface that is approximately 50% larger than the known semi-submerged bath.

Nach Beendigung der Galvanisierungsphase wird die Anodenschiene 28 mit dem Anodenkorb 29 nach unten in die Oberwanne 23 verfahren, wie in Fig. 2 gezeigt. Gleichzeitig oder zeitversetzt wird der Überlauf 27 abgesenkt, so dass der Elektrolyt 25 bis zum Höhenniveau 31 in die Unterwanne 24 abfließt.After the end of the electroplating phase, the anode bar 28 with the anode basket 29 is moved down into the upper tub 23, as in FIG Fig. 2 shown. At the same time or with a time delay, the overflow 27 is lowered so that the electrolyte 25 flows off into the lower pan 24 up to the level 31.

Wie in Fig. 2 erkennbar ist, lässt sich dadurch ein Zustand erreichen, in dem der Anodenkorb 29 immer noch vollständig durch den Elektrolyt 25 abgedeckt ist, während der Tiefdruckzylinder 21 vollständig frei über dem Elektrolytniveau 31 steht und dort leicht mit dem nicht dargestellten Kran ausgehoben werden kann.As in Fig. 2 As can be seen, a state can be achieved in which the anode basket 29 is still completely covered by the electrolyte 25, while the gravure cylinder 21 is completely free above the electrolyte level 31 and can easily be lifted there with the crane, not shown.

Zur Verringerung der Elektrolytmenge in der Oberwanne 23 ist die Oberwanne 23 im unteren Bereich verjüngt. Die Verjüngung kann z. B. mit Hilfe zusätzlich eingesetzter Bleche 33 oder durch entsprechende Anpassung der Wände der Oberwanne erfolgen. Weiterhin ist es möglich, Blöcke oder Kästen einzusetzen, um Volumen zu verdrängen. Die Begrenzung bzw. Verminderung des Volumens der Oberwanne 23 hat den Vorteil, dass aus der Unterwanne 24 nicht übermäßig viel Elektrolyt 25 nach oben gepumpt werden muss. Dementsprechend besteht nicht die Gefahr, dass die Unterwanne 24 vollständig entleert und die Pumpe 26 trockenläuft.To reduce the amount of electrolyte in the upper trough 23, the upper trough 23 is tapered in the lower area. The taper can be, for. B. with the help of additionally inserted metal sheets 33 or by appropriate adaptation of the walls of the upper tub. It is also possible to use blocks or boxes to displace volume. Limiting or reducing the volume of the upper tub 23 has the advantage that an excessive amount of electrolyte 25 does not have to be pumped upwards from the lower tub 24. Accordingly, there is no risk that the lower pan 24 will be completely emptied and the pump 26 will run dry.

In einer Ausführungsform der Elektrolysezelle weist diese einen Katholyt und einen Anolyt auf, wobei der erfindungsgemäße Elektrolyt im Katholyten vorliegt.In one embodiment of the electrolysis cell, it has a catholyte and an anolyte, the electrolyte according to the invention being present in the catholyte.

