EP1711702B1 - Method for detecting the beginning of combustion in an internal combustion engine - Google Patents

Method for detecting the beginning of combustion in an internal combustion engine Download PDF

Info

Publication number
EP1711702B1
EP1711702B1 EP05714876A EP05714876A EP1711702B1 EP 1711702 B1 EP1711702 B1 EP 1711702B1 EP 05714876 A EP05714876 A EP 05714876A EP 05714876 A EP05714876 A EP 05714876A EP 1711702 B1 EP1711702 B1 EP 1711702B1
Authority
EP
European Patent Office
Prior art keywords
signal
cylinder
frequency
combustion
beginning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05714876A
Other languages
German (de)
French (fr)
Other versions
EP1711702A1 (en
Inventor
Reinhold Hagel
Mehmet Tuna
Ernst Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Original Assignee
Conti Temic Microelectronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conti Temic Microelectronic GmbH filed Critical Conti Temic Microelectronic GmbH
Publication of EP1711702A1 publication Critical patent/EP1711702A1/en
Application granted granted Critical
Publication of EP1711702B1 publication Critical patent/EP1711702B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient

Definitions

  • the invention relates to a method for detecting the start of combustion of an internal combustion engine having a plurality of cylinders by means of a rotational speed signal determined for a shaft of the internal combustion engine.
  • the object of the invention is to provide a method of the type described, which allows the detection of the start of combustion with the simplest possible means.
  • the inventive method is regularly without additional sensors from. It is based as a measured variable only on the speed signal, which is usually determined anyway and thus already exists in a control unit of the internal combustion engine. In addition, the exact start of burning can be easily determined on the basis of the transformed into the angular frequency range cylinder signal. There are no complicated arithmetic operations. For the transformation into the angular frequency range it is possible, if appropriate, to resort to signal transformation methods which are already present in the control unit.
  • claims 2 and 3 each relate to an advantageous method for generating the cylinder signal, which comprises the information to be evaluated of the cylinder of interest.
  • the embodiments according to claims 5 to 9 relate to favorable possibilities for signal improvement, which are carried out in particular before the conversion into the angular frequency range.
  • the start of burning can be determined even more precisely, since then also the signal information which can be taken in the angular frequency range and relevant in this regard can be determined with a higher accuracy.
  • the operating behavior of the internal combustion engine can be improved by using the determined exact start of combustion for (subsequent) control of the relevant cylinder becomes.
  • the inadequacies described above can then be largely avoided.
  • FIG. 1 illustrated first embodiment is used to detect the start of combustion of a particular self-igniting internal combustion engine 1, the four cylinders 2, 3, 4 and 5 has.
  • the number of cylinders is to be understood only as an example.
  • the method can also be applied to an internal combustion engine 1 with a different number of cylinders.
  • a sensor 8 associated with the sensor wheel 8, for example in the form of an inductive sensor, delivers a signal precisely when one of the markings passes the sensor 8. This signal is fed to a control unit 9.
  • the control unit 9 comprises, in addition to other units, not shown, a plurality of subunits, which are also intended for determining the start of combustion. These are a speed unit 10, an averaging unit 11, a Geberradkorrekturtechnik 12, a signal reconstruction unit 13, a Segment michstechnik 14, an analysis unit 15 and a controller 16. These subunits can be physically separated, for example, as a separate electronic assemblies or combined into a single physical unit , The latter is possible in particular in the case of a program realization of the subunits 10 to 16 on a signal processor. Also conceivable is a mixed form.
  • the time-domain signal supplied by the sensor 8 is converted in the rotational speed unit 10 into a rotational speed signal which relates to the rotational angle range, as is customary in the control of internal combustion engines.
  • the rotational speed signal indicates the currently present shaft rotational speed or shaft rotational acceleration.
  • a segment signal SS is extracted from the speed signal with a rotation angle range within which each of the cylinders 2 to 5 ignites exactly once.
  • this is a segment corresponding to a double full rotation of the shaft 6, ie with a 720 degree rotation angle range.
  • the rotational speed range of the segment signal SS can, however, in principle also have a different size.
  • the method steps performed in the averaging unit 11, the encoder wheel correction unit 12 and the signal reconstruction unit 13 are optional. They serve to improve the signal quality of the segment signal SS. The higher its quality, the more precisely the start of burning can ultimately be determined.
  • the arithmetic mean of two or more successive segment signals SS is formed. This makes it possible in particular to eliminate cyclical fluctuations resulting, for example, from uneven combustion.
  • Another way to improve the signal is to use a signal reconstruction technique.
  • the markings on the encoder wheel 7 are usually in angular intervals of 6 degrees or even 10 degrees. As a result, however, the rotational speed of the shaft 6 is scanned too inaccurately for some applications.
  • common applications such as a rider control or even a start of burning control work better when a higher sampling rate is present.
  • the use of a sender wheel 7 with a larger number of markings is not without problems, since with increasing number of marks the clear space between the individual markings decreases and thus increases the risk of contamination. A possible consequence would be the overlooking of individual markings.
  • the sampling rate can nevertheless be increased by means of certain methods of digital signal processing.
  • a first possibility is an interpolation in the rotation angle range between the sampling values determined by the sampling rate of the encoder wheel 7.
  • a Lagrange interpolation or a sinc interpolation is also particularly suitable.
  • the particularly advantageous Lagrange interpolation in this regard is a special polynomial interpolation method. Compared to other higher-order interpolation polynomials that can also be used in principle, Lagrange interpolation offers the advantage of getting along without the solution of a relatively complex system of equations.
  • the sinc interpolation is based on a mathematical convolution operation.
  • Both the Lagrange interpolation and the sinc interpolation provide for a periodic and band-limited signal, in the embodiment of the segment signal SS, taking into account the sampling theorem exact signal reconstruction, which are advantageously different from a linear and other, higher-grade polynomial interpolation.
  • a second possibility for increasing the sampling rate is a frequency transformation of the segment signal into the angular frequency range.
  • This transformation takes place in particular by means of a discrete Fourier transformation (DFT) or a discrete Hartley transformation (DHT).
  • DFT discrete Fourier transformation
  • DHT discrete Hartley transformation
  • Both transforms each provide an amplitude and a phase value at discrete angular frequencies, which are also referred to as orders in the field of internal combustion engines.
  • the individual harmonic partial oscillations are weighted with the respectively associated amplitude and phase value.
  • Both the interpolation and frequency transformation methods yield a reconstructed signal that is in the form of an analytical function expression. This can then be anywhere in the rotation angle range, Thus, especially between the metrologically determined sampling, the required function value can be taken. This results in the desired higher sampling rate.
  • a segment signal SS with an original sampling rate of 10 degrees can be used to produce a modified segment signal with an arbitrarily higher sampling rate, for example with a 0.1-degree sampling.
  • segment signal SS * contains the information about the start of combustion in the cylinders 2 to 5.
  • the improved segment signal SS * is decomposed in the segmentation unit 14 into a total of four cylinder signals ZS1, ZS2, ZS3 and ZS4. Each cylinder signal ZS1 bits ZS4 then contains only information about the ignition in a single cylinder.
  • the cylinder signals ZS1 to ZS4 can detect an angular range of up to 180 degrees in the present embodiment. Conveniently, however, is an extraction of cylinder signals ZS1 to ZS4 from the improved segment signal SS * , which only include an angular range within which the actual ignition process actually takes place in the respective cylinder 2 to 5, ie in particular in each case the region located around the upper cylinder dead center , For this purpose, for example, a rotation angle range of about 40 to 50 degrees.
  • the thus-determined cylinder signals ZS1 to ZS4 are supplied to the analysis unit 15, which performs a frequency transformation into the angular frequency range for each cylinder signal ZS1 to ZS4.
  • This can in turn be done by means of a DFT, a DHT or a digital filtering, for example in the form of digital bandpass filtering with variable center frequency or in the form of digital filter banks.
  • This conversion into the angular frequency range generates from the cylinder signals ZS1, ZS2, ZS3 and ZS4 respectively associated cylinder frequency signals FS1, FS2, FS3 and FS4. For the latter, there are again amplitude and phase values at associated discrete angular frequencies.
  • This signal information contains the information contained in the respective cylinder signal ZS1 to ZS4 about the operating state in the respective cylinder 2 to 5.
  • the exact start of combustion in the respective cylinder 2 to 5 can be derived from this signal information Remove 5 in a simple manner. This can be done by means of a comparison with, for example, empirical empirical values or also with previously determined reference values. The experience and / or reference values are preferably stored in the analysis unit 15. Likewise, it is also possible to fall back on the signal information of the particularly high-signal angular frequencies. In question, those angular frequencies are preferred for which the amplitude value is above a threshold, in particular above the 3dB threshold.
  • the signal information, preferably the phase information, of the specific angular frequency thus determined is then made available to the analysis unit 15 as the start of combustion signal BS1, BS2, BS3 and BS4 representing the start of combustion in the respective cylinders 2 to 5.
  • the fuel signals BS1 to BS4 are fed to a regulator 16, which uses the information contained about the start of combustion for the (subsequent) control of the respective cylinder 2 to 5, at least if this is still classified as permissible by an optionally existing higher-level controller limitation.
  • the (after-) control can be done for example by means of a variation of the start of delivery to an injection pump of the internal combustion engine 1, not shown.
  • the control can be carried out on the basis of at least one load and / or speed-dependent phase-start of delivery characteristic field.
  • the start of combustion is set individually to the optimum time for each of the cylinders 2 to 5. This is possible in particular without requiring significant additional hardware components in the control unit 9 or on the internal combustion engine 1 for the method described above. In particular, no additional detection of special operating parameters of the internal combustion engine 1 is necessary. This results in a very cost-effective implementation for the detection of the start of combustion and for the cylinder-specific readjustment of the start of combustion time.
  • Fig. 2 A second embodiment of the invention described. Identical parts are given the same reference numerals as in the first embodiment, to the description of which reference is hereby made.
  • the main difference consists in the replacement of the segmentation unit 14 against an adjusting unit 17, which is immediately downstream of the speed unit 10 in the second embodiment.
  • the operation of the adjustment 17 is essentially in it, for example, the cylinder 2, for which the start of burning is currently to be determined to adjust in its operating state so that the cylinder 2 caused in the resulting speed signal or segment signal SS signal component clearly opposite to those of the other three cylinders 3 to 5 emerges.
  • the segment signal SS is then determined almost exclusively by the currently interesting cylinder 2.
  • the adjustment of the operating state for example, by a targeted increase in the amount of fuel supplied.
  • other adjustment options are also possible in principle.
  • the improved segment signal SS * is used as a whole as a cylinder signal ZS1.
  • the remaining method steps are analogous to the first embodiment, but with the proviso that only for the relevant cylinder 2 of the analysis unit 15, a start of combustion signal BS1 is generated. Consequently, only the cylinder 2 can be readjusted in this process cycle. For the remaining cylinders 3 to 5, this is done in sequential order thereafter.
  • the adjusting unit 17 sequentially adjusts the operating state in each case one of the remaining cylinders 3 to 5 significantly.
  • the engagement of the adjusting unit 17 takes place in each case only when the internal combustion engine 1 has reached its quasi-stationary operating state. This can easily be ascertained on the basis of the speed signal or the segment signal SS ascertained in the speed unit 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Testing Of Engines (AREA)

