EP1711260A2 - Catalyseur zeolithique, support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees - Google Patents

Catalyseur zeolithique, support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees

Info

Publication number
EP1711260A2
EP1711260A2 EP04816406A EP04816406A EP1711260A2 EP 1711260 A2 EP1711260 A2 EP 1711260A2 EP 04816406 A EP04816406 A EP 04816406A EP 04816406 A EP04816406 A EP 04816406A EP 1711260 A2 EP1711260 A2 EP 1711260A2
Authority
EP
European Patent Office
Prior art keywords
measured
mercury porosimetry
pores
zeolite
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP04816406A
Other languages
German (de)
English (en)
Inventor
Patrick Euzen
Patrick Bourges
Hughes Dulot
Christophe Gueret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1711260A2 publication Critical patent/EP1711260A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles

Definitions

  • Zeolite catalyst support based on an ex-zeolite silica-aluminum matrix, and hydrocracking process for hydrocarbon feedstocks
  • the present invention relates to supports based on silico-aluminum matrix and zeolite, catalysts and the hydroconversion processes using them.
  • the objective of the process is essentially the production of middle distillates, that is to say sections with an initial boiling point of at least 150 ° C and a final going up to before the initial boiling point of the residue. , for example less than 340 ° C, or even less than 370 ° C.
  • hydrocracking of heavy petroleum fractions is a very important refining process which makes it possible to produce, from excess heavy and little valorized charges, lighter fractions such as gasolines, jet fuels and light gas oils which the refiner seeks to adapt its production to the structure of demand.
  • Certain hydrocracking processes also make it possible to obtain a highly purified residue which can provide excellent bases for oils.
  • the advantage of catalytic hydrocracking is to provide middle distillates, jet fuels and diesel, of very good quality.
  • the gasoline produced has a much lower octane number than that from catalytic cracking.
  • Hydrocracking is a process which derives its flexibility from three main elements which are, the operating conditions used, the types of catalysts used and the fact that hydrocracking of hydrocarbon feedstocks can be carried out in one or two stages.
  • the hydrocracking catalysts used in hydrocracking processes are all of the bifunctional type combining an acid function with a hydrogenating function.
  • the acid function is provided by supports whose surfaces generally vary from 150 to 800 m 2 .g " 1 and having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron oxides and d aluminum, amorphous silica-aluminas and zeolites.
  • the hydrogenating function is provided either by one or more metals from group VIII of the periodic table, or by a combination of at least one metal from group VIB of the periodic table and at least one group VIII metal.
  • the balance between the two acid and hydrogenating functions is one of the parameters which govern the activity and the selectivity of the catalyst.
  • a weak acid function and a strong hydrogenating function give catalysts which are not very active, working at a generally high temperature (greater than or equal to 390-400 ° C.), and at a low spatial speed of supply (the VVH expressed in volume of charge at process per unit volume of catalyst per hour is generally less than or equal to 2), but with very good selectivity in middle distillates.
  • a strong acid function and a weak hydrogenating function give active catalysts, but having poorer selectivities for middle distillates (jet fuels and diesel fuels).
  • One type of conventional hydrocracking catalyst is based on moderately acidic amorphous supports, such as silica-aluminas for example. These systems are used to produce good quality middle distillates, and possibly oil bases. These catalysts are for example used in two-step processes.
  • the catalysts partially comprising a zeolite or a mixture of zeolites have a catalytic activity higher than those of amorphous silica-aluminas, but have selectivities for light products which are higher.
  • the Applicant has demonstrated, unexpectedly, that the incorporation into a matrix, with reduced macropore content, of certain zeolites alone or in mixture has led to the preparation of catalysts having improved catalytic performance in hydrocracking processes by compared to the catalysis ⁇ rs of the prior art. More specifically, the invention relates to a hydrocracking / hydroconversion, the medium used for preparing said catalyst and the hydrocracking process the implementing.
  • the term “specific surface” means the BET specific surface determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 established on the basis of the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of American Society", 60, 309, (1938).
  • the term “mercury volume of the supports and catalysts” means the volume measured by intrusion with a mercury porosimeter according to the ASTM D4284- 83 at a maximum pressure of 4000 bar, using a surface tension of 484 dyne / cm and a contact angle for amorphous silica-alumina supports of 140 °.
  • the mean mercury diameter is defined as being a diameter such that all the pores of size smaller than this diameter constitute 50% of the pore volume (V Hg ), in a range between 36 ⁇ and 1000 A.
  • V Hg pore volume
  • One of the reasons why it is preferable to use the support as a basis for defining the porous distribution lies in the fact that the contact angle of the mercury varies after impregnation of the metals and this according to the nature and the type of metals.
  • the wetting angle was taken equal to 140 ° following the recommendations of the book "Engineering techniques, treatise analysis and characterization, P 1050-5, written by Jean Charpin and Bernard Rasneur".
  • the value of the mercury volume in ml / g given in the following text corresponds to the value of the total mercury volume in ml / g measured on the sample minus the value of the mercury volume in ml / g measured on the same sample for a pressure corresponding to 30 psi (approximately 2 bars).
  • the mean mercury diameter is also defined as being a diameter such that all the pores of size smaller than this diameter constitute 50% of the total pore volume of mercury.
  • the volume V1 corresponds to the volume contained in the pores whose diameter is less than the mean diameter minus 30 A.
  • the volume V2 corresponds to the volume contained in pores with a diameter greater than or equal to the average diameter minus 30 A and less than the average diameter plus 30 A.
  • the volume V3 corresponds to the volume contained in the pores with a diameter greater than or equal to the average diameter plus 30 A.
  • the volume V4 corresponds to the volume contained in the pores whose diameter is less than the mean diameter minus 15 A.
  • the volume V5 corresponds to the volume contained in the pores of diameter greater than or equal to the mean diameter minus 15 A and less than the mean diameter plus 15 A.
  • the volume V6 corresponds the volume contained in the pores with a diameter greater than or equal to the average diameter plus 15 A.
  • the porous distribution measured by nitrogen adsorption has been tee determined by the Barrett-Joyner-Halenda (BJH) model.
  • BJH Barrett-Joyner-Halenda
  • the adsorption isotherm - nitrogen desorption according to the BJH model is described in the periodical "The Journal of American Society", 73, 373, (1951) written by EPBarrett, LGJoyner and PPHalenda.
  • the mean nitrogen desorption diameter is defined as being a diameter such that all the pores smaller than this diameter constitute 50% of the pore volume (Vp) measured on the desorption branch of the nitrogen isotherm.
  • adsorption surface is meant the surface measured on the branch of the adsorption isotherm. See, for example in the article by A. Lecloux “Memoirs of the Royal Society of Liège Science, 6th series, Volume I, fasc.4, pp.169-209 (1971).”
  • the sodium content was measured by atomic absorption spectrometry.
  • X-ray diffraction is a technique that can be used to characterize the supports and catalysts according to the invention.
  • ⁇ K ⁇ 1 1.7890 A
  • ⁇ lK ⁇ 1.793 A
  • gamma alumina in the remainder of the text, inter alia, for example, an alumina included in the group consisting of cubic gamma, pseudo-cubic gamma, tetragonal gamma, poorly or poorly crystallized gamma, large surface gamma, low surface gamma gamma from large boehmite, gamma from crystallized boehmite, gamma from poorly or poorly crystallized boehmite, gamma from a mixture of crystallized boehmite and an amorphous gel, gamma from an amorphous gel, gamma in evolution towards delta.
  • the alumina compound may contain an amorphous fraction which is difficult to detect by X-ray techniques. It will therefore be understood hereinafter that the alumina compounds used or described in the text may contain an amorphous or poorly crystallized fraction.
  • the supports and catalysts according to the invention were analyzed by MAS NMR of the solid of 27 AI on a spectrometer from the firm Br ⁇ ker of the MSL 400 type, in a 4 mm probe.
  • the speed of rotation of the samples is of the order of 11 kHz.
  • the NMR of aluminum makes it possible to distinguish three types of aluminum whose chemical shifts are reported below:
  • the aluminum atom is a quadrupole nucleus.
  • the magic angle rotation NMR technique (MAS) is a quantitative technique.
  • the decomposition of NMR MAS spectra allow direct access to the quantity of the different species.
  • the spectrum is calibrated in chemical displacement compared to a 1M solution of aluminum nitrate.
  • the aluminum signal is at zero ppm.
  • the proportion of octahedral AI ⁇ is understood to mean the following ratio: area 2 / (area 1 + area 2).
  • a method of characterizing the supports and catalysts according to the invention which can be used is transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • an electron microscope of the Jeol 2010 or Philips Tecnai20F type, possibly with scanning
  • EDS energy dispersion spectrometer
  • the EDS detector must allow the detection of light elements.
  • the combination of these two tools, MET and EDS makes it possible to combine imagery and local chemical analysis with good spatial resolution.
  • the samples are finely dry ground in a mortar; the powder is then included in resin to make ultra-fine cuts with a thickness of around 70 nm.
  • the size of the electron beam for the analysis of the zones is a maximum of 50 nm in diameter, preferably 20 nm, even more preferably 10, 5, 2 or 1 nm in diameter .
  • the analyzed area will be a function of the size of the scanned area and no longer of the size of the generally reduced beam.
  • the 50 nm probe is the probe used for characterizing the supports and catalysts according to the invention unless otherwise stated.
  • the zeolites used for the preparation of the hydrocracking catalysts are characterized by several sizes such as their molar ratio Si0 2 / AI 2 03 of framework, their crystalline parameter, their porous distribution, their specific surface, their capacity of recovery in sodium ion, or still their water vapor adsorption capacity.
  • the peak rate and the crystal fraction are important parameters to consider. Peak rates and crystal fractions are determined by X-ray diffraction from a reference zeolite, using a procedure derived from ASTM method D3906-97 "Determination of Relative X-ray Diffraction Intensifies of Faujasite-Type-Containing Materials ”.
  • a diffractogram is composed of the lines characteristic of the crystallized fraction of the sample and of a background, mainly caused by the diffusion of the amorphous or microcrystalline fraction of the sample (a weak diffusion signal is linked to the apparatus, air , sample holder, etc.)
  • This peak / (peak + bottom) ratio is proportional to the amount of zeolite crystallized in the material.
  • the peak rate of the sample will be compared to that of a reference considered to be 100% crystallized (NaY for example).
  • the peak rate of a perfectly crystallized NaY zeolite is of the order of 0.55 to 0.60.
  • the packed filling density is measured, as described in the book "Applied Heterogenous Catalysis” by JF Le Page, J. Cosyns, P. Courty, E. Freund, JP. Franck, Y. Jacquin, B. Juguin, C. Marcilly, G. Martino, J. Miquel, R. Montarnal, A. Sugier, H. Van Landeghem, Technip, Paris, 1987.
  • This measurement is generally carried out on 1000 cm 3 of catalyst packed in a cylinder whose height to diameter ratio is close to 5: 1.
  • This measurement can, preferably, be carried out on automated devices such as Autotap® sold by Quantachrome®.
  • the acidity of the matrix is measured by IR.
  • the IR spectra are recorded on a Nicolet interferometer of the Nexus-670 type at a resolution of 4 cm-1 with an apodization of the Happ-Gensel type.
  • the sample (20 mg) is pressed in the form of a self-supporting tablet and placed in an in-situ analysis cell (25 ° C to 550 ° C, oven remote from the IR beam, secondary vacuum of 10- 6 mbar).
  • the diameter of the tablet is 16 mm.
  • the sample is pretreated in the following manner in order to eliminate the physisorbed water and to partially dehydroxylate the surface of the catalyst to have a representative image of the acidity of the catalyst in operation: temperature rise from 25 ° C to 300 ° C in 3 hours 10 hour plateau at 300 ° C temperature drop from 300 ° C to 25 ° C in 3 hours
  • the basic probe (pyridine) is then adsorbed at saturated pressure at 25 ° C and then thermosorbed according to the following stages:
  • a spectrum is recorded at 25 ° C at the end of the pretreatment and at each desorption stage in transmission mode with an accumulation time of 100 s.
  • the spectra are reduced to iso-mass (therefore assumed to iso-thickness) (exactly 20 mg).
  • the number of Lewis sites is proportional to the surface of the peak, the maximum of which is around 1450 cm ⁇ 1 , all shoulders being included.
  • the number of Bronsted sites is proportional to the surface of the peak, the maximum of which is around 1545 cm "1 .
  • the ratio of the number of Bronsted sites / number of Lewis sites is estimated to be equal to the ratio of the areas of two peaks described above.
  • the peak area is generally used at 25 ° C. This B / L ratio is generally calculated from the spectrum recorded at 25 ° C at the end of the pretreatment.
  • the invention relates to a catalyst comprising at least one hydro-dehydrogenating element chosen from the group formed by the elements of group VIB and group VIII of the periodic table and a support based on at least one zeolite and based silico-aluminum matrix, said matrix containing an amount greater than 5% by weight and less than or equal to 95%) by weight of silica (Si0 2 ), said catalyst having the following characteristics: a mean porous diameter, measured by mercury porosimetry, between 20 and 140 A, a total pore volume, measured by mercury porosimetry, between 0.1 ml / g and 0.6 ml / g, a total pore volume, measured by nitrogen porosimetry, between 0.1 ml / g and 0.6 ml / g, - a BET specific surface area of between 100 and 600 m 2 / g; preferably less than 500 m 2 / g. a pore volume, measured by mercury porosimetry, included in the pores
  • an X-ray diffraction diagram which contains at least the main lines characteristic of at least one of the transition aluminas included in the group composed by the aluminas alpha, rhô, chi, eta, gamma, kappa, theta and delta.
  • the X-ray diffraction diagram of the catalyst also generally contains the main lines characteristic of the zeolite or zeolites chosen.
  • the invention relates to a support comprising: - at least one zeolite, - a non-zeolitic matrix based on silica - alumina containing an amount greater than 5% by weight and less than or equal to 95% by weight of silica (Si0 2 ) , said support being characterized by: an average porous diameter, measured by mercury porosimetry, of between 20 and 140 A, a total pore volume, measured by mercury porosimetry, of between 0.1 ml / g and 0.6 ml / g, - a total pore volume, measured by nitrogen porosimetry, between 0.1 ml / g and 0.6 ml / g, a BET specific surface area between 100 and 650 m 2 / g, a pore volume, measured by porosimetry with mercury, included in pores with a diameter greater than 140 A less than 0.1 ml / g, - a pore volume, measured by porosimetry with mercury,
  • the packed filling density of the supports is greater than 0.65 g / cm 3 , preferably greater than 0.72 g / cm 3 , and very preferably greater than 0.75 g / cm 3 and even more preferably greater at 0.78 g / cm 3 .
  • a catalyst containing the above support is also included in the invention.
  • the invention also relates to a hydrocracking and / or hydroconversion process, and a process for hydrotreating hydrocarbon feedstocks using said supports or catalysts.
  • the catalyst according to the present invention comprises a support comprising:
  • non-zeolitic matrix based on silica - alumina (that is to say comprising silica and alumina) with a mass content of silica (Si0 2 ) greater than 5% by weight and less than or equal to 95% by weight, preferably included between 10 and 80% by weight, preferably a silica content greater than 20% by weight and less than 80% by weight and even more preferably more than 25% by weight and less than 75% by weight, the silica content is advantageously included between 10 and 50% by weight, said matrix having the following characteristics: preferably a content of cationic impurities less than 0.1% by weight, preferably less than 0.05% by weight and even more preferably less than 0.025% by weight .
  • the content of cationic impurities is understood to mean the total alkali content. preferably an anionic impurity content of less than 1% by weight, preferably less than 0.5% by weight and even more preferably less than 0.1% by weight.
  • the silica-alumina used in the process according to the invention is preferably a homogeneous silica-alumina on the micrometer scale and in which the content of cationic impurities (for example Na + ) is less than 0.1% by weight, of preferably less than 0.05% by weight and even more preferably less than 0.025% by weight and the content of anionic impurities (for example S0 4 2 " , CI " ) is less than 1% by weight, preferably less than 0 , 5% by weight and even more preferably less than 0.1% by weight.
  • any process for the synthesis of silica-alumina known to those skilled in the art leading to a homogeneous silica-alumina on the micrometer scale and in which the cationic impurities (for example Na + ) can be reduced to less than 0.1 %, preferably at a content of less than 0.05% by weight and even more preferably less than 0.025% by weight and in which the anionic impurities (for example S0 4 2 " , Cl " ) can be reduced to less than 1 % and more preferably at a content of less than 0.05% by weight is suitable for preparing the supports which are the subject of the invention, said catalyst having the following characteristics: an average porous diameter, measured by mercury porosimetry, of between 20 and 140 A, preferably between 40 and 120 A and even more preferably between 50 and 100 A, preferably a ratio between the volume V2, measured by mercury porosimetry, between average D - 30 A and average D + 30 A, over the total pore volume also measured by mercury porosimetry greater than 0.6,
  • V6 included in the pores of diameters greater than average D + 15 A, measured by mercury porosimetry, less than 0.2 ml / g, preferably less than 0.1 ml / g and again more preferred less than 0.05 ml / g.
  • a total pore volume, measured by mercury porosimetry of between 0.1 ml / g and 0.6 ml / g, preferably between 0.20 and 0.50 ml / g and even more preferably greater than 0.20 ml / g
  • a total pore volume, measured by nitrogen porosimetry of between 0.1 ml / g and 0.6 ml / g, preferably between 0.20 and 0.50 ml / g, a surface BET specific between 100 and 600 m 2 / g, preferably between 150 and 500 m 2 / g, - preferably an adsorption surface such that the ratio between the adsorption surface and the BET surface is greater than 0.5, of more preferably greater than 0.65 and more preferably greater than 0.8.
  • an X-ray diffraction diagram which contains at least the main lines characteristic of at least one of the transition aluminas included in the group composed by the aluminas rho, chi, kappa, eta, gamma, theta and delta and preferably characterized in that that it contains at least the main lines characteristic of at least one of the transition aluminas included in the group composed of alumina gamma, eta, theta and delta, and more preferably characterized in that it contains at least the main lines characteristic of gamma and eta alumina, and even more preferably characterized in that it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1.97 A at 2.00 A;
  • the catalyst further comprising:
  • hydro-dehydrogenating element chosen. in the group formed by the elements of group VIB and group VIII of the periodic table, preferably a mass content of metal (aux) of group VIB, in metallic form or in oxide form of between 1 and 50% by weight, of preferably between 1.5 and 35%, and even more preferably between 1.5 and 30%, preferably a mass content of group VIII metals, in metallic form or in oxide form of between 0.1 and 30% by weight, preferably between 0.2 and 25% and even more preferably between 0.2 and 20%, optionally at least one doping element deposited on the catalyst and chosen from the group formed by phosphorus, boron and silicon.
  • a mass content of metal (aux) of group VIB in metallic form or in oxide form of between 1 and 50% by weight, of preferably between 1.5 and 35%, and even more preferably between 1.5 and 30%, preferably a mass content of group VIII metals, in metallic form or in oxide form of between 0.1 and 30% by weight, preferably between 0.2 and 25% and even more preferably between 0.2 and 20%, optionally at least one
  • the mass contents of boron, silicon, phosphorus in the form of oxides are between 0.1 and 15%, preferably between 0.1 and 10%, and even more advantageously between 0.1 and 5% by weight.
  • the term “doping element” is understood to mean an element introduced after the preparation of the silico-aluminum support described above, optionally at least one element from group VIIB (manganese for example and preferably), and a weight content of between 0 and 20%, preferably between 0 and 10% of the compound in oxide or metal form, optionally at least one element of the group VB (niobium for example and preferably), and a content by weight of between 0 and 40%, preferably between 0 and 20% of the compound in oxide or metal form.
  • the packed filling density of the catalysts is greater than 0.85 g / cm 3 , preferably greater than 0.95 g / cm 3 , very preferably greater than 1.025 cm 3 / g and even more preferably greater than 1.1 g / cm 3 .
  • the MAS NMR spectra of the solid of 27 AI of the silico-aluminum matrix show two distinct peak masses.
  • a first type of aluminum whose maximum resonates around 10 ppm ranges between -100 and 20 ppm. The position of the maximum suggests that these species are essentially of type AI V
  • This massif can be broken down into at least two species. The predominant species of this massif would correspond to the atoms of AI
  • the proportion of the octahedral AI V ⁇ is greater than 50%, preferably greater than 60%, and even more preferably greater than 70%.
  • the catalyst contains a matrix comprising at least two silico-aluminum zones, the said zones having Si / Ai ratios lower or greater than the overall Si / Ai ratio determined by X-ray fluorescence.
  • a matrix having a Si / Ai ratio equal to 0.5 comprises for example two silico-aluminum zones, one of the zones has an Si / Ai ratio determined by MET less than 0.5 and the other zone has a Si / Ai ratio determined by MET between 0.5 and 2.5.
  • the catalyst contains a matrix comprising a single silico-aluminum zone, said zone having a Si / Ai ratio equal to the overall Si / Ai ratio determined by X fluorescence and less than 2.3.
  • the total weight content of zeolite in the catalyst is generally between
  • the catalyst of the X ray diffraction diagram contains, also generally the principal characteristic peaks of the zeolite or selected.
  • the zeolite is selected from the group FAU and / or in the 'group consisting of zeolite Y and zeolite Y having undergone a secondary treatment such as in particular: USY, VUSY, SDUSY, HMUSY, DAY.
  • the zeolite Y used in the catalysts according to the invention is at least partly in hydrogen or acid (H +) or ammonium (NH 4 + ) or cationic form, said cation being chosen from the group formed by groups IA, IB, liA , IIB, IIIA, IIIB (including rare earths), Sn, Pb and Si, it is preferably at least partly in H + form or it can also be used at least partly in cationic form (as defined above) above).
  • the zeolite is a zeolite chosen from the group formed by the zeolites ZBM-30, ZSM-48, EU-2 and EU-11, preferably the zeolite ZBM-30, used alone or mixed with other zeolites.
  • the zeolite is a zeolite chosen from the group formed by the zeolites Mordenite, Beta, NU-87, EU-1, preferably the MOR zeolite, used alone or in mixture with other zeolites.
  • the catalyst according to the invention exhibits better activity without loss of selectivity for middle distillates. Without wishing to be bound by any theory, it seems that this particularly high activity without significant loss of the selectivity of the catalysts of the present invention is the synergistic effect between the zeolite and the silico-aluminum matrix.
  • the catalyst thus obtained is prepared, by any technique known to a person skilled in the art, from a support which contains at least one zeolite and which contains a silico-aluminum matrix in which the mass content of silica (Si0 2 ) is greater than 5% by weight and less than or equal to 95% by weight of silica (Si0 2 )
  • the mean porous diameter, measured by mercury porosimetry is between 20 and 140 A, preferably between 40 and 120 A and even more preferably between 50 and 100 A, preferably the ratio between the volume V2, measured by mercury porosimetry, encompassed between D moye n - 30 A and D mean + 30 A to the total pore volume also measured by porosimetry mercury, is greater than 0.6, more preferably greater than 0.7 and even more preferably greater than 0.8.
  • the volume V3 included in the pores of diameters greater than average D + 30 A, measured by mercury porosimetry is less than 0.1 ml / g, preferably less than 0.06 ml / g and again more preferred less than 0.04 ml / g.
  • the ratio between volume V5, measured by mercury porosimetry, encompassed between D mean - 15 A and D moy ⁇ n + 15 A in the volume V2, measured by mercury porosimetry, encompassed between D moye n - 30 A and the average D + 30 A is greater than 0.6, more preferably greater than 0.7 and even more preferably greater than 0.8.
  • the volume V6, included in the pores of diameters greater than D moy ⁇ n + 15 A and measured by mercury porosimetry is less than 0.2 ml / g, preferably less than 0.1 ml / g and so even more preferred less than 0.05 ml / g.
  • the total pore volume, measured by mercury porosimetry is between 0.1 ml / g and 0.6 ml / g, preferably between 0.20 and 0.50 ml / g and even more preferably higher at 0.20 ml / g
  • the total pore volume, measured by nitrogen adsorption is between 0.1 ml / g and 0.6 ml / g, preferably between 0.20 and 0.50 ml / g
  • the BET specific surface is between 100 and 650 m 2 / g, preferably between 150 and 600 m 2 / g, - preferably the adsorption surface is such that the ratio between the adsorption surface and the BET surface is greater 0.5, more preferably greater than 0.65 and even more preferably greater than 0.8.
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is less than 0.1 ml / g, preferably less than 0.05 ml / g and even more preferably less than 0, 03 ml / g.
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is less than 0.1 ml / g, preferably less than 0.05 ml / g and even more preferably less than 0.025 ml / g.
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is less than 0.1 ml / g, preferably less than 0.05 ml / g and even more preferably less than 0.025 ml / g.
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 500 A is less than 0.01 ml / g.
  • the X-ray diffraction diagram contains at least the main lines characteristic of at least one of the transition aluminas included in the group composed by the aluminas alpha, rho, chi, kappa, eta, gamma, theta and delta, preferably characterized by at least what it contains the main lines characteristic of at least one of the transition aluminas included in the group made up of gamma, eta, theta and delum alumina, more preferably characterized in that it contains at least the main lines characteristic of the gamma and eta alumina and even more preferably characterized in that it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1.97 A to 2.00 A.
  • the X-ray diffraction diagram of the support also generally contains the main lines characteristic of the selected zeolite (s).
  • the zeolite is chosen from the group of
  • the Y zeolite used in the catalysts according to the invention is at least partly in hydrogen or acid (H +) or ammonium (NH + ) or cationic form, said cation being chosen from the group formed by groups IA, IB, IIA, IIB, IIIA, IIIB (including rare earths), Sn, Pb and Si, it is preferably at least partly in H + form or it can also be used at least partly in cationic form (as defined above) ).
  • the zeolite is a zeolite chosen from the group formed by the zeolites ZBM-30, ZSM-48, EU-2 and EU-11, preferably the zeolite ZBM-30, used alone or mixed with other zeolites.
  • the zeolite is a zeolite chosen from the group formed by the zeolites Mordenite, Beta, NU-87, EU-1, preferably the MOR zeolite, used alone or in mixture with other zeolites.
  • the mass content of silica (Si0 2 ) is greater than 5% by weight and less than or equal to 95% by weight of silica (Si0 2 ), preferably between 10 and 80% by weight, preferably a silica content greater than 20% by weight and less than 80% by weight and even more preferably more than 25% by weight and less than 75% by weight, the silica content is advantageously between 10 and 50% by weight, -
  • the content of cationic impurities is less than 0.1% by weight, preferably less than 0.05% by weight and even more preferably less than 0.025% by weight.
  • the content of cationic impurities is understood to mean the total alkali content.
  • the content of anionic impurities is less than 1% by weight, preferably less than 0.5% by weight and even more preferably less than 0.1% by weight
  • the mean porous diameter, measured by mercury porosimetry is between 20 and 140 A, preferably between 40 and 120 A and even more preferably between 50 and 100 A, preferably the ratio between the volume V2, measured by mercury porosimetry, between the D moyer ⁇ - 30 A and the average D + 30 A over the total pore volume also measured by mercury porosimetry, is greater than 0.6, more preferably greater than 0.7 and even more preferably greater than 0.8.
  • the volume V3 included in the pores of diameters greater than average D + 30 A, measured by mercury porosimetry is less than 0.1 ml / g, preferably less than 0.06 ml / g and again more preferred less than 0.04 ml / g.
  • the ratio between volume V5, measured by mercury porosimetry, encompassed between D mean - 15 A and D moye n + 15 A in the volume V2, measured by mercury porosimetry, encompassed between D moye n - 30 A and the average D + 30 A is greater than 0.6, more preferably greater than 0.7 and even more preferably greater than 0.8.
  • the volume V6, included in the pores with diameters greater than average D + 15 A and measured by mercury porosimetry is less than 0.2 ml / g, preferably less than 0.1 ml / g and so even more preferred less than 0.05 ml / g.
  • the total pore volume, measured by mercury porosimetry is between 0.1 ml / g and 0.6 ml / g, preferably between 0.20 and 0.50 ml / g and even more preferably higher at 0.20 ml / g
  • the total pore volume, measured by nitrogen adsorption is between 0.1 ml / g and 0.6 ml / g, preferably between 0.20 and 0.50 ml / g
  • the BET specific surface is between 100 and 550 m 2 / g, preferably between 150 and 500 m 2 / g
  • the adsorption surface is such that the ratio between the adsorption surface and the BET surface is greater 0.5, more preferably greater than 0.65 and even more preferably greater than 0.8.
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is less than 0.1 ml / g, preferably less than 0.05 ml / g and even more preferably • less than 0 .
  • 03 ml / g. the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is less than 0.1 ml / g, preferably less than 0.05 ml / g and even more preferably less than 0.025 ml / g.
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is less than 0.1 ml / g, preferably less than 0.05 ml / g and even more preferably less than 0.025 ml / g.
  • the pore volume, measured by mercury porosimetry, comprised in the pores with a diameter greater than 500 A is less than 0.01 ml / g.
  • the X-ray diffraction diagram contains at least the main lines characteristic of at least one of the transition aluminas included in the group composed by the aluminas alpha, rho, chi, kappa, eta, gamma, theta and delta, preferably characterized by that it contains at least the main lines characteristic of at least one of the transition aluminas included in the group composed of alumina gamma, eta, theta and delta, more preferably characterized in that it contains at least the main lines characteristic of gamma and eta alumina and even more preferably characterized in that it contains the peaks at a d between 1.39 to 1.40 A and at a d between .97 A to 2 .00 A.
  • the MAS NMR spectra of the solid of 27 AI of the matrix show two distinct peak masses.
  • a first type of aluminum whose maximum resonates around 10 ppm ranges between -100 and 20 ppm. The position of the maximum suggests that these species are essentially of the AI V ⁇ (octahedral) type.
  • a second type of minority aluminum the maximum of which resonates around 60 ppm, ranges between 20 and 110 ppm. This founded can be broken down into at least two species. The predominant species of this massif would correspond to the atoms of AI
  • the proportion of the octahedral AI V ⁇ in the matrix is greater than 50%, preferably greater than 60%, and even more preferably greater than 70%.
  • the matrix comprises at least two silico-aluminum zones having Si / Ai ratios lower or greater than the overall Si / Ai ratio determined by X-ray fluorescence.
  • a matrix according to the present invention having an Si ratio / Ai overall equal to 0.5 comprises for example two silico-aluminum zones, one of the zones has an Si / Ai ratio determined by MET less than 0.5 and the other zone has a Si / Ai ratio determined by MET between 0.5 and 2.5.
  • the matrix comprises a single silico-aluminum zone having a Si / Ai ratio equal to the overall Si / Ai ratio determined by X fluorescence and less than 2.3.
  • the acidity of the matrix according to the invention can be advantageously, without this limiting the scope of the invention, by IR monitoring of the thermo-desorption of pyridine.
  • the ratio B / L, as described above, of the matrix according to the invention is between 0.05 and 1, preferably between 0.05 and 0.7, very preferably between 0.06 and 0.3 and even more preferred between 0.075 and 0.15.
  • the zeolitic supports based on silico-aluminum matrices obtained from a mixture at any stage whatsoever of an alumina compound partially soluble in acid medium with a completely soluble silica compound or with a totally soluble combination of hydrated alumina and silica, shaping followed by hydrothermal or thermal treatment in order to homogenize it on the micrometric scale, even on the nanometric scale made it possible to obtain a catalyst which is particularly active in the processes hydrocracking.
  • partially soluble in acid medium the applicant understands that the contacting of the alumina compound before any addition of the totally soluble silica compound or of the combination with an acid solution for example of nitric acid or sulfuric acid causes their partial dissolution.
  • the silica compounds used according to the invention may have been chosen from the group formed by silicic acid, silicic acid soils, water-soluble alkali silicates, cationic silicon salts, for example hydrated sodium metasilicate, Ludox® in ammonia or alkaline form, quaternary ammonium silicates.
  • the silica sol can be prepared according to one of the methods known to those skilled in the art.
  • a solution of decationized orthosilicic acid is prepared from a water-soluble alkali silicate by ion exchange on a resin.
  • the totally soluble hydrated silica-aluminas used according to the invention can be prepared by true coprecipitation under controlled stationary operating conditions (pH, concentration, temperature, average residence time) by reaction of a basic solution containing the silicon, for example in the form sodium silicate, optionally aluminum for example in the form of sodium aluminate with an acid solution containing at least one aluminum salt for example aluminum sulfate. At least one carbonate or C0 2 can optionally be added to the reaction medium.
  • a basic solution containing the silicon for example in the form sodium silicate, optionally aluminum for example in the form of sodium aluminate
  • an acid solution containing at least one aluminum salt for example aluminum sulfate for example aluminum sulfate.
  • At least one carbonate or C0 2 can optionally be added to the reaction medium.
  • the applicant means a process by which at least one aluminum compound totally soluble in basic or acid medium as described below, at least one silicon compound as described below are brought into contact, simultaneously or sequentially , in the presence of at least one precipitating and / or co-precipitating compound so as to obtain a mixed phase, essentially consisting of hydrated silica-alumina which is optionally homogenized by intense stirring, shearing, colloidal grinding or even by combination of these unit operations.
  • these hydrated silica-aluminas may have been prepared according to the teachings of US Patents US 2,908,635; US 3,423,332, US 3,433,747, US 3,451,947, US 3,629,152, US 3,650,988.
  • the total dissolution of the silica compound or combination was approximated by the following method.
  • a fixed quantity (15 g) of the silica compound or of the hydrated combination is introduced into a medium of preset pH.
  • the concentration of solid reported per liter of suspension is 0.2 mole per liter.
  • the pH of the dispersion solution is at least 12 and can be obtained by using an alkaline source.
  • the mixture is then mechanically agitated by a turbine agitator of the deflocculating type for 30 minutes at 800 rpm. Once the stirring is complete, the mixture is centrifuged for 10 minutes at 3000 rpm. The cake is separated from the supernatant.
  • alumina compounds used according to the invention are partially soluble in an acid medium. They are chosen wholly or partly from the group of alumina compounds of general formula AI2O3, nH2 ⁇ . It is possible in particular to use hydrated alumina compounds such as: hydrargillite, gibbsite, bayerite, boehmite, pseudo-boehmite and amorphous or essentially amorphous alumina gels. It is also possible to use the dehydrated forms of these compounds which consist of transition aluminas and which comprise at least one of the phases taken from the group: rho, chi, eta, gamma, kappa, theta, and delta, which essentially differentiate by the organization of their crystal structure.
  • Alpha alumina commonly known as corundum can be incorporated in a small proportion in the support according to the invention.
  • This partial dissolution property is a sought-after property of the invention, it applies to hydrated alumina powders, to atomized hydrated alumina powders, to hydrated alumina dispersions or suspensions or any combination thereof, before any addition of a compound containing all or part of the silicon.
  • the partial dissolution of the alumina compound was evaluated approximately according to the following method. A precise quantity of the powdered or suspended alumina compound is introduced into a medium of preset pH. The mixture is then stirred mechanically. Once the stirring is complete, the mixture is left without stirring for 24 hours.
  • the concentration of solid Al 2 0 3 reported per liter of suspension is 0.5 mol per liter.
  • the pH of the dispersion solution is 2 and is obtained either by using HN0 3 , or HCl, or HCl 4 .
  • HN0 3 it is advantageous to use HN0 3 .
  • the distribution of the sedimented and dissolved fractions was followed by determination of the aluminum by UV absorption.
  • the supernatants were ultrafiltered (polyethersulfone membrane, Millipore NMWL: 30,000) and digested in concentrated acid.
  • the amount of aluminum in the supernatant corresponds to the non-sedimented alumina compound and the dissolved aluminum and the ultrafiltered fraction to the dissolved aluminum only.
  • the quantity of sedimented particles is deduced from the theoretical concentration of aluminum in the dispersion (considering that all the solid introduced is dispersed) and from the quantities of boehmite actually dispersed and of aluminum in solution.
  • alumina precursors used according to the present invention are therefore distinguished from those used in the case of true co-precipitations, which are entirely soluble in acid medium: cationic alumina salts, for example aluminum nitrate.
  • the methods forming part of the invention differ from true co-precipitations because one of the elements, in this case the aluminum compound, is partially soluble.
  • any alumina compound of general formula AI2O3, nH2 ⁇ can be used. Its specific surface is between 150 and 600 m ⁇ / g. It is possible in particular to use hydrated alumina compounds such as: hydrargillite, gibbsite, bayerite, boehmite, pseudoboehmite and amorphous or essentially amorphous alumina gels. It is also possible to use the dehydrated forms of these compounds which consist of transition aluminas and which comprise at least one of the phases taken from the group: rho, chi, eta, gamma, kappa, theta, delta and alpha, which are essentially differentiated by the organization of their crystal structure. During heat treatments, these different forms are liable to change with one another, according to a complex parentage which depends on the operating conditions of the treatment. It is also possible to use in measured proportions alpha alumina commonly known as corundum.
  • the aluminum hydrate Al 2 0 3 , nH 2 0 used more preferably is boehmite, pseudo-boehmite and amorphous or essentially amorphous alumina gels. A mixture of these products in any combination can also be used.
  • Boehmite is generally described as an aluminum monohydrate of formula AI2O3, n ⁇ O which actually encompasses a wide continuum of materials with varying degrees of hydration and organization with more or less well defined boundaries: gelatinous boehmite the more hydrated, with n possibly being greater than 2, the pseudo-boehmite or the microcrystalline boehmite with n between 1 and 2, then the crystalline boehmite and finally the boehmite well crystallized in large crystals with n close to 1.
  • the morphology aluminum monohydrate can vary within wide limits between these two extreme acicular or prismatic forms. A whole set of variable shapes can be used between these two shapes: chain, boats, interlaced plates.
  • the preparation and / or shaping of the aluminum hydrate can thus constitute the first step in the preparation of these catalysts.
  • Numerous patents relate to the preparation and / or the shaping of supports based on transition alumina derived from aluminum monohydrate: US 3,520,654; US 3,630,670; US 3,864,461; US 4,154,812; US 4,313,923; DE 3243193; US 4,371,513.