Die Elektrolysezelle im Sinne der vorliegenden Erfindung wird ausdrücklich als eine Elektrolysezelle verstanden, die den Elektrolyt, wie er vorstehend im Detail beschrieben ist, enthält. Als Behältnis, das als Elektrolysezelle eingesetzt werden kann, kann jedes für den Fachmann in Frage kommende Gefäß verwendet werden, wie es insbesondere üblicherweise in der Galvanotechnik eingesetzt wird. Als Kathode dient üblicherweise der zu beschichtende Gegenstand, auf dem die Chromschicht abgeschieden werden soll, d.h. der Tiefdruckzylinder. Als Anode können dem Fachmann an sich bekannte Anoden eingesetzt werden. Die Anode kann ein Flachmaterial, Plattenmaterial, Sintermaterial oder Streckmaterial sein. Als unlösliche Anoden werden z.B. solche aus einem Material ausgewählt aus der Gruppe bestehend aus platiniertem Titan, Graphit, Edelstahl, mit Iridium-Übergangsmetall-Mischoxid beschichtetes Titan, Tantal oder Niob oder speziellem Kohlenstoffmaterial und Kombinationen dieser Anoden eingesetzt. Es ist möglich, wenn als Anodenmaterial ein mit Mischmetalloxiden beschichtetes Titan-, Niob- oder Tantalblech verwendet wird. Weiterhin können Mischmetalloxid-Anoden insbesondere aus Iridium-Ruthenium-Mischoxid, Iridium-Ruthenium-Titanmischoxid oder Iridium-Tantal-Mischoxid verwendet werden. Ferner kann die Anode eine Mischoxidanode sein, bei der Titan als Anodengrundmaterial mit Platin-, Iridium- oder Palladium-Oxid beschichtet ist. Die Form der Anode kann vom Fachmann dem jeweiligen Zweck entsprechend angepasst werden.The electrolytic cell in the context of the present invention is expressly understood as an electrolytic cell which contains the electrolyte as described in detail above. As a container that can be used as an electrolysis cell, any vessel that is suitable for the person skilled in the art can be used, as is usually used in particular in electroplating technology. The object to be coated on which the chromium layer is to be deposited, ie the gravure cylinder, usually serves as the cathode. Anodes known per se to the person skilled in the art can be used as anode. The anode can be a flat material, plate material, sintered material or expanded material. The insoluble anodes used are, for example, those made of a material selected from the group consisting of platinum-coated titanium, graphite, stainless steel, titanium coated with iridium-transition metal mixed oxide, tantalum or niobium or special carbon material and combinations of these anodes. It is possible if a titanium, niobium or tantalum sheet coated with mixed metal oxides is used as the anode material. Furthermore, mixed metal oxide anodes, in particular made of iridium-ruthenium mixed oxide, iridium-ruthenium-titanium mixed oxide or iridium-tantalum mixed oxide, can be used. Furthermore, the Anode can be a mixed oxide anode in which titanium is coated with platinum, iridium or palladium oxide as the base material of the anode. A person skilled in the art can adapt the shape of the anode to the respective purpose.

Das Anodensystem kann beispielsweise eines sein, bei dem die Anode in direktem Kontakt mit einer Membran steht, d.h. die Anode mit einer Membran beschichtet ist. Es handelt sich dabei um eine sogenannte Direktkontakt-Membrananode, wie sie aus der DE 10 2010 055 143 A1 bekannt ist. Als Polymermembran können dabei folgende Polymere in günstiger Weise eingesetzt werden: Polypyrol-Membranen, Olefinpolymer-Membranen, sulfonierte Polystyrolmembranen, fluorierte/perfluorierte sulfonierte Polymer-Membranen (PFSA-Membranen), S-PEEK-S-PSU, PSU-CI, ICVT-Membranen, Arylpolymermembranen, Polyether-Keton-Membranen, Polybenzimidazol-Membranen, thermoplastische Polymermembranen, Perfluorsulfonsäure-Polymermembranen, Perfluorcarboxylat-Ionomere, Polyamide, Polyamine, Poly(vinylalkohol)-Membranen und Perfluorphosphonat-Membranen. Dabei können für Kationen durchlässige Membranen herangezogen werden. Hinsichtlich der weiteren Details dieser Membranen wird auf die DE 10 2010 055 143 A1 verwiesen, auf die in vollem Umfang Bezug genommen wird.The anode system can for example be one in which the anode is in direct contact with a membrane, ie the anode is coated with a membrane. It is a so-called direct contact membrane anode, as it is from the DE 10 2010 055 143 A1 is known. The following polymers can be used favorably as the polymer membrane: polypyrene membranes, olefin polymer membranes, sulfonated polystyrene membranes, fluorinated / perfluorinated sulfonated polymer membranes (PFSA membranes), S-PEEK-S-PSU, PSU-CI, ICVT- Membranes, aryl polymer membranes, polyether ketone membranes, polybenzimidazole membranes, thermoplastic polymer membranes, perfluorosulfonic acid polymer membranes, perfluorocarboxylate ionomers, polyamides, polyamines, poly (vinyl alcohol) membranes, and perfluorophosphonate membranes. Cation-permeable membranes can be used here. For further details on these membranes, please refer to DE 10 2010 055 143 A1 referenced, to which reference is made in its entirety.