Abstract

A method detects the beginning of combustion in an internal combustion engine (1) having several cylinders (2, 3, 4, 5), from a rotation speed signal determined for a shaft (6) of the engine (1). A segment signal (SS), whose signal length corresponds to an integral multiple of one or more full rotations of the shaft (6), is extracted from the rotation speed signal. A cylinder signal (ZS1, ZS2, ZS3, ZS4), which reproduces the operational state in a cylinder (2, 3, 4, 5), is generated from the segment signal (SS). The cylinder signal is transformed into a cylinder frequency signal (FS1, FS2, FS3, FS4) in an angular frequency range. Signal information indicating the beginning of combustion in the associated cylinder is extracted from the cylinder frequency signal at at least one predefined angular frequency.

Description

Die Erfindung betrifft ein Verfahren zur Detektion des Brennbeginns einer Brennkraftmaschine mit mehreren Zylindern mittels eines für eine Welle der Brennkraftmaschine ermittelten Drehzahlsignals.The invention relates to a method for detecting the start of combustion of an internal combustion engine having a plurality of cylinders by means of a rotational speed signal determined for a shaft of the internal combustion engine.

Bei einer insbesondere selbstzündenden Brennkraftmaschine kann es dazu kommen, dass die Verbrennung in den jeweiligen Zylindern nicht zu dem bestmöglichen Zeitpunkt stattfindet. Diese unerwünschte Abweichung wird durch Alterungseffekte oder durch Fertigungstoleranzen bedingt. Sie kann eine Erhöhung des Abgasausstoßes, eine Zunahme des Kraftstoffverbrauches oder auch eine Verschlechterung des Rundlaufes der Brennkraftmaschine zur Folge haben.In a particular self-igniting internal combustion engine, it may happen that the combustion in the respective cylinders does not take place at the best possible time. This undesirable deviation is caused by aging effects or by manufacturing tolerances. It can result in an increase in exhaust emissions, an increase in fuel consumption or even a deterioration in the running of the internal combustion engine.

Bekannt sind Verfahren, die den genauen Zeitpunkt des Brennbeginns mittels zusätzlich vorgesehener Sensoren ermitteln. US5239473 detektiert Fehltzündungen auf Basis eines frequenztransformierten Drehzahlsignals. In der DE 33 02 219 A1 sowie in der DE 197 49 817 A1 werden Verfahren beschrieben, die den Druckverlauf im Zylinder-Innenraum mittels Druck-Sensoren bestimmen. Außerdem werden mit der DE 25 13 289 A1 , DE 44 13 473 A1 und der DE 196 12 180 C1 Verfahren offenbart, die den Körperschall außen am Gehäuse der Brennkraftmaschinen erfassen. Anhand der so gemessenen Druck- und/oder Körperschallsignale wird auf den Brennbeginn der Brennkraftmaschine zurückgeschlossen. Die bei den bekannten Verfahren zusätzlich erforderlichen Sensoren bedeuten einen nicht unerheblichen Mehraufwand.Methods are known which determine the exact time of the start of combustion by means of additionally provided sensors. US5239473 detects misfire based on a frequency-transformed speed signal. In the DE 33 02 219 A1 as well as in the DE 197 49 817 A1 Methods are described which determine the pressure curve in the cylinder interior by means of pressure sensors. In addition, with the DE 25 13 289 A1 . DE 44 13 473 A1 and the DE 196 12 180 C1 Discloses methods that detect the structure-borne noise outside of the housing of the internal combustion engine. On the basis of the pressure and / or structure-borne sound signals measured in this way, conclusions are drawn about the start of combustion of the internal combustion engine. The additionally required in the known methods sensors mean a significant overhead.

Die Aufgabe der Erfindung besteht darin, ein Verfahren der eingangs bezeichneten Art anzugeben, das die Erfassung des Brennbeginns mit möglichst einfachen Mitteln erlaubt.The object of the invention is to provide a method of the type described, which allows the detection of the start of combustion with the simplest possible means.