  • Relatively pure aluminum hydrates can be used in powder form, amorphous or crystallized or crystallized containing an amorphous part.
  • Aluminum hydrate can also be introduced in the form of aqueous suspensions or dispersions.
  • the aqueous hydrate suspensions or dispersions used according to the invention can be gelled or coagulated.
  • Aqueous dispersions or suspensions can also be obtained as is well known to those skilled in the art by peptization in water or acidulated water of aluminum hydrates.
  • the dispersion of aluminum hydrate can be carried out by any process known to those skilled in the art: in a batch reactor, a continuous mixer, a kneader, a colloid mill. Such mixing can also be carried out in a piston flow reactor and, in particular in a static mixer. Mention may be made of the Lightnin reactors.
  • an alumina that has been subjected to a treatment capable of improving its degree of dispersion can also be used as the source of alumina.
  • the dispersion of the source of alumina can be improved by a preliminary homogenization treatment.
  • the aqueous dispersions or suspensions of alumina that can be used are in particular the aqueous suspensions or dispersions of fine or ultra-fine boehmites which are composed of particles having dimensions in the colloidal domain.
  • the fine or ultra-fine boehmites used according to the present invention may in particular have been obtained according to French patent FR - 1,261,182 and FR - 1,381,282 or in European patent application EP 15,196. It is also possible to use aqueous suspensions or dispersions obtained from pseudo-boehmite, amorphous alumina gels, aluminum hydroxide gels or ultra-fine hydrargillite.
  • Aluminum monohydrate can be purchased from a variety of commercial sources of alumina such as in particular PURAL®, CATAPAL®, DISPERAL®, DISPAL® marketed by SASOL or HIQ® marketed by ALCOA, or according to known methods skilled in the art: it can be prepared by partial dehydration of aluminum trihydrate by conventional methods or it can be prepared by precipitation. When these aluminas are in the form of a gel, they are peptized by water or an acidulated solution. In precipitation, the acid source may for example be chosen from at least one of the following compounds: aluminum chloride, aluminum sulphate, aluminum nitrate.
  • the basic aluminum source can be chosen from basic aluminum salts such as sodium aluminate and potassium aluminate.
  • precipitating agents sodium hydroxide, sodium carbonate, potash and ammonia can be used.
  • the precipitating agents are chosen such that the source of alumina according to the present invention and these agents are precipitated together.
  • the aluminum hydrate is precipitated using a base or an acid chosen, for example from hydrochloric acid, acid sulfuric, sodium hydroxide or a basic or acidic aluminum compound as mentioned above.
  • the two reagents can be aluminum sulphate and sodium aluminate.
  • preparation of aluminum alpha monohydrate using aluminum sulphate and sodium aluminate reference may be made in particular to US Pat. No. 4,154,812.
  • the pseudo-boehmite may in particular have been prepared according to the method described in American patent US Pat. No. 3,630,670 by reaction of a solution of alkaline aluminate with a solution of a mineral acid.
  • the pseudo-boehmite may in particular have been prepared according to the method described in American patent US Pat. No. 3,630,670 by reaction of a solution of alkaline aluminate with a solution of a mineral acid. It may also have been prepared as described in French patent FR 1 357 830.
  • the amorphous alumina gels may in particular have been prepared according to the methods described in the article "Alcoa paper n ° 19 (1972) pages 9 to 12 "and in particular by reaction of acid aluminate or an aluminum salt or by hydrolysis of aluminum alcoholates or by hydrolysis of basic aluminum salts.
  • the aluminum hydroxide gels can in particular be those which have been prepared according to the methods described in American patents US 3,268,295 and US 3,245,919.
  • the aluminum hydroxide gels can in particular be those prepared according to the methods described in patent WO 00/01617, by mixing an acid source of aluminum and a base or a basic source of aluminum and of an acid so as to precipitate an alumina monohydrate, the following stages being: 2. ripening 3. filtration 4.washing, and 5. drying, processes characterized in that the mixing of stage one is carried out without back-mixing .
  • the ultra-fine hydrargillite may in particular have been prepared according to the process described in US Pat. alumina counted in molecules of AI 2 0 3 0.1 monovalent acid ions. It is also possible to use aqueous suspensions or dispersions of ultra-pure boehmite or pseudo-boehmite prepared according to a process in which the reaction of an alkaline aluminate with carbon dioxide is carried out to form a precipitate of hydroxycarbonate. amorphous aluminum, the precipitate obtained is separated by filtration and then washed thereof (the process is described in particular in American patent US 3,268,295).
  • the washed precipitate of amorphous aluminum hydroxycarbonate is mixed with an acid solution, a base or a salt or their mixtures; this mixing is carried out by pouring the solution onto the hydroxycarbonate, the pH of the mixture thus formed being less than
  • the boehmite and pseudo-boehmite dispersions or suspensions obtained according to this process have an alkali content of less than 0.005% expressed in the form of an alkali metal oxide / Al 2 0 3 weight ratio.
  • the triethylaluminum is first prepared from aluminum, hydrogen and ethylene, the reaction being carried out in two stages with partial recycling of triethylaluminium.
  • Ethylene is added in the polymerization step and the product obtained is then oxidized to aluminum alcoholate, the alcohols being obtained by hydrolysis.
  • the aluminum hydroxide gels can also be those which have been prepared according to the methods described in American patents US 4,676,928-A and US 6,030,599.
  • the hydrated alumina obtained as a by-product of the Ziegler reaction is described in particular in a bulletin from the company CONOCO of January 19, 1971.
  • the size of the alumina particles constituting the source of alumina can vary within wide limits. It is generally between 1 and 100 microns.
  • a method for preparing a silica-alumina forming part of the invention consists in preparing, from a water-soluble alkali silicate, a solution of orthosilicic acid (H 2 Si0, H 2 0) decationized by ion exchange and then simultaneously adding it to a cationic aluminum salt in solution, for example nitrate and to ammonia under controlled operating conditions; or else add the orthosilicic acid solution to the cationic aluminum salt in solution and co-precipitate the solution obtained obtained with ammonia under controlled operating conditions leading to a homogeneous product.
  • This silica-alumina hydrogel is mixed with powder or a suspension of aluminum hydrate.
  • silica-alumina After filtration and washing, drying with shaping and then calcination preferably in air, in a rotary oven, at high temperature and for a time sufficient to promote interactions between alumina and silica, generally at least 2 hours, a matrix responding to characteristics of the invention is obtained.
  • Another method of preparing silica-alumina according to the invention consists in precipitating the alumina hydrate as above, in filtering and washing it, then in mixing it with aqueous orthosilicic acid so as to obtain a suspension , which is intimately homogenized by strong agitation and shearing.
  • An Ultraturrax turbine or a Staro turbine can be used, or a colloid mill for example, a Staro colloid mill.
  • the homogeneous suspension is then spray-dried as above and then calcined between 500 and 1200 ° C for at least 3 hours: a silica-alumina matrix which can be used in the process according to the invention is obtained.
  • Another method forming part of the invention consists in preparing as above a decationized solution of orthosilicic acid and then in adding it simultaneously or consecutively to an alumina compound, for example an aluminum hydrate in powder or in suspension tangy.
  • an alumina compound for example an aluminum hydrate in powder or in suspension tangy.
  • at least one basic compound can optionally be added to the reaction medium.
  • the product is dried with shaping simultaneously or consecutively, then calcined as above.
  • Another method also forming part of the invention consists in preparing an aqueous suspension or dispersion of alumina, for example an aluminum monohydrate and then adding it simultaneously or consecutively to a silica compound, for example a sodium silicate .
  • a silica compound for example a sodium silicate .
  • at least one basic compound can optionally be added to the reaction medium.
  • the matrix is obtained by filtration and washing, optionally washing with an ammoniacal solution to extract the residual sodium by ion exchange, drying with shaping simultaneously or consecutively. After drying with shaping and then calcination as above, a support corresponding to the characteristics of the invention is obtained.
  • the size of the alumina particles used is preferably between 1 and 100 microns to obtain good homogenization of the silica-alumina support according to the invention.
  • homogenization is used to describe the re-solution of a product containing a solid fraction, for example a suspension, a powder, a filtered precipitate, then its dispersion with intense stirring.
  • the homogenization of a dispersion is a process well known to those skilled in the art.
  • Said-homogenization can be carried out by any process known to those skilled in the art: for example in a batch reactor, a continuous mixer, a kneader. Such a mixture can be produced in a piston flow reactor and, in particular in a static reactor. Mention may be made of the Lightnin reactors.
  • An Ultraturrax® turbine or a Staro® turbine can be used, or a colloid mill for example, a Staro colloid mill. IKA® commercial colloid mills can also be used.
  • the stabilizing element is preferably added in the form of a soluble salt.
  • the acidity of the matrix according to the invention can be advantageously, without this restricting the scope of the invention, measured by IR monitoring of the thermo-desorption of pyridine.
  • the B / L ratio of the matrix according to the invention is between 0.05 and 1, preferably between 0.05 and 0.7, very preferably between 0.06 and 0.3 and even more preferably between 0.075 and 0.15.
  • Zeolites in general are beneficial for improving the performance of the catalyst in conversion. Any zeolite known for its hydrocracking and / or hydroconversion performance can be used in the supports and catalysts which are the subject of the invention.
  • the zeolites Y of faujasite structure (Zeolite Molecular Sieves Structure Chemistry and Uses, DW Breck, J. WILLEY and Sons, 1973) which can be in hydrogen form or partially exchanged with metal cations, for example using cations of alkaline earth metals and / or rare earths with atomic number 57 to 71 inclusive, are used.
  • Zeolites Y having undergone secondary treatment also form part of the invention.
  • secondary treatment is meant in particular the treatments described in: "Hydrocracking, Science and Technology", J. Scherzer, AJGruia, 1996 or in RJBeyerlein or even in.
  • Y zeolites for example are prepared according to the techniques generally used by dealumination.
  • the Y zeolites generally used in hydrocracking catalysts are manufactured by modification of commercially available Na-Y zeolite. This modification leads to zeolites which are said to be stabilized, ultra-stabilized (USY), very ultra-stabilized (VUSY) or even dealuminated (SDUSY). This designation is frequent in the literature but it does not restrict the characteristics of the zeolites of the present invention to such a designation.
  • This modification is carried out by combination of three types of operation known to those skilled in the art: hydrothermal treatment, ion exchange and acid attack. Hydrothermal treatment is perfectly defined by the conjunction of operating variables such as temperature, duration, total pressure and partial pressure of water vapor.
  • the effect of this treatment is to extract aluminum atoms from the silico-aluminum framework of the zeolite.
  • the consequence of this treatment is an increase in the SiO2 / AI203 molar frame ratio and a decrease in the parameter of the crystal lattice.
  • the ion exchange generally takes place by immersion of the zeolite in an aqueous solution containing ions capable of fixing on the cation exchange sites of the zeolite. The sodium cations present in the zeolite are thus removed after crystallization.
  • the acid attack operation consists in bringing the zeolite into contact with an aqueous solution of a mineral acid.
  • the severity of the acid attack is adjusted by the acid concentration, the duration and the temperature. Carried out on a hydrothermally treated zeolite, this treatment has the effect of eliminating the aluminum species extracted from the frame and which block the microporosity of the solid.
  • a particular hydrothermal treatment as described in patent application US Pat. No. 5,601,798 has the effect of increasing the mesoporosity of the zeolites Y, USY, VUSY and SDUSY, which zeolites are particularly advantageous in combination with the amorphous matrix described above. Different Y zeolites can be advantageously used.
  • a particularly advantageous acidic zeolite HY is characterized by different specifications: an overall Si ⁇ 2 / Al2 ⁇ 3 molar ratio of between approximately 6 and 70 and preferably between approximately 12 and 50: a sodium content less than 0.15% by weight determined on the zeolite calcined at 1100 ° C; a crystalline parameter has an elementary mesh comprised between 24.58 x 10 "" O m and 24.24 x 10 "" O m and preferably between 24.38 x 10 "' ' 0 m and 24.26 x 10 "' ' ⁇ m; a CNa capacity for taking up sodium ions, expressed in grams of Na per 100 grams of modified zeolite, neutralized then calcined, greater than about 0.85; a specific surface area determined by the BET method greater than about 400 m ⁇ / g and of preferably greater than 550 m / g, a water vapor adsorption capacity at 25 ° C for a
  • the zeolite has a porous distribution, determined by physisorption of nitrogen, comprising between 5 and 45% and preferably between 5 and 40% of the total pore volume of the zeolite contained in pores with a diameter between 20 x 10 ' ⁇ m and 80 x 10 ' ⁇ m, and between 5 and 45% and preferably between 5 and 40% of the total pore volume of the zeolite contained in pores with a diameter greater than 80 x 10 " ' ' ⁇ m and generally less than 1000 x 10 ' ⁇ m, the remainder of the pore volume being contained in the pores of diameter less than 20 ⁇ 10 " ' "-' m.
  • a preferred catalyst using this type of zeolite contains a silico-aluminum matrix, at least one dealuminated Y zeolite and having a crystalline parameter between 2,424 nm and 2,455 nm, preferably in tre 2,426 and 2,438 nm, an overall Si ⁇ 2 / Al 2 ⁇ 3 molar ratio greater than 8, a cation content of alkaline earth or alkali metals and / or rare earth cations such as the atomic ratio (nx M n + ) / AI is less than 0.8, preferably less than 0.5 or even 0.1, a specific surface area determined by the BET method greater than 400 m 2 / g, preferably greater than 550 m 2 / g, and a capacity of adsorption of water at 25 ° C for a P / Po value of 0.2, greater than 6% by weight, said catalyst also comprising at least one hydro-dehydrogenating metal, and silicon deposited on the catalyst.
  • a partially amorphous Y zeolite is used.
  • the term “partially amorphous Y zeolite” means a solid having: i) a peak rate which is less than 0.40, preferably less than about 0.30; ii) a crystalline fraction expressed relative to a reference Y zeolite in sodium form
  • the partially amorphous Y zeolites, solids used in the composition of the catalyst according to the invention exhibit the at least one (and preferably all) of the following other characteristics: iii) an overall Si / Ai ratio greater than 15, preferably greater than 20 and less than 150, iv) a Si / Ai lv framework ratio greater than or equal to overall Si / Ai ratio v) a pore volume at least equal to 0.20 ml / g of solid of which a fraction, between 8% and 50%, consists of pores having a diameter of at least 5 nm (nanometer) , or 50 A; vi) a specific surface of 210-800 m 2 / g, preferably 250-750 m 2 / g and advantageously
  • the peak rate of a conventional USY zeolite is 0.45 to 0.55, its crystalline fraction relative to a perfectly crystallized NaY is 80 to 95%.
  • the peak rate of the solid which is the subject of the present description is less than 0.4 and preferably less than 0.35. Its crystalline fraction is therefore less than 70%, preferably less than 60%.
  • the partially amorphous zeolites are prepared according to the techniques generally used for dealumination, from commercially available Y zeolites, that is to say which generally have high crystallinities (at least 80%). More generally, it will be possible to start from zeolites having a crystalline fraction of at least 60%, or at least 70%.
  • the Y zeolites generally used in hydrocracking catalysts are manufactured by modification of commercially available Na-Y zeolites. This modification leads to so-called stabilized, ultra-stabilized or even dealuminated zeolites. This modification is carried out by at least one of the dealumination techniques, and for example the hydrothermal treatment, the acid attack. Preferably, this modification is carried out by combination of three types of operations known to those skilled in the art: hydrothermal treatment, ion exchange and acid attack.
  • Another particularly interesting zeolite is a globally non-dealuminated zeolite which is very acidic.
  • globally non dealuminated zeolite is understood a Y zeolite (structural type FAU, faujasite) according to the nomenclature developed in "Atlas of zeolites structure types", WM Meier, DH Oison and Ch. Baerlocher, 4 revised Edition 1996, Elsevier.
  • the crystalline parameter of this zeolite may have decreased by extraction of the aluminum from the structure or framework during the preparation, but the overall SiO 2 / AI 2 0 3 ratio has not changed since the aluminum has not been chemically extracted.
  • Such a globally non dealuminated zeolite therefore has a silicon and aluminum composition expressed by the overall SiO 2 / Al 2 0 3 ratio equivalent to the starting non dealuminated zeolite Y.
  • This globally non dealuminated Y zeolite can either be in the hydrogen form or be at least partially exchanged with metal cations, for example using cations of alkaline earth metals and / or rare earth metal cations of atomic number 57 to 71 inclusive.
  • metal cations for example using cations of alkaline earth metals and / or rare earth metal cations of atomic number 57 to 71 inclusive.
  • the non-globally dealuminated zeolite Y generally has a crystalline parameter greater than 2.438 nm, an overall Si0 2 / Al 2 0 3 ratio less than 8, a SiO2 / Al2O3 molar structure ratio less than 21 and greater than the overall SiO2 / Al2O3 ratio.
  • An advantageous catalyst combines this zeolite with a matrix doped with phosphorus.
  • the generally non dealuminated zeolite can be obtained by any treatment which does not extract the aluminum from the sample, such as for example the treatment with water vapor, the treatment with SiCl
  • the support comprises a zeolite as described in patent application US 5, 601, 978. These zeolites are in particular described in column 30, lines 48-64. Their mesoporous volume is in particular greater than 0.202 cm 3 / g for a mesh parameter of 24.5 A and 24.6 A and greater than 0.313 cm 3 / g for a mesh parameter of between 24.3 and 24.5 A.
  • a zeolite chosen from the group formed by the zeolites ZSM-48, ZBM-30, EU-2, EU-11, alone or as a mixture with another zeolite.
  • zeolites ZSM-48 and ZBM-30 we consider the zeolites ZSM-48 and ZBM-30. Even more preferably, the zeolite ZBM-30 will be considered, preferably synthesized according to the procedure described in the patent (EP-A-46504).
  • the zeolite is a zeolite chosen from the group formed by the zeolites Mordenite, Beta, NU-87, EU-1, preferably the MOR zeolite, used alone or in mixture with other zeolites.
  • the preparation and the treatment (s) as well as the shaping of the zeolite can thus constitute a stage in the preparation of these catalysts.
  • the introduction of the zeolite can be done by any technique known to those skilled in the art during the preparation of the matrix or during the shaping of the support.
  • catalysts according to the invention can be prepared according to all the methods well known to those skilled in the art.
  • a preferred process for preparing the catalyst according to the present invention comprises the following steps:
  • the zeolite can be introduced according to any method known to those skilled in the art and this at any stage the preparation of the support or of the catalyst. According to a preferred method of preparation, the zeolite can be introduced during the synthesis of the matrix precursors.
  • the zeolite can be, without being limiting, for example under powder form, ground powder, suspension, suspension having undergone a deagglomeration treatment.
  • the zeolite can be placed in an acidulated suspension or not at a concentration adjusted to the final content of zeolite targeted on the support. This suspension commonly called a slip is then mixed with the precursors of the matrix at any stage of its synthesis as described above.
  • the zeolite can also be introduced during the shaping of the support with the elements which constitute the matrix with optionally at least one binder.
  • the zeolite can be, without being limiting, can be in the form powder, ground powder, suspension, suspension having undergone a deagglomeration treatment.
  • the elements of groups VIB and / or VIII, and optionally those chosen from phosphorus, boron, silicon and optionally the elements of groups VB, and VIIB can be optionally introduced at this stage of the preparation of the catalyst by any known method of Those skilled in the art, They can also be introduced after the support has been shaped and this after or before the support is dried and calcined.
  • the hydrogenating element can be introduced at any stage of the preparation, preferably during mixing, or very preferably after shaping.
  • the shaping is followed by a calcination, the hydrogenating element can also be introduced before or after this calcination.
  • the preparation generally ends with a calcination at a temperature of 250 to 600 ° C.
  • Another preferred method according to the present invention consists in shaping the silica-alumina without binder after kneading the latter, optionally with the zeolite, then passing the dough thus obtained through a die to form extrudates of diameter between 0.4 and 4 mm.
  • the hydrogenating function can then be introduced in part only (if, for example, 'of combinations of metal oxides of groups VIB and VIII) or completely ,, at the time of kneading. It can also be introduced by one or more ion exchange operations on the calcined support consisting of at least one silica-alumina, optionally shaped with a binder, using solutions containing the precursor salts of the metals chosen when these belong to group VIII.
  • It can also be introduced by one or more operations of impregnating the shaped and calcined support, with a solution of the precursors of the oxides of the metals of groups VIII (in particular cobalt and nickel) when the precursors of the oxides of the metals of the group VIB (in particular molybdenum or tungsten) were previously introduced at the time of the mixing of the support.
  • groups VIII in particular cobalt and nickel
  • the precursors of the oxides of the metals of the group VIB in particular molybdenum or tungsten
  • the calcined support consisting of at least one zeolite and at least one silica-alumina according to the invention and optionally at least one binder, by solutions containing the precursors of metal oxides of groups VI and / or VIII, the precursors of metal oxides of group VIII being preferably introduced after those of group VIB or at the same time as the latter.
  • the support is impregnated with an aqueous solution.
  • the impregnation of the support is preferably carried out by the so-called “dry” impregnation method well known to those skilled in the art.
  • the impregnation can be carried out in a single step with a solution containing all of the components of the final catalyst.
  • the catalyst of the present invention can therefore contain at least one element of group VIII such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium or platinum.
  • group VIII such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium or platinum.
  • group VIII it is preferred to use a metal chosen from the group formed by iron, cobalt, nickel, platinum, palladium and ruthenium.
  • the catalyst according to the invention may also contain at least one element from group VIB, preferably tungsten and molybdenum.
  • the preferred associations are: nickel-molybdenum, cobalt-molybdenum, cobalt-tungsten and even more advantageously platinum-palladium and nickel-tungsten.
  • combinations of three metals for example nickel-cobalt-molybdenum, nickel-cobalt-tungsten.
  • the following combinations of metals are used: ⁇ ickel-niobium-molybdenum, cobalt-niobium-molybdenum, iron-niobium-molybdenum, nickel-niobium-tungsten, cobalt-niobium-tungsten, iron-niobium-tungsten, preferred associations being: nickel-niobium-molybdenum, cobalt-niobium-molybdenum. It is also possible to use combinations of four metals, for example nickel-cobalt-niobium-molybdenum. One can also use combinations containing a noble metal such as ruthenium-niobium-molybdenum, or ruthenium-nickel-niobium-molybdenum.
  • a noble metal such as ruthenium-niobium-molybdenum, or ruthenium-nickel-niobium-molybdenum.
  • boron and / or silicon and / or phosphorus and optionally the element (s) chosen from the group (s) VIIB and VB, can be introduced into the catalyst at any level of the preparation and according to any technique known to those skilled in the art.
  • a preferred method according to the invention consists in depositing the selected doping element or elements, for example the boron-silicon couple, on the precursor, calcined or not, preferably calcined.
  • an aqueous solution of at least one boron salt such as ammonium biborate or ammonium pentaborate is prepared in an alkaline medium and in the presence of hydrogen peroxide and a so-called dry impregnation is carried out, in which the pore volume of the precursor is filled with the solution containing, for example, boron.
  • silicon is also deposited
  • the deposition of boron and silicon can also be carried out simultaneously using, for example, a solution containing a boron salt and a silicon-type silicon compound.
  • a solution containing a boron salt and a silicon-type silicon compound for example in the case where the precursor is a nickel-tungsten type catalyst supported on silica-alumina, it is possible to impregnate this precursor with aqueous solution of ammonium biborate and of silicone Rhodorsil E1 P of the Rhodia company to carry out a drying for example at 120 ° C, then to impregnate with an ammonium fluoride solution, to carry out a drying for example at 120 ° C, and to carry out a calcination for example and so preferred in air in a crossed bed, for example at 500 ° C. for 4 hours.
  • the doping element chosen from the group formed by silicon, boron and phosphorus as well as the elements from groups VilB, VB, can be introduced by one or more impregnation operations with excess solution on the calcined precursor.
  • B and / or P and / or Si When possibly at least one doping element, B and / or P and / or Si, is introduced, its distribution and its location can be determined by techniques such as the Castaing microprobe (distribution profile of the various elements), electron microscopy by transmission coupled with an X-analysis of the components of the catalysts, or even by establishing a distribution map of the elements present in the catalyst by electronic microprobe. These techniques make it possible to demonstrate the presence of these exogenous elements added after the synthesis of the silica-alumina according to the invention.
  • the boron source can be boric acid, preferably orthoboric acid H3BO3, ammonium biborate or pentaborate, boron oxide, boric esters.
  • Boron can for example be introduced in the form of a mixture of boric acid, hydrogen peroxide and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the family of pyrrole. Boron can be introduced for example by a solution of boric acid in a water / alcohol mixture.
  • the preferred phosphorus source is orthophosphoric acid H3PO4, but its salts and esters such as ammonium phosphates are also suitable.
  • Phosphorus can for example be introduced in the form of a mixture of phosphoric acid and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, amines cyclic, compounds of the pyridine and quinoline family and compounds of the pyrrole family.
  • a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, amines cyclic, compounds of the pyridine and quinoline family and compounds of the pyrrole family.
  • ethyl orthosilicate Si (OEt) 4 siloxanes, polysiloxanes, silicones, silicone emulsions, halide silicates such as ammonium fluorosilicate (NH4) 2SiF6 or fluorosilicate of sodium Na2SiF ⁇ - Silicomolybdic acid and its salts, silicotungstic acid and its salts can also be advantageously used.
  • Silicon can be added for example by impregnation of ethyl silicate in solution in a water / alcohol mixture. The silicon can be added for example by impregnation of a silicon compound of the silicone type or the silicic acid suspended in water.
  • the metals of group VIB and group VIII of the catalyst of the present invention may be present in whole or in part in metallic form and / or oxide and / or sulphide.
  • the sources of molybdenum and tungsten there can be used oxides and hydroxides, molybdic and tungstic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, tungstate ammonium, phosphomolybdic acid, phosphotungstic acid and their salts, silicomolybdic acid, silicotungstic acid and their salts.
  • ammonium salts such as ammonium molybdate, ammonium heptamolybdate, tungstate ammonium, phosphomolybdic acid, phosphotungstic acid and their salts, silicomolybdic acid, silicotungstic acid and their salts.
  • group VIII elements which can be used are well known to those skilled in the art.
  • non-noble metals nitrates, sulfates, hydroxides, phosphates, halides, for example chlorides, bromides and fluorides, carboxylates, for example acetates and carbonates, will be used.
  • halides for example chlorides, nitrates, acids such as chloroplatinic acid, oxychlorides such as ammoniacal ruthenium oxychloride.
  • halogens other than that introduced into the impregnation are added, this halogen preferably being chlorine.
  • the support can be shaped by any technique known to those skilled in the art.
  • the shaping can be carried out for example by extrusion, by tableting, by the method of coagulation in drop (oil-drop), by granulation with the turntable or by any other. method well known to those skilled in the art.
  • the shaping can also be carried out in the presence of the various constituents of the catalyst and extrusion of the mineral paste obtained, by tableting, shaping in the form of beads with a rotating bezel or with a drum, drop coagulation, oil-drop, oil-up, or any other known method of agglomeration of a powder containing alumina and possibly other ingredients chosen from those mentioned above.
  • the catalysts used according to the invention have the form of spheres or extrudates.
  • the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes are cylindrical (which can be hollow or not), twisted cylindrical, multilobed (2, 3, 4 or 5 lobes for example), rings.
  • the cylindrical shape is preferably used, but any other shape can be used.
  • the packed filling density of the supports, after calcination, is greater than 0.65 g / cm 3 , preferably greater than 0.72 g / cm 3 , and very preferably greater than 0.75 g / cm 3 and even more preferably greater at 0.78 g / cm 3 .
  • the packed filling density of the catalysts is greater than 0.85 g / cm 3 , preferably greater than 0.95 g / cm 3 , very preferably greater than 1.025 cm 3 / g and even more preferably greater than 1.1 g / cm 3 .
  • these supports used according to the present invention may have been treated as is well known to those skilled in the art with additives to facilitate shaping and / or improve the final mechanical properties of the supports.
  • additives based on silico-aluminum matrices.
  • additives mention may in particular be made of cellulose, carboxymethyl cellulose, carboxy ethyl cellulose, tall oil, xanthan gums, surfactants, flocculating agents such as polyacrylamides, carbon black, starches, stearic acid, polyacrylic alcohol, polyvinyl alcohol, biopolymers, glucose, polyethylene glycols, etc.
  • the adjustment of the porosity characteristic of the supports of the invention is partially carried out during this step of shaping the particles of supports.
  • the shaping can be carried out using the techniques for shaping the catalysts, known to a person skilled in the art, such as for example: extrusion, coating, spray drying or tabletting. Water can be added or removed to adjust the viscosity of the paste to be extruded. This step can be carried out at any stage of the kneading step. To adjust the solid content of the dough to be extruded in order to make it extrudable, it is also possible to add a predominantly solid compound and preferably an oxide or a hydrate.
  • Use will preferably be made of a hydrate and even more preferably of an aluminum hydrate.
  • the loss on ignition of this hydrate will be greater than 15%.
  • the acid content added to the kneading before shaping is less than 30%, preferably between 0.5 and 20% by weight of the anhydrous mass of silica and alumina used in the synthesis.
  • Extrusion can be carried out by any conventional tool, commercially available.
  • the paste from the kneading is extruded through a die, for example using a piston or a single-screw or double extrusion screw. This extrusion step can be carried out by any method known to those skilled in the art.
  • the support extrudates according to the invention generally have a crushing strength of at least 70 N / cm and preferably greater than or equal to 100 N / cm.
  • the drying is carried out by any technique known to those skilled in the art.
  • At least one calcination can be carried out after any of the stages of the preparation.
  • This treatment for example can be carried out in a crossed bed, in a licked bed or in a static atmosphere.
  • the oven used can be a rotary rotary oven or a vertical oven with radial through layers.
  • the calcination conditions: temperature and duration depend mainly on the maximum temperature of use of the catalyst.
  • Preferred calcination conditions are between more than one hour at 200 ° C to less than one hour at 1100 ° C. Calcination can be carried out in the presence of water vapor. The final calcination can optionally be carried out in the presence of an acidic or basic vapor. For example, calcination can be carried out under partial pressure of ammonia.
  • Post-synthesis treatments can be carried out, so as to improve the properties of the support, in particular its homogeneity as defined above.
  • the post-synthesis treatment is a hvdrothermal treatment.
  • the hvdrothermal treatment is carried out by any technique known to those skilled in the art.
  • hvdrothermal treatment is understood to mean contacting at any stage of the preparation of the mixed support with water in the vapor phase or in the liquid phase.
  • hvdrothermal treatment one can hear in particular ripening, steamin ⁇ . autoclavaqe. calcination in humid air, rehvdratation. Without reducing the scope of the invention, such treatment has the effect of making the silica component mobile.
  • the ripening can take place before or after the shaping.
  • the hvdrothermal treatment is done by steaminq in an oven in the presence water vapor.
  • the temperature during the steamino can be between 600 and 1100 ° C and preferably higher than 700 ° C for a period of time between 30 minutes and 3 hours.
  • the water vapor content is greater than 20 g of water per kilo of dry air and preferably greater than 40 g of water per kg of dry air and preferably more than 100 g of water per kg dry air.
  • Such a treatment can, if necessary, completely or partially replace the calcination treatment.
  • the support can thus possibly be subjected to a hydrothermal treatment in a confined atmosphere.
  • Hydrothermal treatment in a confined atmosphere is understood to mean treatment by autoclaving in the presence of water at a temperature above ambient temperature.
  • the silica-alumina formed or the support (matrix + zeolite) formed can be treated in different ways.
  • This impregnation, prior to autoclaving can be acidic or not.
  • This impregnation prior to autoclaving, can be carried out dry or by immersion of the silica-alumina in an acidic aqueous solution.
  • dry impregnation is understood to mean bringing the alumina into contact with a volume of solution less than or equal to the total pore volume of the treated alumina.
  • the impregnation is carried out dry.
  • the autoclave is preferably an autoclave with a rotating basket such as that defined in patent application EP-A-0 387 109.
  • the temperature during autoclaving can be between 100 and 250 ° C. for a period of time between 30 minutes and 3 hours.
  • the invention also relates to the hydrocracking processes using the hydrocracking catalysts according to the invention, said processes covering the pressure and conversion domains ranging from mild hydrocracking to high pressure hydrocracking.
  • Mild hydrocracking is understood to mean hydrocracking leading to moderate conversions, generally less than 50% and preferably less than 40%, and operating at low pressure, generally between 2 MPa and 6 MPa.
  • the catalysts according to the invention are used for the treatment of hydrocarbon cuts.
  • the catalysts according to the invention are advantageously used for hydrocracking and / or hydroconversion of hydrocarbon fractions.
  • the catalyst of the present invention can be used alone, in one or more catalytic beds in a fixed bed, in one or more reactors, in a hydrocracking scheme known as in one step, with or without liquid recycling of the unconverted fraction, optionally in combination with a hydrorefining catalyst located upstream of the catalyst of the present invention.
  • the catalyst of the present invention can be used alone, in a single or more reactors in a bubbling bed, in a hydrocracking scheme called in one step, with or without liquid recycling of the unconverted fraction, optionally in combination with a catalyst.
  • the bubbling bed is operated with removal of spent catalyst and daily addition of new catalyst in order to maintain a stable catalyst activity.
  • the catalyst of the present invention can be used in one or in the two reactors in association or not with a catalyst hydrorefining located upstream of the catalyst of the present invention.
  • Hydrocracking said in one step, first and foremost involves a thorough hydrorefining which aims to achieve a hydrodeazotation and a desulfurization of the feed before it is sent to the hydrocracking catalyst itself , in particular in the case where this comprises a zeolite.
  • This advanced hydrorefining of the feed causes only a limited conversion of the feed, into lighter fractions, which remains insufficient and must therefore be completed on the more active hydrocracking catalyst.
  • This version of hydrocracking also called "Once Through” has a variant which presents a recycling of the unconverted fraction to the reactor for further conversion of the feed.
  • the silica contents by weight of the support used in the composition of the catalyst are between 5 and 30% and preferably between 5 and 20%.
  • the silica contents by weight of the support used in the composition of the catalyst are between 20 and 80% and preferably between 30 and 60%.
  • a catalyst having a low silica content by weight as defined above will advantageously be used. It can also advantageously be used in combination with a hydrorefining catalyst, the latter being located upstream of the catalyst of the present invention.
  • the conversion is generally ( or preferably) less than 50% by weight and preferably less than 40%.
  • Embodiment So-called one-step bubbling bed process
  • the catalyst according to the invention can be used alone in one or more reactors.
  • the bubbling bed reactor or reactors containing the catalyst according to the invention being preceded by one or more reactors containing at least one hydrorefining catalyst in fixed bed or bubbling bed.
  • the conversion of the fraction of the charge caused by this hydrorefining catalyst is generally (or preferably) less than 30% by weight and preferably less than 25%.
  • Embodiment So-called one-step process in a fixed bed with hot flash
  • the catalyst according to the present invention can also be used in a so-called one-step hydrocracking process comprising a hydrorefining zone, a zone allowing the partial elimination of ammonia, for example by a hot flash, and an area comprising a hydrocracking catalyst.
  • This hydrocracking process of hydrocarbon feedstocks in one step for the production of middle distillates and optionally of oil bases comprises at least a first reaction zone including a hydrorefining, and at least a second reaction zone, in which the hydrocracking of at least part of the effluent from the first reaction zone.
  • This process also includes an incomplete separation of the ammonia from the effluent leaving the first zone.
  • the hydrocracking carried out in the second reaction zone is carried out in the presence of ammonia in an amount less than the amount present in the feed, preferably less than 1500 ppm by weight, more preferably less than 1000 ppm by weight and even more preferably less at 800 ppm weight of nitrogen.
  • the catalyst of the present invention is preferably used in the area hydrocracking reaction in combination or not with a hydrorefining catalyst located upstream of the catalyst of the present invention.
  • the catalyst according to the invention can be used either in the first reaction zone in converting pretreatment, alone or in combination with a conventional hydrorefining catalyst, located upstream of the catalyst according to the invention, in one or more catalytic beds, in a or more reactors.
  • a process representing a variant of the embodiments of the invention cited above comprises: a first hydrorefining reaction zone in which the feedstock is brought into contact with at least one hydrorefining catalyst having in the standard test activity a cyclohexane conversion rate of less than 10% by mass. a second hydrocracking reaction zone in which at least part of the effluent from the hydrorefining step is brought into contact with at least one zeolitic hydrocracking catalyst having in the standard activity test a conversion rate cyclohexane greater than 10% by mass, the catalyst according to the invention being present in at least one of the two reaction zones.
  • the purpose of the standard activity test is to measure the activity of the catalysts in conversion of cyclohexane.
  • the conversion of cyclohexane takes into account all the products different from cyclohexane. Obtaining all of these products requires the presence of a more or less strong acid function on the catalyst.