Mit der erfindungsgemäßen Vorrichtung lässt sich der Elektrolyt in besonders günstiger Weise einsetzen bzw. das erfindungsgemäße Verfahren in besonders günstiger Weise durchführen, so dass Chromschichten mit vorstehenden Eigenschaften auf Tiefdruckzylindern in besonders günstiger Weise erhalten werden können.With the device according to the invention, the electrolyte can be used in a particularly favorable manner or the method according to the invention can be carried out in a particularly favorable manner, so that chromium layers with the above properties can be obtained in a particularly favorable manner on gravure cylinders.

Die folgenden Beispiele sollen die Erfindung weiterhin veranschaulichen. Es wird darauf hingewiesen, dass diese Beispiele nur dazu dienen, um die vorliegende Erfindung zu illustrieren. Sie sollen in keinem Fall dazu verstanden werden, die Erfindung auf diese Beispiele einzuschränken.The following examples are intended to further illustrate the invention. It should be noted that these examples are only used to illustrate the present invention. In no case should they be construed to restrict the invention to these examples.

Beispiele 1 bis 9 (nicht erfindungsgemäß) Examples 1 to 9 (not according to the invention)

Ein Elektrolyt mit folgender Zusammensetzung wurde bereitgestellt:

  • 0,77 mol/l Kaliumchromalaun-dodecahydrat
  • 1,5 mol/l Ameisensäure und
  • 1,0 mol/l Glycin.
An electrolyte with the following composition was provided:
  • 0.77 mol / l potassium chromium alum dodecahydrate
  • 1.5 mol / l formic acid and
  • 1.0 mol / l glycine.

Ferner wurden die in der Tabelle angegebenen Additive (Glanzzusatz und Netzmitteln) in den in der Tabelle angegebenen Mengen zum Elektrolyten zugegeben.In addition, the additives indicated in the table (brightener and wetting agents) were added to the electrolyte in the amounts indicated in the table.

Die Verchromungsanlage wies einen Behälter auf, in dem die zu beschichtenden Tiefdruckzylinder vertikal so eingehängt werden konnten, dass sie mit unterschiedlicher Drehgeschwindigkeit bewegt werden können. Drei Anoden (Direktkontakt-Anoden) wurden ringförmig um den Zylinder so angebracht, dass der Abstand zwischen Anode und Zylinder variiert werden konnte.The chrome plating system had a container in which the gravure cylinders to be coated could be hung vertically in such a way that they can be moved at different speeds. Three anodes (direct contact anodes) were attached in a ring around the cylinder so that the distance between anode and cylinder could be varied.

Als Direktkontaktanoden werden Anoden bezeichnet, bei denen eine ionendurchlässige Membran direkt auf das Anodenblech aufgebracht sind. Als Polymermembran können dabei folgende Polymere in günstiger Weise eingesetzt werden: Polypyrol-Membranen, Olefinpolymer-Membranen, sulfonierte Polystyrolmembranen, fluorierte/perfluorierte sulfonierte Polymer-Membranen (PFSA-Membranen), S-PEEK-S-PSU, PSU-CI, ICVT-Membranen, Arylpolymermembranen, Polyether-Keton-Membranen, Polybenzimidazol-Membranen, thermoplastische Polymermembranen, Perfluorsulfonsäure-Polymermembranen, Perfluorcarboxylat-Ionomere, Polyamide, Polyamine, Poly(vinylalkohol)-Membranen und Perfluorphosphonat-Membranen. Dabei können für Kationen durchlässige Membranen herangezogen werden. Hinsichtlich der weiteren Details dieser Membranen wird auf die DE 10 2010 055 143 A1 verwiesen, auf die in vollem Umfang Bezug genommen wird.Direct contact anodes are anodes in which an ion-permeable membrane is applied directly to the anode plate. The following polymers can be used favorably as the polymer membrane: polypyrene membranes, olefin polymer membranes, sulfonated polystyrene membranes, fluorinated / perfluorinated sulfonated polymer membranes (PFSA membranes), S-PEEK-S-PSU, PSU-CI, ICVT- Membranes, aryl polymer membranes, polyether ketone membranes, polybenzimidazole membranes, thermoplastic polymer membranes, perfluorosulfonic acid polymer membranes, perfluorocarboxylate ionomers, polyamides, polyamines, poly (vinyl alcohol) membranes, and perfluorophosphonate membranes. Cation-permeable membranes can be used here. For further details on these membranes, please refer to DE 10 2010 055 143 A1 referenced, to which reference is made in its entirety.