Diese Aufgabe wird gelöst durch die Merkmale des Anspruches 1. Das erfindungsgemäße Verfahren kommt regelmäßig ohne zusätzliche Sensorik aus. Es basiert als Messgröße nur auf dem Drehzahlsignal, das in der Regel ohnehin ermittelt wird und somit in einem Steuergerät der Brennkraftmaschine bereits vorliegt. Darüber hinaus lässt sich der exakte Brennbeginn einfach anhand des in den Winkelfrequenzbereich transformierten Zylindersignals ermitteln. Hierzu fallen keine aufwendigen Rechenoperationen an. Für die Transformation in den Winkelfrequenzbereich kann gegebenenfalls auf ohnehin im Steuergerät vorhandene Signaltransformationsverfahren zurückgegriffen werden.This object is achieved by the features of claim 1. The inventive method is regularly without additional sensors from. It is based as a measured variable only on the speed signal, which is usually determined anyway and thus already exists in a control unit of the internal combustion engine. In addition, the exact start of burning can be easily determined on the basis of the transformed into the angular frequency range cylinder signal. There are no complicated arithmetic operations. For the transformation into the angular frequency range it is possible, if appropriate, to resort to signal transformation methods which are already present in the control unit.

Besondere Ausgestaltungen des erfindungsgemäßen Verfahrens ergeben sich aus den abhängigen Ansprüchen.Particular embodiments of the method according to the invention emerge from the dependent claims.

Die Gegenstände der Ansprüche 2 und 3 betreffen jeweils eine vorteilhafte Methode zur Generierung des Zylindersignals, das die auszuwertenden Informationen des gerade interessierenden Zylinders umfasst.The subject matters of claims 2 and 3 each relate to an advantageous method for generating the cylinder signal, which comprises the information to be evaluated of the cylinder of interest.

Die Ausgestaltungen nach den Ansprüchen 5 bis 9 betreffen günstige Möglichkeiten zur Signalverbesserung, die insbesondere vor der Überführung in den Winkelfrequenzbereich durchgeführt werden. Mittels dieser vorgeschalteten Verfahrensschritte lässt sich der Brennbeginn noch genauer feststellen, da dann auch die im Winkelfrequenzbereich entnehmbare und diesbezüglich relevante Signalinformation mit einer höheren Genauigkeit ermittelt werden kann.The embodiments according to claims 5 to 9 relate to favorable possibilities for signal improvement, which are carried out in particular before the conversion into the angular frequency range. By means of these upstream process steps, the start of burning can be determined even more precisely, since then also the signal information which can be taken in the angular frequency range and relevant in this regard can be determined with a higher accuracy.

Gemäß der Ausgestaltung nach Anspruch 10 lässt sich das Betriebsverhalten der Brennkraftmaschine verbessern, indem der ermittelte exakte Brennbeginn zur (Nach-)Regelung des betreffenden Zylinders herangezogen wird. Die eingangs beschriebenen Unzulänglichkeiten lassen sich dann weitgehend vermeiden.According to the embodiment according to claim 10, the operating behavior of the internal combustion engine can be improved by using the determined exact start of combustion for (subsequent) control of the relevant cylinder becomes. The inadequacies described above can then be largely avoided.

Bevorzugte Ausführungsbeispiele, sowie weitere Vorteile und Einzelheiten der Erfindung werden nunmehr anhand der Zeichnung näher erläutert. Zur Verdeutlichung ist die Zeichnung nicht maßstäblich ausgeführt, und gewisse Aspekte sind nur schematisiert dargestellt. Im Einzelnen zeigen:

Fig.
1 ein erstes Ausführungsbeispiel des Verfahrens zur Brennbeginn- Detektion und
Fig. 2
ein zweites Ausführungsbeispiel.
Preferred embodiments, as well as other advantages and details of the invention will now be explained in more detail with reference to the drawing. For clarity, the drawing is not drawn to scale, and certain aspects are shown only schematically. In detail show:
FIG.
1 shows a first embodiment of the method for the start of combustion detection and
Fig. 2
a second embodiment.

Einander entsprechende Teile sind in den Fig. 1 und 2 mit denselben Bezugszeichen versehen.Corresponding parts are in the Fig. 1 and 2 provided with the same reference numerals.

Das in Fig. 1 dargestellte erste Ausführungsbeispiel dient zur Detektion des Brennbeginns einer insbesondere selbstzündenden Brennkraftmaschine 1, die vier Zylinder 2, 3, 4 und 5 aufweist. Die Zylinderanzahl ist jedoch nur exemplarisch zu verstehen. Das Verfahren kann ebenso auf eine Brennkraftmaschine 1 mit einer anderen Zylinderanzahl angewendet werden. An einer Welle 6, insbesondere der Kurbelwelle, der Brennkraftmaschine 1 ist ein Geberrad 7 angebracht, das über den Umfang verteilt, äquidistant Markierungen aufweist. Diese im Ausführungsbeispiel nicht näher gezeigten Markierungen können beispielsweise in Form von Zähnen oder auch Löchern ausgebildet sein. Ein dem Geberrad 7 zugeordneter Sensor 8, beispielsweise in Gestalt eines Induktivgebers, liefert genau dann ein Signal, wenn sich eine der Markierungen am Sensor 8 vorbeibewegt. Dieses Signal wird einem Steuergerät 9 zugeführt.This in Fig. 1 illustrated first embodiment is used to detect the start of combustion of a particular self-igniting internal combustion engine 1, the four cylinders 2, 3, 4 and 5 has. The number of cylinders is to be understood only as an example. The method can also be applied to an internal combustion engine 1 with a different number of cylinders. On a shaft 6, in particular the crankshaft, the internal combustion engine 1, a donor gear 7 is mounted, which is distributed over the circumference, equidistantly having markings. These markers not shown in detail in the exemplary embodiment may be formed, for example, in the form of teeth or even holes. A sensor 8 associated with the sensor wheel 8, for example in the form of an inductive sensor, delivers a signal precisely when one of the markings passes the sensor 8. This signal is fed to a control unit 9.

Das Steuergerät 9 umfasst neben anderen nicht dargestellten Einheiten mehrere auch zur Brennbeginnermittlung bestimmte Untereinheiten. Dies sind eine Drehzahleinheit 10, eine Mittelungseinheit 11, eine Geberradkorrektureinheit 12, eine Signalrekonstruktionseinheit 13, eine Segmentierungseinheit 14, eine Analyseeinheit 15 und ein Regler 16. Diese Untereinheiten können physikalisch getrennt, beispielsweise als gesonderte elektronische Baugruppen oder auch zu einer einzigen physikalischen Einheit zusammengefasst vorliegen. Letzteres ist insbesondere im Fall einer programmtechnischen Realisierung der Untereinheiten 10 bis 16 auf einem Signalprozessor möglich. Ebenso denkbar ist eine Mischform.The control unit 9 comprises, in addition to other units, not shown, a plurality of subunits, which are also intended for determining the start of combustion. These are a speed unit 10, an averaging unit 11, a Geberradkorrektureinheit 12, a signal reconstruction unit 13, a Segmentierungseinheit 14, an analysis unit 15 and a controller 16. These subunits can be physically separated, for example, as a separate electronic assemblies or combined into a single physical unit , The latter is possible in particular in the case of a program realization of the subunits 10 to 16 on a signal processor. Also conceivable is a mixed form.