  • the catalyst according to the invention can be used alone or in combination with another hydrorefining catalyst.
  • the catalyst according to the invention can be used alone or in combination with another hydrocracking catalyst.
  • Hydrocracking in two stages comprises a first stage which aims, as in the "one stage” process, to carry out the hydrorefining (or hydrotreatment) of the feed, but also to achieve a conversion of the latter from l generally 40 to 60%.
  • the effluent from the first stage then undergoes separation (distillation), most often called intermediate separation, which aims to separate the conversion products from the unconverted fraction.
  • separation distillation
  • the intermediate separation of the conversion products avoids their "over-cracking" into naphtha and gas in the second step on the hydrocracking catalyst.
  • the unconverted fraction of the feedstock treated in the second step generally contains very low contents of NH 3 as well as organic nitrogen compounds, in general less than 20 ppm by weight or even less than 10 ppm weight.
  • the preferred catalysts according to the invention are the catalysts based on non-noble Group VIII elements, even more preferably the catalysts with base of nickel and tungsten or molybdenum, which can be doped with an element chosen from the group formed by boron, phosphorus and silicon, preferably phosphorus.
  • the catalysts used in the second reaction zone of the one-step hydrocracking processes or in the second step of the two-step hydrocracking processes are preferably the catalysts based on noble elements of group VIII, even more preferably the platinum and / or palladium based catalysts.
  • Very varied fillers can be treated by the hydrocracking processes according to the invention described above and generally they contain at least 20% by volume and often at least 80% by volume of compounds boiling above 340 ° C.
  • the feed can be, for example, LCOs (light cycle oil), atmospheric distillates, vacuum distillates, for example gas oils obtained from the direct distillation of crude oil or from conversion units such as FCC, coker or viscoreduction, as well as feedstocks coming from aromatic extraction units from the lubricating oil bases or from solvent dewaxing of the lubricating oil bases, or else from distillates coming from desulfurization or hydroconversion processes in a fixed bed or in bubbling bed of RAT (atmospheric residues) and / or RSV (vacuum residues) and / or deasphalted oils, or the filler can be a deasphalted oil, or any mixture of the charges previously mentioned.
  • LCOs light cycle oil
  • atmospheric distillates for example gas oils obtained from the direct distillation of crude oil or from conversion units such as FCC, coker or viscoreduction
  • feedstocks coming from aromatic extraction units from the lubricating oil bases or from solvent dewaxing of the lubricating oil bases or else from distill
  • Paraffins from the Fischer-Tropsch process are excluded.
  • the charges have a boiling point T5 greater than 340 ° C, and more preferably greater than 370 ° C, ie 95% of present compounds • in the feed have a boiling point above 340 ° C, and more preferably greater than 370 ° C .
  • the nitrogen content of the feedstocks treated in the processes according to the invention is usually greater than 500 ppm, preferably between 500 and 5000 ppm by weight, more preferably between 700 and 4000 ppm by weight and even more preferably between 1000 and 4000 ppm, and the sulfur content between 0.01 and 5% by weight, more generally between 0.2 and 4%.
  • the metal content is generally less than 2 ppm and preferably less than 1 ppm Ni + V maximum.
  • the content of C7 asphaltenes is generally less than 5000 ppm, preferably less than 1000 ppm and more preferably less than 200 ppm.
  • the catalysts used in the process according to the present invention are preferably subjected beforehand to a sulphurization treatment making it possible to transform, at least in part, the metallic species into sulphide before they are brought into contact with the load to be processed.
  • This sulfurization activation treatment is well known to those skilled in the art and can be carried out by any method already described in the literature either in situ, that is to say in the reactor, or ex situ.
  • a conventional sulfurization method well known to those skilled in the art consists in heating in the presence of hydrogen sulfide (pure or for example under a flow of a hydrogen / hydrogen sulfide mixture) to a temperature between 150 and 800 ° C., preferably between 250 and 600 ° C, generally in a reaction zone with a crossed bed.
  • the hydrocracking operating conditions such as temperature, pressure, hydrogen recycling rate, hourly space velocity, can be very variable depending on the nature of the feed, the quality of the desired products and the facilities available to the refiner. .
  • the hydrocracking catalyst is brought into contact, in the presence of hydrogen, with the fillers described above, at a temperature above 200 ° C, often between 250 and 480 ° C, advantageously between 320 and 450 ° C, preferably between 330 and 435 D C, under a pressure greater than 1 MPa, often between 2 and 25 MPa, preferably between 3 and 20 MPa, the space speed being between 0.1 and 20h “1 and preferably 0 , 1-6h “ , preferably 0.2-3h " 1 , and the quantity of hydrogen introduced is such that the volume ratio liter of hydrogen / liter of hydrocarbon is between 80 and 5000I / I and more often between 100 and 2000 I / l.
  • These operating conditions used in the process according to the invention make it possible to achieve conversions by pass, into products having boiling points below 340 ° C, and better still below 370 ° C, above 15% and even more more preferred between 20 and 95%.
  • Example 1 Preparation and shaping of a silico-aluminum matrix MA1
  • a matrix precursor MA1 is prepared in the following manner: firstly a 30% sulfuric acid solution is added to a sodium silicate solution. The quantity of H 2 S0 is defined so as to work at a fixed neutralization rate. The addition is carried out in two minutes with stirring at 600 revolutions / minute. The synthesis temperature is 60 ° C. The ripening time was set at 30 minutes. Stirring is maintained at 600 revolutions / minute, the temperature is that of the previous step. Then, AI 2 (S0) 3 (500 ml) is added, the concentration is fixed by the desired alumina content. The pH is not regulated and is fixed by the desired alumina content. The addition is done in 10 minutes.
  • the gel resulting from this stage is mixed with Pural boehmite powder so that the final composition in anhydrous product is, at this stage of the synthesis, equal to 50% AI 2 Q 3 -50% Si0 2 .
  • the mixing is done on a Z-arm mixer.
  • the extrusion is carried out by passing the dough through a die provided with orifices with a diameter of 1.4 mm.
  • the extrudates thus obtained are dried at 150 ° C, calcined at 550 ° C, then calcined at 700 ° C in the presence of steam.
  • the characteristics of the matrix are as follows:
  • the composition of the matrix MA1 is 50.12% Al 2 0 3 - 49.88% Si0 2 .
  • the BET surface of the matrix of 254 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.43 ml / g.
  • the average pore diameter, measured by mercury porosimetry, is 65 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D n - 30 A and the Dm o y in + 30 A on the total mercury volume is 0.91.
  • the volume V3, measured by mercury porosimetry, included in the pores with diameters greater than average D + 30 A is 0.03 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 15 A is 0.047 ml / g,
  • the ratio between the adsorption surface and the BET surface is 0.76.
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 140 A is 0.015 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 160 A is 0.013 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 200 A is 0.011 ml / g
  • the pore volume, measured by mercury porosimetry, is included in pores with a diameter greater than 500 A is 0.001 ml / g
  • the X-ray diffraction diagram contains the main lines characteristic of gamma alumina and in particular it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1, 97 A to 2.00 A.
  • the atomic sodium content is 310 +/- 20 ppm.
  • the atomic sulfur content is 1500 ppm.
  • the MAS NMR spectra of the solid of 27 AI of the matrix show two distinct peak masses.
  • a first type of aluminum whose maximum resonates around 10 ppm ranges between -100 and 20 ppm. The position of the maximum suggests that these species are essentially of the Alvi (octahedral) type.
  • a second type of minority aluminum whose maximum resonates around 60 ppm ranges between 20 and 100 ppm. This founded can be broken down into at least two species. The predominant species of this massif would correspond to the atoms of AI
  • the matrix contains two silico-aluminum zones, the said zones having Si / Ai ratios lower or greater than the overall Si / Al ratio determined by X-ray fluorescence.
  • One of the zones has an Si / Ai ratio determined by TEM of 0.7 and the other zone has an Si / Ai ratio determined by MET of 0.98.
  • the B / L ratio of the matrix is equal to 0.12.
  • Example 2 Preparation and shaping of a silico-aluminum matrix MA2
  • An alumina hydrate is prepared according to the teachings of US Pat. No. 3,124,418. After filtration, the freshly prepared precipitate is mixed with a solution of silicic acid. prepared by exchange on decationizing resin. The proportions of the two solutions are adjusted so as to achieve a composition of 70% Al 2 0 3 - 30% Si0 2 on the final support. This mixture is quickly homogenized in a commercial colloid mill in the presence of nitric acid 'so that the nitric acid content of the grinder output suspended or 8% based on the solid mixed silica-alumina. Then, the suspension is conventionally dried in an atomizer in a conventional manner.
  • the powder thus prepared is shaped in a Z-shaped arm in the presence of 8% nitric acid relative to the anhydrous product.
  • the extrusion is carried out by passing the dough through a die provided with orifices with a diameter of 1.4 mm.
  • the extrudates thus obtained are dried at
  • the characteristics of the MA2 matrix are as follows:
  • the silica-alumina composition is 69.5% Al 2 0 3 and 30.5% Si0 2 .
  • the BET surface area is 250 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.45 ml / g.
  • the average porous diameter, measured by mercury porosimetry, is 70 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D - 30 A and the average D + 30 A on the total mercury volume is 0.9.
  • the volume V3, measured by mercury porosimetry, included in the pores with diameters greater than average D + 30 A is 0.021 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than Dmoy ⁇ n + 15 A is 0.035 ml / g,
  • the ratio between the adsorption surface and the BET surface is 0.82.
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.015 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with diameter greater than 160 A is 0 , 01 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is 0.007 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g
  • the X-ray diffraction diagram contains the main lines characteristic of gamma alumina and in particular it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1.97 A to
  • the atomic sodium content is 250 +/- 20 ppm.
  • the atomic sulfur content is 2000 ppm.
  • the MAS NMR spectra of the solid of 27 AI of the matrix show two distinct peak masses.
  • a first type of aluminum whose maximum resonates around 10 ppm ranges between -100 and 20 ppm. The position of the maximum suggests that these species are essentially of the AI V ⁇ (octahedral) type.
  • a second type of minority aluminum whose maximum resonates around 60 ppm ranges between 20 and 100 ppm. This founded can be broken down into at least two species. The predominant species of this massive would correspond to the atoms of Aliv (tetrahedral). The proportion of octahedral AI V ⁇ is 69%.
  • the matrix contains a single silico-aluminum zone with an Si / Al ratio determined by TEM microprobe of 0.37.
  • the B / L ratio of the matrix is equal to 0.11.
  • the aluminum hydroxide powder was prepared according to the method described in patent WO 00/01617.
  • the average particle size of the aluminum hydroxide particles measured by laser particle size is 40 microns.
  • This powder is mixed with a silica sol prepared by exchange on decationizing resin, then filtered through porosity 2 resin.
  • the concentrations of silica sol and aluminum hydroxide powder are adjusted so as to obtain a final composition of 60 % Al 2 0 3 and 40% Si0 2 .
  • the shaping is carried out in the presence of 15% nitric acid relative to the anhydrous product.
  • the mixing is done on a Z-arm mixer.
  • the extrusion is carried out by passing the dough through a die provided with orifices with a diameter of 1.4 mm.
  • the extrudates thus obtained are dried at 150 ° C, then calcined at 550 ° C, then calcined at 750 ° C in the presence of water vapor.
  • composition of the silica-alumina matrix is 59.7% Al 2 0 3 and 40.3% Si0 2 .
  • the BET surface area is 248 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.46 ml / g
  • the mean pore diameter, measured by mercury porosimetry, is 69 A.
  • the ratio between volume V2, measured by mercury porosimetry, encompassed between D moye n - 30 A and D mean + 30 A to the total mercury volume is 0.9.
  • the volume V3 measured by mercury porosimetry, included in the pores with a diameter greater than
  • Average + 30 A is 0.022 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with a diameter greater than average D + 15 A is 0.031 ml / g
  • the ratio between the adsorption surface and the BET surface is 0.83.
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.0105 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 200 A is 0.0065 ml / g
  • the pore volume, measured by mercury porosimetry, is included in pores with a diameter greater than 500 A is 0.001 ml / g
  • the X-ray diffraction diagram contains the main lines characteristic of gamma alumina and in particular it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1.97 A to 2.00 A.
  • the atomic sodium content is 200 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • the MAS NMR spectra of the solid of 27 AI of the matrix show two distinct peak masses.
  • a first type of aluminum whose maximum resonates around 10 ppm ranges between -100 and 20 ppm. The position of the maximum suggests that these species are essentially of the AI V ⁇ (octahedral) type.
  • a second type of minority aluminum whose maximum resonates around 60 ppm ranges between 20 and 100 ppm. This massif can be broken down into at least two species. The predominant species of this massif would correspond to the atoms of AI
  • the matrix contains two silico-aluminum zones, the said zones having Si / AI ratios lower or greater than the overall Si / AI ratio determined by X-ray fluorescence.
  • One of the zones has an Si / AI ratio determined by TEM of 0.22 and l the other zone has an Si / AI ratio determined by MET of 0.85.
  • the B / L ratio of the matrix is equal to 0.12.
  • the MA4 matrix is obtained in the following manner.
  • Silica-alumina gels are prepared by mixing sodium silicate and water, sending this mixture over an ion exchange resin. A solution of aluminum chloride hexahydrate in water is added to the decationized silica sol. In order to obtain a gel, ammonia is added, the precipitate is then filtered and washing is carried out with a solution of concentrated ammonia and water until the conductivity of the washing water is constant. The gel from this step is mixed with Pural boehmite powder so that the final composition of the mixed support in anhydrous product is, at this stage of the synthesis, equal to 60% AI 2 O 3 -40% Si0 2 . This suspension is passed through a colloid mill in the presence of nitric acid.
  • the content of added nitric acid is adjusted so that the percentage at the outlet of the nitric acid mill is 8% relative to the mass of solid mixed oxide. This mixture is then filtered to reduce the amount of water in the mixed cake. Then, the cake is kneaded in the presence of 10% nitric acid and then extruded. Mixing was' fits on a mixer arm Z. The extrusion is carried out by passing the dough through a die with 1.4 mm diameter orifices. The extrudates thus obtained are dried at 150 ° C, then calcined at 550 ° C, then calcined at 700 ° C in the presence of water vapor.
  • the characteristics of the MA4 matrix are as follows: The composition of the silica-alumina matrix is 60.7% Al 2 0 3 and 39.3% Si0 2 .
  • the BET surface area is 258 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.47 mi / g
  • the average pore diameter, measured by mercury porosimetry, is 69 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D - 30 A and the average D + 30 A on the total mercury volume is 0.89.
  • the volume V3, measured by mercury porosimetry, included in the pores of diameters greater than average D + 30 A is 0.032 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores of diameters greater than Dm 0y in + 15 A is 0.041 ml / g,
  • the ratio between the adsorption surface and the BET surface is 0.83.
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 160 A is 0.0082 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 200 A is 0.0063 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g
  • the X-ray diffraction diagram contains the main lines characteristic of gamma alumina and in particular it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1.97 A to
  • the atomic sodium content is 200 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • the MAS NMR spectra of the solid of 27 AI of the matrix show two distinct peak masses.
  • a first type of aluminum whose maximum resonates around 10 ppm ranges between -100 and 20 ppm. The position of the maximum suggests that these species are essentially of the AI V ⁇ (octahedral) type.
  • a second type of minority aluminum whose maximum resonates around 60 ppm ranges between 20 and 100 ppm. This founded can be broken down into at least two species. The predominant species of this massif would correspond to the atoms of AI
  • the matrix contains a single silico-aluminum zone with an Si / Al ratio determined by TEM microprobe of 0.63.
  • the B / L ratio of the matrix is equal to 0.11.
  • the supports SU5 to SU8 are thus obtained containing 5% of zeolite Z1 added in anhydrous mass.
  • the composition of the support matrix is 50.1% Al 2 0 3 - 49.9% Si0 2 .
  • the total pore volume, measured by nitrogen adsorption, is 0.418 ml / g.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D - 30 A and ' the average D + 30 A on the total mercury volume is 0.91.
  • the volume V3, measured by mercury porosimetry, included in the pores with diameters greater than average D + 30 A is 0.03 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than average D + 15 A is 0.047 ml / g,
  • the ratio between the adsorption surface and the BET surface is 0.76.
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 140 A is 0.014 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 160 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is 0.010 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g
  • the packed filling density of the support is 0.795 g / cm 3
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 290 +/- 20 ppm.
  • the atomic sulfur content is 1500 ppm.
  • the characteristics of the supports are as follows: the composition of silica-alumina in the matrix of the support is 69.5% Al 2 0 3 and 30.5% Si0 2 .
  • the BET surface area is 279 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.437 ml / g.
  • the average pore diameter, measured by mercury porosimetry, is 69 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D - 30 A and the D m0 y in + 30 A on the total mercury volume is 0.9.
  • the volume V3, measured by mercury porosimetry, included in the pores with diameters greater than average D + 30 A is 0.020 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 15 A is 0.034 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.015 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with diameter greater than 160 A is 0 , 01 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is 0.068 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g
  • the packed filling density of the support is 0.797 g / cm 3 .
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 240 +/- 20 ppm.
  • the atomic sulfur content is 1900 ppm.
  • the characteristics of the support SU 7 are as follows: The composition of the silica-alumina matrix is 59.7% Al 2 0 3 and 40.3% Si0 2 .
  • the BET surface area is 283 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.45 ml / g.
  • the average pore diameter, measured by mercury porosimetry, is 68 A.
  • the ratio between the volume V2, measured by mercury porosimetry, included between the average D - 30 A and the average D + 30 A on the total mercury volume is 0.9.
  • the volume V3, measured by mercury porosimetry, included in the pores with a diameter greater than D m ⁇ yen + 30 A is 0.021 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with a diameter greater than D mean + 15 A is 0.030 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.010 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with diameter greater than 200 A is 0.063 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 190 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • the packed filling density of the support is 0.79 g / cm 3 .
  • the characteristics of the SU8 support are as follows: The composition of the matrix of the silica-alumina support is 60.7% Al 2 0 3 and 39.3% Si0 2 .
  • the BET surface area is 287 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.46 ml / g
  • the average pore diameter, measured by mercury porosimetry, is 68 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D - 30 A and the average D + 30 A on the total mercury volume is 0.89.
  • the volume V3, measured by mercury porosimetry, included in the pores of diameters greater than average D + 30 A is 0.031 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than Dmoyen + 15 A is 0.040 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with diameter greater than 140 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.008 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 200 A is 0.006 ml / g
  • the pore volume, measured by mercury porosimetry, is included in pores with a diameter greater than 500 A is 0.001 ml / g
  • the packed filling density of the support is 0.795 g / cm 3 .
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 200 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • a Z2 zeolite with an Si / AI ratio measured by FX of 73, a sodium content of 102 ppm, a mesh parameter a 24.15 A, a crystallinity rate of 44% and a BET surface area of 783 m 2 / is used.
  • the composition of the matrix of the support is 50.1% Al 2 0 3 - 49.9% Si0 2 .
  • the BET surface of the support of 283 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.418 ml / g.
  • the average pore diameter, measured by mercury porosimetry, is 64 A.
  • the ratio between volume V2, measured by mercury porosimetry, encompassed between D moye n - 30 A and D mean + 30 A to the total mercury volume is 0.91.
  • the volume V3, measured by mercury porosimetry, encompassed in the pores with diameters greater than D m edium + 30 A is 0.03 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than D m0 yen + 15 A is 0.047 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with diameter greater than 140 A is 0.014 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is 0.010 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g
  • the packed filling density of the support is 0.795 g / cm 3
  • the X-ray diffraction diagram contains: - the main lines characteristic of gamma alumina and in particular it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1.97 A at 2.00 AT
  • the atomic sodium content is 290 +/- 20 ppm.
  • the atomic sulfur content is 1500 ppm.
  • the characteristics of the supports are as follows: the silica-alumina composition of the matrix of the support is 69.5% Al 2 0 3 and 30.5% Si0 2 .
  • the BET surface area is 279 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.438 ml / g.
  • the average porous diameter, measured by mercury porosimetry, is 69 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D - 30 A and the average D + 30 A on the total mercury volume is 0.9.
  • the volume V3, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 30 A is 0.020 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than average D + 15 A is 0.034 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.015 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.013 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with diameter greater than 200 A is 0, 0068ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g.
  • the packed filling density of the support is 0.79 g / cm 3 .
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 240 +/- 20 ppm.
  • the atomic sulfur content is 1900 ppm.
  • the characteristics of the SU 11 support are as follows:
  • composition of the silica-alumina matrix is 59.7% Al 2 0 3 and 40.3% Si0 2 .
  • the BET surface area is 275 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.45 ml / g
  • the average pore diameter, measured by mercury porosimetry, is 68 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D - 30 A and the Dm o y in + 30 A on the total mercury volume is 0.9.
  • the volume V3 measured by mercury porosimetry, included in the pores with a diameter greater than
  • Average + 30 A is 0.021 ml / g.
  • Average + 15 A is 0.030 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.010 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is 0.006 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g.
  • the packed filling density of the support is 0.795 g / cm 3 .
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 190 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • the characteristics of the SU12 support are as follows:
  • composition of the matrix of the silica-alumina support is 60.7% Al 2 0 3. And 39.3% Si0 2 .
  • the BET surface area is 284 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.46 ml / g
  • the average pore diameter, measured by mercury porosimetry, is 68 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the D mean - 30 A and the Dm o y e n + 30 A on the total mercury volume is 0.89.
  • the volume V3, measured by mercury porosimetry, encompassed in the pores with diameters greater than D m edium + 30 A is 0.031 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 15 A is 0.040 ml / g,
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.008 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is 0.006 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g.
  • the packed filling density of the support is 0.79 g / cm 3 .
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 200 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • Example 7 Preparation of the hydrocracking catalyst supports according to the invention (SU13 to
  • a Z3 zeolite is used as described in the patent application US Pat. No. 5,601,798. This zeolite is prepared according to the method described in Example 52 in Table 16. The mesoporous volume obtained is 0.36 cm 3 / g. The mesh parameter a is 24.34 ⁇ and the crystallinity rate of 75%. 5 g of zeolite Z3 described above and 95 g of the precursor matrices of the supports MA1 to MA4 added in solid material are then mixed as described above. This mixing takes place before introduction into the extruder. The zeolite powder is previously wetted and added to the matrix suspension in the presence of 66% nitric acid (7% weight of acid per gram of dry gel) then kneaded for 15 minutes.
  • the dough obtained is passed through a die having cylindrical orifices with a diameter of 1.4 mm.
  • the extrudates are then dried overnight at 120 ° C in air and then calcined at 550 ° C in air, then calcined at 700 ° C in the presence of water vapor.
  • the supports SU 13 to SU 16 are thus obtained.
  • the characteristics of the supports according to the invention are:
  • the composition of the support matrix is 50.1% Al 2 0 3 - 49.9% Si0 2 .
  • the BET surface of the support is 280 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.425 ml / g.
  • the ratio between the volume V2, measured by mercury porosimetry, between the D m0 y in - 30 A and the Dmoy e n + 30 A on the total mercury volume is 0.91.
  • the volume V3 measured by mercury porosimetry, included in the pores with a diameter greater than
  • D m edium + 30 A is 0.03 ml / g.
  • Average + 15 A is 0.047 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.015 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.013 ml / g
  • the pore volume, measured by. mercury porosimetry, included in pores with a diameter greater than 200 A is 0.011 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g.
  • the packed filling density of the support is 0.79 g / cm 3 .
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 290 +/- 20 ppm.
  • the atomic sulfur content is 1500 ppm.
  • the characteristics of the supports are as follows: the silica-luminous composition of the matrix of the support is 69.5% Al 2 0 3 and 30.5% Si0 2 .
  • the BET surface area is 276 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.438 ml / g.
  • the average pore diameter, measured by mercury porosimetry, is 69 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between D mean 0 - 30 A and Dm ow n + 30 A on the total mercury volume is 0.9.
  • the volume V3, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 30 A is 0.020 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 15 A is 0.034 ml / g,
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.010 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 200 A is 0.006 ml / g
  • the pore volume, measured by mercury porosimetry, is included in pores with a diameter greater than 500 A is 0.001 ml / g
  • the packed filling density of the support is 0.79 g / cm 3 .
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 240 +/- 20 ppm.
  • the atomic sulfur content is 1900 ppm.
  • the characteristics of the SU 15 support are as follows:
  • the composition of the silica-alumina matrix is 59.7% Al 2 0 3 and 40.3% Si0 2 .
  • the BET surface area is 275 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.455 ml / g
  • the average pore diameter, measured by mercury porosimetry, is 68 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D - 30 A and the Dm o y e n + 30 A on the total mercury volume is 0.9.
  • Average + 30 A is 0.021 ml / g.
  • the volume V6 measured by mercury porosimetry, included in the pores with a diameter greater than
  • Dmo in + 15 A is 0.030 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.010 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with diameter greater than 200 A is 0.006 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores of diameter greater than 500 A is 0.001 ml / g
  • the packed filling density of the support is 0.795 g / cm 3 .
  • the X-ray diffraction diagram contains: - the main lines characteristic of gamma alumina and in particular it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1.97 A at 2.00 A, - the main lines characteristic of the zeolite Z3.
  • the atomic sodium content is 190 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • the characteristics of the SU 16 support are as follows: The composition of the matrix of the silica-alumina support is 60.7% Al 2 0 3 and 39.3% Si0 2 .
  • the BET surface area is 284 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.46 ml / g
  • the average pore diameter, measured by mercury porosimetry, is 68 A.
  • the ratio between the volume V2, measured by mercury porosimetry, included between the D m0 y in - 30 A and the Dm o y e n + 30 A on the total mercury volume is 0.89.
  • the volume V3, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 30 A is 0.031 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 15 A is 0.040 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with diameter • greater than 140 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.008 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is 0.006 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g
  • the packed filling density of the support is 0.79 g / cm 3 .
  • the X-ray diffraction diagram contains: - the main lines characteristic of gamma alumina and in particular it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1.97 A at 2.00 AT , - the main lines characteristic of the Z3 zeolite
  • the atomic sodium content is 200 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • Example 8 Preparation of the hydrocracking catalyst supports according to the invention (SU 16 to SU20)
  • zeolite ZBM-30 is synthesized according to BASF patent EP-A-46504 with the organic structuring agent triethylenetetramine. Then it is subjected to calcination at 550 ° C under dry air flow for 12 hours.
  • the H-ZBM-30 zeolite (acid form) thus obtained has an Si / Al ratio of 45 and an Na / Al ratio less than 0.001.
  • the zeolite powder is previously wetted and added to the matrix suspension in the presence of 66% nitric acid (7% weight of acid per gram of dry gel) then kneaded for 15 minutes. At the end of this kneading, the dough obtained is passed through a die having cylindrical orifices with a diameter equal to 1.4 mm. The extrudates are then dried overnight at 120 ° C in air and then calcined at 550 ° C in air, then calcined at 700 ° C in the presence of steam.
  • the supports SU 17 to SU20 are thus obtained.
  • the composition of the support matrix is 50.1% Al 2 0 3 - 49.9% Si0 2 .
  • the BET surface of the support of 280 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.445 ml / g.
  • the average pore diameter, measured by mercury porosimetry, is 64 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the average D n - 30 A and the average D n + 30 A on the total mercury volume is 0.91.
  • the volume V3, measured by mercury porosimetry, included in the pores with a diameter greater than D mo y e n + 30 A is 0.03 ml / g.
  • the volume V6 measured by mercury porosimetry, included in the pores with a diameter greater than
  • Average + 15 A is 0.047 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 140 A is 0.015 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 160 A is 0.012 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 200 A is 0.010 ml / g
  • the pore volume, measured by mercury porosimetry, is included in pores with a diameter greater than 500 A is 0.001 ml / g
  • the packed filling density of the support is 0.795 g / cm 3
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 290 +/- 20 ppm.
  • the atomic sulfur content is 1500 ppm.
  • the characteristics of the supports are as follows: the silica-alumina composition of the matrix of the support is 69.5% Al 2 0 3 and 30.5% Si0 2 .
  • the BET surface area is 276 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.43 ml / g.
  • the average pore diameter, measured by mercury porosimetry, is 69 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the D m0 y e n - 30 A and the Dm o y in + 30 A on the total mercury volume is 0.9.
  • the volume V3, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 30 A is 0.020 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than D mean + 15 A is 0.034 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores of diameter greater than 140 A is 0.011 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores. diameter greater than 160 A is 0.010 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is 0.006 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g
  • the packed filling density of the support is 0.795 g / cm 3 .
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 230 +/- 20 ppm.
  • the atomic sulfur content is 1900 ppm.
  • the characteristics of the support SU 19 are as follows: The composition of the silica-alumina matrix is 59.7% Al 2 0 3 and 40.3% Si0 2 .
  • the BET surface area is 275 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.435 ml / g
  • the average pore diameter, measured by mercury porosimetry, is 68 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between the D m0 ye n - 30 A and the Dm o y in + 30 A on the total mercury volume is 0.9.
  • the volume V3 measured by mercury porosimetry, included in the pores with a diameter greater than
  • Average + 30 A is 0.021 ml / g.
  • the volume V6 measured by mercury porosimetry, included in the pores with a diameter greater than
  • Average + 15 A is 0.030 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 140 A is 0.011 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 160 A is 0.010 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with a diameter greater than 200 A is 0.006 ml / g
  • the pore volume, measured by mercury porosimetry, is included in the pores with a diameter greater than 500 A is 0.001 ml / g
  • the X-ray diffraction diagram contains:
  • the atomic sodium content is 190 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • the packed filling density of the support is 0.795 g / cm 3 .
  • the characteristics of the SU20 support are as follows:
  • composition of the matrix of the silica-alumina support is 60.7% Al 2 0 3 and 39.3% Si0 2 .
  • the BET surface area is 284 m 2 / g.
  • the total pore volume, measured by nitrogen adsorption, is 0.435 ml / g
  • the average porous diameter, measured by mercury porosimetry, is 68 A.
  • the ratio between the volume V2, measured by mercury porosimetry, between D m0 y e n - 30 A and Dmoy in + 30 A on the volume total mercury is 0.89.
  • the volume V3, measured by mercury porosimetry, included in the pores of diameters greater than D mean + 30 A is -0.031 ml / g.
  • the volume V6, measured by mercury porosimetry, included in the pores with diameters greater than Dmoyen + 15 A is 0.040 ml / g
  • the pore volume, measured by mercury porosimetry, included in the pores with diameter greater than 140 A is 0.011 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a diameter greater than 160 A is 0.006 ml / g
  • the pore volume, measured by mercury porosimetry, included in pores with a larger diameter at 200 A is 0.006 ml / g
  • the packed filling density of the support is 0.79 g / cm 3 .
  • the X-ray diffraction diagram contains: - the main lines characteristic of gamma alumina and in particular it contains the peaks at a d between 1.39 to 1.40 A and at a d between 1.97 A at 2.00 A, - the main lines characteristic of the ZBM30 zeolite.
  • the atomic sodium content is 190 +/- 20 ppm.
  • the atomic sulfur content is 800 ppm.
  • the catalysts C1 to C20 are obtained by dry impregnation of an aqueous solution containing tungsten and nickel salts, respectively, of the supports SU1 to SU20 under form of extrudates and the preparations of which were respectively described in Examples 1 to 7.
  • the tungsten salt is ammonium metatungstate (NH 4 ) 6 H 2 W ⁇ 2 O 40 * 4H 2 O and that of nickel is nickel nitrate Ni (N0 3 ) 2 * 6H 2 0.
  • the impregnated extrudates are dried at 120 ° C overnight then calcined at 500 ° C in dry air.
  • Table 1 Weight contents of W0 3 and NiO of catalysts C1 to C8
  • Example 10 The catalysts C21 and C22 are obtained by dry impregnation of the supports SU3 and SU 10 (in the form of extrudates), prepared in Examples 1 and 5 by a dry impregnation of a solution of hexachloroplatinic acid H 2 PtCI 6 . The impregnated extrudates are then calcined at 550 ° C. in dry air. The platinum content is 0.49% by weight.
  • Example 11 - Evaluation of Catalysts C1 to C20 in Hydrograining of a Vacuum Distillate in a High Pressure Stage
  • the catalysts C1 to C20 are used to carry out the hydrocracking of a distillate under vacuum, the main characteristics of which are given below:
  • the catalysts Prior to the hydrocracking test, the catalysts are sulfurized at 120 bars, at 350 ° C. by means of a direct distillation gas oil added with 2% by weight of DMDS.
  • VVH space velocity
  • the catalytic performances are expressed by the net conversion into products having a boiling point below 370 ° C., by the net selectivity in medium distillate cuts 150-370 ° C. and the ratio of gas oil yield / kerosene yield in the middle distillate fraction. They are expressed from the results of simulated distillation.
  • the net CN conversion is taken equal to:
  • feed mass content of compounds having boiling points below 370 ° C in the feed.
  • the gross selectivity for middle distillate SB is taken equal to:
  • SB definition [(fraction in 150 - 370 eff iuents) j / [(% of 370 ° C " effluents)]
  • Example 11 Evaluation of the catalyst C21 and C22 under conditions simulating the operation of the second reactor of a so-called two-stage hydro-crawling process
  • the charge of the second stage is produced by hydrotreating a distillate under vacuum on a hydrorefining catalyst marketed by Axens in the presence of hydrogen, at a temperature of 395 ° C and at an hourly space speed of 0.55h-1 .
  • the conversion to 380 ° C products is approximately 50% by weight.
  • the 380 ° C + fraction is collected and will serve as a feed for the second step.
  • Table 3 Table 5: characteristics of the second stage load
  • This charge is injected into the hydrocracking test unit 2 nd step which comprises a fixed bed reactor, with upward circulation of the charge (“up-flow”), into which is introduced the catalyst C9 prepared in the example. 9. Before injection of the charge, the catalyst is reduced under pure hydrogen at 450 ° C for 2 hours.
  • the operating conditions of the test unit are as follows:
  • Examples 10 and 11 therefore show the advantage of using a catalyst according to the invention for carrying out the hydrocracking of hydrocarbon feedstocks. Indeed, they make it possible to obtain high conversions of the charge and selectivities into interesting middle distillates.
  • Example 12 Evaluation of the catalysts C5 and C9 in hydrocracking of a distillate under vacuum in a step at moderate pressure (mild hydrocrououage)
  • the catalysts C5 and C9, the preparation of which is described in Example 9, are used to carry out the hydrocracking of the distillate under vacuum, described in Example 11.
  • the catalysts C5 and C9 were used according to the method of the invention using a pilot unit comprising 1 reactor with a fixed bed crossed, the fluids circulating from bottom to top (up-flow).
  • the catalysts Prior to the hydrocracking test, the catalysts are sulfurized at 120 bars, at 350 ° C. by means of a direct distillation gas oil added with 2% by weight of DMDS.
  • VVH space velocity
  • the catalytic performances are expressed by the net conversion into products having a boiling point below 370 ° C., by the net selectivity in medium distillate cuts 150-370 ° C. and the ratio of gas oil yield / kerosene yield in the middle distillate fraction. They are expressed from the results of simulated distillation and the definitions are identical to those given in Example 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne un catalyseur comprenant au moins un élément hydro-déshydrogénant choisi dans le groupe formé par les éléments du groupe VIB et du groupe VIII de la classification périodique et un support à base de matrice silico-aluminique à teneur réduite en macropores contenant une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice (Si02) et à base d'au moins une zéolithe. - L'invention concerne également un support à base de matrice silico-aluminique à teneur réduite en macropores contenant une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice (Si02) et à base d'au moins une zéolithe. - L'invention concerne également les procédés d'hydrocraquage et/ou hydroconversion et les procédés d'hydrotraitement mettant en oeuvre un catalyseur selon l'invention.