Des Weiteren war in der Anlage eine Umwälzpumpe für den Elektrolyten installiert, deren Pumpleistung ebenfalls variiert werden konnte. Zur Sauberhaltung des Elektrolyten ist in dem Elektrolytkreislauf ein Filter eingebaut. Eine Heiz- und Kühlvorrichtung dient zur Konstanthaltung der Temperatur. Ein pH-Fühler misst permanent den pH-Wert, der durch Zugabe von Ameisensäure im gewünschten Bereich gehalten wird. Die im konkreten Fall eingestellte Temperatur und pH-Wert sind in der Tabelle angegeben.Furthermore, a circulation pump for the electrolyte was installed in the system, the pumping capacity of which could also be varied. A filter is built into the electrolyte circuit to keep the electrolyte clean. A heating and cooling device is used to keep the temperature constant. A pH sensor permanently measures the pH value, which is kept in the desired range by adding formic acid. The temperature and pH value set in the specific case are given in the table.

Um die Qualität der Chromschicht zu verbessern und die Porenbildung zu vermeiden, wurden zum einen verschiedene Netzmittel als Zusatz zugegeben und zum anderen verschiedene Abscheideparameter, wie die Temperatur des Elektrolyts, oder die Drehgeschwindigkeit des Tiefdruckzylinders, variiert. Die nachstehende Tabelle gibt einen Überblick über die Versuche: Nr. Glanzzusatz Netzmittel Stromdichte Temperatur pH-Wert Drehgeschwindigkeit Zylinder 1 DPS (1,5 g/l) Raschig Ralufon DL (0,015 g/l; 0,1 g/l; 0,2 g/l) 6,5 A/dm2 30°C 3,8 600 U/min 2 DPS (1,5 g/l) BASF Lugalvan BNO 214 (0,1 g/l; 0,2 g/l; 0,4 g/l) 6,5 A/dm2 30°C 3,8 600 U/min 3 DPS (1,5 g/l) BASF Lutensol TO 8 (0,1 g/l; 0,3 g/l) 6,5 A/dm2 30°C 3,8 600 U/min 4 DPS (1,5 g/l) BASF Sulfopon 101 UP (0,05 g/l; 0,2 g/l; 0,4 g/l) 6,5 A/dm2 30°C 3,8 600 U/min 5 DPS (1,5 g/l) Natriumlaurylsulfat (0,1 g/l; 0,3 g/l) 6,5 A/dm2 30°C 3,8 600 U/min 6 DPS (1,5 g/l) Dicolloy NWAF DL (0,1 g/l; 0,3 g/l; 0,5 g/l) 6,5 A/dm2 30°C 3,8 600 U/min 7 DPS (1,5 g/l) Raschig Ralufon DL (0,1 g/l) 6,5 A/dm2 30°C 3,8 850 U/min 8 DPS (1,5 g/l) Raschig Ralufon DL (0,1 g/l) 10 A/dm2 30°C 3,2 600 U/min 9 DPS (1,5 g/l) Raschig Ralufon DL (0,1 g/l) 10 A/dm2 40°C 3,8 600 U/min DPS = N,N-Dimethyl-dithiocarbamyl-propyl-sulfonsäure-natriumsalz In order to improve the quality of the chrome layer and to avoid pore formation, various wetting agents were added as additives and various deposition parameters, such as the temperature of the electrolyte or the speed of rotation of the gravure cylinder, were varied. The following table gives an overview of the experiments: No. Gloss additive Wetting agents Current density temperature PH value Rotation speed cylinder 1 DPS (1.5 g / l) Raschig Ralufon DL (0.015 g / l; 0.1 g / l; 0.2 g / l) 6.5 A / dm 2 30 ° C 3.8 600 rpm 2 DPS (1.5 g / l) BASF Lugalvan BNO 214 (0.1 g / l; 0.2 g / l; 0.4 g / l) 6.5 A / dm 2 30 ° C 3.8 600 rpm 3 DPS (1.5 g / l) BASF Lutensol TO 8 (0.1 g / l; 0.3 g / l) 6.5 A / dm 2 30 ° C 3.8 600 rpm 4th DPS (1.5 g / l) BASF Sulfopon 101 UP (0.05 g / l; 0.2 g / l; 0.4 g / l) 6.5 A / dm 2 30 ° C 3.8 600 rpm 5 DPS (1.5 g / l) Sodium lauryl sulfate (0.1 g / l; 0.3 g / l) 6.5 A / dm 2 30 ° C 3.8 600 rpm 6th DPS (1.5 g / l) Dicolloy NWAF DL (0.1 g / l; 0.3 g / l; 0.5 g / l) 6.5 A / dm 2 30 ° C 3.8 600 rpm 7th DPS (1.5 g / l) Raschig Ralufon DL (0.1 g / l) 6.5 A / dm 2 30 ° C 3.8 850 rpm 8th DPS (1.5 g / l) Raschig Ralufon DL (0.1 g / l) 10 A / dm 2 30 ° C 3.2 600 rpm 9 DPS (1.5 g / l) Raschig Ralufon DL (0.1 g / l) 10 A / dm 2 40 ° C 3.8 600 rpm DPS = N, N-dimethyl-dithiocarbamyl-propyl-sulfonic acid, sodium salt