Im Folgenden wird die Funktionsweise der Brennbeginn-Detektion und -Nachregelung näher beschrieben. Das vom Sensor 8 gelieferte Zeitbereichs-Signal wird in der Drehzahleinheit 10 in ein Drehzahlsignal, das sich - wie bei der Steuerung von Brennkraftmaschinen üblich - auf den Drehwinkelbereich bezieht, umgewandelt. Das Drehzahlsignal gibt in Abhängigkeit vom Drehwinkel der Welle 6 die jeweils aktuell vorliegende Wellendrehzahl oder Wellendrehbeschleunigung an.In the following, the operation of the start of combustion detection and readjustment will be described in more detail. The time-domain signal supplied by the sensor 8 is converted in the rotational speed unit 10 into a rotational speed signal which relates to the rotational angle range, as is customary in the control of internal combustion engines. Depending on the angle of rotation of the shaft 6, the rotational speed signal indicates the currently present shaft rotational speed or shaft rotational acceleration.

Anschließend wird aus dem Drehzahlsignal ein Segmentsignal SS mit einem Drehwinkelbereich extrahiert, innerhalb dessen jeder der Zylinder 2 bis 5 genau einmal zündet. Im Fall des Ausführungsbeispieles ist dies ein Segment entsprechend einer zweifachen Vollumdrehung der Welle 6, also mit einem 720 Grad-Drehwinkelbereich. Je nach Art der Brennkraftmaschine 1 oder der zur Erfassung des Drehzahlsignals verwendeten Welle 6, die anstelle als Kurbelwelle auch als Nockenwelle ausgebildet sein könnte, kann der Drehzahlbereich des Segmentsignals SS jedoch grundsätzlich auch eine andere Größe aufweisen.Subsequently, a segment signal SS is extracted from the speed signal with a rotation angle range within which each of the cylinders 2 to 5 ignites exactly once. In the case of the embodiment, this is a segment corresponding to a double full rotation of the shaft 6, ie with a 720 degree rotation angle range. Depending on the type of internal combustion engine 1 or the shaft 6 used for detecting the rotational speed signal, which could also be designed as a camshaft instead of as a crankshaft, the rotational speed range of the segment signal SS can, however, in principle also have a different size.

Die Erfassung des Drehzahlsignals und auch des Segmentsignals erfolgt derzeit praktisch in jedem Steuergerät 9 einer Brennkraftmaschine 1. Es handelt sich somit nicht um gesondert für die Brennbeginn-Detektion vorgesehene Erfassungsmittel.The detection of the speed signal and also of the segment signal currently takes place practically in each control unit 9 of an internal combustion engine 1. It is therefore not separately provided for the start of combustion detection means.

Die im Folgenden beschriebenen Verfahrensschritte gehen stets von dem Vorliegen eines quasi stationären Betriebszustandes der Brennkraftmaschine 1 aus.The method steps described below always assume the presence of a quasi-stationary operating state of the internal combustion engine 1.

Die Verfahrensschritte, die in der Mittelungseinheit 11, in der Geberradkorrektureinheit 12 und der Signalrekonstruktionseinheit 13 vorgenommen werden, sind optional. Sie dienen einer Verbesserung der Signalqualität des Segmentsignals SS. Je höher dessen Qualität ist, desto genauer lässt sich letztendlich auch der Brennbeginn bestimmen.The method steps performed in the averaging unit 11, the encoder wheel correction unit 12 and the signal reconstruction unit 13 are optional. They serve to improve the signal quality of the segment signal SS. The higher its quality, the more precisely the start of burning can ultimately be determined.

In der Mittelungseinheit 11 wird der arithmetische Mittelwert zweier oder mehrerer aufeinanderfolgender Segmentsignale SS gebildet. Hierdurch lassen sich insbesondere zyklische Schwankungen, die beispielsweise von einer ungleichmäßigen Verbrennung herrühren, eliminieren.In the averaging unit 11, the arithmetic mean of two or more successive segment signals SS is formed. This makes it possible in particular to eliminate cyclical fluctuations resulting, for example, from uneven combustion.

Aufgrund mechanischer Fertigungstoleranzen kann es zu Ungenauigkeiten bei den an dem Geberrad 7 angeordneten Markierungen kommen. So können sich diese Markierungen nicht in äquidistanten Abständen voneinander befinden. Die dadurch im Segmentsignal SS hervorgerufenen Ungenauigkeiten lassen sich anhand bekannter Korrekturverfahren beseitigen. Mit der DE 41 33 679 A1 , DE 42 21 891 C2 und der DE 196 22 042 C2 werden derartige Korrekturverfahren beschrieben. Ermittelt werden hierbei Korrekturwerte, die im Steuergerät 9 hinterlegt werden, und anhand derer das Drehzahlsignal und auch das Segmentsignal von den genannten Geberradfehlern befreit werden können.Due to mechanical manufacturing tolerances, there may be inaccuracies in the arranged on the encoder wheel 7 marks. So these markers can not be in equidistant distances from each other. The inaccuracies caused thereby in the segment signal SS can be eliminated by known correction methods. With the DE 41 33 679 A1 . DE 42 21 891 C2 and the DE 196 22 042 C2 Such correction methods are described. In this case, correction values are determined which are stored in the control unit 9, and on the basis of which the Speed signal and also the segment signal can be exempted from the aforementioned Geberradfehlern.

Eine weitere Möglichkeit zur Signalverbesserung besteht in der Anwendung eines Signalrekonstruktionsverfahrens. Die Markierungen auf dem Geberrad 7 befinden sich üblicherweise in Drehwinkel-Abständen von 6 Grad oder auch 10 Grad. Hierdurch wird die Drehzahl der Welle 6 jedoch für manche Anwendungen zu ungenau abgetastet. Derzeit gängige Anwendungen, wie beispielsweise eine Laufruheregelung oder auch eine Brennbeginnregelung, arbeiten besser, wenn eine höhere Abtastrate vorliegt. Der Einsatz eines Geberrades 7 mit einer größeren Anzahl von Markierungen ist jedoch nicht unproblematisch, da mit steigender Markierungsanzahl der lichte Raum zwischen den einzelnen Markierungen sinkt und damit die Gefahr einer Verschmutzung ansteigt. Eine mögliche Konsequenz wäre das Übersehen einzelner Markierungen.Another way to improve the signal is to use a signal reconstruction technique. The markings on the encoder wheel 7 are usually in angular intervals of 6 degrees or even 10 degrees. As a result, however, the rotational speed of the shaft 6 is scanned too inaccurately for some applications. Currently common applications, such as a rider control or even a start of burning control work better when a higher sampling rate is present. However, the use of a sender wheel 7 with a larger number of markings is not without problems, since with increasing number of marks the clear space between the individual markings decreases and thus increases the risk of contamination. A possible consequence would be the overlooking of individual markings.

Die Abtastrate lässt sich aber dennoch mittels bestimmter Verfahren der digitalen Signalverarbeitung erhöhen. Eine erste Möglichkeit ist eine Interpolation im Drehwinkelbereich zwischen den durch die Abtastrate des Geberrades 7 bestimmten Abtastwerten. Neben einer einfachen linearen Interpolation kommt insbesondere auch eine Lagrange-Interpolation oder eine sinc-Interpolation in Betracht. Die diesbezüglich besonders vorteilhafte Lagrange-Interpolation ist ein spezielles Polynom-Interpolationsverfahren. Verglichen mit anderen grundsätzlich ebenfalls einsetzbaren Interpolationspolynomen höherer Ordnung bietet die Lagrange-Interpolation den Vorteil, ohne die Lösung eines relativ aufwendigen Gleichungssystems auszukommen. Die sinc-Interpolation basiert auf einer mathematischen Faltungsoperation.The sampling rate can nevertheless be increased by means of certain methods of digital signal processing. A first possibility is an interpolation in the rotation angle range between the sampling values determined by the sampling rate of the encoder wheel 7. In addition to a simple linear interpolation, a Lagrange interpolation or a sinc interpolation is also particularly suitable. The particularly advantageous Lagrange interpolation in this regard is a special polynomial interpolation method. Compared to other higher-order interpolation polynomials that can also be used in principle, Lagrange interpolation offers the advantage of getting along without the solution of a relatively complex system of equations. The sinc interpolation is based on a mathematical convolution operation.