Description

Catalyseur zéolithique, support à base de matrice silico-aluminique exTie zéolithe, et procédé d'hydrocraquage de charges hydrocarbonées
La présente invention concerne des supports à base de matrice silico-aluminique et de zéolithe, des catalyseurs et les procédés d'hydroconversion les mettant en œuvre.
L'objectif du procédé est essentiellement la production de distillats moyens, c'est-à-dire de coupes à point d'ébullition initial d'au moins 150°C et final allant jusqu'à avant le point d'όbullition initial du résidu, par exemple inférieur à 340°C, ou encore à 370°C.
Art Antérieur
L'hydrocraquage de coupes pétrolières lourdes est un procédé très important du raffinage qui permet de produire, à partir de charges lourdes excédentaires et peu valorisâmes, des fractions plus légères telles que essences, carburéacteurs et gazoles légers que recherche le raffineur pour adapter sa production à la structure de la demande. Certains procédés d'hydrocraquage permettent d'obtenir également un résidu fortement purifié pouvant fournir d'excellentes bases pour huiles. Par rapport au craquage catalytique, l'intérêt de l'hydrocraquage catalytique est de fournir des distillats moyens, carburéacteurs et gazoles, de très bonne qualité. Inversement l'essence produite présente un indice d'octane beaucoup plus faible que celle issue du craquage catalytique.
L'hydrocraquage est un procédé qui tire sa flexibilité de trois éléments principaux qui sont, les conditions opératoires utilisées, les types de catalyseurs employés et le fait que l'hydrocraquage de charges hydrocarbonées peut être réalisé en une ou deux étapes.
Les catalyseurs d'hydrocraquage utilisés dans les procédés d'hydrocraquage sont tous du type bifonctionnel associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports dont les surfaces varient généralement de 150 à 800 m2.g"1 et présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les combinaisons d'oxydes de bore et d'aluminium, les silice-alumines amorphes et les zéolithes. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, soit par une association d'au moins un métal du groupe VIB de la classification périodique et au moins un métal du groupe VIII.
L'équilibre entre les deux fonctions acide et hydrogénante est un des paramètres qui régissent l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs, travaillant à température en général élevée (supérieure ou égale à 390-400 °C), et à vitesse spatiale d'alimentation faible (la VVH exprimée en volume de charge à traiter par unité de volume de catalyseur et par heure est généralement inférieure ou égale à 2), mais dotés d'une très bonne sélectivité en distillats moyens. Inversement, une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs actifs, mais présentant de moins bonnes sélectivités en distillats moyens (carburéacteurs et gazoles).
Un type de catalyseurs conventionnels d'hydrocraquage est à base de supports amorphes modérément acides, tels les silice-alumines par exemple. Ces systèmes sont utilisés pour produire des distillats moyens de bonne qualité, et éventuellement, des bases huiles. Ces catalyseurs sont par exemple utilisés dans les procédés en deux étapes.
Les performances de ces catalyseurs sont étroitement liées à leurs caractéristiques physico- chimiques, et plus particulièrement à leurs caractéristiques texturales. Ainsi et d'une façon générale, la présence de macropores dans les catalyseurs comportant une silice-alumine (tels que ceux décrits par exemple dans le brevet US 5 370 788) est un inconvénient. On entend par macropores des pores dont le diamètre est supérieur à 500 A. En voulant résoudre ce problème la demanderesse a été conduite d'abord à préparer des matrices de catalyseurs d'hydrocraquage à teneurs réduites en macropores. Les performances des catalyseurs sont également corrélées à leur structure : amorphe ou cristalline. Les catalyseurs comportant partiellement une zéolithe ou un mélange de zéolithes présentent quant à eux une activité catalytique supérieure à celles des silice-alumines amorphes, mais présentent des sélectivités en produits légers qui sont plus élevées. La demanderesse a mis en évidence et ceci de manière inattendue que l'incorporation dans une matrice, à teneur réduite en macropores, de certaines zéolithes seules ou en mélange a conduit à préparer des catalyseurs ayant des performances catalytiques améliorées dans les procédés d'hydrocraquage par rapport aux catalyseμrs de l'art antérieur. Plus précisément, l'invention concerne' un catalyseur d'hydrocraquage/hydroconversion, le support utilisé pour préparer ledit catalyseur et le procédé d'hydrocraquage le mettant en œuvre.
Description détaillée de l'invention
Techniques de caractérisation
Dans l'exposé qui suit de l'invention, on entend par surface spécifique, la surface spécifique B.E.T. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique « The Journal of American Society", 60, 309, (1938). Dans l'exposé qui suit de l'invention, on entend par volume mercure des supports et des catalyseurs, le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284- 83 à une pression maximale de 4000 bar, utilisant une tension de surface de 484 dyne/cm et un angle de contact pour les supports silice-alumine amorphe de 140°. On définit le diamètre moyen mercure comme étant un diamètre tel que tous les pores de taille inférieure à ce diamètre constituent 50% du volume poreux (VHg), dans un intervalle compris entre 36 Λ et 1000 A. Une des raisons pour lesquelles il est préférable d'utiliser le support comme base pour définir la distribution poreuse tient dans le fait que l'angle de contact du mercure varie après imprégnation des métaux et ceci en fonction de la nature et du type de métaux. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage "Techniques de l'ingénieur, traité analyse et caractérisation, P 1050-5, écrits par Jean Charpin et Bernard Rasneur". Afin d'obtenir une meilleure précision, la valeur du volume mercure en ml/g donnée dans le texte qui suit correspond à la valeur du volume mercure total en ml/g mesurée sur l'échantillon moins la valeur du volume mercure en ml/g mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 2 bars). On définit également le diamètre moyen mercure comme étant un diamètre tel que tous les pores de taille inférieure à ce diamètre constituent 50% du volume poreux total mercure. Afin de mieux caractériser la distribution poreuse, on définit enfin les critères de distribution poreuse suivants en mercure: le volume V1 correspond au volume contenu dans les pores dont le diamètre est inférieur au diamètre moyen moins 30 A. Le volume V2 correspond au volume contenu dans les pores de diamètre supérieur ou égal au diamètre moyen moins 30 A et inférieur au diamètre moyen plus 30 A. Le volume V3 correspond au volume contenu dans les pores de diamètre supérieur ou égal au diamètre moyen plus 30 A. Le volume V4 correspond au volume contenu dans les pores dont le diamètre est inférieur au diamètre moyen moins 15 A. Le volume V5 correspond au volume contenu dans les pores de diamètre supérieur ou égal au diamètre moyen moins 15 A et inférieur au diamètre moyen plus 15 A. Le volume V6 correspond au volume contenu dans les pores de diamètre supérieur ou égal au diamètre moyen plus 15 A. La distribution poreuse mesurée par adsorption d'azote a été déterminée par le modèle Barrett-Joyner-Halenda (BJH). L'isotherme d'adsorption - désorption d'azote selon le modèle BJH est décrit dans le périodique "The Journal of American Society" , 73, 373, (1951) écrit par E.P.Barrett, L.G.Joyner et P.P.Halenda. Dans l'exposé qui suit de l'invention, on entend par volume adsorption azote, le volume mesuré pour P/P0= 0.99, pression pour laquelle il est admis que l'azote a rempli tous les pores. On définit le diamètre moyen désorption azote comme étant un diamètre tel que tous les pores inférieurs à ce diamètre constituent 50% du volume poreux (Vp) mesuré sur la branche de désorption de l'isotherme azote. Par surface adsorption, on entend la surface mesurée sur la branche de l'isotherme d'adsorption. On se reportera par exemple à l'article de A. Lecloux "Mémoires Société Royale des Sciences de Liège, 6ème série, Tome I, fasc.4, pp.169-209 (1971)". La teneur en sodium a été mesurée par spectrométrie d'absorption atomique. La diffraction X est une technique pouvant être utilisée pour caractériser les supports et catalyseurs selon l'invention. Dans l'exposé qui suit, l'analyse des rayons X est réalisée sur poudre avec un diffractomètre Philips PW 1830 opérant en réflexion et équipé d'un monochromateur arrière en utilisant la radiation CoKalpha (λKα1 = 1.7890 A, λlK^ = 1.793 A, rapport d'intensité Kα1/ K„2 = 0.5). Pour le diagramme de diffraction X de l'alumine gamma, on se reportera à la base de données ICDD, fiche 10-0425. En particulier, les 2 pics les plus intenses sont situés à une position correspondant à un d compris entre 1 ,39 et 1 ,40 A et un d compris entre 1 ,97 A à 2,00 A. On appelle d la distance inter- réticulaire qui est déduite de la position angulaire en utilisant la relation de Bragg (2 d (h l) * sin (θ) =. n * λ). Par alumine gamma, on entend dans la suite du texte entre autres par exemple une alumine comprise dans le groupe composé des alumines gamma cubique, gamma pseudo-cubique, gamma tétragonale, gamma mal ou peu cristallisée, gamma grande surface, gamma basse surface, gamma issue de grosse boehmite, gamma issue de boehmite cristallisée, gamma issue de boehmite peu ou mal cristallisée, gamma issue d'un mélange de boehmite cristallisée et d'un gel amorphe, gamma issue d'un gel amorphe, gamma en évolution vers delta . Pour les positions des pics de diffraction des alumines éta, delta et thêta, on peut se référer à l'article de B.C.- Lippens, J.J. Steggerda, dans Physical and Chemical aspects of adsorbents and catalysts, E.G. Linsen (Ed.), Académie Press, London. 1970, p.171-211. Pour les supports et catalyseurs selon l'invention, le diagramme de diffraction X met en évidence un pic large caractéristique de la présence de silice amorphe.
Par ailleurs, dans l'ensemble du texte qui suit, le composé d'alumine peut contenir une fraction amorphe difficilement détectable par les techniques de DRX. On sous-entendra donc par la suite que les composés d'alumine utilisés ou décrits dans le texte peuvent contenir une fraction amorphe ou mal cristallisée.
Les supports et catalyseurs selon l'invention ont été analysés par RMN MAS du solide de 27AI sur un spectromètre de la firme Brϋker de type MSL 400, en sonde 4 mm. La vitesse de rotation des échantillons est de l'ordre de 11 kHz. Potentiellement, la RMN de l'aluminium permet de distinguer trois types d'aluminium dont les déplacements chimiques sont reportés ci-après :
Entre 100 et 40 ppm, aluminiums de type tétra-coordinés, notés Al |V,
Entre 40 et 20 ppm, aluminiums de type penta-coordinés, notés Alv,
Entre 20 et - 100 ppm, aluminiums de type hexa-coordinés, notés AIV|.
L'atome d'aluminium est un noyau quadripolaire. Dans certaines conditions d'analyse (champs de radiofréquence faible : 30 kHz, angle d'impulsion faible : π/2 et échantillon saturé en eau), la technique de RMN de rotation à l'angle magique (MAS) est une technique quantitative. La décomposition des spectres RMN MAS permet d'accéder directement à la quantité des différentes espèces. Le spectre est calé en déplacement chimique par rapport à une solution 1M de nitrate d'aluminium. Le signal d'aluminium est à zéro ppm. Nous avons choisi d'intégrer les signaux entre 100 et 20 ppm pour les Al ιv et Alv, ce qui correspond à l'aire 1 , et entre 20 et -100 ppm pour AIVι, ce qui correspond à l'aire 2. Dans l'exposé qui suit de l'invention, on entend par proportion des AI ι octaédriques le rapport suivant: aire 2/ (aire 1 + aire 2).
Une méthode de caractérisation des supports et catalyseurs selon l'invention pouvant être utilisée est la microscopie électronique par transmission (MET). Pour cela on utilise un microscope électronique (du type Jeol 2010 ou Philips Tecnai20F éventuellement avec balayage) équipé d'un spectromètre à dispersion d'énergie (EDS) pour l'analyse des rayons X (par exemple un Tracor ou un Edax). Le détecteur EDS doit permettre la détection des éléments légers. L'association de ces deux outils, MET et EDS, permet de combiner l'imagerie et l'analyse chimique locale avec une bonne résolution spatiale. Pour ce type d'analyse, les échantillons sont finement broyés à sec dans un mortier ; la poudre est ensuite incluse dans de la résine pour réaliser des coupes ultrafines d'épaisseur 70 nm environ. Ces coupes sont recueillies sur des grilles de Cu recouvertes d'un film de carbone amorphe à trous servant de support. Elles sont ensuite introduites dans le microscope pour observation et analyse sous vide secondaire. En imagerie, on distingue alors aisément les zones d'échantillon des zones de résine. On procède ensuite à un certain nombre d'analyses, 10 au minimum, de préférence comprises entre 15 et 30, sur différentes zones de l'échantillon industriel. La taille du faisceau électronique pour l'analyse des zones (déterminant approximativement la taille des zones analysées) est de 50 nm de diamètre au maximum, de préférence de 20 nm, de manière encore plus préférée 10, 5, 2 ou 1 nm de diamètre. En mode balayé, la zone analysée sera fonction de la taille de la zone balayée et non plus de la taille du faisceau généralement réduit.
Le traitement semi quantitatif des spectres X recueillis à l'aide du spectromètre EDS permet d'obtenir la concentration relative de Al et de Si (en % atomique) et le rapport Si/Ai pour chacune des zones analysées. On peut alors calculer la moyenne Si/Alm et l'écart type σ de cet ensemble de mesures.
Dans les exemples non limitatifs de l'exposé qui suit de l'invention, la sonde de 50 nm est la sonde utilisée pour, caractériser les supports et catalyseurs selon l'invention sauf mention contraire.
Les zéolithes utilisées pour la préparation des catalyseurs d'hydrocraquage sont caractérisées par plusieurs grandeurs comme leur rapport molaire Si02/AI203 de charpente, leur paramètre cristallin, leur répartition poreuse, leur surface spécifique, leur capacité de reprise en ion sodium, ou encore leur capacité d'adsorption de vapeur d'eau. Le taux de pics et la fraction cristalline sont des paramètres importants à considérer. Les taux de pics et les fractions cristallines sont déterminés par diffraction des rayons X par rapport à une zéolithe de référence, en utilisant une procédure dérivée de la méthode ASTM D3906-97 « Détermination of Relative X-ray Diffraction Intensifies of Faujasite-Type-Containing Materials ». On pourra se référer à cette méthode pour les conditions générales d'application de la procédure et, en particulier, pour la préparation des échantillons et des références. Un diffractogramme est composé des raies caractéristiques de la fraction cristallisée de l'échantillon et d'un fond, provoqué essentiellement par la diffusion de la fraction amorphe ou microcristalline de l'échantillon (un faible signal de diffusion est lié à l'appareillage, air, porte- échantillon, etc.) Le taux de pics d'une zéolithe est le rapport, dans une zone angulaire prédéfinie (typiquement 8 à 40° 2Θ lorsqu'on utilise le rayonnement Kcc du cuivre, 1 = 0,154 nm), de l'aire des raies de la zéolithe (pics) sur l'aire globale du diffractogramme (pics + fond). Ce rapport pics/(pics + fond) est proportionnel à la quantité de zéolithe cristallisée dans le matériau. Pour estimer la fraction cristalline d'un échantillon de zéolithe Y, on comparera le taux de pics de l'échantillon à celui d'une référence considérée comme 100 % cristallisée (NaY par exemple). Le taux de pics d'une zéolithe NaY parfaitement cristallisée est de l'ordre de 0,55 à 0,60.
La densité de remplissage tassée (DRT) est mesurée, comme cela est décrit dans l'ouvrage " Applied Heterogenous Catalysis " de J.F. Le Page, J. Cosyns, P. Courty, E. Freund, J-P. Franck, Y. Jacquin, B. Juguin, C. Marcilly, G. Martino, J. Miquel, R. Montarnal, A. Sugier, H. Van Landeghem, Technip, Paris, 1987. On remplit un cylindre gradué de dimensions acceptables par additions successives; et entre chaque addition, le catalyseur est tassé en secouant le cylindre jusqu'à atteindre un volume constant. Cette mesure est généralement réalisé sur 1000 cm3 de catalyseur tassé dans un cylindre dont le ratio hauteur sur diamètre est proche de 5:1. Cette mesure peut être, de manière préférée, réalisée sur des appareils automatisés tel que Autotap® commercialisé par Quantachrome®.
L'acidité de la matrice est mesurée par IR. Les spectres IR sont enregistrés sur un interféromètre Nicolet de type Nexus-670 sous une résolution de 4 cm-1 avec une apodisation de type Happ-Gensel. L'échantillon (20 mg) est pressé sous la forme d'une pastille auto-supportée et placé dans une cellule d'analyse in-situ (25°C à 550°C, four déporté du faisceau IR, vide secondaire de 10-6 mbar). Le diamètre de la pastille est de 16 mm.
L'échantillon est prétraité de la façon suivante afin d'éliminer l'eau physisorbée et de déshydroxyler partiellement la surface du catalyseur pour avoir une image représentative de l'acidité du catalyseur en fonctionnement : montée en température de 25°C à 300°C en 3 heures palier de 10 heures à 300 °C descente de température de 300°C à 25°C en 3 heures
La sonde basique (pyridine) est ensuite adsorbée à pression saturante à 25°C puis thermo-désorbée selon les paliers suivants :
- 25°C pendant 2 heures sous vide secondaire
- 100°C 1 heure sous vide secondaire
- 200°C 1 heure sous vide secondaire
- 300°C 1 heure sous vide secondaire Un spectre est enregistré à 25°C à la fin du prétraitement et à chaque palier de désorption en mode transmission avec un temps d'accumulation de 100 s. Les spectres sont ramenés à iso-masse (donc supposés à iso-épaisseur) (20 mg exactement). Le nombre de sites de Lewis est proportionnel à la surface du pic dont le maximum se situe vers 1450 cm"1, tout épaulement étant inclus. Le nombre de sites de Bronsted est proportionnel à la surface du pic dont le maximum se situe vers 1545 cm"1. Le rapport du nombre de sites de Bronsted /nombre de sites de Lewis est estimé égal au rapport des surfaces de deux pics décrits ci-dessus. On utilise généralement la surface des pics à 25°C. Ce rapport B/L est de manière générale calculé à partir du spectre enregistré à 25°C à la fin du prétraitement.
Objets de l'invention
Plus précisément, l'invention concerne un catalyseur comprenant au moins un élément hydro- déshydrogénant choisi dans le groupe formé par les éléments du groupe VIB et du groupe VIII de la classification périodique et un support à base d'au moins une zéolithe et à base de matrice silico- aluminique, ladite matrice contenant une quantité supérieure à 5% poids et inférieure ou égale à 95%) poids de silice (Si02), ledit catalyseur présentant les caractéristiques suivantes : un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 A, un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,6 ml/g, un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,6 ml/g, - une surface spécifique BET comprise entre 100 et 600 m2/g ; de préférence inférieure à 500 m2/g. un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A inférieur à 0,1 ml/g ,
- un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A inférieur à 0,1 ml/g, - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A inférieur à 0,01 ml/g, • une densité de remplissage tassée des catalyseurs supérieure à 0.85 g/cm3, de manière préférée supérieure à 0.95 g/cm3, de manière très préférée supérieure à 1.025 cm3/g et de manière encore plus préférée supérieure à 1.1 g/cm3. un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprises dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
Selon la teneur en zéolithe introduite, le diagramme de diffraction X du catalyseur contient également de manière générale les raies principales caractéristiques de la ou des zéolithes choisies.
Plus précisément, l'invention concerne un support comportant : - au moins une zéolithe, - une matrice non zéolithique à base de silice - alumine contenant une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice (Si02), ledit support étant caractérisé par : un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 A, un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,6 ml/g, - un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,6 ml/g, une surface spécifique BET comprise entre 100 et 650 m2/g , un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A inférieur à 0,1 ml/g , - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A inférieur à 0,1 ml/g, - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A inférieur à 0.01 ml/g, un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprises dans le groupe composé par les alumines rhô, khi, êta, gamma, kappa, thêta et delta. La densité de remplissage tassée des supports, après calcination, est supérieure à 0.65 g/cm3, de manière préférée supérieure à 0.72 g/cm3, et de manière très préférée supérieure à 0.75 g/cm3 et de manière encore plus préférée supérieure à 0.78 g/cm3. Un catalyseur contenant le support précédent est également compris dans l'invention.
L'invention concerne également un procédé d'hydrocraquage et/ou d'hydroconversion, et un procédé d'hydrotraitement de charges hydrocarbonées utilisant lesdits supports ou catalyseurs.
Description détaillée de l'invention Caractéristiques du catalyseur
Le catalyseur selon la présente invention comporte un support comprenant :
- au moins une zéolithe,
- une matrice non zéolithique à base de silice - alumine (c'est-à-dire comprenant silice et alumine) de teneur massique en silice (Si02) supérieure à 5% poids et inférieure ou égale à 95% poids, de préférence comprise entre 10 et 80% poids, de manière préférée une teneur en silice supérieure à 20% poids et inférieure à 80% poids et de manière encore plus préférée supérieure à 25% poids et inférieure à 75% poids, la teneur en silice est avantageusement comprise entre 10 et 50 % poids, ladite matrice présentant les caractéristiques suivantes : de préférence une teneur en impuretés cationiques inférieure à 0,1 %poids, de manière préférée inférieure à 0,05% poids et de manière encore plus préférée inférieure à 0,025% poids. On entend par teneur en impuretés cationiques la teneur totale en alcalins. de préférence une teneur en impuretés anioniques inférieure à 1 % poids, de manière préférée inférieure à 0,5% poids et de manière encore plus préférée inférieure à 0,1 % poids. La silice-alumine utilisée dans le procédé selon l'invention est de préférence une silice- alumine homogène à l'échelle du micromètre et dans laquelle la teneur en impuretés cationiques (par exemple Na+) est inférieure à 0,1%poids, de manière préférée inférieure à 0,05% poids et de manière encore plus préférée inférieure à 0,025% poids et la teneur en impuretés anioniques (par exemple S04 2", CI") est inférieure à 1 % poids, de manière préférée inférieure à 0,5% poids et de manière encore plus préférée inférieure à 0,1% poids. Ainsi tout procédé de synthèse de silice-alumine connu de l'homme du métier conduisant à une silice-alumine homogène à l'échelle du micromètre et dans lequel les impuretés cationiques (par exemple Na+) peuvent être ramenées à moins de 0,1 %, de manière préférée à une teneur inférieure à 0,05% poids et de manière encore plus préférée inférieure à 0,025% poids et dans lequel les impuretés anioniques (par exemple S04 2", Cl") peuvent être ramenées à moins de 1% et de manière plus préférée à une teneur inférieure à 0,05% poids convient pour préparer les supports objet de l'invention, ledit catalyseur ayant les caractéristiques suivantes : un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 A, de préférence entre 40 et 120 A et de manière encore plus préférée entre 50 et 100 A, de préférence un rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A, sur le volume poreux total également mesuré par porosimétrie au mercure supérieur à 0,6, de préférence supérieur à 0,7 et de manière encore plus préférée supérieur à 0,8. de préférence un volume V3 compris dans les pores de diamètres supérieurs à Dmoyen + 30 A, mesuré par porosimétrie au mercure, inférieur à 0,1 ml/g, de manière préférée inférieur à 0,06 ml/g et de manière encore plus préférée inférieur à 0,04 ml/g. de préférence un rapport entre le volume V5 compris entre le Dm0yen - 15 A et le Dmoyen + 15 A mesuré par porosimétrie au mercure, et le volume V2 compris entre le Dmoyen - 30 A et le Dmoyen + 30 A, mesuré par porosimétrie au mercure, supérieur à 0,6, de manière préférée supérieur à 0,7 et de manière encore plus préférée supérieur à 0,8. - de préférence un volume V6 compris dans les pores de diamètres supérieurs à Dmoyen + 15 A, mesuré par porosimétrie au mercure, inférieur à 0,2 ml/g, de manière préférée inférieur à 0,1 ml/g et de manière encore plus préférée inférieur à 0,05 ml/g. un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,6 ml/g, de manière préférée compris entre 0,20 et 0,50 ml/g et de manière encore plus préférée supérieur à 0,20 ml/g, un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,6 ml/g, de préférence compris entre 0,20 et 0,50 ml/g, une surface spécifique BET comprise entre 100 et 600 m2/g , de préférence comprise entre 150 et 500 m2/g, - de préférence une surface adsorption telle que le rapport entre la surface adsorption et la surface BET soit supérieur à 0,5, de manière préférée supérieur à 0,65 et de manière plus préférée supérieur à 0,8. un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A inférieur à 0,1 ml/g , de préférence inférieur à 0,05 ml/g et de manière encore plus préférée inférieur à 0,03 ml/g.
- un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A inférieur à 0,1 ml/g de préférence inférieur à 0,05 ml/g et de manière encore plus préférée inférieur à 0,025 ml/g.
- un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A inférieur à 0,1 ml/g, de préférence inférieur à 0,05 ml/g et de manière encore plus préférée inférieur à 0,025 ml/g . un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 500 A inférieur à 0,01 ml/g. un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprises dans le groupe composé par les alumines rho, chi, kappa, eta, gamma, thêta et delta et de manière préférée caractérisé en ce qu'il contient au moins les raies principales caractéristiques d'au moins une des alumines de transition compris dans le groupe composé par l'alumine gamma, éta, thêta et delta, et de manière plus préférée caractérisé en ce qu'il contient au moins les raies principales caractéristiques de l'alumine gamma et éta, et de manière encore plus préférée caractérisé en ce qu'il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A ;
le catalyseur comportant en outre :
- au moins un élément hydro-déshydrogénant choisi. dans le groupe formé par les éléments du groupe VIB et du groupe VIII de la classification périodique, de préférence une teneur massique en métal(aux) du groupe VIB, sous forme métallique ou sous forme oxyde comprise entre 1 et 50 % en poids, de manière préférée entre 1 ,5 et 35 %, et de manière encore plus préférée entre 1 ,5 et 30%, de préférence une teneur massique en métaux du groupe VIII, sous forme métallique ou sous forme oxyde comprise entre 0,1 et 30 % en poids, de manière préférée entre 0,2 et 25 % et de manière encore plus préférée entre 0,2 et 20%, éventuellement au moins un élément dopant déposé sur le catalyseur et choisi dans le groupe formé par le phosphore, le bore et le silicium. Les teneurs massiques en bore, silicium, phosphore sous forme d'oxydes, sont comprises entre 0,1 et 15%, de préférence entre 0,1 et 10%, et encore plus avantageusement entre 0,1 et 5% poids. On entend par élément dopant un élément introduit après la préparation du support silico-aluminique décrit précédemment, éventuellement au moins un élément du groupe VIIB (manganèse par exemple et de préférence), et une teneur pondérale comprise entre 0 et 20%, de préférence entre 0 et 10 % du composé sous forme oxyde ou métal, éventuellement au moins un élément du groupe VB (niobium par exemple et de préférence), et une teneur pondérale comprise entre 0 et 40%, de préférence entre 0 et 20% du composé sous forme oxyde ou métal. La densité de remplissage tassée des catalyseurs est supérieure à 0.85 g/cm3, de manière préférée supérieure à 0.95 g/cm3, de manière très préférée supérieure à 1.025 cm3/g et de manière encore plus préférée supérieure à 1.1 g/cm3.
Les spectres RMN MAS du solide de 27AI de la matrice silico-aluminique montrent deux massifs de pics distincts. Un premier type d'aluminium dont le maximum résonne vers 10 ppm s'étend entre -100 et 20 ppm. La position du maximum suggère que ces espèces sont essentiellement de type AIV| (octaédrique). Un deuxième type d'aluminium minoritaire dont le maximum résonne vers 60 ppm s'étend entre 20 et 110 ppm. Ce massif peut être décomposé en au moins deux espèces. L'espèce prédominante de ce massif correspondrait aux atomes d'AI|V (tétraédrique). Pour les matrices telles que définies dans la présente invention, avantageusement, la proportion des AIVι octaédriques est supérieure à 50%, de manière préférée supérieure à 60%, et de manière encore plus préférée supérieure à 70%.
Dans un mode de réalisation de l'invention, le catalyseur contient une matrice comprenant au moins deux zones silico-aluminiques, les dites zones ayant des rapports Si/Ai inférieurs ou supérieurs au rapport Si/Ai global déterminé par fluorescence X. Ainsi une matrice ayant un rapport Si/Ai égal à 0,5 comprend par exemple deux zones silico-aluminiques, l'une des zones a un rapport Si/Ai déterminé par MET inférieur à 0,5 et l'autre zone a un rapport Si/Ai déterminé par MET compris entre 0,5 et 2,5.
Dans un autre mode de réalisation de l'invention, le catalyseur contient une matrice comprenant une seule zone silico-aluminique, ladite zone ayant un rapport Si/Ai égal au rapport Si/Ai global déterminé par fluorescence X et inférieur à 2,3. La teneur pondérale totale en zéolithe dans le catalyseur est généralement comprise entre
0.1 % et 30%, avantageusement entre 0.2% et 25%, de préférence entre 0.3% et 20%, de manière très préférée entre 0.5% et 20% et de manière encore plus préférée entre 1 % et 10%. Selon la teneur en zéolithe introduite, le diagramme de diffraction X du catalyseur contient, également de manière générale les raies principales caractéristiques de la ou des zéolithes choisies. Selon un mode de réalisation préférée de l'invention la zéolithe est choisie dans le groupe des FAU et/ou dans le' groupe formé par la zéolithe Y et les zéolithes Y ayant subi un traitement secondaire telles que notamment : USY, VUSY, SDUSY, HMUSY, DAY.
La zéolithe Y utilisée dans les catalyseurs selon l'invention est au moins en partie sous forme hydrogène ou acide (H+) ou ammonium (NH4 +) ou cationique, ledit cation étant choisi dans le groupe formé par les groupes IA, IB, liA, IIB, IIIA, IIIB (y compris les terres rares), Sn, Pb et Si, elle est de préférence au moins en partie sous forme H+ ou elle peut aussi être utilisée au moins en partie sous forme cationique (telle que définie ci-dessus).
Selon un autre mode de réalisation préférée de l'invention, la zéolithe est une zéolithe choisie dans le groupe formé par les zéolithes ZBM-30, ZSM-48, EU-2 et EU-11 , de préférence la zéolithe ZBM-30, utilisée seule ou en mélange avec d'autres zéolithes. Selon un autre mode de réalisation de l'invention, la zéolithe est une zéolithe choisie dans le groupe formé par les zéolithes Mordénite, Bêta, NU-87, EU-1 , de préférence la zéolithe MOR, utilisée seule ou en mélange avec d'autres zéolithes.
Le catalyseur selon l'invention présente une meilleure activité sans perte de sélectivité en distillats moyens. Sans vouloir être lié par une quelconque théorie, il semble que cette activité particulièrement élevée sans perte notable de la sélectivité des catalyseurs de la présente invention soit à l'effet de synergie entre la zéolithe et la matrice silico-aluminique.
Caractéristiques du support
Le catalyseur ainsi obtenu est préparé, par toute technique connue de l'homme du métier, à partir d'un support qui contient au moins une zéolithe et qui contient une matrice silico-aluminique dans laquelle la teneur massique en silice (Si02) est supérieure à 5% poids et inférieure ou égale à 95% poids de silice (Si02)
ledit support présentant les caractéristiques suivantes : le diamètre moyen poreux, mesuré par porosimétrie au mercure, est compris entre 20 et 140 A, de préférence entre 40 et 120 A et de manière encore plus préférée entre 50 et 100 A, de préférence le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume poreux total également mesuré par porosimétrie au mercure, est supérieur à 0,6, de manière plus préférée supérieur à 0,7 et de manière encore plus préférée supérieur à 0,8. de préférence le volume V3 compris dans les pores de diamètres supérieurs à Dmoyen + 30 A, mesuré par porosimétrie au mercure, est inférieur à 0,1 ml/g, de manière préférée inférieur à 0,06 ml/g et de manière encore plus préférée inférieur à 0,04 ml/g. de préférence le rapport entre le volume V5, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 15 A et le DmoyΘn + 15 A sur le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A est supérieur à 0,6, de manière plus préférée supérieur à 0,7 et de manière encore plus préférée supérieur à 0,8. - de préférence le volume V6, compris dans les pores de diamètres supérieurs à Dmoyθn + 15 A et mesuré par porosimétrie au mercure est inférieur à 0,2 ml/g, de manière préférée inférieur à 0,1 ml/g et de manière encore plus préférée inférieur à 0,05 ml/g. le volume poreux total, mesuré par porosimétrie au mercure, est compris entre 0,1 ml/g et 0,6 ml/g, de manière préférée compris entre 0,20 et 0,50 ml/g et de manière encore plus préférée supérieur à 0,20 ml/g, le volume poreux total, mesuré par adsorption d'azote, est compris entre 0,1 ml/g et 0,6 ml/g, de préférence compris entre 0,20 et 0,50 ml/g, la surface spécifique BET est comprise entre 100 et 650 m2/g , de préférence comprise entre 150 et 600 m2/g, - de préférence la surface adsorption est telle que le rapport entre la surface adsorption et la surface BET soit supérieur à 0,5, de manière plus préférée supérieur à 0,65 et de manière encore plus préférée supérieur à 0,8. le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A est inférieur à 0,1 ml/g , de préférence inférieur à 0,05 ml/g et de manière encore plus préférée inférieur à 0,03 ml/g.
- le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A est inférieur à 0,1 ml/g de préférence inférieur à 0,05 ml/g et de manière encore plus préférée inférieur à 0,025 ml/g. le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A est inférieur à 0,1 ml/g, de préférence inférieur à 0,05 ml/g et de manière encore plus préférée inférieur à 0,025 ml/g . le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A est inférieur à 0,01 ml/g. le diagramme de diffraction X contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rho, chi, kappa, êta, gamma, thêta et delta, de manière préférée caractérisé en ce qu'il contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprises dans le groupe composé par l'alumine gamma, êta, thêta et delta, de manière plus préférée caractérisé en ce qu'il contient au moins les raies principales caractéristiques de l'alumine gamma et êta et de manière encore plus préférée caractérisé en ce qu'il contient les pics à un d compris entre 1,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A .
Selon la teneur en zéolithe introduite, le diagramme de diffraction X du support contient également de manière générale les raies principales caractéristiques de la ou des zéolithes choisies. Selon un mode de réalisation préférée de l'invention la zéolithe est choisie dans le groupe des
FAU et/ou dans le groupe formé par là zéolithe Y et les zéolithes Y ayant subi un traitement secondaire telles que notamment : USY, VUSY, SDUSY, HMUSY, DAY.
La zéolithe Y utilisée dans les catalyseurs selon l'invention est au moins en partie sous forme hydrogène ou acide (H+) ou ammonium (NH +) ou cationique, ledit cation étant choisi dans le groupe formé par les groupes IA, IB, IIA, IIB, IIIA, IIIB (y compris les terres rares), Sn, Pb et Si, elle est de préférence au moins en partie sous forme H+ ou elle peut aussi être utilisée au moins en partie sous forme cationique (telle que définie ci-dessus).
Selon un autre mode de réalisation préférée de l'invention, la zéolithe est une zéolithe choisie dans le groupe formé par les zéolithes ZBM-30, ZSM-48, EU-2 et EU-11 , de préférence la zéolithe ZBM-30, utilisée seule ou en mélange avec d'autres zéolithes.
Selon un autre mode de réalisation de l'invention, la zéolithe est une zéolithe choisie dans le groupe formé par les zéolithes Mordénite, Bêta, NU-87, EU-1 , de préférence la zéolithe MOR, utilisée seule ou en mélange avec d'autres zéolithes.
La matrice silico-aluminique utilisée dans le support selon l'invention présente les caractéristiques suivantes :
- la teneur massique en silice (Si02) est supérieure à 5% poids et inférieure ou égale à 95% poids de silice (Si02), de préférence comprise entre 10 et 80% poids, de manière préférée une teneur en silice supérieure à 20% poids et inférieure à 80% poids et de manière encore plus préférée supérieure à 25% poids et inférieure à 75% poids, la teneur en silice est avantageusement comprise entre 10 et 50 % poids, - de préférence la teneur-en impuretés cationiques est inférieure à 0,1%poids, de manière préférée inférieure à 0.05% poids et de manière encore plus préférée inférieure à 0,025% poids. On entend par teneur en impuretés cationiques la teneur totale en alcalins.