Für alle Versuche wurde der oben genannte Grundelektrolyt verwendet. Als Schichtdicke wurden immer ca. 10 µm abgeschieden.The above-mentioned base electrolyte was used for all experiments. A layer thickness of about 10 µm was always deposited.

Es ließen sich bei all diesen Versuchen glänzende Chromschichten abscheiden. Auch minderte jedes eingesetzte Netzmittel die Porenbildung deutlich, d.h. es wurden Chromschichten erhalten, die gleichmäßig waren und keine Poren aufwiesen. Dabei wurde die Zahl der Poren mit steigendem Netzmittelgehalt immer geringer.In all of these experiments, it was possible to deposit shiny chrome layers. Each wetting agent used also significantly reduced pore formation, i.e. chromium layers were obtained that were uniform and had no pores. The number of pores decreased with increasing wetting agent content.

Die verwendeten Anoden waren mit einer speziellen ionen-selektiven Membran (Navion®) beschichtet. Dadurch wurde die Oxidation von Cr(III) zu Cr(VI) verhindert, die die Chromabscheidung zum Stillstand bringt.The anodes used were coated with a special ion-selective membrane (Navion®). This prevented the oxidation of Cr (III) to Cr (VI), which brings the chromium deposition to a standstill.

Die verwendeten Chrom(III)-Salze, die notwendigen Komplexbildner, Puffersubstanzen und Netzmittel zur Herabsetzung der Oberflächenspannung des Elektrolyten führen, insbesondere in ihrer Gesamtheit, zu Hartchromschichten, die sich durch hohen Glanz und Härte sowie hervorragender Abriebfestigkeit auszeichnen, sowie den qualitativen Anforderungen für den industriellen Einsatz genügen.The chromium (III) salts used, the necessary complexing agents, buffer substances and wetting agents to reduce the surface tension of the electrolyte, especially in their entirety, lead to hard chrome layers that are characterized by high gloss and hardness as well as excellent abrasion resistance, as well as the qualitative requirements for the industrial use.

Die vorstehenden Beispiele zeigen, dass die erhaltenen Chromschichten besonders gut zur Beschichtung von Tiefdruckzylindern geeignet sind.The above examples show that the chrome layers obtained are particularly suitable for coating gravure cylinders.

Claims (13)