Sowohl die Lagrange-Interpolation als auch die sinc-Interpolation liefern bei einem periodischen und bandbegrenzten Signal, im Ausführungsbeispiel dem Segmentsignal SS, unter Berücksichtigung des Abtasttheorems eine exakte Signalrekonstruktion, wodurch sie sich vorteilhaft von einer linearen und auch anderen, höhergradigen Polynom-Interpolation unterscheiden.Both the Lagrange interpolation and the sinc interpolation provide for a periodic and band-limited signal, in the embodiment of the segment signal SS, taking into account the sampling theorem exact signal reconstruction, which are advantageously different from a linear and other, higher-grade polynomial interpolation.

Eine zweite Möglichkeit zur Erhöhung der Abtastrate ist eine Frequenztransformation des Segmentsignals in den Winkelfrequenzbereich. Diese Transformation erfolgt insbesondere mittels einer diskreten Fourier-Transformation (DFT) oder einer diskreten Hartley-Transformation (DHT). Im Unterschied zur Fourier-Transformation werden bei der Hartley-Transformation günstigerweise nur rein reelle Operationen vorgenommen. Dadurch ergibt sich ein geringerer Rechenaufwand. Beide Transformationen liefern jeweils einen Amplituden- und einen Phasenwert bei diskreten Winkelfrequenzen, die im Bereich der Brennkraftmaschinen auch als Ordnungen bezeichnet werden. Ein kontinuierliches Rekonstruktionssignal für das Segmentsignal SS ergibt sich anhand einer Superposition harmonischer Teilschwingungen derjenigen Ordnungen (=Winkelfrequenzen), für die im Winkelfrequenzbereich relevante Spektralanteile, also Amplituden- und Phasenwerte, ermittelt worden sind. Die einzelnen harmonischen Teilschwingungen sind dabei mit dem jeweils zugehörigen Amplituden- und Phasenwert gewichtet. Eine exakte Rekonstruktion des Segmentsignals SS ist auf diese Weise und bei Einhaltung des Abtasttheorems möglich, sofern das zugrundeliegende Signal periodisch und bandbegrenzt ist.A second possibility for increasing the sampling rate is a frequency transformation of the segment signal into the angular frequency range. This transformation takes place in particular by means of a discrete Fourier transformation (DFT) or a discrete Hartley transformation (DHT). In contrast to the Fourier transformation, the Hartley transformation favorably only performs purely real operations. This results in a lower computational effort. Both transforms each provide an amplitude and a phase value at discrete angular frequencies, which are also referred to as orders in the field of internal combustion engines. A continuous reconstruction signal for the segment signal SS results from a superposition of harmonic partial oscillations of those orders (= angular frequencies) for which spectral components relevant in the angular frequency range, ie amplitude and phase values, have been determined. The individual harmonic partial oscillations are weighted with the respectively associated amplitude and phase value. An exact reconstruction of the segment signal SS is possible in this way and in compliance with the sampling theorem, as long as the underlying signal is periodic and band-limited.

Sowohl die Interpolations- als auch die Frequenztransformationsmethode liefern ein rekonstruiertes Signal, das in Form eines analytischen Funktionsausdruckes vorliegt. Diesem kann dann an beliebigen Stellen im Drehwinkelbereich, also insbesondere auch zwischen den messtechnisch ermittelten Abtaststellen, der benötigte Funktionswert entnommen werden. Somit ergibt sich die gewünschte höhere Abtastrate. So lässt sich aus einem Segmentsignal SS mit einer ursprünglichen Abtastrate von 10 Grad ein modifiziertes Segmentsignal mit einer beliebig höheren Abtastrate, beispielsweise mit einer 0,1 Grad-Abtastung erzeugen.Both the interpolation and frequency transformation methods yield a reconstructed signal that is in the form of an analytical function expression. This can then be anywhere in the rotation angle range, Thus, especially between the metrologically determined sampling, the required function value can be taken. This results in the desired higher sampling rate. Thus, a segment signal SS with an original sampling rate of 10 degrees can be used to produce a modified segment signal with an arbitrarily higher sampling rate, for example with a 0.1-degree sampling.

Sowohl das besonders vorteilhafte Lagrange-Interpolationsverfahren als auch die genannten Frequenz-Transformationsverfahren (DFT, DHT) lassen sich als sogenannte FIR-Filter (= finite impulse response) realisieren. Grundsätzlich sind jedoch auch andere Realisierungsformen denkbar.Both the particularly advantageous Lagrange interpolation method and the mentioned frequency transformation methods (DFT, DHT) can be realized as so-called FIR filters (= finite impulse response). In principle, however, other forms of realization are conceivable.

Nach Durchlaufen der zur Signalverbesserung vorgesehenen Untereinheiten 11, 12 und/oder 13 liegt ein verbessertes Segmentsignal SS* vor, das die Informationen über den Brennbeginn in den Zylindern 2 bis 5 beinhaltet.After passing through the subunits 11, 12 and / or 13 provided for improving the signal, there is an improved segment signal SS * , which contains the information about the start of combustion in the cylinders 2 to 5.

Das verbesserte Segmentsignal SS* wird in der Segmentierungseinheit 14 in insgesamt vier Zylindersignale ZS1, ZS2, ZS3 und ZS4 zerlegt. Jedes Zylindersignal ZS1 bits ZS4 beinhaltet dann nur noch Informationen über die Zündung in einem einzigen Zylinder. Die Zylindersignale ZS1 bis ZS4 können dabei im vorliegenden Ausführungsbeispiel einen Winkelbereich von bis zu 180 Grad erfassen. Günstig ist jedoch eine Extraktion von Zylindersignalen ZS1 bis ZS4 aus dem verbesserten Segmentsignal SS*, die nur einen Winkelbereich umfassen, innerhalb dessen der eigentliche Zündvorgang in dem jeweiligen Zylinder 2 bis 5 tatsächlich stattfindet, also insbesondere jeweils der um den oberen Zylinder-Totpunkt gelegene Bereich. Hierfür reicht beispielsweise ein Drehwinkelbereich von etwa 40 bis 50 Grad aus.The improved segment signal SS * is decomposed in the segmentation unit 14 into a total of four cylinder signals ZS1, ZS2, ZS3 and ZS4. Each cylinder signal ZS1 bits ZS4 then contains only information about the ignition in a single cylinder. The cylinder signals ZS1 to ZS4 can detect an angular range of up to 180 degrees in the present embodiment. Conveniently, however, is an extraction of cylinder signals ZS1 to ZS4 from the improved segment signal SS * , which only include an angular range within which the actual ignition process actually takes place in the respective cylinder 2 to 5, ie in particular in each case the region located around the upper cylinder dead center , For this purpose, for example, a rotation angle range of about 40 to 50 degrees.