- de préférence la teneur en impuretés anioniques est inférieure à 1% poids, de manière préférée inférieure à 0,5% poids et de manière encore plus préférée inférieure à 0,1 % poids le diamètre moyen poreux, mesuré par porosimétrie au mercure, est compris entre 20 et 140 A, de préférence entre 40 et 120 A et de manière encore plus préférée entre 50 et 100 A, de préférence le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyerι - 30 A et le Dmoyen + 30 A sur le volume poreux total également mesuré par porosimétrie au mercure, est supérieur à 0,6, de manière plus préférée supérieur à 0,7 et de manière encore plus préférée supérieur à 0,8. de préférence le volume V3 compris dans les pores de diamètres supérieurs à Dmoyen + 30 A, mesuré par porosimétrie au mercure, est inférieur à 0,1 ml/g, de manière préférée inférieur à 0,06 ml/g et de manière encore plus préférée inférieur à 0,04 ml/g. de préférence le rapport entre le volume V5, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 15 A et le Dmoyen + 15 A sur le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A est supérieur à 0,6, de manière plus préférée supérieur à 0,7 et de manière encore plus préférée supérieur à 0,8. - de préférence le volume V6, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A et mesuré par porosimétrie au mercure est inférieur à 0,2 ml/g, de manière préférée inférieur à 0,1 ml/g et de manière encore plus préférée inférieur à 0,05 ml/g. le volume poreux total, mesuré par porosimétrie au mercure, est compris entre 0,1 ml/g et 0,6 ml/g, de manière préférée compris entre 0,20 et 0,50 ml/g et de manière encore plus préférée supérieur à 0,20 ml/g, le volume poreux total, mesuré par adsorption d'azote, est compris entre 0,1 ml/g et 0,6 ml/g, de préférence compris entre 0,20 et 0,50 ml/g, la surface spécifique BET est comprise entre 100 et 550 m2/g , de préférence comprise entre 150 et 500 m2/g, - de préférence la surface adsorption est telle que le rapport entre la surface adsorption et la surface BET soit supérieur à 0,5, de manière plus préférée supérieur à 0,65 et de manière encore plus préférée supérieur à 0,8. le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A est inférieur à 0,1 ml/g , de préférence inférieur à 0,05 ml/g et de manière encore plus préférée inférieur à 0,03 ml/g. - le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A est inférieur à 0,1 ml/g de préférence inférieur à 0,05 ml/g et de manière encore plus préférée inférieur à 0,025 ml/g. le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A est inférieur à 0,1 ml/g, de préférence inférieur à 0,05 ml/g et de manière encore plus préférée inférieur à 0,025 ml/g . le volume poreux, mesuré par porosimétrie .au mercure, compris dans les pores de diamètre supérieurs à 500 A est inférieur à 0,01 ml/g. le diagramme de diffraction X contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rho, chi, kappa, êta, gamma, thêta et delta, de manière préférée caractérisé en ce qu'il contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprises dans le groupe composé par l'alumine gamma, êta, thêta et delta, de manière plus préférée caractérisé en ce qu'il contient au moins les raies principales caractéristiques de l'alumine gamma et êta et de manière encore plus préférée caractérisé en ce qu'il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre ,97 A à 2,00 A .
Les spectres RMN MAS du solide de 27AI de la matrice montrent deux massifs de pics distincts. Un premier type d'aluminium dont le maximum résonne vers 10 ppm s'étend entre -100 et 20 ppm. La position du maximum suggère que ces espèces sont essentiellement de type AIVι (octaédrique). Un deuxième type d'aluminium minoritaire dont le maximum résonne vers 60 ppm s'étend entre 20 et 110 ppm. Ce massif peut être décomposé en au moins deux espèces. L'espèce prédominante de ce massif correspondraient aux atomes d'AI|V (tétraédrique). Pour les supports et catalyseurs de la présente invention, avantageusement la proportion des AIVι octaédriques dans la matrice est supérieure à 50%, de manière préférée supérieure à 60%, et de manière encore plus préférée supérieure à 70%.
Dans un mode de réalisation de l'invention, la matrice comprend au moins deux zones silico- aluminiques ayant des rapports Si/Ai inférieurs ou supérieurs au rapport Si/Ai global déterminé par fluorescence X. Une matrice selon la présente invention ayant un rapport Si/Ai global égal à 0,5 comprend par exemple deux zones silico-aluminiques, l'une des zones a un rapport Si/Ai déterminé par MET inférieur à 0,5 et l'autre zone a un rapport Si/Ai déterminé par MET compris entre 0,5 et 2,5.
Dans un autre mode de réalisation de l'invention, la matrice comprend une seule zone silico- aluminique ayant un rapport Si/Ai égal au rapport Si/Ai global déterminé par fluorescence X et inférieur à 2,3. L'acidité de la matrice selon l'invention peut être de manière avantageuse, sans que cela ne restreigne la portée de l'invention, par suivi IR de la thermo-désorption de la pyridine. Généralement, le rapport B/L, tel que décrit ci-dessus, de la matrice selon l'invention est compris entre 0.05 et 1, de manière préférée entre 0.05 et 0.7, de manière très préférée entre 0.06 et 0.3 et de manière encore plus préférée entre 0.075 et 0.15.
Méthodes de préparation Matrice
Le demandeur a découvert que les supports zéolithiques à base de matrices silico- aluminiques obtenues à partir d'un mélange à quelque étape que ce soit d'un composé d'alumine partiellement soluble en milieu acide avec un composé de silice totalement soluble ou avec une combinaison totalement soluble d'alumine et de silice hydratées, mise en forme suivie d'un traitement hydrothermal ou thermique afin de l'homogénéiser à l'échelle micrométrique, voire à l'échelle nanométrique permettaient d'obtenir un catalyseur particulièrement actif dans les procédés d'hydrocraquage. Par partiellement soluble en milieu acide, le demandeur entend que la mise en contact du composé d'alumine avant toute addition du composé de silice totalement soluble ou de la combinaison avec une solution acide par exemple d'acide nitrique ou d'acide sulfurique provoque leur dissolution partielle.
Sources de silice
Les composés de silice utilisés selon l'invention peuvent avoir été choisis dans le groupe formé par l'acide silicique, les sols d'acide silicique, les silicates alcalins hydrosolubles, les sels cationiques de silicium, par exemple le métasilicate de sodium hydraté, le Ludox® sous forme ammoniacale ou sous forme alcaline, les silicates d'ammonium quaternaire. Le sol de silice peut être préparé selon l'une des méthodes connues de l'homme de l'art. De manière préférée, une solution d'acide orthosilicique décationisée est préparée à partir d'un silicate alcalin hydrosoluble par échange ionique sur une résine.
Sources de silice-alumines totalement solubles
Les silice-alumines hydratées totalement solubles utilisées selon l'invention peuvent être préparées par coprécipitation vraie en conditions opératoires stationnaires maîtrisées (pH, concentration, température, temps de séjour moyen) par réaction d'une solution basique contenant le silicium, par exemple sous forme de silicate de sodium, optionnellement de l'aluminium par exemple sous forme d'aluminate de sodium avec une solution acide contenant au moins un sel d'aluminium par exemple le sulfate d'aluminium. Au moins un carbonate ou encore du C02 peut éventuellement être rajouté au milieu réactionnel. Par coprécipitation vraie, le demandeur entend un procédé par lequel au moins un composé d'aluminium totalement soluble en milieu basique ou acide comme décrit ci-après, au moins un composé de silicium comme décrit ci-après sont mis en contact, simultanément ou séquentiellement, en présence d'au moins un composé précipitant et/ou coprécipitant de façon à obtenir une phase mixte , essentiellement constituée de silice-alumine hydratée laquelle est éventuellement homogénéisée par agitation intense, cisaillement, broyage colloïdal ou encore par combinaison de ces opérations unitaires. Par exemple, ces silices-alumines hydratées peuvent avoir été préparées selon les enseignements des brevets américains US 2 908 635; US 3 423 332, US 3 433 747, US 3 451 947, US 3 629 152, US 3 650 988. La dissolution totale du composé de' silice ou de la combinaison a été évaluée de manière approchée selon la méthode suivante. Une quantité fixée (15 g) du composé de silice ou de la combinaison hydratée est introduite dans un milieu de pH préétabli. De manière préférée, la concentration de solide rapporté par litre de suspension est 0,2 mole par litre. Le pH de la solution de dispersion est au moins de 12 et il peut être obtenu par utilisation d'une source alcaline. De manière préférée, il est intéressant d'utiliser NaOH. Le mélange est ensuite agité mécaniquement par un agitateur à turbine de type défloculeuse pendant 30 minutes à 800 t/min. Une fois, l'agitation terminée, le mélange est centrifugé 10 minutes à 3000 t/min. Le gâteau est séparé du liquide surnageant. La solution a été filtré sur un filtre de porosité 4 de diamètre 19 cm. On procède ensuite au séchage puis à la calcination à 1000°C des 2 fractions. Puis, on définit un rapport R égal en divisant la massé décantée par la masse de solide en suspension. Par totalement soluble, on entend un rapport R au moins supérieur à 0,9.
Sources d'alumine Les composés d'alumine utilisés selon l'invention sont partiellement solubles en milieu acide. Ils sont choisis tout ou en partie dans le groupe des composés d'alumine de formule générale AI2O3, nH2θ. On peut en particulier utiliser des composés hydratés d'alumine tels que : l'hydrargillite, la gibbsite, la bayerite, la boehmite, la pseudo-boehmite et les gels d'alumine amorphe ou essentiellement amorphe. On peut également mettre en œuvre les formes déshydratées de ces composés qui sont constitués d'alumines de transition et qui comportent au moins une des phases prises dans le groupe : rho, chi, eta, gamma, kappa, thêta, et delta, qui se différencient essentiellement par l'organisation de leur structure cristalline. L'alumine alpha appelée communément corindon peut être incorporée dans une faible proportion dans le support selon l'invention. Cette propriété de dissolution partielle est une propriété recherchée de l'invention, elle s'applique aux- poudres d'alumine hydratées, aux poudres atomisées d'alumine hydratées, aux dispersions ou suspensions d'alumine hydratées ou à l'une quelconque de leur combinaison, avant une quelconque addition d'un composé contenant tout ou en partie du silicium. La dissolution partielle du composé d'alumine a été évaluée de manière approchée selon la méthode suivante. Une quantité précise du composé d'alumine en poudre ou en suspension est introduite dans un milieu de pH préétabli. Le mélange est ensuite agité mécaniquement. Une fois, l'agitation terminée, le mélange est laissé sans agitation durant 24 heures. De manière préférée, la concentration de solide en Al203 rapportée par litre de suspension est 0,5 mole par litre. Le pH de la solution de dispersion est de 2 et est obtenu soit par utilisation de HN03, soit de HCI, soit de HCI04. De manière préférée, il est intéressant d'utiliser HN03. La répartition des fractions sédimentées et dissoutes a été suivie par dosage de l'aluminium par absorption UV. Les surnageants ont été ultrafiltrés (membrane de polyetherssulfones, Millipore NMWL : 30 000) et digérés dans de l'acide concentré. La quantité d'aluminium dans le surnageant correspond au composé d'alumine non sédimentée et à l'aluminium dissous et la fraction ultrafiltrée à l'aluminium dissous uniquement. La quantité de particules sédimentées est déduite de la concentration théorique en aluminium dans la dispersion (en considérant que tout le solide introduit est dispersé) et des quantités de boehmite réellement dispersées et d'aluminium en solution.
Les précurseurs d'alumine utilisés selon la présente invention se distinguent donc de ceux utilisés dans le cas des co-précipitations vraies, qui sont entièrement solubles en milieu acide : sels cationiques d'alumine, par exemple le nitrate d'aluminium. Les méthodes faisant partie de l'invention se distinguent des co-précipitations vraies car l'un des éléments, en l'occurrence le composé d'aluminium, est partiellement soluble.
Pour mettre en œuvre l'alumine, tout composé d'alumine de formule générale AI2O3, nH2θ peut être utilisé. Sa surface spécifique est comprise entre 150 et 600 m^/g. On peut en particulier utiliser des composés hydratés d'alumine tels que : l'hydrargillite, la gibbsite, la bayerite, la boehmite, la pseudo- boehmite et les gels d'alumine amorphe ou essentiellement amorphe. On peut également mettre en œuvre les formes déshydratées de ces composés qui sont constitués d'alumines de transition et qui comportent au moins une des phases prises dans le groupe : rho, chi, eta, gamma, kappa, thêta, delta et alpha, qui se différencient essentiellement par l'organisation de leur structure cristalline. Lors de traitements thermiques, ces différentes formes sont susceptibles d'évolution entre elles, selon une filiation complexe qui dépend des conditions opératoires du traitement. On peut également utiliser dans des proportions mesurées l'alumine alpha appelée communément corindon.
L'hydrate d'aluminium Al203, nH20 utilisé de manière plus préférentielle est la boehmite, la pseudo-boehmite et les gels d'alumine amorphe ou essentiellement amorphe. Un mélange de ces produits sous quelque combinaison que ce soit peut être également utilisé. ' La boehmite est généralement décrite comme un monohydrate d'aluminium de formule AI2O3, n^O qui englobe en réalité un large continuum de matériaux de degré d'hydratation et d'organisation variables avec des frontières plus ou moins bien définies : la boehmite gélatineuse la plus hydratée, avec n pouvant être supérieur à 2, la pseudo-boehmite ou la boehmite micro-cristalline avec n compris entre 1 et 2, puis la boehmite cristalline et enfin la boehmite bien cristallisée en gros cristaux avec n voisin de 1. La morphologie du monohydrate d'aluminium peut varier dans de larges limites entre ces deux formes extrêmes aciculaire ou prismatique. Tout un ensemble de forme variables peut être utilisé entre ces deux formes : chaîne, bateaux, plaquettes entrelacées. La préparation et/ou la mise en forme de l'hydrate d'aluminium peuvent ainsi constituer la première étape de la préparation de ces catalyseurs. De nombreux brevets relatent la préparation et/ou la mise en forme de supports à base d'alumine de transition issues de monohydrate d'aluminium: US 3 520 654 ; US 3 630 670 ; US 3 864 461 ; US 4 154 812 ; US 4 313 923 ; DE 3243193 ; US 4 371 513. Des hydrates d'aluminium relativement purs peuvent être utilisés sous forme de poudre, amorphes ou cristallisés ou cristallisés contenant une partie amorphe. L'hydrate d'aluminium peut également être introduit sous forme de suspensions ou dispersions aqueuses. Les suspensions ou dispersions aqueuses d'hydrate d'aluminium mise en œuvre selon l'invention peuvent être gélifiables ou coagulables. Les dispersions ou suspensions aqueuses peuvent également être obtenues ainsi qu'il est bien connu de l'homme de l'art par peptisation dans l'eau ou l'eau acidulée d'hydrates d'aluminium. La dispersion d'hydrate d'aluminium peut être réalisée par tout procédé connu de l'homme de l'art: dans un réacteur en batch, un mélangeur en continu, un malaxeur, un broyeur colloïdal. Un tel mélange peut être également réalisé dans un réacteur à écoulement piston et, notamment dans un mélangeur statique. On peut citer les réacteurs Lightnin. En outre, on peut également mettre en œuvre comme source d'alumine une alumine ayant été soumise au préalable à un traitement susceptible d'améliorer son degré de dispersion. A titre d'exemple, on pourra améliorer la dispersion de la source d'alumine par un traitement d'homogénéisation préliminaire. Par homogénéisation, on peut utiliser au moins un des traitements d'homogénéisation décrit dans le texte qui suit. Les dispersions ou suspensions aqueuses d'alumine que l'on peut mettre en œuvre sont notamment les suspensions ou dispersions aqueuses de boehmites fines ou ultra-fines qui sont composés de particules ayant des dimensions dans le domaine colloïdal. Les boehmites fines ou ultra-fines mises en œuvre selon la présente invention peuvent notamment avoir été obtenues selon le brevet français FR - 1 261 182 et FR - 1 381 282 ou dans la demande de brevet européen EP 15 196. On peut mettre en œuvre également les suspensions ou dispersions aqueuses obtenues à partir de pseudo-boehmite, de gels d'alumine amorphe, de gels d'hydroxyde d'aluminium ou d'hydrargillite ultra-fine. Le monohydrate d'aluminium peut être acheté parmi une variété de sources commerciales d'alumine telle que notamment les PURAL®, CATAPAL®, DISPERAL®, DISPAL® commercialisée par la société SASOL ou encore HIQ® commercialisée par ALCOA, ou selon les méthodes connues de l'homme de l'art : elle peut être préparée par déshydratation partielle de trihydrate d'aluminium par des méthodes conventionnelles ou elle peut être préparée par précipitation. Lorsque ces alumines se présentent sous forme d'un gel, elles sont peptisées par l'eau ou une solution acidulée. Dans la précipitation, la source acide peut-être par exemple choisie parmi au moins un des composés suivants : le chlorure d'aluminium, le sulfate d'aluminium, le nitrate d'aluminium. La source basique d'aluminium peut être choisie parmi les sels basiques d'aluminium tels que l'aluminate de sodium et l'aluminate de potassium. Comme agents précipitants, l'hydroxyde de sodium, le carbonate de sodium, la potasse et l'ammoniaque peuvent être utilisés. Les agents précipitants sont choisis de telle manière que la source d'alumine selon la présente invention et ces agents soient précipités ensemble. Selon la nature acide ou basique du composé de départ à base d'aluminium, on précipite l'hydrate d'aluminium à l'aide d'une base ou d'un acide choisi, par exemple parmi l'acide chlorhydrique, l'acide sulfurique, la soude ou un composé basique ou acide de l'aluminium tel que cités ci-dessus. Les deux réactifs peuvent être le sulfate d'aluminium et l'aluminate de soude. Pour un exemple de préparation de alpha-monohydrate d'aluminium utilisant le sulfate d'aluminium et l'aluminate de soude, on peut se référer notamment au brevet US 4 154 812.
La pseudo-boehmite peut notamment avoir été préparée selon le procédé décrit dans le brevet américain US 3 630 670 par réaction d'une solution d'aluminate alcalin avec une solution d'un acide minéral. La pseudo-boehmite peut notamment avoir été préparée selon le procédé décrit dans le brevet américain US 3 630 670 par réaction d'une solution d'aluminate alcalin avec une solution d'un acide minéral. Elle peut également avoir été préparée tel que décrit dans le brevet français FR 1 357 830. Les gels d'alumine amorphe peuvent notamment avoir été préparés selon les procédés décrits dans l'article "Alcoa paper n°19 (1972) pages 9 à 12" et notamment par réaction d'aluminate d'acide ou d'un sel d'aluminium ou par hydrolyse d'alcoolates d'aluminium ou par hydrolyse de sels basiques d'aluminium. Les gels d'hydroxyde d'aluminium peuvent notamment être ceux qui ont été préparés selon les procédés décrits dans les brevets américains US 3 268 295 et US 3 245 919. Les gels d'hydroxyde d'aluminium peuvent notamment être ceux préparés selon les procédés décrits dans le brevet WO 00/01617, par mélange d'une source acide d'aluminium et d'une base ou d'une source basique d'aluminium et d'un acide de manière à précipiter un monohydrate d'alumine, les étapes suivantes étant : 2. mûrissement 3. filtration 4.lavage, et 5. séchage, procédés caractérisés en ce que le mélange de l'étape une est réalisé sans rétromélange.
L'hydrargilite ultra-fine peut notamment avoir été préparée selon le procédé décrit dans le brevet US 1 371 808, par évolution à une température comprise entre la température ambiante et 60°C de gels d'alumine sous forme de gâteau et contenant par rapport à l'alumine compté en molécules d'AI203 0,1 ions acides monovalents. On peut également mettre en œuvre les suspensions ou dispersions aqueuses de boehmite ou de pseudo-boehmite ultra-pures préparées selon un procédé dans lequel on effectue la réaction d'un aluminate alcalin avec de l'anhydride carbonique pour former un précipité d'hydroxycarbonate d'aluminium amorphe, on sépare le précipité obtenu par filtration puis on lave celui-ci (le procédé est notamment décrit dans le brevet américain US 3 268 295). Ensuite, a) dans une première étape, on mélange le précipité lavé d'hydroxycarbonate d'aluminium amorphe avec une solution acide, d'une base ou d'un sel ou de leurs mélanges; ce mélange est effectué en versant la solution sur l'hydroxycarbonate, le'pH du milieu ainsi constitué étant inférieur à
11 , b) dans une deuxième étape, on chauffe le milieu réactionnel ainsi constitué à une température inférieure à 90°C pendant un temps d'au moins 5 minutes c) dans une troisième étape, on chauffe le milieu résultant de la deuxième étape à une température comprise entre 90°C et 250°C. Les dispersions ou suspensions de boehmite et pseudo-boehmite obtenus selon ce procédé présentent une teneur en alcalins inférieure à 0,005% exprimée sous forme de rapport pondéral oxyde du métal alcalin /Al203.
Lorsqu'on désire fabriquer des supports de catalyseurs très purs, on utilise de préférence des suspensions ou dispersions de boehmites ou de pseudo-boehmites ultra-pures qui ont été obtenues selon le procédé qui a été décrit ci-dessus, ou les gels d'hydroxyde d'aluminium qui ont été préparés à partir de l'hydrolyse des alcpolates d'aluminium selon un procédé du type décrit dans le brevet américain US 2 892 858. On décrit sommairement le procédé de fabrication qui conduit à de tels gels d'hydroxyde d'aluminium de type boehmite obtenue comme sous-produit dans la fabrication de l'alcool par hydrolyse d'un alcoolate ou alcoxyde d'aluminium (synthèse de Ziegler). Les réactions de synthèse d'alcools Ziegler sont décrites notamment dans le brevet américain US 2 892 858. Selon ce procédé, on prépare tout d'abord le triéthylaluminium à partir d'aluminium, d'hydrogène et d'éthylène, la réaction étant réalisée en deux étapes avec recyclage partiel du triéthylaluminium. On ajoute de l'éthylène dans l'étape de polymérisation et on oxyde ensuite le produit obtenu en alcoolate d'aluminium, les alcools étant obtenus par hydrolyse. Les gels d'hydroxyde d'aluminium peuvent également être ceux qui ont été préparés selon les procédés décrits dans les brevets américains US 4 676 928-A et US 6 030 599.
L'alumine hydratée obtenue comme sous-produit de la réaction de Ziegler est notamment décrite dans un bulletin de la société CONOCO du 19 janvier 1971.
La dimension des particules d'alumine constituant la source d'alumine peut varier dans de larges limites. Elle est généralement comprise entre 1 et 100 microns.
Méthodes de préparation de la matrice
La matrice peut être avantageusement préparée par l'une des méthodes décrites ci-après. A titre d'exemple, une méthode de préparation d'une silice-alumine faisant partie de l'invention consiste à préparer à partir d'un silicate alcalin hydrosoluble une solution d'acide orthosilicique (H2Si0 , H20) decationisée par échange ionique puis à l'ajouter simultanément à un sel cationique d'aluminium en solution par exemple le nitrate et à de l'ammoniaque dans des conditions opératoires contrôlées ; ou encore ajouter la solution d'acide orthosilicique au sel cationique d'aluminium en solution et à coprécipiter la solution obtenue obtenue par de l'ammoniaque dans des conditions opératoires contrôlées conduisant à un produit homogène. Cet hydrogel de silice-alumine est mélangé avec de la poudre ou une suspension d'hydrate d'aluminium. Après filtration et lavage, séchage avec mise en forme puis calcination préférentiellement sous air, en four rotatif, à température élevée et pendant un temps suffisant pour favoriser les interactions entre l'alumine et la silice, généralement au moins 2 heures, une matrice répondant aux caractéristiques de l'invention est obtenue. Une autre, méthode de préparation de silice-alumine selon l'invention consiste à précipiter l'hydrate d'alumine comme ci-avant, à le filtrer et le laver puis à le mélanger avec l'acide orthosilicique aqueux de façon à obtenir une suspension, laquelle est intimement homogénéisée par forte agitation et cisaillement. Une turbine Ultraturrax ou encore une turbine Staro peut être utilisée, ou encore un broyeur colloïdal par exemple, un broyeur colloïdal Staro. La suspension homogène est alors séchée par atomisation comme ci-avant puis calcinée entre 500 et 1200°C pendant au moins 3 heures : une matrice silice-alumine utilisable dans le procédé selon l'invention est obtenue.
Une autre méthode faisant partie de l'invention consiste à préparer comme ci-avant une solution decationisée d'acide orthosilicique puis à l'ajouter simultanément ou consécutivement à un composé d'alumine, par exemple un hydrate d'aluminium en poudre ou en suspension acidulée. Afin d'augmenter le diamètre des pores du support silice-alumine final, au moins un composé basique peut éventuellement être rajouté au milieu réactionnel. Après une homogénéisation poussée de la suspension par agitation, ajustement éventuel par filtration de la teneur en matière sèche puis éventuellement ré-homogénéisation, le produit est séché avec mise en forme simultanément ou consécutivement, puis calciné comme ci-avant.
Une autre méthode faisant également partie de l'invention consiste à préparer une suspension ou une dispersion aqueuse d'alumine, par exemple un monohydrate d'aluminium puis à l'ajouter simultanément ou consécutivement à un composé de silice, par exemple un silicate de sodium. Afin d'augmenter le diamètre des pores de la matrice silice-alumine finale, au moins un composé basique peut éventuellement être rajouté au milieu réactionnel. La matrice est obtenue par filtration et lavage, éventuellement lavage par une solution ammoniacale pour extraire par échange ionique le sodium résiduel, séchage avec mise en forme simultanément ou consécutivement. Après séchage avec mise en forme puis calcination comme ci-avant, un support répondant aux caractéristiques de l'invention est obtenu. La taille des particules d'alumine utilisée est de préférence comprise entre 1 et 100 microns pour obtenir une bonne homogénéisation du support silice-alumine selon l'invention.
Pour augmenter le diamètre des mésopores de la matrice silice-alumine, il peut être particulièrement avantageux comme nous l'enseigne le brevet américain US 4 066 574 de préparer une suspension ou une dispersion aqueuse d'alumine, par exemple un monohydrate d'aluminium puis de neutraliser par une solution basique, par exemple de l'ammoniaque, puis à l'ajouter simultanément ou consécutivement à un composé de silice par exemple une solution decationisée d'acide orthosilicique. Après une homogénéisation poussée de la suspension par agitation intense, ajustement éventuel par filtration- de la teneur en matière sèche puis ré-homogénéisation, le produit est séché avec mise en forme simultanément ou consécutivement, puis calciné comme ci-avant. Cette méthode fait également partie des méthodes utilisées selon l'invention.
Dans l'exposé des méthodes précitées, on emploie homogénéisation pour décrire la remise en solution d'un produit contenant une fraction solide par exemple une suspension, une poudre, un précipité filtré, puis sa dispersion sous agitation intense. L'homogénéisation d'une dispersion est un procédé bien connu de l'homme du métier. La dite-homogénéisation peut être réalisée par tout procédé connu de l'homme de l'art: à titre d'exemple dans un réacteur en batch, un mélangeur en continu, un malaxeur. Un tel mélange peut être réalisé dans un réacteur à écoulement piston et, notamment dans un réacteur statique. On peut citer les réacteurs Lightnin. Une turbine Ultraturrax® ou encore une turbine Staro® peut être utilisée, ou encore un broyeur colloïdal par exemple, un broyeur colloïdal Staro. Les broyeurs colloïdaux commerciaux IKA® peuvent être aussi utilisés.
Dans l'ensemble des méthodes précitées, il peut être éventuellement souhaitable d'ajouter, lors d'une étape quelconque de la préparation, une proportion mineure d'au moins un élément stabilisant choisi dans le groupe formé par la zircone et le titane. L'élément stabilisant est de préférence ajouté sous forme d'un sel soluble. L'acidité de la matrice selon l'invention peut être de manière avantageuse, sans que cela ne restreigne la portée de l'invention, mesurée par suivi IR de la thermo-désorption de la pyridine. Généralement, le rapport B/L de la matrice selon l'invention est compris entre 0.05 et 1 , de manière préférée entre à 0.05 et 0.7, de manière très préférée entre 0.06 et 0.3 et de manière encore plus préférée entre 0.075 et 0.15. Zéolithe
Les zéolithes de manière générale sont bénéfiques pour améliorer les performances du catalyseur en conversion. Toute zéolithe connue pour ses performances en hydrocraquage et/ou hydroconversion peut être utilisée dans les supports et catalyseurs objets de l'invention.
Selon un mode de réalisation de l'invention, mais sans pour autant restreindre la portée de l'invention, les zéolithes Y de structure faujasite (Zeolite Molecular Sieves Structure Chemistry and Uses, D.W. Breck, J.WILLEY and Sons, 1973) qui peuvent être sous forme hydrogène ou partiellement échangées avec des cations métalliques, par exemple à l'aide de cations des métaux alcalino-terreux et/ou de terres rares de numéro atomique 57 à 71 inclus, sont utilisées. Les zéolithes Y ayant un subi traitement secondaire font également partie de l'invention. Par traitement secondaire, on entend notamment les traitements décrits dans : "Hydrocracking, Science and Technology", J.Scherzer, A.J.Gruia, 1996 ou dans R.J.Beyerlein ou encore dans . Les zéolithes Y par exemple sont préparées selon les techniques généralement utilisées par la désalumination.
Les zéolithes Y utilisées généralement dans les catalyseurs d'hydrocraquage sont fabriquées par modification de zéolithe Na-Y disponible commercialement. Cette modification permet d'aboutir à des zéolithes qui sont dites stabilisées, ultra-stabilisées (USY), très ultrastabilisés (VUSY) ou encore désaluminées (SDUSY). Cette désignation est fréquente dans la littérature mais elle ne restreint pas pour autant les caractéristiques des zéolithes de la présente invention à une telle appellation. Cette modification est réalisée par combinaison de trois types d'opérations connues de l'homme de l'art : le traitement hydrothermique, l'échange ionique et l'attaque acide. Le traitement hydrothermique est parfaitement défini par la conjonction des variables opératoires que sont la température, la durée, la pression totale et la pression partielle de vapeur d'eau. Ce traitement a pour effet d'extraire de la charpente silico-aluminique de la zéolithe des atomes d'aluminium. La conséquence de ce traitement est une augmentation du rapport molaire SÎ02/AI203 de charpente et une diminution du paramètre de la maille cristalline. L'échange ionique se déroule généralement par immersion de la zéolithe dans une solution aqueuse contenant des ions susceptibles de se fixer sur les sites d'échange cationique de la zéolithe. On enlève ainsi les cations sodium présents dans la zéolithe après cristallisation.
L'opération d'attaque acide consiste à mettre la zéolithe au contact d'une solution aqueuse d'un acide minéral. La sévérité de l'attaque acide est ajustée par la concentration en acide, la durée et la température. Réalisé sur une zéolithe traitée hydrothermiquement, ce traitement a pour effet d'éliminer les espèces aluminiques extraites de la charpente et qui bouchent la microporosité du solide.
Par ailleurs, un traitement hydrothermal particulier tel que décrit dans la demande de brevet US5601798 a pour effet d'accroître la mésoporosité des zéolithes Y, USY, VUSY et SDUSY, lesquelles zéolithes sont particulièrement intéressantes en combinaison avec la matrice amorphe décrite ci-dessus. Différentes zéolithes Y peuvent être avantageusement utilisées. Selon un mode de réalisation préférée de l'invention, une zéolithe acide H-Y particulièrement avantageuse est caractérisée par différentes spécifications : un rapport molaire global Siθ2/Al2θ3 compris entre environ 6 et 70 et de manière préférée entre environ 12 et 50 : une teneur en sodium inférieure à 0,15 % poids déterminée sur la zéolithe calcinée à 1100 °C ; un paramètre cristallin a de la maille élémentaire compris entre 24,58 x 10" "O m et 24,24 x 10""O m et de manière préférée entre 24,38 x 10"'' 0 m et 24,26 x 10"'' ^m ; une capacité CNa de reprise en ions sodium, exprimée en gramme de Na par 100 grammes de zéolithe modifiée, neutralisée puis calcinée, supérieure à environ 0,85 ; une surface spécifique déterminée par la méthode B.E.T. supérieure à environ 400 m^/g et de préférence supérieure à 550 m /g, une capacité d'adsorption de vapeur d'eau à 25 °C pour une pression partielle de 2,6 torrs (soit 34,6 MPa), supérieure à environ 6 %, et avantageusement, la zéolithe présente une répartition poreuse, déterminée par physisorption d'azote, comprenant entre 5 et 45 % et de préférence entre 5 et 40 % du volume poreux total de la zéolithe contenu dans des pores de diamètre situé entre 20 x lO'^m et 80 x lO'^m, et entre 5 et 45 % et de préférence entre 5 et 40 % du volume poreux total de la zéolithe contenu dans des pores de diamètre supérieur à 80 x 10"'' ^m et généralement inférieur à 1000 x lO'^m, le reste du volume poreux étant contenu dans les pores de diamètre inférieur à 20 x 10"'"-' m. Un catalyseur préféré utilisant ce type de zéolithe renferme une matrice silico-aluminique, au moins une zéolithe Y désaluminée et possédant un paramètre cristallin compris entre 2,424 nm et 2,455 nm, de préférence entre 2,426 et 2,438 nm, un rapport molaire Siθ2/Al2θ3 global supérieur à 8, une teneur en cations des métaux alcalino-terreux ou alcalins et/ou des cations des terres rares telle que le rapport atomique (n x Mn+)/AI est inférieur à 0,8 de préférence inférieur à 0,5 ou encore à 0,1 , une surface spécifique déterminée par la méthode B.E.T supérieure à 400 m 2/g de préférence supérieure à 550 m2/g, et une capacité d'adsorption d'eau à 25 °C pour une valeur P/Po de 0,2, supérieure à 6 % poids, ledit catalyseur comprenant également au moins un métal hydro- déshydrogénant, et du silicium déposé sur le catalyseur. Dans un mode de réalisation avantageux selon l'invention, on utilise une zéolithe Y partiellement amorphe. On entend par zéolithe Y partiellement amorphe, un solide présentant : i) un taux de pic qui est inférieur à 0,40 de préférence inférieur à environ 0,30 ; ii) une fraction cristalline exprimée par rapport à une zéolithe Y de référence sous forme sodique
(Na) qui est inférieure à environ 60 %, de préférence inférieure à environ 50 %, et déterminée par diffraction des rayons X. De préférence, les zéolithes Y partiellement amorphes, solides entrant dans la composition du catalyseur selon l'invention présentent l'une au moins (et de préférence toutes) des autres caractéristiques suivantes : iii) un rapport Si/Ai global supérieur à 15, de préférence supérieur à 20 et inférieur à 150, iv) un rapport Si/Ai lv de charpente supérieur ou égal au rapport Si/Ai global v) un volume poreux au moins égal à 0,20 ml/g de solide dont une fraction, comprise entre 8 % et 50 %, est constituée de pores ayant un diamètre d'au moins 5 nm (nanomètre), soit 50 A ; vi) une surface spécifique de 210-800 m2/g , de préférence 250-750 m2/g et avantageusement
300-600 m2/g Le taux de pics d'une zéolithe USY classique est de 0,45 à 0,55, sa fraction cristalline par rapport à une NaY parfaitement cristallisée est de 80 à 95 %. Le taux de pics du solide faisant l'objet de la présente description est inférieur à 0,4 et de préférence inférieur à 0,35. Sa fraction cristalline est donc inférieure à 70 %, de préférence inférieure à 60 %. Les zéolithes partiellement amorphes sont préparées selon les techniques généralement utilisées pour la désalumination, à partir de zéolithes Y disponibles commercialement, c'est-à-dire qui présentent généralement des cristallinités élevées (au moins 80 %). Plus généralement on pourra partir de zéolithes ayant une fraction cristalline d'au moins 60 %, ou d'au moins 70 %. Les zéolithes Y utilisées généralement dans les catalyseurs d'hydrocraquage sont fabriquées par modification de zéolithes Na-Y disponibles commercialement. Cette modification permet d'aboutir à des zéolithes dites stabilisées, ultra-stabilisées ou encore désaluminées. Cette modification est réalisée par l'une au moins des techniques de désalumination, et par exemple le traitement hydrothermique, l'attaque acide. De préférence, cette modification est réalisée par combinaison de trois types d'opérations connues de l'homme de l'art : le traitement hydrothermique, l'échange ionique et l'attaque acide. Une autre zéolithe particulièrement intéressante est une zéolithe non désaluminée globalement et très acide. Par zéolithe non désaluminée globalement on entend une zéolithe Y (type structural FAU, faujasite) selon la nomenclature développée dans "Atlas of zeolites structure types", W.M. Meier, D.H. Oison et Ch. Baerlocher, 4 revised Edition 1996, Elsevier. Le paramètre cristallin de cette zéolithe peut avoir diminué par extraction des aluminiums de la structure ou charpente lors de la préparation mais le rapport SiO2/AI203 global n'a pas changé car les aluminiums n'ont pas été extraits chimiquement. Une telle zéolithe non désaluminée globalement a donc une composition en silicium et aluminium exprimée par le rapport SiO2/AI203 global équivalent à la zéolithe Y non désaluminée de départ. Les valeurs des paramètres (rapport SiO2/AI203 et paramètre, cristallin) sont données plus loin. Cette zéolithe Y non désaluminée globalement peut soit être sous la forme hydrogène soit être au moins partiellement échangée avec des cations métalliques, par exemple à l'aide de cations des métaux alcalino-terreux et/ou des cations de métaux de terres rares de numéro atomiques 57 à 71 inclus. On préférera une zéolithe dépourvue de terres rares et d'alcalino-terreux, de même pour le catalyseur. La zéolithe Y non globalement désaluminée présente généralement un paramètre cristallin supérieur à 2,438 nm, un rapport Si02 / Al203 global inférieur à 8, un rapport molaire SiÛ2 / AI2O3 de charpente inférieur à 21 et supérieur au rapport Siθ2 / AI2O3 global. Un catalyseur avantageux combine cette zéolithe avec une matrice dopée au phosphore. La zéolithe globalement non désaluminée peut être obtenue par tout traitement qui n'extrait pas les aluminium de l'échantillon, tel que par exemple le traitement à la vapeur d'eau, le traitement par SiCl