  1. A use of an electrolyte for producing chromium layers on gravure cylinders, comprising:
    (a) a chromium(III) salt,
    (b) a compound of formula (I)
    Figure imgb0005
    wherein R stands for SO3H and n is an integer from 1 to 3,
    (c) formic acid, and
    (d) at least one further additive.
  2. The use according to one of the preceding claims, wherein the chromium(III) salt comprises an inorganic and/or organic chromium(III) salt, in particular wherein the inorganic chromium(III) salt is selected from potassium chromium alum, ammonium chromium alum, chromium sulphate, chromium nitrate, chromium chloride and mixtures of two or more thereof, or wherein the organic chromium(III) salt is selected from chromium citrate, chromium formiate, chromium oxalate and mixtures of two or more thereof.
  3. The use according to one of the preceding claims, wherein the additive comprises a complexing agent and/or a wetting agent, in particular the following compound:
    Figure imgb0006
    wherein
    n is an integer from 1 to 5, in particular 3,
    R1 is a C1-C5 alkyl residue, in particular CH3CH2- and
    X is a metal ion to compensate the negative charge, in particular Na+, K+, Ca2+ or Mg2+.
  4. A method for producing a chromium layer on gravure cylinders by electrodeposition of chromium, wherein the chromium layer is deposited on the gravure cylinders using an electrolyte as defined in one of claims 1 to 3.
  5. The method according to claim 4, wherein the chromium layer is produced at a pH of 2.0 to 4.5.
  6. The method according to one of claims 4 or 5, wherein the chromium layer is produced at a temperature of 20°C to 60°C.
  7. The method according to one of claims 4 to 6, wherein the chromium layer is produced at a current density of 5 to 60 A/dm2.
  8. The method according to one of claims 4 to 7, wherein an electrolyte movement takes place by recirculating 5 bath volumes per hour.
  9. The method according to one of claims 4 to 8, wherein the gravure cylinder is moved at 1 to 20 cm/s.
  10. An electrolysis cell, comprising an anode, a cathode and an electrolyte as defined in one of claims 1 to 3, wherein the electrolysis cell is designed for the chromium coating of gravure cylinders.
  11. The electrolysis cell according to claim 10, wherein the electrolysis cell has a catholyte and an anolyte, wherein the electrolyte is present in the catholyte.
  12. The electrolysis cell according to one of claims 10 or 11, wherein the anode has an insoluble anode and a pocket for receiving metallic chromium elements.
  13. The electrolysis cell according to one of claims 10 to 12, wherein the anode is a mixed oxide anode.
EP15794193.1A 2014-11-14 2015-11-13 Production of chromium layers on intaglio printing cylinders Active EP3250733B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15794193T PL3250733T3 (en) 2014-11-14 2015-11-13 Production of chromium layers on intaglio printing cylinders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014116717.1A DE102014116717A1 (en) 2014-11-14 2014-11-14 Electrolyte and process for the production of chrome layers
PCT/EP2015/076551 WO2016075287A1 (en) 2014-11-14 2015-11-13 Production of chromium layers on intaglio printing cylinders

Publications (2)

Publication Number Publication Date
EP3250733A1 EP3250733A1 (en) 2017-12-06
EP3250733B1 true EP3250733B1 (en) 2021-07-14

Family

ID=54541083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15794193.1A Active EP3250733B1 (en) 2014-11-14 2015-11-13 Production of chromium layers on intaglio printing cylinders

Country Status (5)

Country Link
EP (1) EP3250733B1 (en)
DE (1) DE102014116717A1 (en)
ES (1) ES2893649T3 (en)
PL (1) PL3250733T3 (en)
WO (1) WO2016075287A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051806B1 (en) * 2016-05-31 2018-06-01 Safran Aircraft Engines METHOD FOR ELECTROLYTIC CHROMING A SUBSTRATE FROM A TRIVALENT CHROME BATH
DE102018133532A1 (en) 2018-12-21 2020-06-25 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Electrolyte and process for the production of chrome layers
EP4151779A1 (en) 2021-09-15 2023-03-22 Trivalent Oberflächentechnik GmbH Chrome-indium, chrome-bismuth and chrome antimony coating, method for the production and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798313A2 (en) * 2005-12-13 2007-06-20 Enthone, Inc. Process for depositing crack-free, corrosion resistant and hard chromium and chromium alloy layers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1214426A (en) * 1981-11-18 1986-11-25 Donald J. Barclay Trivalent chromium electroplating solution and bath
US4461680A (en) * 1983-12-30 1984-07-24 The United States Of America As Represented By The Secretary Of Commerce Process and bath for electroplating nickel-chromium alloys
US4804446A (en) * 1986-09-19 1989-02-14 The United States Of America As Represented By The Secretary Of Commerce Electrodeposition of chromium from a trivalent electrolyte
US7442286B2 (en) * 2004-02-26 2008-10-28 Atotech Deutschland Gmbh Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys
DE102006035871B3 (en) 2006-08-01 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the deposition of chromium layers as hard chrome plating, plating bath and hard chrome plated surfaces and their use
PL2217745T3 (en) * 2007-10-02 2014-11-28 Atotech Deutschland Gmbh Crystalline chromium alloy deposit
DE102008015162B3 (en) * 2008-03-20 2009-10-15 Hell Gravure Systems Gmbh & Co. Kg Method and device for processing gravure cylinders
US8512541B2 (en) * 2010-11-16 2013-08-20 Trevor Pearson Electrolytic dissolution of chromium from chromium electrodes
DE102010055143B4 (en) 2010-12-18 2022-12-01 Umicore Galvanotechnik Gmbh Direct contact membrane anode for use in electrolytic cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798313A2 (en) * 2005-12-13 2007-06-20 Enthone, Inc. Process for depositing crack-free, corrosion resistant and hard chromium and chromium alloy layers