Die so ermittelten Zylindersignale ZS1 bis ZS4 werden der Analyseeinheit 15 zugeführt, die für jedes Zylindersignal ZS1 bis ZS4 eine Frequenztransformation in den Winkelfrequenzbereich durchführt. Dies kann wiederum mittels einer DFT, einer DHT oder einer digitalen Filterung, beispielsweise in Form einer digitalen Bandpass-Filterung mit variabler Mittenfrequenz oder in Form digitaler Filterbänke, geschehen. Diese Überführung in den Winkelfrequenzbereich erzeugt aus den Zylindersignalen ZS1, ZS2, ZS3 und ZS4 jeweils zugehörige Zylinderfrequenzsignale FS1, FS2, FS3 beziehungsweise FS4. Für Letztere liegen dann jeweils wiederum Amplituden- und Phasenwerte bei zugehörigen diskreten Winkelfrequenzen vor.The thus-determined cylinder signals ZS1 to ZS4 are supplied to the analysis unit 15, which performs a frequency transformation into the angular frequency range for each cylinder signal ZS1 to ZS4. This can in turn be done by means of a DFT, a DHT or a digital filtering, for example in the form of digital bandpass filtering with variable center frequency or in the form of digital filter banks. This conversion into the angular frequency range generates from the cylinder signals ZS1, ZS2, ZS3 and ZS4 respectively associated cylinder frequency signals FS1, FS2, FS3 and FS4. For the latter, there are again amplitude and phase values at associated discrete angular frequencies.

Diese Signalinformationen, also die Winkelfrequenzen nebst ihren zugehörigen Amplituden- und Phasenwerten, beinhalten die im zugrundeliegenden jeweiligen Zylindersignal ZS1 bis ZS4 enthaltenen Informationen über den Betriebszustand im jeweiligen Zylinder 2 bis 5. Insbesondere lässt sich aus diesen Signalinformationen auch der exakte Brennbeginn im jeweiligen Zylinder 2 bis 5 auf einfache Weise entnehmen. Dies kann mittels eines Vergleichs mit beispielsweise empirischen Erfahrungswerten oder auch mit vorab ermittelten Referenzwerten erfolgen. Die Erfahrungs- und/oder Referenzwerte sind vorzugsweise in der Analyseeinheit 15 hinterlegt. Ebenso kann auch auf die Signalinformationen der besonders signalstarken Winkelfrequenzen zurückgegriffen werden. In Frage kommen hierfür bevorzugt diejenigen Winkelfrequenzen, bei denen der Amplitudenwert über einer Schwelle, insbesondere über der 3dB-Schwelle, liegt. Die Signalinformation, vorzugsweise die Phaseninformation, der so ermittelten speziellen Winkelfrequenz wird dann als den Brennbeginn im jeweiligen Zylinder 2 bis 5 wiedergebendes Brennbeginnsignal BS1, BS2, BS3 und BS4 der Analyseeinheit 15 zur Verfügung gestellt.This signal information, that is to say the angular frequencies together with their associated amplitude and phase values, contains the information contained in the respective cylinder signal ZS1 to ZS4 about the operating state in the respective cylinder 2 to 5. In particular, the exact start of combustion in the respective cylinder 2 to 5 can be derived from this signal information Remove 5 in a simple manner. This can be done by means of a comparison with, for example, empirical empirical values or also with previously determined reference values. The experience and / or reference values are preferably stored in the analysis unit 15. Likewise, it is also possible to fall back on the signal information of the particularly high-signal angular frequencies. In question, those angular frequencies are preferred for which the amplitude value is above a threshold, in particular above the 3dB threshold. The signal information, preferably the phase information, of the specific angular frequency thus determined is then made available to the analysis unit 15 as the start of combustion signal BS1, BS2, BS3 and BS4 representing the start of combustion in the respective cylinders 2 to 5.

Die Brennsignale BS1 bis BS4 werden einem Regler 16 zugeführt, der die enthaltene Information über den Brennbeginn zur (Nach-)Regelung des jeweiligen Zylinders 2 bis 5 verwendet, zumindest sofern dies von einer gegebenenfalls vorhandenen übergeordneten Reglerbegrenzung noch als zulässig eingestuft wird. Die (Nach-)Regelung kann beispielsweise mittels einer Variation des Förderbeginns an einer nicht näher dargestellten Einspritzpumpe der Brennkraftmaschine 1 geschehen. Insbesondere kann die Regelung anhand mindestens eines last- und/oder drehzahlabhängigen Phase-Förderbeginn-Kennlinienfeldes erfolgen. Dadurch wird individuell für jeden der Zylinder 2 bis 5 der Brennbeginn auf den optimalen Zeitpunkt eingestellt. Dies ist insbesondere möglich, ohne dass für das vorstehend beschriebene Verfahren wesentliche zusätzliche Hardware-Komponenten in dem Steuergerät 9 oder an der Brennkraftmaschine 1 erforderlich werden. Insbesondere ist auch keine zusätzliche Erfassung spezieller Betriebsparameter der Brennkraftmaschine 1 notwendig. Es ergibt sich eine sehr kostengünstige Realisierung für die Detektion des Brennbeginns und für die zylinderindividuelle Nachregelung des Brennbeginnzeitpunktes.The fuel signals BS1 to BS4 are fed to a regulator 16, which uses the information contained about the start of combustion for the (subsequent) control of the respective cylinder 2 to 5, at least if this is still classified as permissible by an optionally existing higher-level controller limitation. The (after-) control can be done for example by means of a variation of the start of delivery to an injection pump of the internal combustion engine 1, not shown. In particular, the control can be carried out on the basis of at least one load and / or speed-dependent phase-start of delivery characteristic field. As a result, the start of combustion is set individually to the optimum time for each of the cylinders 2 to 5. This is possible in particular without requiring significant additional hardware components in the control unit 9 or on the internal combustion engine 1 for the method described above. In particular, no additional detection of special operating parameters of the internal combustion engine 1 is necessary. This results in a very cost-effective implementation for the detection of the start of combustion and for the cylinder-specific readjustment of the start of combustion time.

Im Folgenden wird unter Bezugnahme auf die Fig. 2 ein zweites Ausführungsbeispiel der Erfindung beschrieben. Identische Teile erhalten dieselben Bezugszeichen wie bei dem ersten Ausführungsbeispiel, auf dessen Beschreibung hiermit verwiesen wird. Der wesentliche Unterschied besteht in dem Austausch der Segmentierungseinheit 14 gegen eine Verstelleinheit 17, die beim zweiten Ausführungsbeispiel der Drehzahleinheit 10 unmittelbar nachgeschaltet ist.The following is with reference to the Fig. 2 A second embodiment of the invention described. Identical parts are given the same reference numerals as in the first embodiment, to the description of which reference is hereby made. The main difference consists in the replacement of the segmentation unit 14 against an adjusting unit 17, which is immediately downstream of the speed unit 10 in the second embodiment.

Die Funktionsweise der Verstelleinheit 17 liegt im wesentlichen darin, beispielsweise den Zylinder 2, für den der Brennbeginn aktuell ermittelt werden soll, in seinem Betriebszustand so zu verstellen, dass der vom Zylinder 2 im resultierenden Drehzahlsignal bzw. Segmentsignal SS hervorgerufene Signalanteil deutlich gegenüber denjenigen der anderen drei Zylinder 3 bis 5 hervortritt. Das Segmentsignal SS ist dann praktisch ausschließlich durch den aktuell interessierenden Zylinder 2 bestimmt. Die Verstellung des Betriebszustandes erfolgt beispielsweise durch eine zielgerichtete Erhöhung der zugeführten Kraftstoffmenge. Andere Verstellmöglichkeiten sind jedoch grundsätzlich ebenfalls möglich.The operation of the adjustment 17 is essentially in it, for example, the cylinder 2, for which the start of burning is currently to be determined to adjust in its operating state so that the cylinder 2 caused in the resulting speed signal or segment signal SS signal component clearly opposite to those of the other three cylinders 3 to 5 emerges. The segment signal SS is then determined almost exclusively by the currently interesting cylinder 2. The adjustment of the operating state, for example, by a targeted increase in the amount of fuel supplied. However, other adjustment options are also possible in principle.