Dans un autre méthode de réalisation préférée de l'invention, le support comprend une zéolithe telle que décrite dans la demande de brevet US 5, 601 , 978. Ces zéolithes sont notamment décrites colonne 30, lignes 48-64. Leur volume mésoporeux est en particulier supérieur à 0.202 cm3/g pour un paramètre de maille compris 24.5 A et 24.6 A et supérieur à 0.313 cm3/g pour un paramètre de maille compris entre 24.3 et 24.5 A.
Selon un mode de réalisation préférée de l'invention, on peut utiliser une zéolithe choisie dans le groupe formé par les zéolithes ZSM-48, ZBM-30, EU-2, EU-11 , seule ou en mélange avec une autre zéolithe. De manière préférée, on considère les zéolithes ZSM-48 et ZBM-30. De manière encore plus préférée on considérera la zéolithe ZBM-30, synthétisée de préférence selon le mode opératoire décrit dans le brevet (EP-A-46504).
Selon un autre mode de réalisation de l'invention, la zéolithe est une zéolithe choisie dans le groupe formé par les zéolithes Mordénite, Bêta, NU-87, EU-1 , de préférence la zéolithe MOR, utilisée seule ou en mélange avec d'autres zéolithes.
La préparation et le ou les traitements ainsi que la mise en forme de la zéolithe peuvent ainsi constituer une étape de la préparation de ces catalyseurs.
L'introduction de la zéolithe peut se faire par toute technique connue de l'homme du métier lors de la préparation de la matrice ou lors de la mise en forme du support.
Préparation du catalyseur Les catalyseurs selon l'invention peuvent être préparés selon toutes les méthodes bien connues de l'homme du métier.
Un procédé préféré de préparation du catalyseur selon la présente invention comprend les étapes suivantes :
La zéolithe peut être introduite selon toute méthode connue de l'homme de l'art et ce à tout stade la préparation du support ou du catalyseur. Selon un mode de préparation préféré, la zéolithe peut être introduite au cours de la synthèse des précurseurs de la matrice. La zéolithe peut être, sans que cela soit limitatif, par exemple sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération. Ainsi, par exemple, la zéolithe peut être mise en suspension acidulée ou non à une concentration ajustée à la teneur finale en zéolithe visée sur le support. Cette suspension appelée couramment une barbotine est alors mélangée avec les précurseurs de la matrice à un stade quelconque de sa synthèse comme décrite ci-dessus. Selon un autre mode de préparation préférée, la zéolithe peut être introduite également lors de la mise en forme du support avec les éléments qui constituent la matrice avec éventuellement au moins un liant La zéolithe peut être, sans que cela soit limitatif, peut être sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération. Les éléments des groupes VIB et/ou VIII, et éventuellement ceux choisis parmi le phosphore, le bore, le silicium et éventuellement les éléments des groupes VB, et VIIB peuvent être éventuellement introduits à ce stade de la préparation du catalyseur par toute méthode connue de l'homme du métier, Ils peuvent être également introduits après la mise en forme du support et ce après ou avant le séchage et la calcination du support.
L'élément hydrogénant peut être introduit à toute étape de la préparation, de préférence lors du mélange, ou de manière très préférée après mise en forme. La mise en forme est suivie d'une calcination, l'élément hydrogénant peut également être introduit avant ou après cette calcination. La préparation se termine généralement par une calcination à une température de 250 à 600°C. Une autre des méthodes préférées selon la présente invention consiste à mettre en forme la silice-alumine sans liant après un malaxage de cette dernière, avec éventuellement la zéolithe, puis passage de la pâte ainsi obtenue au travers d'une filière pour former des extrudés de diamètre compris entre 0,4 et 4 mm. La fonction hydrogénante peut être alors introduite en partie seulement (cas, par exemple,' des associations d'oxydes de métaux des groupes VIB et VIII) ou en totalité,, au moment du malaxage. Elle peut également être introduite par une ou plusieurs opérations d'échange ionique sur le support calciné constitué d'au moins une silice-alumine, éventuellement mise en forme avec un liant, à l'aide de solutions contenant les sels précurseurs des métaux choisis lorsque ceux-ci appartiennent au groupe VIII. Elle peut aussi être introduite par une ou plusieurs opérations d'imprégnation du support mis en forme et calciné, par une solution des précurseurs des oxydes des métaux des groupes VIII (notamment le cobalt et le nickel) lorsque les précurseurs des oxydes des métaux du groupe VIB (notamment le molybdène ou le tungstène) ont été préalablement introduits au moment du malaxage du support. Elle peut enfin également être introduite, de façon très préférée par une ou plusieurs opérations d'imprégnation du support calciné constitué d'au moins une zéolithe et au moins une silice- alumine selon l'invention et éventuellement d'au moins un liant, par des solutions contenant les précurseurs des oxydes de métaux des groupes VI et/ou VIII, les précurseurs des oxydes de métaux de groupe VIII étant de préférence introduits après ceux du groupe VIB ou en même temps que ces derniers.
D'une façon préférée, le support est imprégné par une solution aqueuse. L'imprégnation du support est de préférence effectuée par la méthode d'imprégnation dite "à sec" bien connue de l'homme du métier. L'imprégnation peut être effectuée en une seule étape par une solution contenant l'ensemble des éléments constitutifs du catalyseur final.
Le catalyseur de la présente invention peut donc renfermer au moins un élément du groupe VIII tel que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium ou platine. Parmi les métaux du groupe VIII on préfère employer un métal choisi dans le groupe formé par le fer, le cobalt, le nickel, le platine , le palladium et Je ruthénium. Le catalyseur selon l'invention peut également renfermer au moins un élément du groupe VIB, de préférence le tungstène et le molybdène. D'une manière avantageuse on utilise les associations de métaux suivantes : nickel-molybdène, cobalt-molybdène, fer-molybdène, fer-tungstène, nickel-tungstène, cobalt-tungstène, platine-palladium, les associations préférées sont : nickel-molybdène, cobalt-molybdène, cobalt-tungstène et encore plus avantageusement platine-palladium et nickel-tungstène. Il est également possible d'utiliser des associations de trois métaux par exemple nickel-cobalt-molybdène, nickel-cobalt-tungstène. D'une manière avantageuse on utilise les associations de métaux suivantes : ήickel-niobium-molybdène, cobalt-niobium-molybdène, fer-niobium-molybdène, nickel-niobium-tungstène, cobalt-niobium- tungstène, fer-niobium-tungstène, les associations préférées étant : nickel-niobium-molybdène, cobalt- niobium-molybdène. Il est également possible d'utiliser des associations de quatre métaux par exemple nickel-cobalt-niobium-molybdène. On peut également utiliser des associations contenant un métal noble tel que ruthénium-niobium-molybdène, ou encore ruthénium-nickel-niobium-molybdène.
Les éléments suivants : bore et/ou silicium et/ou phosphore et éventuellement l'(les) élément(s) choisi(s) dans Ie(s) groupe(s) VIIB et VB, peuvent être introduits dans le catalyseur à tout niveau de la préparation et selon toute technique connue de l'homme du métier.
Une méthode préférée selon l'invention consiste à déposer le ou les éléments dopants choisis, par exemple le couple bore-silicium, sur le précurseur calciné ou non, de préférence calciné. Pour cela on prépare une solution aqueuse d'au moins un sel de bore tel que le biborate d'ammonium ou le pentaborate d'ammonium en milieu alcalin et en présence d'eau oxygénée et on procède à une imprégnation dite à sec, dans laquelle on remplit le volume des pores du précurseur par la solution contenant par exemple le bore. Dans le cas où l'on dépose par exemple également du silicium, on utilisera par exemple une solution d'un composé du silicium de type silicone ou émulsion d'huile silicone.
Le dépôt de bore et de silicium peut aussi être réalisé de manière simultanée en utilisant par exemple une solution contenant un sel -de bore et un composé du silicium de type silicone. Ainsi, par exemple dans le cas où le précurseur est un catalyseur de type nickel-tungstène supporté sur silice-alumine, il est possible d'imprégner ce précurseur par de la solution aqueuse de biborate d'ammonium et de silicone Rhodorsil E1 P de la société Rhodia de procéder à un séchage par exemple à 120°C, puis d'imprégner par une solution de fluorure d'ammonium, de procéder à un séchage par exemple à 120°C, et de procéder à une calcination par exemple et de façon préférée sous air en lit traversé, par exemple à 500°C pendant 4 heures.
L'élément dopant choisi dans le groupe formé par le silicium, le bore et le phosphore ainsi que les éléments des groupes VilB, VB, peuvent être introduits par une ou plusieurs opérations d'imprégnation avec excès de solution sur le précurseur calciné.
Lorsque éventuellement au moins un élément dopant, B et/ou P et/ou Si, est introduit, sa répartition et sa localisation peuvent être déterminées par des techniques telles que la microsonde de Castaing (profil de répartition des divers éléments), la microscopie électronique par transmission couplée à une analyse X des composants du catalyseurs, ou bien encore par l'établissement d'une cartographie de répartition des éléments présents dans le catalyseur par microsonde électronique. Ces techniques permettent de mettre en évidence la présence de ces éléments exogènes ajoutés après la synthèse de la silice-alumine selon l'invention.
La source de bore peut être l'acide borique, de préférence l'acide orthoborique H3BO3, le biborate ou le pentaborate d'ammonium, l'oxyde de bore, les esters boriques. Le bore peut par exemple être introduit sous la forme d'un mélange d'acide borique, d'eau oxygénée et un composé organique basique contenant de l'azote tels que l'ammoniaque, les aminés primaires et secondaires, les aminés cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole. Le bore peut être introduit par exemple par une solution d'acide borique dans un mélange eau/alcool. La source de phosphore préférée est l'acide orthophosphorique H3PO4, mais ses sels et esters comme les phosphates d'ammonium conviennent également. Le phosphore peut par exemple être introduit sous la forme d'un mélange d'acide phosphorique et un composé organique basique contenant de l'azote tels que l'ammoniaque, les aminés primaires et secondaires, les aminés cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole.
De nombreuses sources de silicium peuvent être employées. Ainsi, on peut utiliser l'orthosilicate d'éthyle Si(OEt)4, les siloxanes, les polysiloxanes, les silicones, les émulsions de silicones, les silicates d'halogénures comme le fluorosilicate d'ammonium (NH4)2SiF6 ou le fluorosilicate de sodium Na2SiFβ- L'acide silicomolybdique et ses sels, l'acide silicotungstique et ses sels peuvent également être avantageusement employés. Le silicium peut être ajouté par exemple par imprégnation de silicate d'éthyle en solution dans un mélange eau/alcool. Le silicium peut être ajouté par exemple par imprégnation d'un composé du silicium de type silicone ou l'acide silicique mis en suspension dans l'eau.
Les métaux du groupe VIB et du groupe VIII du catalyseur de la présente invention peuvent être présents en totalité ou partiellement sous forme métallique et/ou oxyde et/ou sulfure.
Par exemple, parmi les sources de molybdène et de tungstène, on peut utiliser les oxydes et hydroxydes, les acides molybdiques et tungstiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, Pheptamolybdate d'ammonium, le tungstate d'ammonium, l'acide phosphomolybdique, l'acide phosphotungstique et leurs sels, l'acide silicomolybdique, l'acide silicotungstique et leurs sels. Les sources d'éléments du groupe VIII qui peuvent être utilisées sont bien connues de l'homme du métier. Par exemple, pour les métaux non nobles on utilisera les nitrates, les sulfates, lés hydroxydes, les phosphates, les halogénures par exemple, chlorures, bromures et fluorures, les carboxylates par exemple acétates et carbonates. Pour les métaux nobles on utilisera les halogénures, par exemple les chlorures, les nitrates, les acides tels que l'acide chloroplatinique, les oxychlorures tels que Poxychlorure ammoniacal de ruthénium.
De préférence, on n'ajoute pas d'halogènes autres que celui introduit à l'imprégnation, cet halogène étant de préférence le chlore.
Mise en forme des supports et catalyseurs
Le support peut être mis en forme par toute technique connue de l'homme du métier. La mise en forme peut être réalisée par exemple par extrusion, par pastillage, par la méthode de la coagulation en goutte (oil-drop), par granulation au plateau tournant ou par toute autre. méthode bien connue de l'homme du métier. La mise en forme peut également être réalisée en présence des différents constituants du catalyseur et extrusion de la pâte minérale obtenue, par pastillage, mise en forme sous forme de billes au drageoir tournant ou au tambour, coagulation en goutte, oil-drop, oil-up, ou tout autre procédé connu d'agglomération d'une poudre contenant de l'alumine et éventuellement d'autres ingrédients choisis parmi ceux mentionnés ci-dessus. Les catalyseurs utilisés selon l'invention ont la forme de sphères ou d'extrudés. Il est toutefois avantageux que le catalyseur se présente sous forme d'extrudés d'un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes sont cylindriques (qui peuvent être creuses ou non), cylindriques torsadés, multilobées (2, 3, 4 ou 5 lobes par exemple), anneaux. La forme cylindrique est utilisée de manière préférée, mais toute autre forme peut être utilisée. La densité de remplissage tassée des supports, après calcination, est supérieure à 0.65 g/cm3, de manière préférée supérieure à 0.72 g/cm3, et de manière très préférée supérieure à 0.75 g/cm3 et de manière encore plus préférée supérieure à 0.78 g/cm3. La densité de remplissage tassée des catalyseurs est supérieure à 0.85 g/cm3, de manière préférée supérieure à 0.95 g/cm3, de manière très préférée supérieure à 1.025 cm3/g et de manière encore plus préférée supérieure à 1.1 g/cm3.
Par ailleurs, ces supports mis en oeuvre selon la présente invention peuvent avoir été traités ainsi qu'il est bien connu de l'homme de l'art par des additifs pour faciliter là mise en forme et/ou améliorer les propriétés mécaniques finales des supports à base de matrices silico-aluminiques. A titre d'exemple d'additifs, on peut citer notamment la cellulose, la carboxyméthyl-cellulose, la carboxy- ethyl-cellulose, du tall-oil, les gommes xanthaniques, des agents tensio-actifs, des agents flocculants comme les polyacrylamides, le noir de carbone, les amidons, l'acide stéarique, l'alcool polyacrylique, l'alcool polyvinylique, des biopolymèrés, le glucose, les polyéthylènes glycols, etc. Le réglage de la porosité caractéristique des supports de l'invention est opéré partiellement lors de cette étape de mise en forme des particules de supports. La mise en forme peut être réalisée en utilisant les techniques de mise en forme des catalyseurs, connues de l'homme de l'art, telles que par exemple: extrusion, dragéification, séchage par atomisation ou encore pastillage. On peut ajouter ou retirer de l'eau pour ajuster la viscosité de la pâte à extruder. Cette étape peut être réalisée à tout stade de l'étape de malaxage. Pour ajuster la teneur en matière solide de la pâte à extruder afin de la rendre extrudable, on peut également ajouter un composé majoritairement solide et de préférence un oxyde ou un hydrate.
On utilisera de manière préférée un hydrate et de manière encore plus préférée un hydrate d'aluminium. La perte au feu de cet hydrate sera supérieure à 15%.
La teneur en acide ajouté au malaxage avant la mise en forme est inférieure à 30%, de préférence comprise entre 0,5 et 20% poids de la masse anhydre en silice et alumine engagée dans la synthèse. L'extrusion peut être réalisée par n'importe quel outil conventionnel, disponible commercialement. La pâte issue du malaxage est extrudée à travers une filière, par exemple à l'aide d'un piston ou d'une mono-vis ou double vis d'extrusion. Cette étape d'extrusion peut être réalisée par toute méthode connue de l'homme de métier.
Les extrudés de support selon l'invention ont généralement une résistance à l'écrasement d'au moins 70 N/cm et de manière préférée supérieure ou égale à 100 N/cm.
Calcination du support
Le séchage est effectué par toute technique connue de l'homme du métier. Pour obtenir le support de la présente invention, il est préférable de calciner de préférence en présence d'oxygène moléculaire, par exemple en effectuant un balayage d'air, à une température inférieure ou égale à 1100°C. Au moins une calcination peut être effectuée après l'une quelconque des étapes de la préparation. Ce traitement par exemple peut être effectué en lit traversé, en lit léché ou en atmosphère statique. Par exemple, le four utilisé peut être un four rotatif tournant ou être un four vertical à couches traversées radiales. Les conditions de calcination: température et durée dépendent principalement de la température maximale d'utilisation du catalyseur. Les conditions préférées de calcination se situent entre plus d'une heure à 200°C à moins d'une heure à 1100°C. La calcination peut être opérée en présence de vapeur d'eau. La calcination finale peut être éventuellement effectuée en présence d'une vapeur acide ou basique. Par exemple, la calcination peut être réalisée sous pression partielle d'ammoniaque.
Traitements post-synthèse
Des traitements post-synthèse peuvent être effectués, de manière à améliorer les propriétés du support, notamment son homogénéité telle que définie précédemment. Selon un mode de réalisation préféré, le traitement post-synthèse est un traitement hvdrothermal. Le traitement hvdrothermal est effectué par toute technique connue de l'homme du métier. Par traitement hvdrothermal, on entend mise en contact à n'importe quelle étape de l'élaboration du support mixte avec de l'eau en phase vapeur ou en phase liquide. Par traitement hvdrothermal, on peut entendre notamment mûrissement, steaminα. autoclavaqe. calcination sous air humide, réhvdratation. Sans que cela réduise la portée de l'invention, un tel traitement a pour effet de rendre mobile le composant silice. Selon l'invention, le mûrissement peut avoir lieu avant ou après la mise en forme. Selon un mode préféré de l'invention, le traitement hvdrothermal se fait par steaminq dans un four en présence de vapeur d'eau. La température pendant le steamino peut être comprise entre 600 et 1100 °C et de préférence supérieure à 700°C pendant une période de temps comprise entre 30 minutes et 3 heures. La teneur en vapeur d'eau est supérieure à 20 g d'eau par ko d'air sec et de préférence supérieure à 40 g d'eau par kg d'air sec et de manière préférée supérieure à 100 g d'eau par kg d'air sec. Un tel traitement peut, le cas échéant, remplacer totalement ou en partie le traitement de calcination. Selon l'invention, le support peut ainsi être éventuellement soumis à un traitement hydrothermal en atmosphère confinée. On entend par traitement hydrothermal en atmosphère confinée un traitement par passage à l'autoclave en présence d'eau sous une température supérieure à la température ambiante. Au cours de ce traitement hydrothermal, on peut traiter de différentes manières la silice- alumine mise en formé ou le support (matrice + zéolithe) mis en forme. Ainsi, on peut imprégner la silice alumine ou le support d'acide, préalablement à son passage à l'autoclave, l'autoclavage de la silice-alumine étant fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l'autoclave pouvant être acide ou non. Cette imprégnation, préalable à l'autoclavage, peut être acide ou non. Cette imprégnation, préalable à l'autoclavage peut être effectuée à sec ou par immersion de la silice-alumine dans une solution aqueuse acide. Par imprégnation à sec, on entend mise en contact de l'alumine avec un volume de solution inférieur ou égal au volume poreux total de l'alumine traitée. De préférence, l'imprégnation est réalisée à sec. L'autoclave est de préférence un autoclave à panier rotatif tel que celui défini dans la demande brevet EP-A- 0 387 109. La température pendant l'autoclavage peut être comprise entre 100 et 250°C pendant une période de temps comprise entre 30 minutes et 3 heures.
Procédés d' hydrocraquage
L'invention concerne également les procédés d'hydrocraquage mettant en œuvre les catalyseurs d'hydrocraquage selon l'invention, les dits procédés couvrant les domaines de pression et de conversion allant de l'hydrocraquage doux à l'hydrocraquage haute pression. On entend par hydrocraquage doux, un hydrocraquage conduisant à des conversions modérées, généralement inférieures à 50 % et de manière préférée inférieures à 40%, et fonctionnant à basse pression, généralement entre 2 MPa et 6 MPa. De façon générale, les catalyseurs selon l'invention sont utilisés pour le traitement des coupes hydrocarbonées. Les catalyseurs selon l'invention sont utilisés avantageusement pour l'hydrocraquage et/ou l'hydroconversion de coupes hydrocarbonées. Le catalyseur de la présente invention peut être utilisé seul, en un seul ou plusieurs lits catalytiques en lit fixe, dans un ou plusieurs réacteurs, dans un schéma d'hydrocraquage dit en une étape, avec ou sans recyclage liquide de la fraction non convertie, éventuellement en association avec un catalyseur d'hydroraffinage situé en amont du catalyseur de la présente invention. Le catalyseur.de la présente invention peut être utilisé seul, dans un seul ou plusieurs réacteurs en lit bouillonnant, dans un schéma d'hydrocraquage dit en une étape, avec ou sans recyclage liquide de la fraction non convertie, éventuellement en association avec un catalyseur d'hydroraffinage situé dans un réacteur en lit fixe ou en lit bouillonnant en amont du catalyseur de la présente invention. Le lit bouillonnant s'opère avec retrait de catalyseur usé et ajout journalier de catalyseur neuf afin de conserver une activité du catalyseur stable.
Dans un schéma d'hydrocraquage dit en deux étapes avec séparation intermédiaire entre les deux zones réactionnelles, dans une étape donnée, le catalyseur de la présente invention peut-être utilisé dans l'un ou dans les deux réacteurs en association ou non avec un catalyseur d'hydroraffinage situé en amont du catalyseur de la présente invention.
Procédé dit en une étape
L'hydrocraquage dit en une étape, comporte en premier lieu et de façon générale un hydroraffinage poussé qui a pour but de réaliser une hydrodeazotation et une desulfuration poussées de la charge avant que celle-ci ne soit envoyée sur le catalyseur d'hydrocraquage proprement dit, en particulier dans le cas où celui-ci comporte une zéolithe. Cet hydroraffinage poussé de la charge n'entraîne qu'une conversion limitée de la charge, en fractions plus légères, qui reste insuffisante et doit donc être complétée sur le catalyseur d'hydrocraquage plus actif. Cependant, il est à noter qu'aucune séparation n'intervient entre les deux types de catalyseurs. La totalité de l'effluent en sortie de réacteur est injectée sur le catalyseur d'hydrocraquage proprement dit et ce n'est qu'ensuite qu'une séparation des produits formés est réalisée. Cette version de l'hydrocraquage, encore appelée "Once Through", possède une variante qui présente un recyclage de la fraction non convertie vers le réacteur en vue d'une conversion plus poussée de la charge.
Mode de réalisation : Procédé dit en une étape en lit fixe
Pour les catalyseurs à faible teneur en silice, les teneurs pondérales en silice du support entrant dans la composition du catalyseur sont comprises entre 5 et 30% et de préférence entre 5 et 20%. Pour les catalyseurs à forte teneur en silice, les teneurs pondérales en silice du support entrant dans la composition du catalyseur sont comprises entre 20 et 80% et de préférence entre 30 et 60%. Dans le cas où le catalyseur selon la présente invention est utilisé en amont d'un catalyseur zéolithique d'hydrocraquage, par exemple à base de zéolithe Y, on utilisera avantageusement un catalyseur présentant une faible teneur pondérale en silice telle que définie précédemment. Il pourra aussi être avantageusement utilisé en association avec un catalyseur d'hydroraffinage, ce dernier étant situé en amont du catalyseur de la présente invention.
Lorsque le catalyseur selon la présente invention est utilisé en amont d'un catalyseur d'hydrocraquage à base de silice-alumine ou à base de zéolithe, dans le même réacteur dans des lits catalytiques distincts ou dans des réacteurs distincts, la conversion est généralement (ou de préférence) inférieure à 50% poids et de manière préférée inférieure à 40%.
Mode de réalisation : Procédé dit en une étape en lit bouillonnant Le catalyseur selon l'invention peut être utilisé seul dans un ou plusieurs réacteurs. Dans le cadre d'un tel procédé, on pourra utiliser avantageusement plusieurs réacteurs en série, le ou les réacteurs en lit bouillonnant contenant le catalyseur selon' l'invention étant précédé d'un ou plusieurs réacteurs contenant au moins un catalyseur d'hydroraffinage en lit fixe ou en lit bouillonnant.
Lorsque le catalyseur selon la présente invention est utilisé en aval d'un catalyseur d'hydroraffinage, la conversion de la fraction de la charge occasionnée par ce catalyseur d'hydroraffinage est généralement (ou de préférence) inférieure à 30% poids et de manière préférée inférieure à 25%.
Mode de réalisation : Procédé dit en une étape en lit fixe avec flash chaud Le catalyseur selon la présente invention peut aussi être utilisé dans un procédé d'hydrocraquage dit en une étape comportant une zone d'hydroraffinage, une zone permettant l'élimination partielle de l'ammoniac, par exemple par un flash chaud, et une zone comportant un catalyseur d'hydrocraquage. Ce procédé d'hydrocraquage de charges hydrocarbonées en une étape pour la production de distillats moyens et éventuellement de bases huiles comporte au moins une première zone reactionnelle incluant un hydroraffinage, et au moins une deuxième zone reactionnelle, dans laquelle est opéré l'hydrocraquage d'au moins une partie de l'effluent de la première zone reactionnelle. Ce procédé comporte également une séparation incomplète de l'ammoniac de l'effluent sortant de la première - zone. Cette séparation est avantageusement effectuée au moyen d'un flash chaud intermédiaire. L'hydrocraquage opéré en deuxième zone reactionnelle est réalisé en présence d'ammoniac en quantité inférieure à la quantité présente dans la charge, de préférence inférieure à 1500 ppm poids, de manière plus préférée inférieure à 1000 ppm poids et de manière encore plus préférée inférieure à 800 ppm poids d'azote. Le catalyseur de la présente invention est utilisé de préférence dans la zone reactionnelle d'hydrocraquage en association ou non avec un catalyseur d'hydroraffinage situé en amont du catalyseur de la présente invention. Le catalyseur selon l'invention peut être utilisé soit dans la première zone reactionnelle en prétraitement convertissant, seul ou en association avec un catalyseur d'hydroraffinage classique, situé en amont du catalyseur selon l'invention, dans un ou plusieurs lits catalytiques, dans un ou plusieurs réacteurs.
Un procédé représentant une variante des modes de réalisation de l'invention cités ci-dessus comprend : - une première zone reactionnelle d'hydroraffinage dans laquelle la charge est mise en contact avec au moins un catalyseur d'hydroraffinage présentant dans le test standard d'activité un taux de conversion du cyclohexane inférieur à 10 % massique. une deuxième zone reactionnelle d'hydrocraquage dans laquelle une partie au moins de l'effluent issu de l'étape d'hydroraffinage est mise en contact avec au moins un catalyseur d'hydrocraquage zéolithique présentant dans le test standard d'activité un taux de conversion du cyclohexane supérieur à 10 % massique, le catalyseur selon l'invention étant présent dans au moins une des deux zones réactionnelles.
Le test standard d'activité a pour but de mesurer l'activité des catalyseurs en conversion du cyclohexane. La conversion du cyclohexane prend en compte tous les produits différents du cyclohexane. L'obtention de l'ensemble de ces produits nécessite la présence d'une fonction acide plus ou moins forte sur le catalyseur.
Lorsqu'il est présent dans la première zone reactionnelle, le catalyseur selon l'invention peut être utilisé seul ou en association avec un autre catalyseur d'hydroraffinage.
Lorsqu'il est présent dans la deuxième zone reactionnelle, le catalyseur selon l'invention peut être utilisé seul ou en association avec un autre catalyseur d'hydrocraquage.
Procédé dit en deux étapes
L'hydrocraquage en deux étapes, comporte une première étape qui a pour objectif, comme dans le procédé "une étape", de réaliser l'hydroraffinage (ou hydrotraitement) de la charge, mais aussi d'atteindre une conversion de cette dernière de l'ordre en général de 40 à 60%. L'effluent issu de la première étape subit ensuite une séparation (distillation) appelée le plus souvent séparation intermédiaire, qui a pour objectif de séparer les produits de conversion de la fraction non convertie. Dans la deuxième étape d'un procédé d'hydrocraquage en deux étapes, seule la fraction de la charge non convertie lors de la première étape, est traitée. Cette séparation permet à un procédé d'hydrocraquage deux étapes d'être plus sélectif en distillât moyen (kérosène + diesel) qu'un procédé en une étape. En effet, la séparation intermédiaire des produits de conversion évite leur "sur- craquage" en naphta et gaz dans la deuxième étape sur le catalyseur d'hydrocraquage. Par ailleurs, il est à noter que la fraction non convertie de la charge traitée dans la deuxième étape contient en général de très faibles teneurs en NH3 ainsi qu'en composés azotés organiques, en général moins de 20 ppm poids voire moins de 10 ppm poids.
La même configuration de lits catalytiques en lit fixe ou en lit bouillonnant peut être utilisée dans la première étape d'un schéma dit en deux étapes, que le catalyseur soit utilisé seul ou en association avec un catalyseur d'hydroraffinage classique.
Pour les procédés dits en une étape et pour la première étape des procédés d'hydrocraquage en deux étapes, les catalyseurs préférés selon l'invention sont les catalyseurs à base d'éléments du groupe VIII non nobles, de manière encore plus préférée les catalyseurs à base de nickel et de tungstène ou molybdène, qui peuvent être dopés par un élément choisi dans le groupe formé par le bore, le phosphore et le silicium, de préférence le phosphore.
Les catalyseurs utilisés dans la deuxième zone reactionnelle des procédés d'hydrocraquage en une étape ou dans la deuxième étape des procédés d'hydrocraquage en deux étapes sont de préférence les catalyseurs à base d'éléments nobles du groupe VIII, de manière encore plus préférée les catalyseurs à base de platine et/ou de palladium.
Charges Des charges très variées peuvent être traitées par les procédés d'hydrocraquage selon l'invention décrits ci-dessus et généralement elles contiennent au moins 20% volume et souvent au moins 80% volume de composés bouillant au-dessus de 340°C.
La charge peut être par exemple des LCO (light cycle oil), des distillats atmosphériques, des distillats sous vide par exemple gasoils issus de la distillation directe du brut ou d'unités de conversion telles que le FCC, le coker ou la viscoreduction, ainsi que des charges provenant d'unités d'extraction d'aromatiques des bases d'huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, ou encore des distillats provenant de procédés de desulfuration ou d'hydroconversion en lit fixe ou en lit bouillonnant de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide) et/ou d'huiles désasphaltées , ou encore la charge peut être une huile désasphaltée, ou encore tout mélange des charges précédemment citées. La liste ci-dessus n'est pas limitative. Les paraffines issues du procédé Fischer-Tropsch sont exclues. En général, les charges ont un point d'ébullition T5 supérieur à 340°C, et mieux encore supérieur à 370°C, c'est à dire que 95% des composés présents dans la charge ont un point d'ébullition supérieur à 340°C, et mieux encore supérieur à 370°C.
La teneur en azote des charges traitées dans les procédés selon l'invention est usuellement supérieure à 500 ppm, de préférence comprise entre 500 et 5000 ppm poids, de manière plus préférée entre 700 et 4000 ppm poids et de manière encore plus préférée entre 1000 et 4000 ppm, et la teneur en soufre entre 0,01 et 5% poids, plus généralement entre 0,2 et 4%.
La teneur en métaux est généralement inférieure à 2 ppm et de préférence inférieure à 1 ppm Ni+V maximum. La teneur en asphaltènes au C7 est généralement inférieure à 5000 ppm, de préférence inférieure à 1000 ppm et de manière plus préférée inférieure à 200 ppm.
Préalablement à l'injection de la charge, les catalyseurs utilisés dans le procédé selon la présente invention sont de préférence soumis préalablement à un traitement de sulfuration permettant de transformer, au moins en partie, les espèces métalliques en sulfure avant leur mise en contact avec la charge à traiter. Ce traitement d'activation par sulfuration est bien connu de l'Homme du métier et peut être effectué par toute méthode déjà décrite dans la littérature soit in-situ, c'est-à-dire dans le réacteur, soit ex-situ. Une méthode de sulfuration classique bien connue de l'homme du métier consiste à chauffer en présence d'hydrogène sulfuré (pur ou par exemple sous flux d'un mélange hydrogène/hydrogène sulfuré) à une température comprise entre 150 et 800°C, de préférence entre 250 et 600°C, généralement dans une zone reactionnelle à lit traversé. Les conditions opératoires de l'hydrocraquage telles que température, pression, taux de recyclage d'hydrogène, vitesse spatiale horaire, pourront être très variables en fonction de la nature de la charge, de la qualité des produits désirés et des installations dont dispose le raffineur. Le catalyseur d'hydrocraquage est mis en contact, en présence d'hydrogène, avec les charges décrites précédemment, à une température supérieure à 200°C, souvent comprise entre 250 et 480°C, avantageusement comprise entre 320 et 450°C, de préférence entre 330 et 435DC, sous une pression supérieure à 1 MPa, souvent comprise entre 2 et 25 MPa, de manière préférée entre 3 et 20 MPa, la vitesse spatiale étant comprise entre 0,1 et 20h"1 et de préférence 0,1-6h" , de préférence, 0,2-3h"1, et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène / litre d'hydrocarbure soit compris entre 80 et 5000I/I et le plus souvent entre 100 et 2000 I/l. Ces conditions opératoires utilisées dans le procédé selon l'invention permettent d'atteindre des conversions par passe, en produits ayant des points d'ébullition inférieurs à 340°C, et mieux inférieurs à 370°C, supérieures à 15% et de manière encore plus préférée comprises entre 20 et 95%.
Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée.
Exemple 1 : Préparation et mise en forme d'une matrice silico-aluminigue MA1
On prépare un précurseur de matrice MA1 de la façon suivante : dans un premier temps une solution d'acide sulfurique 30% est ajoutée à une solution de silicate de sodium. La quantité d'H2S0 est définie de manière à travailler à un taux de neutralisation fixé. L'addition se fait en deux minutes sous une agitation de 600 tours/minutes. La température de synthèse est de 60°C. La durée de mûrissement a été fixée à 30 minutes. L'agitation est maintenue à 600 tours/minutes, la température est celle de l'étape précédente. Puis, on ajoute AI2(S0 )3 (500 ml), la concentration est fixée par la teneur en alumine désirée. Le pH n'est pas régulé et est fixé par la teneur en alumine désirée. L'ajout se fait en 10 minutes. L'agitation est toujours fixée à 600 tours/minute, la température est la même que celle des étapes précédentes. Puis, on ajoute l'ammoniaque. Le gel obtenu est filtré par déplacement. Le lavage se fait à l'eau à 60°C, 3 kg d'eau par kg de solide contenu dans le gel. Puis un échange au nitrate d'ammonium NH N03(138,5 g/l) à 60°C et 1 ,5 I par kg de solide contenu dans le gel est effectué. Enfin, un lavage supplémentaire à l'eau à 60°C est fait par déplacement, 3 kg d'eau par kg de solide contenu dans le gel. Le gel issu de cette étape est mélangé avec de la poudre de boehmite Pural de façon à ce que la composition finale en produit anhydre soit, à ce stade de la synthèse, égale à 50% AI2Q3-50% Si02. Le malaxage se fait sur un malaxeur bras en Z. L'extrusion est réalisée par passage de la pâte au travers d'une filière munie d'orifices de diamètre 1 ,4 mm. Les extrudés ainsi obtenus sont séchés à 150°C, calcinés à 550°C, puis calcinés à 700°C en présence de vapeur d'eau. Les caractéristiques de la matrice sont les suivantes : La composition de la matrice MA1 est de 50,12 % Al203- 49,88 % Si02. La surface BET de la matrice de 254 m2/g. Le volume poreux total, mesuré par adsorption d'azote, est de 0,43 ml/g.
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 65 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,91.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,03 ml/g. Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,047 ml/g, Le rapport entre la surface adsorption et la surface BET est de 0,76. Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,015 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,013 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est 0,011 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g, Le diagramme de diffraction X contient les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A . La teneur en sodium atomique est de 310 +/- 20 ppm. La teneur en soufre atomique est de 1500 ppm. Les spectres RMN MAS du solide de 27AI de la matrice montrent deux massifs de pics distincts. Un premier type d'aluminium dont le maximum résonne vers 10 ppm s'étend entre -100 et 20 ppm. La position du maximum suggère que ces espèces sont essentiellement de type Alvi (octaédrique). Un deuxième type d'aluminium minoritaire dont le maximum résonne vers 60 ppm s'étend entre 20 et 100 ppm. Ce massif peut être décomposé en au moins deux espèces. L'espèce prédominante de ce massif correspondrait aux atomes d'AI|V (tétraédrique). La proportion des Alvi octaédriques est de 67%. La matrice contient deux zones silico-aluminiques, les dites zones ayant des rapports Si/Ai inférieurs ou supérieurs au rapport Si/ Al global déterminé par fluorescence X. L'une des zones a un rapport Si/Ai déterminé par MET de 0,7 et l'autre zone a un rapport Si/Ai déterminé par MET de 0,98 . Le rapport B/L de la matrice est égal à 0.12.