Also Published As

Publication number Publication date
PL3250733T3 (en) 2022-01-31
ES2893649T3 (en) 2022-02-09
DE102014116717A1 (en) 2016-05-19
WO2016075287A1 (en) 2016-05-19
EP3250733A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
EP2050841B1 (en) Alkaline electroplating bath with a filtration membrane
DE69125573T2 (en) ELECTROPLATED COPPER FILM AND THE PRODUCTION THEREOF USING ELECTROLYTIC SOLUTIONS WITH LOW CONCENTRATIONS OF CHLORINE IONS
DE102006035871B3 (en) Process for the deposition of chromium layers as hard chrome plating, plating bath and hard chrome plated surfaces and their use
DE1496886A1 (en) Method and device for the preparation of metal treatment solutions
DE3428345A1 (en) AQUEOUS BATHROOM FOR GALVANIC DEPOSITION OF ZINC AND ZINC ALLOYS
EP3666931A1 (en) Process of fabricating a metal band having a chromium and chromium oxide coating using a trivalent chromium containing electrolyte
EP3250733B1 (en) Production of chromium layers on intaglio printing cylinders
DE4023444A1 (en) Cyanide-free copper plating process - where a portion of the plating bath is electrolysed by an independently-controlled insol. anode to reduce bath impurities
DE1094245B (en) Lead dioxide electrode for use in electrochemical processes
DE3933896C1 (en)
DE102010044551A1 (en) Anode and their use in an alkaline electroplating bath
DE2417952A1 (en) METHOD FOR THE ELECTROVAL DEPOSITION OF NICKEL AND / OR COBALT
DE1182211B (en) Process for the electrolytic deposition of a lead dioxide coating on a graphite anode
EP1738000B1 (en) Production of a structured hard chromium layer and production of a coating
DE3223698A1 (en) BATH FOR GALVANIC DEPOSITION OF A NICKEL-CONTAINING LAYER FOR A MULTI-LAYER COATING AND METHOD FOR GALVANIC DEPOSITION OF A THREE-LAYER NICKEL COATING WITH THE USE OF THIS BATH
EP2184384B1 (en) Galvanic bath and method for deposition of zinc-containing layers
DE1245677B (en) Aqueous galvanic chrome bath and process for the galvanic deposition of bright chrome coatings
EP2635724B1 (en) Process for electroplating hard chromium from a cr(vi) free electrolyte
EP4330448A1 (en) Device and method for coating a component or semi-finished product with a chromium layer
DE2352970A1 (en) CORROSION-RESISTANT METAL COATINGS CONTAINING ELECTRICALLY DEPOSITED NICKEL AND MICROPOROUS CHROME
CN111793809B (en) Method for producing coated metal strips and electrolysis system for carrying out the method
WO2024041968A1 (en) Method for controlling the chromium feed in an electrolysis process for producing chromium layers, and an electrolysis cell for this purpose
DE2929305C2 (en) Process and device for the continuous electrodeposition of manganese on steel
DE19610361A1 (en) Bath and process for the electrodeposition of semi-gloss nickel
EP2878711A1 (en) Method for the galvanic deposition of nickel and corresponding electrolyte

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190307

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014945

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1410724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2893649

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014945

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

26N No opposition filed

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1410724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151113

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231103

Year of fee payment: 9

Ref country code: IT

Payment date: 20231130

Year of fee payment: 9

Ref country code: FR

Payment date: 20231122

Year of fee payment: 9

Ref country code: DE

Payment date: 20231120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231108

Year of fee payment: 9

Ref country code: BE

Payment date: 20231121

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714