Aufgrund der Dominanz des durch den verstellten Zylinder 2 hervorgerufenen Signalanteils im Segmentsignal SS entfällt die Notwendigkeit einer weiteren Segmentierung in der Segmentierungseinheit 14 gemäß erstem Ausführungsbeispiel. Das verbesserte Segmentsignal SS* wird als Ganzes als Zylindersignal ZS1 herangezogen. Die übrigen Verfahrensschritte laufen analog zum ersten Ausführungsbeispiel ab, allerdings mit der Maßgabe, dass nur für den relevanten Zylinder 2 von der Analyseeinheit 15 ein Brennbeginnsignal BS1 generiert wird. In diesem Verfahrenszyklus lässt sich demzufolge auch nur der Zylinder 2 nachregeln. Für die übrigen Zylinder 3 bis 5 geschieht dies danach in sequenzieller Abfolge. Die Verstelleinheit 17 verstellt nacheinander den Betriebszustand in jeweils einem der übrigen Zylinder 3 bis 5 signifikant. Vorteilhafterweise erfolgt der Eingriff der Verstelleinheit 17 jeweils erst dann, wenn die Brennkraftmaschine 1 ihren quasi stationären Betriebszustand erreicht hat. Dies lässt sich leicht anhand des in der Drehzahleinheit 10 ermittelten Drehzahlsignals oder auch des Segmentsignals SS feststellen.Due to the dominance of the caused by the displaced cylinder 2 signal component in the segment signal SS eliminates the need for further segmentation in the segmentation unit 14 according to the first embodiment. The improved segment signal SS * is used as a whole as a cylinder signal ZS1. The remaining method steps are analogous to the first embodiment, but with the proviso that only for the relevant cylinder 2 of the analysis unit 15, a start of combustion signal BS1 is generated. Consequently, only the cylinder 2 can be readjusted in this process cycle. For the remaining cylinders 3 to 5, this is done in sequential order thereafter. The adjusting unit 17 sequentially adjusts the operating state in each case one of the remaining cylinders 3 to 5 significantly. Advantageously, the engagement of the adjusting unit 17 takes place in each case only when the internal combustion engine 1 has reached its quasi-stationary operating state. This can easily be ascertained on the basis of the speed signal or the segment signal SS ascertained in the speed unit 10.

Claims (10)

  1. A method for detecting the beginning of combustion in an internal combustion engine (1) having several cylinders (2, 3, 4, 5) using a rotational speed signal ascertained for a shaft (6) of the internal combustion engine (1), in which
    - at least one segment signal (SS) with a signal length equal to an integral full rotation of the shaft (6) is extracted from the rotational speed signal, so that each cylinder (2, 3, 4, 5) ignites once in the rotational angle range represented by the signal length
    - the segment signal (SS) is broken down into individual cylinder signals (ZS1, ZS2, ZS3, ZS4) corresponding to the number of cylinders (2, 3, 4, 5), wherein each cylinder signal (ZS1, ZS2, ZS3, ZS4) provides information about the ignition of a single cylinder (2, 3, 4, 5),
    - the cylinder signal (ZS1, ZS2, ZS3, ZS4) is transformed into an associated cylinder frequency signal (FS1, FS2, FS3, FS4) in an angle frequency range using a frequency transformation in each case, wherein amplitude values and phase values with associated discrete angle frequencies are then available for each cylinder frequency signal (FS1, FS2, FS3, FS4),
    - a signal information comprising the beginning of combustion in the associated cylinder (2, 3, 4, 5) is extracted from the cylinder frequency signal (FS1, FS2, FS3, FS4) for at least one specified angle frequency using the amplitude values and phase values belonging to the specified angle frequency, wherein the beginning of combustion in the signal information is extracted by comparing the amplitude values and phase values of the specified angle frequency with the corresponding empirical values and/or reference values, using the phase information of the angle frequency whose amplitude value lies above a threshold to detect the beginning of combustion.
  2. A method according to claim 1, characterized in that the cylinder signal (ZS1, ZS2, ZS3, ZS4) is generated by extracting a signal portion from the segment signal (SS), wherein the signal portion covers the rotational angle range within which the relevant cylinder (2, 3, 4, 5) ignites.
  3. A method according to claim 1, characterized in that the operational state is adjusted in the cylinder (2) for which the beginning of combustion is to be detected, and the segment signal (SS) resulting after the adjustment is used in its entirety as the cylinder signal (ZS1) applicable for this cylinder (2).
  4. A method according to any one of the preceding claims, characterized in that the cylinder frequency signal (FS1, FS2, FS3, FS4) is generated using a frequency transformation, particularly a discrete Hartley transformation or a discrete Fourier transformation, or using digital filtering.
  5. A method according to any one of the preceding claims, characterized in that at least two consecutive segment signals (SS) are averaged arithmetically.
  6. A method according to any one of the preceding claims, characterized in that a transmitting wheel (7) is used to generate the rotational speed signal and the inaccuracies in the segment signal (SS) resulting due to transmitting wheel errors are at least largely eliminated.
  7. A method according to any one of the preceding claims, characterized in that an improved segment signal (SS*), particularly with a higher scanning rate, is generated using digital signal processing.
  8. A method according to claim 7, characterized in that the segment signal (SS) is subjected to an interpolation method, particularly a Lagrange or sinc interpolation.
  9. A method according to claim 7, characterized in that the segment signal (SS) is subjected to a frequency transformation, particularly a discrete Hartley or a discrete Fourier transformation.
  10. A method according to any one of the preceding claims, characterized in that the signal information comprising the beginning of combustion is used to regulate the beginning of combustion.
EP05714876A 2004-02-04 2005-01-20 Method for detecting the beginning of combustion in an internal combustion engine Not-in-force EP1711702B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005325A DE102004005325A1 (en) 2004-02-04 2004-02-04 Method for detecting the start of combustion of an internal combustion engine
PCT/DE2005/000070 WO2005075804A1 (en) 2004-02-04 2005-01-20 Method for detecting the beginning of combustion in an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1711702A1 EP1711702A1 (en) 2006-10-18
EP1711702B1 true EP1711702B1 (en) 2010-07-07

Family

ID=34801506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05714876A Not-in-force EP1711702B1 (en) 2004-02-04 2005-01-20 Method for detecting the beginning of combustion in an internal combustion engine

Country Status (9)