' Exemple 2 : Préparation et mise en forme d'une matrice silico-aluminique MA2 On prépare un hydrate d'alumine selon les enseignements du brevet US 3 124 418. Après filtration, le précipité fraîchement préparé est mélangé avec une solution d'acide silicique préparé par échange sur résine décationisante. Les proportions des deux solutions sont ajustées de manière à atteindre une composition de 70 % Al203- 30 % Si02 sur le support final. Ce mélange est rapidement homogénéisé dans un broyeur colloïdal commercial en présence d'acide nitrique' de façon que la teneur en acide nitrique de la suspension en sortie de broyeur soit de 8% rapportée au solide mixte silice-alumine. Puis, la suspension est séchée classiquement dans un atomiseur de manière conventionnelle de 300°C à 60°C. La poudre ainsi préparée est mise en forme dans un bras en Z en présence de 8% d'acide nitrique par rapport au produit anhydre. L'extrusion est réalisée par passage de la pâte au travers d'une filière munie d'orifices de diamètre 1 ,4 mm. Les extrudés ainsi obtenus sont séchés à
150°C, puis calcinés à 550°C, puis calcinés à 750°C en présence de vapeur d'eau.
Les caractéristiques de la matrice MA2 sont les suivantes :
La composition en silice-alumine est de 69,5% Al203 et de 30,5% Si02.
La surface BET est de 250 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,45 ml/g. Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 70 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,9.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,021 ml/g. Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyβn + 15 A est de 0,035 ml/g,
Le rapport entre la surface adsorption et la surface BET est de 0,82.
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,015 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,01 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est 0,007ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g,
Le diagramme de diffraction X contient les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1,39 à 1 ,40 A et à un d compris entre 1 ,97 A à
2,00 A .
La teneur en sodium atomique est de 250 +/- 20 ppm. La teneur en soufre atomique est de 2000 ppm.
Les spectres RMN MAS du solide de 27AI de la matrice montrent deux massifs de pics distincts. Un premier type d'aluminium dont le maximum résonne vers 10 ppm s'étend entre -100 et 20 ppm. La position du maximum suggère que ces espèces sont essentiellement de type AIVι (octaédrique). Un deuxième type d'aluminium minoritaire dont le maximum résonne vers 60 ppm s'étend entre 20 et 100 ppm. Ce massif peut être décomposé en au moins deux espèces. L'espèce prédominante de ce massif correspondrait aux atomes d'Aliv (tétraédrique). La proportion des AIVι octaédriques est de 69%.
La matrice contient une seule zone silico-aluminique avec un rapport Si/Ai déterminé par microsonde en MET de 0,37. Le rapport B/L de la matrice est égal à 0.11.
Exemple 3 : Préparation et mise en forme d'une matrice silico-aluminigue MA3
La poudre d'hydroxyde d'aluminium a été préparée selon le procédé décrit dans le brevet WO 00/01617. La taille des particules moyenne des particules d'hydroxyde d'aluminium mesurée par granulométrie laser est de 40 microns. Cette poudre est mélangée à un sol de silice préparé par échange sur résine décationisante, puis filtré sur résine de porosité 2. Les concentrations en sol de silice et en poudre d'hydroxyde d'aluminium sont ajustées de manière à obtenir une composition finale de 60% Al203 et de 40% Si02. La mise en forme est réalisée en présence de 15 % d'acide nitrique par rapport au produit anhydre. Le malaxage se fait sur un malaxeur bras en Z. L'extrusion est réalisée par passage de la pâte au travers d'une filière munie d'orifices de diamètre 1 ,4 mm. Les extrudés ainsi obtenus sont séchés à 150°C, puis calcinés à 550°C, puis calcinés à 750°C en présence de vapeur d'eau.
Les caractéristiques de la matrice sont les suivantes :
La composition de la matrice en silice-alumine est de 59,7% Al203 et de 40,3% Si02.
La surface BET est de 248 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,46 ml/g
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 69 A. Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,9.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à
Dmoyen + 30 A est de 0,022 ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à Dmoyen + 15 A est de 0,031 ml/g,
Le rapport entre la surface adsorption et la surface BET est de 0,83.
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A est de 0,012 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A est de 0,0105 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A est de 0,0065 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieur à 500 A est de 0,001 ml/g, Le diagramme de diffraction X contient les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A .
La teneur en sodium atomique est de 200 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm. Les spectres RMN MAS du solide de 27AI de la matrice montrent deux massifs de pics distincts. Un premier type d'aluminium dont le maximum résonne vers 10 ppm s'étend entre -100 et 20 ppm. La position du maximum suggère que ces espèces sont essentiellement de type AIVι (octaédrique). Un deuxième type d'aluminium minoritaire dont le maximum résonne vers 60 ppm s'étend entre 20 et 100 ppm. Ce massif peut être décomposé en au moins deux espèces. L'espèce prédominante de ce massif correspondrait aux atomes d'AI|V (tétraédriqϋe). La proportion des AIVι octaédriques est de 70%.
La matrice contient deux zones silico-aluminiques, les dites zones ayant des rapports Si/AI inférieurs ou supérieurs au rapport Si/AI global déterminé par fluorescence X. L'une des zones a un rapport Si/AI déterminé par MET de 0.22 et l'autre zone a un rapport Si/AI déterminé par MET de 0,85 . Le rapport B/L de la matrice est égal à 0.12.
Exemple 4 : Préparation et mise en forme d'une matrice silico-aluminigue (MA4)
La matrice MA4 est obtenue de la manière suivante.
Les gels de silice-alumine sont préparés en mélangeant du silicate de soude et de l'eau, en envoyant ce mélange sur une résine echangeuse d'ion. On ajoute une solution d'hexahydrate de chlorure d'aluminium dans l'eau au sol de silice décationisé. Afin d'obtenir un gel, on ajoute de l'ammoniaque, on filtre ensuite le précipité et on effectue un lavage avec une solution d'eau et d'ammoniaque concentrée jusqu'à que la conductivité de l'eau de lavage soit constante. Le gel issu de cette étape est mélangé avec de la poudre de boehmite Pural de façon à ce que la composition finale du support mixte en produit anhydre soit, à ce stade de la synthèse, égale à 60% AI2O3-40% Si02. Cette suspension est passée dans un broyeur colloïdal en présence d'acide nitrique. La teneur en acide nitrique rajouté est ajustée de manière que le pourcentage en sortie de broyeur d'acide nitrique soit de 8% rapporté à la masse d'oxyde mixte solide. Ce mélange est ensuite filtré afin de diminuer la quantité d'eau du gâteau mixte. Puis, le gâteau est malaxé en présence de 10% d'acide nitrique puis extrudé. Le malaxage se' fait sur un malaxeur bras en Z. L'extrusion est réalisée par passage de la pâte au travers d'une filière munie d'orifices de diamètre 1,4 mm. Les extrudés ainsi obtenus sont séchés à 150°C, puis calcinés à 550°C, puis calcinés à 700°C en présence de vapeur d'eau.
Les caractéristiques de la matrice MA4 sont les suivantes : La composition de la matrice en silice-alumine est 60,7% Al203 et de 39,3% Si02.
La surface BET est de 258 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,47 mi/g
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 69 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le DmoyΘn - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,89.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,032 ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dm0yen + 15 A est de 0,041 ml/g, Le rapport entre la surface adsorption et la surface BET est de 0,83.
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,012 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,0082 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est de 0,0063 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g,
Le diagramme de diffraction X contient les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1,39 à 1 ,40 A et à un d compris entre 1,97 A à
2,00 A .
La teneur en sodium atomique est de 200 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm.
Les spectres RMN MAS du solide de 27AI de la matrice montrent deux massifs de pics distincts. Un premier type d'aluminium dont le maximum résonne vers 10 ppm s'étend entre -100 et 20 ppm. La position du maximum suggère que ces espèces sont essentiellement de type AIVι (octaédrique). Un deuxième type d'aluminium minoritaire dont le maximum résonne vers 60 ppm s'étend entre 20 et 100 ppm. Ce massif peut être décomposé en au moins deux espèces. L'espèce prédominante de ce massif correspondrait aux atomes d'AI|V (tétraédrique). La proportion des AIVι octaédriques est de
70%. La matrice contient une seule zone silico-aluminique avec un rapport Si/AI déterminé par microsonde en MET de 0,63. Le rapport B/L de la matrice est égal à 0.11.
Exemple 5 : Préparation des supports de catalyseurs d'hydrocraguage selon l'invention (SU5 à SU8)
On utilise une zéolithe Z1 de rapport Si/AI mesuré par FX de 14.7, de rapport Si/AI de charpente mesuré par RMN. de 19, de teneur en sodium de 260 ppm, de paramètre de maille a = 24.29 A , de taux de cristallinité de 88% et de surface BET égale à 838 m2/g.
On mélange ensuite 5 g de zéolithe Z1 décrite ci-dessus et 95 g des précurseurs des matrices MA1 à MA4 rapportés en matière solide tels que décrits ci-dessus. Ce mélange se fait avant l'introduction dans l'extrudeuse. La poudre de zéolithe est préalablement mouillée et ajoutée à la suspension de matrice en présence d'acide nitrique à 66% (7% poids d'acide par gramme de gel sec) puis malaxée pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1 ,4 mm. Les extrudés sont ensuite séchés une nuit à
120°C sous air puis calcinés à 550°C sous air, puis calcinés à 700°C en présence de vapeur d'eau. On obtient ainsi les supports SU5 à SU8 contenant 5% de zéolithe Z1 rapportés en masse anhydre.
Les caractéristiques des supports selon l'invention sont :
Pour le support SU5, la composition de la matrice du support est de 50,1 % Al203- 49,9 % Si02.
La surface BET du support de 280 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,418 ml/g. Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 64 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et ' le Dmoyen + 30 A sur le volume mercure total est de 0,91.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,03 ml/g. Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,047 ml/g,
Le rapport entre la surface adsorption et la surface BET est de 0,76.
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,014 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,012 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est 0,010 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g,
La densité de remplissage tassée du support est de 0.795 g/cm3 Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A
- les raies caractéristiques de la zéolithe Z1 introduite. La teneur en sodium atomique est de 290 +/- 20 ppm. La teneur en soufre atomique est de 1500 ppm.
Pour le support SU6, les caractéristiques des supports sont les suivantes : la composition en silice- alumine de la matrice du support est de 69,5% Al203 et de 30,5% Si02.
La surface BET est de 279 m2/g. Le volume poreux total, mesuré par adsorption d'azote, est de 0,437 ml/g.
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 69 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dm0yen + 30 A sur le volume mercure total est de 0,9.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,020ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,034 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,015 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,01 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est 0,068ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g,
La densité de remplissage tassée du support est de 0.797 g/cm3.
Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A . - les raies caractéristiques de la zéolithe Z2.
La teneur en sodium atomique est de 240 +/- 20 ppm. La teneur en soufre atomique est de 1900 ppm.
Les caractéristiques du support SU 7 sont les suivantes : La composition de la matrice en silice-alumine est de 59,7% Al203 et de 40,3% Si02. La surface BET est de 283 m2/g. Le volume poreux total, mesuré par adsorption d'azote, est de 0,45 ml/g Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 68 A. Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,9. Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à Dyen + 30 A est de 0,021 ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à Dmoyen + 15 A est de 0,030 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A est de 0,012 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A est de 0,010 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A est de 0,063 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieur à 500 A est de 0,001 ml/g, Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A , - les raies principales caractéristiques de la zéolithe Z1.
La teneur en sodium atomique est de 190 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm. La densité de remplissage tassée du support est de 0.79 g/cm3.
Les caractéristiques du support SU8 sont les suivantes : La composition de la matrice du support en silice-alumine est 60,7% Al203 et de 39,3% Si02.
La surface BET est de 287 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,46 ml/g
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 68 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,89.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,031 ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,040 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,012 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,008 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est de 0,006 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g,
La densité de remplissage tassée du support est de 0.795 g/cm3. Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A ,
- les raies principales caractéristiques de la zéolithe Z1.
La teneur en sodium atomique est de 200 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm.
Exemple 6 : Préparation des supports de catalyseurs d'hvdrocraguage selon l'invention (SU9 à SU12)
On utilise une zéolithe Z2 de rapport Si/AI mesuré par FX de 73, de teneur en sodium de 102 ppm, de paramètre de maille a = 24.15 A , de taux de cristallinité de 44% et de surface BET égale à 783 m2/g.
On mélange ensuite 5 g de zéolithe Z2 décrite ci-dessus et 10 g des précurseurs des supports
MA1 à MA4 décrits ci-dessus. Ce mélange se fait avant l'introduction dans l'extrudeuse. La poudre de zéolithe est préalablement mouillée et ajouté à la suspension de matrice en présence d'acide nitrique à 66% (7% poids d'acide par gramme de gel sec) puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1 ,4 mm. Les extrudés sont ensuite séchés une nuit à 120°C sous air puis calcinés à
550°C sous air, puis calcinés à 700°C en présence de vapeur d'eau.
On obtient ainsi les supports'SU9 à SU12.
Les caractéristiques des supports selon l'invention sont : Pour le support SU9, la composition de la matrice du support est de 50,1 % Al203- 49,9 % Si02.
La surface BET du support de 283 m2/g. Le volume poreux total, mesuré par adsorption d'azote, est de 0,418 ml/g.
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 64 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,91. Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,03 ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dm0yen + 15 A est de 0,047 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,014 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,012 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est 0,010 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g,
La densité de remplissage tassée du support est de 0.795 g/cm3
Le diagramme de diffraction X contient : - les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A
- les raies caractéristiques de la zéolithe Z2 introduite.
La teneur en sodium atomique est de 290 +/- 20 ppm. La teneur en soufre atomique est de 1500 ppm.
Pour le support SU 10, les caractéristiques des supports sont les suivantes : la composition en silice- alumine de la matrice du support est de 69,5% Al203 et de 30,5% Si02.
La surface BET est de 279 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,438 ml/g.
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 69 A. Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,9.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,020ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,034 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,015 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,013 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est 0,0068ml/g, Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g, La densité de remplissage tassée du support est de 0.79 g/cm3. Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A .
- les raies caractéristiques de la zéolithe Z2.
La teneur en sodium atomique est de 240 +/- 20 ppm. La teneur en soufre atomique est de 1900 ppm.
Les caractéristiques du support SU 11 sont les suivantes :
La composition de la matrice en silice-alumine est de 59,7% Al203 et de 40,3% Si02.
La surface BET est de 275 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,45 ml/g Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 68 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,9.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à
Dmoyen + 30 A est de 0,021 ml/g. Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à
Dmoyen + 15 A est de 0,030 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A est de 0,012 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A est de 0,010 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A est de 0,006 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieur à 500 A est de 0,001 ml/g, La densité de remplissage tassée du support est de 0.795 g/cm3.
Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97- A à 2,00 A ,.
- les raies principales caractéristiques de la zéolithe Z2. La teneur en sodium atomique est de 190 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm. Les caractéristiques du support SU12 sont les suivantes :
La composition de la matrice du support en silice-alumine est 60,7% Al203.et de 39,3% Si02.
La surface BET est de 284 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,46 ml/g Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 68 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dm0yen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,89.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,031 ml/g. Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,040 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,012 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,008 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est de 0,006 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans lés pores de diamètre supérieurs à 500 A est de 0,001 ml/g, La densité de remplissage tassée du support est de 0.79 g/cm3.
Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A ,
- les raies principales caractéristiques de la zéolithe Z2. La teneur en sodium atomique est de 200 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm.
Exemple 7 : Préparation des supports de catalyseurs d'hydrocraquage selon l'invention (SU13 à
SU16^
On utilise une zéolithe Z3 telle que décrite dans la demande de brevet US 5601798. On prépare cette zéolithe selon la méthode décrite dans l'exemple 52 tableau 16. Le volume mésoporeux obtenu est 0.36 cm3/g. Le paramètre de maille a est 24.34 Â et le taux de cristallinité de 75%. On mélange ensuite 5 g de zéolithe Z3 décrite ci-dessus et 95 g des matrices précurseurs des supports MA1 à MA4 rapportés en matière solide tels que décrits ci-dessus. Ce mélange se fait avant l'introduction dans l'extrudeuse. La poudre de zéolithe est préalablement mouillée et ajouté à la suspension de matrice en présence d'acide nitrique à 66% (7% poids d'acide par gramme de gel sec) puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1 ,4 mm. Les extrudés sont ensuite séchés une nuit à 120°C sous air puis calcinés à 550°C sous air, puis calcinés à 700°C en présence de vapeur d'eau.
On obtient ainsi les supports SU 13 à SU 16. Les caractéristiques des supports selon l'invention sont :
Pour le support SU13, la composition de la matrice du support est de 50,1 % Al203- 49,9 % Si02.
La surface BET du support est de 280 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,425 ml/g. Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 64 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dm0yen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,91.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à
Dmoyen + 30 A est de 0,03 ml/g. Le volume V6, mesuré par porosimétrie au. mercure, compris dans les pores de diamètre supérieur à
Dmoyen + 15 A est de 0,047 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur e 140 A est de 0,015 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur e 160 A est de 0,013 ml/g,
Le volume poreux, mesuré par. porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A est 0,011 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieur à 500 A est de 0,001 ml/g, La densité de remplissage tassée du support est de 0.79 g/cm3.
Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A
- les raies principales caractéristiques de la zéolithe Z3. La teneur en sodium atomique est de 290 +/- 20 ppm. La teneur en soufre atomique est de 1500 ppm.
Pour le support SU14, les caractéristiques des supports sont les suivantes : la composition en silice- àlumine de la matrice du support est de 69,5% Al203 et de 30,5% Si02. La surface BET est de 276 m2/g. Le volume poreux total, mesuré par adsorption d'azote, est de 0,438 ml/g.
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 69 A. Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dm0yen - 30 A et le Dmo en + 30 A sur le volume mercure total est de 0,9.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,020ml/g. Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,034 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,012 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,010 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est 0,006 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g, La densité de remplissage tassée du support est de 0.79 g/cm3. Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A .
- les raies caractéristiques de la zéolithe Z3. La teneur en sodium atomique est de 240 +/- 20 ppm. La teneur en soufre atomique est de 1900 ppm.
Les caractéristiques du support SU 15 sont les suivantes :
La composition de la matrice en silice-alumine est de 59,7% Al203 et de 40,3% Si02. La surface BET est de 275 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,455 ml/g
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 68 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,9. Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à
Dmoyen + 30 A est de 0,021 ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à
Dmo en + 15 A est de 0,030 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A est de 0,012 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A est de 0,010 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A est de 0,006 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 500 A est de 0,001 ml/g, La densité de remplissage tassée du support est de 0.795 g/cm3. Le diagramme de diffraction X contient : - les raies principales caractéristiques de l'alumine gamma et notamment ii contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A , - les raies principales caractéristiques de la zéolithe Z3. La teneur en sodium atomique est de 190 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm.
Les caractéristiques du support SU 16 sont les suivantes : La composition de la matrice du support en silice-alumine est 60,7% Al203 et de 39,3% Si02. La surface BET est de 284 m2/g. Le volume poreux total, mesuré par adsorption d'azote, est de 0,46 ml/g Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 68 A. Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dm0yen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,89. Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,031 ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,040 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre • supérieurs à 140 A est de 0,012 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,008 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est de 0,006 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g,
-La densité de remplissage tassée du support est de 0.79 g/cm3.
Le diagramme de diffraction X contient : - les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A , - les raies principales caractéristiques de la zéolithe Z3
La teneur en sodium atomique est de 200 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm.
Exemple 8 : Préparation des supports de catalyseurs d'hydrocraquage selon l'invention (SU 16 à SU20)
On utilise une zéolithe ZBM-30 est synthétisée selon le brevet BASF EP-A-46504 avec le structurant organique triéthylènetétramine. Puis elle est soumise à une calcination à 550 °C sous flux d'air sec durant 12 heures. La zéolithe H-ZBM-30 (forme acide) ainsi obtenue possède un rapport Si/AI de 45 et un rapport Na/AI inférieur à 0,001. On mélange ensuite 5 g de zéolithe ZBM30 décrite ci-dessus et 95 g des précurseurs des supports SU1 à SU4 rapportés en matière solide tels que décrits ci-dessus. Ce mélange se fait avant l'introduction dans l'extrudeuse. La poudre de zéolithe est préalablement mouillée et ajouté à la suspension de matrice en présence d'acide nitrique à 66% (7% poids d'acide par gramme de gel sec) puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1 ,4 mm. Les extrudés sont ensuite séchés une nuit à 120°C sous air puis calcinés à 550°C sous air, puis calcinés à 700°C en présence de vapeur d'eau.
On obtient ainsi les supports SU 17 à SU20.
Les caractéristiques des supports selon l'invention sont :
Pour le support SU 17, la composition de la matrice du support est de 50,1 % Al203- 49,9 % Si02.
La surface BET du support de 280 m2/g. Le volume poreux total, mesuré par adsorption d'azote, est de 0,445 ml/g.
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 64 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmoyen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,91.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à Dmoyen + 30 A est de 0,03 ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à
Dmoyen + 15 A est de 0,047 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A est de 0,015 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur e 160 A est de 0,012 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A est 0,010 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieur à 500 A est de 0,001 ml/g, La densité de remplissage tassée du support est de 0.795 g/cm3 Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A
- les raies principales caractéristiques de la zéolithe ZBM30. La teneur en sodium atomique est de 290 +/- 20 ppm. La teneur en soufre atomique est de 1500 ppm.
Pour le support SU18, les caractéristiques des supports sont les suivantes : la composition en silice- alumine de la matrice du support est de 69,5% Al203 et de 30,5% Si02.
La surface BET est de 276 m2/g. Le volume poreux total, mesuré par adsorption d'azote, est de 0,43 ml/g.
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 69 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dm0yen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,9.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de 0,020ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,034 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,011 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de . diamètre supérieurs à 160 A est de 0,010 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est 0,006 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g,
La densité de remplissage tassée du support est de 0.795 g/cm3.
Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A . - les raies caractéristiques de la zéolithe ZBM30. La teneur en sodium atomique est de 230 +/- 20 ppm. La teneur en soufre atomique est de 1900 ppm.
Les caractéristiques du support SU 19 sont les suivantes : La composition de la matrice en silice-alumine est de 59,7% Al203 et de 40,3% Si02.
La surface BET est de 275 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,435 ml/g
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 68 A.
Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dm0yen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,9.
Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à
Dmoyen + 30 A est de 0,021 ml/g.
Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à
Dmoyen + 15 A est de 0,030 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A est de 0,011 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A est de 0,010 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 200 A est de 0,006 ml/g,
Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieur à 500 A est de 0,001 ml/g,
Le diagramme de diffraction X contient :
- les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A ,
- les raies principales caractéristiques de la zéolithe ZBM30.
La teneur en sodium atomique est de 190 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm. La densité de remplissage tassée du support est de 0.795 g/cm3.
Les caractéristiques du support SU20 sont les suivantes :
La composition de la matrice du support en silice-alumine est 60,7% Al203 et de 39,3% Si02.
La surface BET est de 284 m2/g.
Le volume poreux total, mesuré par adsorption d'azote, est de 0,435 ml/g
Le diamètre poreux moyen, mesuré par porosimétrie au mercure, est de 68 A. Le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dm0yen - 30 A et le Dmoyen + 30 A sur le volume mercure total est de 0,89. Le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 30 A est de -0,031 ml/g. Le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètres supérieurs à Dmoyen + 15 A est de 0,040 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A est de 0,011 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A est de 0,006 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A est de 0,006 ml/g, Le volume poreux, mesuré par porosimétrie au mercure, est compris dans les pores de diamètre supérieurs à 500 A est de 0,001 ml/g, La densité de remplissage tassée du support est de 0.79 g/cm3. Le diagramme de diffraction X contient : - les raies principales caractéristiques de l'alumine gamma et notamment il contient les pics à un d compris entre 1 ,39 à 1 ,40 A et à un d compris entre 1 ,97 A à 2,00 A , - les raies principales caractéristiques de la zéolithe ZBM30. La teneur en sodium atomique est de 190 +/- 20 ppm. La teneur en soufre atomique est de 800 ppm. Exemple 9 : Préparation des catalyseurs d'hydrocraquage selon l'invention (C1 à C20) Les catalyseurs C1 à C20 sont obtenus par imprégnation à sec d'une solution aqueuse renfermant des sels de tungstène et de nickel, respectivement, des supports SU1à SU20 sous forme d'extrudés et dont les préparations ont été respectivement décrites dans les exemples 1 à 7. Le sel de tungstène est le métatungstate d'ammonium (NH4)6H22O40*4H2O et celui de nickel est le nitrate de nickel Ni(N03)2*6H20. Après maturation à température ambiante dans une atmosphère saturée en eau, les extrudés imprégnés sont séchés à 120°C pendant une nuit puis calcinés à 500°C sous air sec.
Les teneurs pondérales finales en W03 et NiO des catalyseurs sont reportées dans le tableau 1 ci- dessous.
Tableau 1 : Teneurs pondérales en W03 et NiO des catalyseurs C1 à C8
Tableau 3 : Teneurs pondérales en W03 et NiO des catalyseurs C9 à C16
Exemple 10 : Les catalyseurs C21 et C22 sont obtenus par imprégnation à sec des supports SU3 et SU 10 (sous forme d'extrudés), préparés dans les exemples 1 et 5 par une imprégnation à sec d'une solution d'acide hexachloroplatinique H2PtCI6. Les extrudés imprégnés sont ensuite calcinés à 550°C sous air sec. La teneur en platine est de 0,49% poids.
Exemple 11 -: Evaluation des catalyseurs C1 à C20 en hydrocraouage d'un distillât sous vide en une étape à haute pression
Les catalyseurs C1 à C20 dont la préparation est décrite dans l'exemple 9 sont utilisés pour réaliser l'hydrocraquage d'un distillât sous vide dont les principales caractéristiques sont données ci-après :
Type de charge Distillât sous vide Densité à 15°C 0,9219 Soufre % poids 2,52 Azote ppm poids 880 Distillation simulée DS : 05%p°C 367 DS : 10%p°C 380 DS : 50%p°C 443 DS : 90%p °C 520 DS : Point final °C 690 Les catalyseurs C1 à C20 ont été mis en œuvre selon le procédé de l'invention en utilisant une unité pilote comportant 1 réacteur à lit fixe traversé, les fluides circulent de bas en haut (up-flow).
Préalablement au test d'hydrocraquage, les catalyseurs sont sulfurés à 120 bars, à 350°C au moyen d'un gasoil de distillation directe additionné de 2% poids de DMDS.
Après sulfuration, les tests catalytiques ont été effectués dans les conditions suivantes :
Pression totale : 14 MPa
La vitesse spatiale (VVH) est égale à 0,7 h-1. Température requise pour atteindre 70% de conversion nette.
Les performances catalytiques sont exprimées par la conversion nette en produits ayant un point d'ébullition inférieurs à 370°C, par la sélectivité nette en distillât moyen coupe 150-370°C et le rapport rendement Gasoil/rendement kérosène dans la fraction distillât moyen. Elles sont exprimées à partir des résultats de distillation simulée. La conversion nette CN est prise égale à :
CN 370°C = [ (% de 370°C " effluents ) - (% de 370°C " charge) ] / [ 100 - (% de 370°C " charge)]
avec
% de 370°C " effiuents = teneur massique en composés ayant des points d'ébullition inférieurs à 370°C dans les effluents, et
% de 370°C " charge = teneur massique en composés ayant des points d'ébullition inférieurs à 370°C dans la charge.
La sélectivité brute en distillât moyen SB est prise égale à :
SB définition = [(fraction en 150 - 370 effiuents)j / [( % de 370°C " effluents )]
Le rendement gasoil/rendement kérosène (rapport Go./Ker.) dans la fraction distillât moyen est prise égale à : Rapport Go./Ker. = rendement de la fraction (250°C-370°C) de l'effluent / rendement de la fraction (150°C - 250°C) dans l'effluent.
Les performances catalytiques obtenues sont données dans le tableau 2 ci-après. Tableau 4 : Résultats catalytiques en hydrocraouage une, étape et haute pression
Les exemples montrent que l'incorporation d'une zéolithe permet, quelle que soit la nature de la zéolithe sélectionnée, un gain d'activité significative d'activité sans perte de sélectivité.
Exemple 11 : Evaluation du catalyseur C21 et C22 dans des conditions simulant le fonctionnement du second réacteur d'un procédé d'hvdrocraouage dit en deux étapes
La charge de la deuxième étape est produite par hydrotraitement d'un distillât sous vide sur un catalyseur d'hydroraffinage commercialisé par Axens en présence d'hydrogène, à une température de 395°C et à la vitesse spatiale horaire de 0,55h-1. La conversion en produits 380°C est d'environ 50% poids. Après une étape de séparation, la fraction 380°C+ est recueillie et va servir de charge pour la deuxième étape. Les caractéristiques physico-chimiques de cette charge sont fournies tableau 3 : Tableau 5 : caractéristiques de la charge de deuxième étape
Cette charge est injectée dans l'unité de test d'hydrocraquage 2eme étape qui comprend un réacteur à lit fixe, à circulation ascendante de la charge (« up-flow »), dans lequel est introduit le catalyseur C9 préparé dans l'exemple 9. Avant injection de la charge le catalyseur est réduit sous hydrogène pur à 450°C pendant 2 heures. Les conditions opératoires de l'unité de test sont les suivantes :
Les performances catalytiques obtenues dans ces conditions sont décrites tableau 4 de cet exemple.
Tableau 4 : Résultats catalytiques
Les exemples 10 et 11 montrent donc tout l'intérêt d'utiliser un catalyseur selon l'invention pour réaliser l'hydrocraquage de charge hydrocarbonées. En effet, ils permettent d'obtenir des conversions élevées de la charge et des sélectivités en distillats moyens intéressantes.
Exemple 12 : Evaluation des catalyseurs C5 et C9 en hydrocraquage d'un distillât sous vide en une étape à pression modérée (hydrocraouage doux) Les catalyseurs C5 et C9 dont la préparation est décrite dans l'exemple 9 sont utilisés pour réaliser l'hydrocraquage du distillât sous vide, décrit dans l'exemple 11.
Les catalyseurs C5 et C9 ont été mis en œuvre selon le procédé de l'invention en utilisant une unité pilote comportant 1 réacteur à lit fixe traversé, les fluides circulent de bas en haut (up-flow).
Préalablement au test d'hydrocraquage, les catalyseurs sont sulfurés à 120 bars, à 350°C au moyen d'un gasoil de distillation directe additionné de 2% poids de DMDS.
Après sulfuration, les tests catalytiques ont été effectués dans les conditions suivantes : Pression totale 5,5 MPa T=405°C
WH globale 0,8 h"1
La vitesse spatiale (VVH) est égale à 0,8 h-1.
Les performances catalytiques sont exprimées par la conversion nette en produits ayant un point d'ébullition inférieurs à 370°C, par la sélectivité nette en distillât moyen coupe 150-370°C et le rapport rendement Gasoil/rendement kérosène dans la fraction distillât moyen. Elles sont exprimées à partir des résultats de distillation simulée et les définitions sont identiques à celles données dans l'exemple 10.
Les performances catalytiques obtenues sont données dans le tableau 5 ci-après.
Tableau 5 : Résultats catalvtigues en hvdrocraguage doux à pression modérée