Country Link
US (1) US7516732B2 (en)
EP (1) EP1711702B1 (en)
JP (1) JP4947412B2 (en)
CN (1) CN100507245C (en)
AT (1) ATE473364T1 (en)
BR (1) BRPI0507414A (en)
DE (3) DE102004005325A1 (en)
ES (1) ES2345341T3 (en)
WO (1) WO2005075804A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056860A1 (en) 2006-12-01 2008-06-05 Conti Temic Microelectronic Gmbh Method and device for controlling the operation of an internal combustion engine
US7637248B2 (en) * 2007-01-25 2009-12-29 Andreas Stihl Ag & Co. Kg Method for operating an internal combustion engine by determining and counteracting a pre-ignition state
DE102008032174B4 (en) 2008-01-16 2022-07-07 Vitesco Technologies Germany Gmbh Method for identifying cylinders of an internal combustion engine when cylinder-specific events occur
DE102008008384B4 (en) 2008-02-09 2021-07-22 Vitesco Technologies Germany Gmbh Method for identifying cylinders of an internal combustion engine when cylinder-specific events occur
DE102008021443B4 (en) 2008-04-29 2022-08-04 Vitesco Technologies Germany Gmbh Method for equalizing the start of combustion in cylinders of an internal combustion engine
GB2463022B (en) * 2008-08-28 2012-04-11 Gm Global Tech Operations Inc A method for correcting the cylinder unbalancing in an internal combustion engine
DE102009051624B4 (en) * 2009-07-31 2021-04-01 Vitesco Technologies Germany Gmbh Method for spectral analysis of a signal from an internal combustion engine and a control device for an internal combustion engine for carrying out such a method
FR2981121B1 (en) * 2011-10-05 2013-12-27 Continental Automotive France MOTOR SYNCHRONIZATION METHOD
DE102019207252A1 (en) 2018-11-14 2020-05-14 Vitesco Technologies GmbH Acquisition of individual cylinder combustion parameter values for an internal combustion engine
US11512660B2 (en) * 2019-06-17 2022-11-29 Cummins Inc. Internal combustion engine misfire and air-fuel ratio imbalance detection and controls
CN112377305B (en) * 2020-10-17 2021-11-19 哈尔滨工程大学 Combustion phase identification method and system for marine compression ignition diesel engine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2513289A1 (en) 1975-03-26 1976-10-07 Mak Maschinenbau Gmbh Combustion start sensor for diesel engines - has ignition shock sensors whose signal is compared with reference signal
DE3302219A1 (en) 1982-02-03 1983-08-11 Steyr-Daimler-Puch AG, 1010 Wien METHOD AND DEVICE FOR ADJUSTING A MULTIPLE OF INJECTION UNITS ASSOCIATED WITH EVERY CYLINDER OF A DIESEL ENGINE
DE69004410T2 (en) * 1990-01-08 1994-05-19 Hitachi Ltd Method and device to detect the state of combustion in a multi-cylinder internal combustion engine.
US5239473A (en) 1990-04-20 1993-08-24 Regents Of The University Of Michigan Method and system for detecting the misfire of an internal combustion engine utilizing angular velocity fluctuations
DE4133679A1 (en) 1991-10-11 1993-04-22 Bosch Gmbh Robert METHOD FOR ADAPTING MECHANICAL TOLERANCES OF A SENSOR WHEEL
DE4221891C2 (en) 1992-07-03 1995-10-19 Audi Ag Method for correcting angular errors on a sensor wheel when determining the instantaneous speed of a rotating body
DE4413473A1 (en) * 1994-04-19 1995-10-26 Stn Atlas Elektronik Gmbh Monitoring internal combustion engine cylinder e.g. in ship
DE19531845B4 (en) 1995-08-29 2005-10-20 Bosch Gmbh Robert Misfire detection method
DE19612180C1 (en) 1996-03-27 1997-03-06 Siemens Ag Irregular combustion detection method for multicylinder diesel engine
JPH09264183A (en) 1996-03-29 1997-10-07 Mazda Motor Corp Method of judging combusting state of engine, method of controlling engine, and device therefor
EP0799983B1 (en) 1996-04-05 2003-06-18 Toyota Jidosha Kabushiki Kaisha Method of detection of angular velocity and torque in an internal combustion engine
DE19622042C2 (en) 1996-05-31 1999-05-20 Siemens Ag Method for recognizing and correcting errors in the time measurement on rotating shafts
WO1998007973A1 (en) * 1996-08-23 1998-02-26 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
US5934256A (en) 1997-03-04 1999-08-10 Siemens Aktiengesellschaft Method for detecting irregular combustion processes in a multicylinder diesel internal combustion engine
DE19749817B4 (en) 1997-11-11 2008-03-20 Robert Bosch Gmbh Apparatus and method for determining the start of injection
US6021758A (en) 1997-11-26 2000-02-08 Cummins Engine Company, Inc. Method and apparatus for engine cylinder balancing using sensed engine speed
JP2000337207A (en) * 1999-05-24 2000-12-05 Mitsubishi Electric Corp Fuel property discriminating device for internal combustion engine
DE10038339A1 (en) 2000-08-05 2002-02-14 Bosch Gmbh Robert Method and device for monitoring a sensor
DE10235665A1 (en) 2002-07-31 2004-02-12 Conti Temic Microelectronic Gmbh Regulating the operation of an internal combustion engine, involves determining a revolution rate signal and transforming it into an angular frequency range using a Hartley transformation

Also Published As

Publication number Publication date
US20080127945A1 (en) 2008-06-05
JP4947412B2 (en) 2012-06-06
JP2007520663A (en) 2007-07-26
CN100507245C (en) 2009-07-01
DE112005000803A5 (en) 2007-05-24
WO2005075804A1 (en) 2005-08-18
DE502005009858D1 (en) 2010-08-19
CN1918380A (en) 2007-02-21
DE102004005325A1 (en) 2005-08-25
EP1711702A1 (en) 2006-10-18
ES2345341T3 (en) 2010-09-21
US7516732B2 (en) 2009-04-14
BRPI0507414A (en) 2007-06-26
ATE473364T1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
EP1711702B1 (en) Method for detecting the beginning of combustion in an internal combustion engine
EP3374617B1 (en) Method for the combined identification of a piston stroke phase difference, an inlet valve stroke phase difference and an outlet valve stroke phase difference of an internal combustion engine
EP3523528B1 (en) Method for the combined identification of an inlet valve stroke phase difference and an outlet valve stroke phase difference of an internal combustion engine with the aid of lines of the same amplitude
DE102005042794B4 (en) Automatic calibration procedure for a misfire detection system of an engine
DE3504039C2 (en)
DE102016117342B4 (en) Device for detecting a misfire
EP2609411B1 (en) Method for detecting misfires in internal combustion engines, and detection device
DE10235665A1 (en) Regulating the operation of an internal combustion engine, involves determining a revolution rate signal and transforming it into an angular frequency range using a Hartley transformation
DE10017749B4 (en) System for detecting misfire in internal combustion engines
WO2009132897A1 (en) Method for determining the rail pressure in a common rail system, and common rail injection system
DE2713988C2 (en)
DE19531845A1 (en) Misfire detection method
DE112018004908B4 (en) Misfire detector for an internal combustion engine
DE102004010412B4 (en) Device for operating an internal combustion engine
DE2625971C2 (en) Method and device for the detection of malfunctions in individual cylinders of internal combustion engines
DE102005027650B4 (en) Method and device for operating an internal combustion engine
WO2018060339A1 (en) Method for producing a combustion space signal data stream with interference suppression
DE102008052245A1 (en) Method for determining crank shaft torsional optimal operating method of internal combustion engine, involves determining speed signals of crank shaft under operating condition of internal combustion engine
WO2012139805A1 (en) Method for determining a starting position of a cyclic movement
WO2009036890A2 (en) Method and device for determining the deviation of a lambda value from a total lambda value of at least one cylinder of an internal combustion engine
DE102011077698A1 (en) Method for controlling smooth running of e.g. diesel engine used in motor vehicle, involves assigning working cycles for each cylinder so as to control smooth running of internal combustion engine via two working cycles of cylinder
EP1178202B1 (en) Method and apparatus for controlling an internal combustion engine
EP0745836B1 (en) Device for producing a synthetic signal for testing knocking control functions
DE102007006666A1 (en) Method for operating a sensor signal based on a crank angle for controlling the operation of a vehicle comprises determining a revolution gradient from actual and previously acquired crank angle signals and correcting the sensor signal
DE102015203458B3 (en) Method and device for operating an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070827

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005009858

Country of ref document: DE

Date of ref document: 20100819

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2345341

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

26N No opposition filed

Effective date: 20110408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005009858

Country of ref document: DE

Effective date: 20110408

BERE Be: lapsed

Owner name: CONTI TEMIC MICROELECTRONIC G.M.B.H.

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 473364

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120124

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130122

Year of fee payment: 9

Ref country code: DE

Payment date: 20130122

Year of fee payment: 9

Ref country code: FR

Payment date: 20130213

Year of fee payment: 9

Ref country code: GB

Payment date: 20130122

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005009858

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005009858

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140121

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180227

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190121