Claims

Revendications
1. Catalyseur comprenant au moins un élément hydro-déshydrogénant choisi dans le groupe formé par les éléments du groupe VIB et du groupe VIII de la classification périodique et un support à base d'au moins une zéolithe et à base de matrice silico-aluminique, ladite matrice contenant une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice (Si02), ledit catalyseur présentant les caractéristiques suivantes : un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 A, une distribution poreuse telle gue le rapport entre le volume V2. mesuré par porosimétrie au mercure, compris entre le Dmnypn - 30 A et le DmnY n + 30 A sur le volume total mesuré par intrusion au porosirhètre à mercure est supérieur à 0.6, - le volume V3, mesuré par porosimétrie ml/g.- le volume V6, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à Dmnyn + 15 A est inférieur à 0,2 ml/g. - un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,2 ml/g et 0,5 ml/g. un volume poreux total, mesuré par porosimétrie azote, compris entre 0,2 ml/g et 0,5 ml/g, une surface spécifique BET comprise entre 100 et 600 m2/g , un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A inférieur à 0,1 ml/g , - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A inférieur à 0,1 ml/g, - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A inférieur à 0,01 ml/g, une densité de remplissage tassée des catalyseurs supérieure à 0.85 g/cm3 un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprises dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
2. Catalyseur selon la revendication 1 dans lequel la proportion des AIVι octaedriques déterminée par l'analyse des spectres RMN MAS du solide de 27AI de la matrice est supérieure à 50%.
3. Catalyseur selon les revendications 1 à 2 à base de nickel et de tungstène.
4. Catalyseur selon la revendication 1 à 2 à base de nickel et de molybdène.
5. Catalyseur selon l'une des revendications précédentes qui comprend au moins un élément dopant choisi dans le groupe formé par le phosphore, le bore et le silicium et déposé sur le catalyseur.
6. Catalyseur selon la revendication 5 dans lequel l'élément dopant est le phosphore.
7. Catalyseur selon l'une des revendications précédentes qui contient entre 0.1 et 30 % en poids de zéolithe.
8. Catalyseur selon l'une des revendications précédentes dans lequel le support est à base de zéolithe Y.
9. Catalyseur selon l'une des revendications précédentes dans lequel au moins une zéolithe est choisie dans le groupe formé par les zéolithes ZSM-48, ZBM-30, EU-2, EU-11.
10. Catalyseur selon l'une des revendications précédentes dans lequel au moins une zéolithe est la zéolithe ZBM-30.
11. Catalyseur selon l'une des revendications précédentes dans lequel au moins une zéolithe est choisie dans le groupe formé par les zéolithes Mordénite, Bêta, NU-87, EU-1.
12. Support comportant :
- au moins une zéolithe,
- une matrice non zéolithique à base de silice - alumine contenant une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice (Si02), caractérisé par: un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 A, une distribution poreuse telle gue le rapport entre le volume V2, mesuré par porosimétrie au mercure, compris entre le Dmπy n - 30 A et le Drnnypn + 30 A sur le volume total mesuré par intrusion au porosimètre à mercure est supérieur à 0.6, - le volume V3, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à Dmnyg + 30 A est inférieur à 0,1 ml/g,- le volume V6. mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à Dmnypn + 15 A est inférieur à 0,2 ml/g, un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0.2 ml/g et 0,5 ml/g. un volume poreux total, mesuré par porosimétrie azote, compris entre 0,2 ml/g et 0,5 ml/g, - une surface spécifique BET comprise entre 100 et 650 m2/g , un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 140 A inférieur à 0,1 ml/g ,
- un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 160 A inférieur à 0,1 ml/g, - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 A inférieur à 0,1 ml/g, un volume poreux, mesuré- par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A inférieur à 0.01 ml/g, une densité de remplissage tassée des supports, après calcination, supérieure à 0.65 g/cm3, un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprises dans le groupe composé par les alumines rhô, khi, êta, gamma, kappa, thêta et delta.
13. Support selon la revendication 12 tel que le diagramme de diffraction X contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines êta, thêta, delta et gamma.
14. Support selon l'une des revendications 12 à 13 tel que le diagramme de diffraction X contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines êta et gamma.
15. Support selon l'une des revendications 12 à 14 tel que le diamètre moyen poreux est compris entre 40 et 120 A.
16. Support selon l'une des revendications 12 à 15 tel que la matrice comprend au moins deux zones silico-aluminiques ayant des rapports Si/AI inférieurs ou supérieurs au rapport Si/AI global déterminé par fluorescence X.
17. Support selon l'une des revendications 12 à 16 tel que la matrice comprend une seule zone silico- aluminique ayant un rapport Si/AI égal au rapport Si/AI global déterminé par fluorescence X et inférieur à 2,3.
18. Procédé d'hydrocraquage et/ou d'hydroconversion de charges hydrocarbonées utilisant le catalyseur selon l'une des revendications 1 à 11 ou le catalyseur contenant le support selon l'une des revendications 12 à 17.
19. Procédé d'hydrocraquage et/ou d'hydroconversion selon la revendication 18 réalisé selon le procédé dit en une étape.
20. Procédé d'hydrocraquage et/ou d'hydroconversion selon la revendication 18 comportant au moins une première zone reactionnelle d'hydroraffinage et au moins une deuxième zone reactionnelle comportant un hydrocraquage d'au moins une partie de l'effluent de la première zone et comportant une séparation incomplète de l'ammoniac de l'effluent sortant de la première zone.
21. Procédé d'hydrocraquage et/ou d'hydroconversion selon l'une des revendications 19 ou 20 comprenant : une première zone reactionnelle d'hydroraffinage dans laquelle la charge est mise en contact avec au moins un catalyseur d'hydroraffinage présentant dans le test standard d'activité un taux de conversion du cyclohexane inférieur à 10 % massique. une deuxième zone reactionnelle d'hydrocraquage dans laquelle une partie au moins de l'effluent issu de l'étape d'hydroraffinage est mise en contact avec au moins un catalyseur d'hydrocraquage zéolithique présentant . dans le test standard d'activité un taux de conversion du cyclohexane supérieur à 10 % massique, le catalyseur selon l'invention étant présent dans au moins une des deux zones réactionnelles.
22. Procédé d'hydrocraquage et/ou d'hydroconversion selon la revendication 18 dans le procédé dit en deux étapes.
23. Procédé selon l'une des revendications 18 à 22 opérant, en présence d'hydrogène, à une température supérieure à 200°C, sous une pression supérieure à 1 MPa, la vitesse spatiale étant comprise entre 0,1 et 20h"1 et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène / litre d'hydrocarbure soit compris entre 80 et 5000I/1.
24. Procédé d'hydrocraquage et/ou d'hydroconversion selon l'une des revendications 18 à 23 opérant à une pression comprise entre 2 et 6 MPa et conduisant à des conversions inférieures à 50%.
25. Procédé selon l'une des revendications 18 à 24 opérant en lit fixe.
26. Procédé selon l'une des revendications 18 à 24 opérant en lit bouillonnant.
27. Procédé selon l'une des revendications 18 à 26 dans lequel le catalyseur utilisé pour l'hydrocraquage est à base de platine et/ou de palladium.
28. Procédé d'hydrotraitement de charges hydrocarbonées utilisant le catalyseur selon l'une des revendications 1 à 11 ou le catalyseur contenant le support selon l'une des revendications 12 à 17.
29. Procédé selon la revendication 28 placé en amont d'un procédé d'hydrocraquage.
30. Procédé selon l'une des revendications 18 à 29 dans lequel les charges hydrocarbonées sont choisies dans le groupe formé par les LCO (light cycle oil), les distillats atmosphériques, les distillats sous vide, les charges provenant d'unités d'extraction d'aromatiques des bases d'huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, les distillats provenant de procédés de desulfuration ou d'hydroconversion en lit fixe ou en lit bouillonnant de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide) et/ou d'huiles désasphaltées , les huiles désasphaltées, seules ou en mélange.
EP04816406A 2003-12-23 2004-12-16 Catalyseur zeolithique, support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees Ceased EP1711260A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0315210A FR2863913B1 (fr) 2003-12-23 2003-12-23 Catalyseur zeolithique,support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees
PCT/FR2004/003270 WO2005070539A2 (fr) 2003-12-23 2004-12-16 Catalyseur zeolithique, support a base de matrice silico-aluminique et de zeolithe, et procede d’hydrocraquage de charges hydrocarbonees

Publications (1)

Publication Number Publication Date
EP1711260A2 true EP1711260A2 (fr) 2006-10-18

Family

ID=34630481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04816406A Ceased EP1711260A2 (fr) 2003-12-23 2004-12-16 Catalyseur zeolithique, support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees

Country Status (4)

Country Link
US (1) US7790019B2 (fr)
EP (1) EP1711260A2 (fr)
FR (1) FR2863913B1 (fr)
WO (1) WO2005070539A2 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526119A (ja) * 2004-03-03 2007-09-13 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 触媒担体と触媒組成物、それらの調製方法およびそれらの使用方法
ITMI20041289A1 (it) * 2004-06-25 2004-09-25 Enitecnologie Spa Catalizzatore e processo per la preparazione di idrocarburi aromatici alchilati
BRPI0516371B1 (pt) 2004-12-23 2015-01-06 Inst Francais Du Petrole Catalisador zeolítico com teor controlado em elemento dopador, processo de hidrocraqueamento e ou de hidroconversão de cargas hidrocarbonadas e processo de hidrotratamento de cargas hidrocarbonadas
MX2007009504A (es) * 2007-08-07 2009-02-06 Mexicano Inst Petrol Catalizador para la primera etapa de hidrodesmetalizacion en un sistema de hidro procesamiento con reactores multiples para el mejoramiento de crudos pesados y extra-pesados.
US8030240B2 (en) * 2007-12-28 2011-10-04 Exxonmobil Research And Engineering Company Multiple molecular sieve catalyst for sour service dewaxing
FR2926028B1 (fr) * 2008-01-04 2010-02-12 Inst Francais Du Petrole Catalyseur comprenant au moins une zeolithe particuliere et au moins une silice-alumine et procede d'hydrocraquage de charges hydrocarbonees utilisant un tel catalyseur
US20090211453A1 (en) * 2008-02-26 2009-08-27 Nassivera Terry W Filtration Media for the Removal of Basic Molecular Contaminants for Use in a Clean Environment
MX2008006050A (es) * 2008-05-09 2009-11-09 Mexicano Inst Petrol Catalizador con acidez moderada para hidroprocesamiento de crudo pesado y residuo, y su procedimiento de sintesis.
US7687423B2 (en) * 2008-06-26 2010-03-30 Uop Llc Selective catalyst for aromatics conversion
US7922997B2 (en) 2008-09-30 2011-04-12 Uop Llc UZM-35 aluminosilicate zeolite, method of preparation and processes using UZM-35
US8048403B2 (en) * 2008-12-16 2011-11-01 Uop Llc UZM-26 family of crystalline aluminosilicate compositions and method of preparing the compositions
US7575737B1 (en) * 2008-12-18 2009-08-18 Uop Llc UZM-27 family of crystalline aluminosilicate compositions and a method of preparing the compositions
US20100160464A1 (en) * 2008-12-24 2010-06-24 Chevron U.S.A. Inc. Zeolite Supported Cobalt Hybrid Fischer-Tropsch Catalyst
US8377286B2 (en) * 2008-12-31 2013-02-19 Exxonmobil Research And Engineering Company Sour service hydroprocessing for diesel fuel production
WO2011017183A2 (fr) * 2009-08-04 2011-02-10 Uop Llc Famille uzm-29 de compositions zéolithiques cristallines et procédé de préparation des compositions
BR112013005821A2 (pt) 2010-09-14 2019-09-24 Radlein Desmond métodos de transformação de bio-óleo em combustíveis de hidrocarboneto do tipo de transporte
US8586501B2 (en) * 2010-10-04 2013-11-19 General Electric Company Catalyst and method of manufacture
FR2987842B1 (fr) 2012-03-12 2015-02-27 IFP Energies Nouvelles Procede optimise pour la valorisation de bio-huiles en carburants hydrocarbones
JP6626103B2 (ja) * 2014-07-11 2019-12-25 トタル リサーチ アンド テクノロジー フエリユイ 回収可能かつリサイクル可能なメソポア−鋳型剤を含むメソポーラス・ミクロポーラス結晶質材料の製造方法
FR3043399B1 (fr) * 2015-11-09 2018-01-05 Eco'ring Procede de production de laine de roche et de fonte valorisable
US10603657B2 (en) 2016-04-11 2020-03-31 Saudi Arabian Oil Company Nano-sized zeolite supported catalysts and methods for their production
US11084992B2 (en) * 2016-06-02 2021-08-10 Saudi Arabian Oil Company Systems and methods for upgrading heavy oils
US10689587B2 (en) 2017-04-26 2020-06-23 Saudi Arabian Oil Company Systems and processes for conversion of crude oil
KR102474323B1 (ko) 2017-07-17 2022-12-08 사우디 아라비안 오일 컴퍼니 중유를 가공처리하기 위한 시스템 및 방법
CN111097491B (zh) * 2018-10-26 2021-05-14 中国石油化工股份有限公司 含高硅分子筛的加氢裂化催化剂及其制备方法和应用
CN113546669B (zh) * 2020-04-24 2023-11-14 中国石油化工股份有限公司 含有磷钨酸改性高比表面积介孔材料的催化裂化助剂及其制备方法和应用
US11577235B1 (en) * 2021-08-13 2023-02-14 Chevron U.S.A. Inc. Layered catalyst reactor systems and processes for hydrotreatment of hydrocarbon feedstocks
FR3130640A1 (fr) 2021-12-21 2023-06-23 IFP Energies Nouvelles Catalyseur comprenant un support à base de matrice silico-aluminique et de zéolithe, sa préparation et procédé d’hydrocraquage de charges hydrocarbonées
CN115155552B (zh) * 2022-07-13 2024-03-12 黄骏 一种五配位铝富集无定型硅铝材料及其合成方法
FR3143622A1 (fr) 2022-12-16 2024-06-21 Axens Procédé de traitement d’une charge issue de source renouvelable pour la production d’oléfines biosourcées

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207546A (en) * 1981-06-13 1982-12-20 Shokubai Kasei Kogyo Kk Hydrocracking catalyst composition and its production
FR2563445B1 (fr) * 1984-04-26 1986-08-14 Pro Catalyse Ste Fse Prod Cata Nouveau catalyseur d'hydrocraquage destine a la production de distillats moyens
US5320743A (en) * 1992-05-29 1994-06-14 Texaco Inc. Mild hydrocracking of heavy hydrocarbon feedstocks employing silica-alumina catalysts
US5378671A (en) * 1993-06-03 1995-01-03 Mobil Oil Corp. Method for preparing catalysts comprising zeolites
FR2754742B1 (fr) * 1996-10-22 1998-12-11 Inst Francais Du Petrole Catalyseur contenant au moins deux zeolithes y desaluminees et procede d'hydroconversion conventionnelle de coupes petrolieres avec ce catalyseur
FR2769856B1 (fr) * 1997-10-20 1999-12-03 Inst Francais Du Petrole Catalyseur et procede d'hydrocraquage de coupes hydrocarbonees
CN1096296C (zh) * 1998-11-13 2002-12-18 中国石油化工集团公司 一种生产中间馏分油的加氢裂化催化剂及其制备
FR2812302B1 (fr) * 2000-07-31 2003-09-05 Inst Francais Du Petrole Procede d'hydrocraquage en 2 etapes de charges hydrocarbonees
FR2819430B1 (fr) * 2001-01-15 2003-02-28 Inst Francais Du Petrole Catalyseur comportant une silice-alumine et son utilisation en hydrocraquage de charges hydrocarbonees
FR2846574B1 (fr) * 2002-10-30 2006-05-26 Inst Francais Du Petrole Catalyseur et procede d'hydrocraquage de charges hydrocarbonees

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US7790019B2 (en) 2010-09-07
WO2005070539A3 (fr) 2005-10-13
FR2863913B1 (fr) 2006-12-29
FR2863913A1 (fr) 2005-06-24
WO2005070539A2 (fr) 2005-08-04
US20070209968A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
EP1830959B1 (fr) Catalyseur zeolithique a teneur controlee en element dopant et procede ameliore de traitement de charges hydrocarbonees
EP1415712B1 (fr) Catalyseur et procédé d'hydrocraquage de charges hydrocarbonées
EP1711260A2 (fr) Catalyseur zeolithique, support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees
EP1634643B1 (fr) Catalyseur dopé sur support silice-alumine et procédé de traitement de charges hydrocarbonées
EP1590424B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
EP1804967B1 (fr) Catalyseur alumino-silicate dope et procede ameliore de traitement de charges hydrocarbonees
EP1893724B1 (fr) Procede de production de distillats moyens par hydro1somerisation et hydrocraquage de charges issues du procédé
CA2858049C (fr) Catalyseur comprenant au moins une zeolithe nu-86, au moins une zeolithe usy et une matrice minerale poreuse et procede d'hydroconversion de charges hydrocarbonees utilisant ce catalyseur
FR2887556A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un catalyseur dope a base d'alumine-silice mesoporeuse a teneur controlee en macropore
EP2234721A2 (fr) Catalyseur comprenant au moins une zéolithe particuliere et au moins une silice-alumine et procédé d'hydrocraquage de charges hydrocarbonées utilisant un tel catalyseur
EP2794102B1 (fr) Procede de preparation d'un catalyseur utilisable en hydroconversion comprenant au moins une zéolithe nu-86
FR2970259A1 (fr) Procede d'hydrocraquage utilisant un catalyseur zeolithique contenant deux fonctions hydrogenantes distinctes.
FR2846664A1 (fr) Procede flexible de production de bases huiles et de distillats moyens avec une etape de pretraitement convertissant suivie d'un deparaffinage catalytique
FR2931834A1 (fr) Procede de production de distillats moyens par hydrocraquage de charges issues du procede fischer-tropsch avec un catalyseur a base d'un materiau cristallise
FR2868418A1 (fr) Procede de production de phenylalcanes utilisant un catalyseur zeolithique a base de silice-alumine
WO2023117475A1 (fr) Catalyseur comprenant un support à base de matrice silico-aluminique et de zéolithe, sa préparation et procédé d'hydrocraquage de charges hydrocarbonées

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060724

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090529

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20181119