EP1710442A1 - Flow stabilisation system for radial compressor - Google Patents

Flow stabilisation system for radial compressor Download PDF

Info

Publication number
EP1710442A1
EP1710442A1 EP05405278A EP05405278A EP1710442A1 EP 1710442 A1 EP1710442 A1 EP 1710442A1 EP 05405278 A EP05405278 A EP 05405278A EP 05405278 A EP05405278 A EP 05405278A EP 1710442 A1 EP1710442 A1 EP 1710442A1
Authority
EP
European Patent Office
Prior art keywords
compressor
opening
flow channel
housing wall
compressor housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05405278A
Other languages
German (de)
French (fr)
Inventor
Zoltan Spakovszky
Christian Roduner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelleron Industries AG
Original Assignee
ABB Turbo Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Turbo Systems AG filed Critical ABB Turbo Systems AG
Priority to EP05405278A priority Critical patent/EP1710442A1/en
Priority to CNB2006800178281A priority patent/CN100529427C/en
Priority to EP06705411.4A priority patent/EP1866545B1/en
Priority to RU2007140869/06A priority patent/RU2389907C2/en
Priority to KR1020077025533A priority patent/KR101265814B1/en
Priority to JP2008504596A priority patent/JP4819872B2/en
Priority to PCT/CH2006/000171 priority patent/WO2006105678A1/en
Publication of EP1710442A1 publication Critical patent/EP1710442A1/en
Priority to US11/865,837 priority patent/US7648331B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0238Details or means for fluid reinjection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the invention relates to the field of centrifugal compressors of exhaust gas turbochargers. It relates to a device for blowing air into the flow channel of a centrifugal compressor according to the preamble of patent claim 1.
  • stabilizers are used in the intake of the compressor wheel in a variety of radial compressor stages of the latest generations.
  • the demand from the market for steadily higher pressure ratios in compressors of exhaust gas turbochargers is unbroken.
  • the increase in the pressure ratio via an increase in the speed are limits set by the Verêtrradmaterials because the usable map limiting pumping and swallowing limit converge with increasing speed.
  • the usable characteristic map width thus decreases continuously in the direction of higher pressure conditions.
  • a diffuser with a smaller flow cross section can be used with a constant compressor wheel size.
  • the pumping limit shifts to smaller volume flows, resulting in a larger usable characteristic map width while maintaining the wheel slip limit.
  • a disadvantage is that the efficiency is reduced, especially at partial load. This disadvantage can be avoided by appropriate measures to increase the stability of the given compressor stages at maximum load. This can be done by injecting air from the housing into the flow channel in the unopened space between the blades of the compressor wheel and the vanes of the diffuser.
  • the dynamic stability in the range of high pressure conditions can be increased by the injection of air.
  • the object of the invention is to provide a simplified, inexpensive device for blowing air into the flow channel of a centrifugal compressor, which can be mounted in particular with little effort and has a high reliability in operation.
  • This object is achieved by a device for blowing air into the flow channel of a centrifugal compressor with the features of patent claim 1.
  • the nozzles are shaped as injection openings in the housing wall delimiting the flow channel. The injection openings are fed directly by means of air taken from the flow channel downstream of the diffuser. This air has compared to the flow in the flow channel in front of the diffuser on an increased pressure. This results in a passive, dynamic stabilization system of a compressor stage in the range of high pressure conditions, which manages without additional control or actuators.
  • An advantageous embodiment of the inventive device for blowing air into the flow channel can be easily realized by the cast compressor housing parts are provided directly with the corresponding openings. There are no additional nozzle elements or compressed air connections necessary. The distribution of compressed air on at most several injection openings via an at least partially annular formed, integrated as a cavity in the compressor housing air duct.
  • Fig. 1 shows a section through a centrifugal compressor with a mounted on a rotatably mounted shaft compressor wheel.
  • the compressor wheel has a central hub 10 and thereon arranged rotor blades 11.
  • the compressor wheel is arranged in the compressor housing.
  • the compressor housing comprises a plurality of the flow channel for the medium to be compressed limiting parts.
  • an inner compressor housing wall In the area of the rotor blades of the compressor wheel, an inner compressor housing wall, the so-called insert wall 31, limits the flow channel 41 radially outwards. Radially inside the flow channel is limited in this area by the hub of the compressor wheel.
  • the flow channel 42 on the side opposite the insert wall 33 is bounded by a diffuser wall 20.
  • the diffuser comprises diffuser 21 in the flow channel are arranged. Further downstream of the Diffusorleitschaufeln the flow channel 42 opens into the collecting cavity 43 of the spiral-shaped screw housing 32, from where a line, not shown, leads to the combustion chambers of the internal combustion engine connected to the exhaust gas turbocharger.
  • the air flow is indicated in the figures in each case with the thick, white arrows.
  • the inventive device for blowing air into the flow channel comprises a return air duct 44, which leads from the collection cavity 43 downstream of the diffuser vanes 21 into the flow channel 42 between the rotor blades 11 of the compressor wheel and the vanes 21 of the diffuser. As shown in Fig.
  • the air duct 44 may be formed as a cavity, which is bounded by insert wall 31, screw housing 32 and a partition wall 33 of the compressor housing.
  • the air duct 44 leads from an inlet opening 52 in the compressor housing wall in the region of the collecting cavity 43 to an injection opening 51 in the compressor housing wall in the region between the rotor blades 11 of the compressor wheel and the guide vanes 21 of the diffuser.
  • the injection opening 51 which opens into the flow channel 42 in the region between the rotor blades 11 of the compressor wheel and the guide vanes 21 of the diffuser, is not cylindrical, but has an inner Coanda surface structure. This means, as shown enlarged in FIG. 3, that the compressor housing wall has a rounding projecting into the injection opening, along which the air can flow according to the Coanda effect.
  • the flow in the flow channel has a strong tangential component on exit from the area of the rotor blades of the compressor wheel.
  • the Coanda effect ensures that when the air is blown into the flow channel no strong turbulences and cross flows occur. Instead, the air, which is likewise injected into the flow channel in the tangential direction, remains attached to the rounding of the injection opening 51 and is introduced into the flow in the edge region of the flow channel, as indicated by the thin arrows in FIG. 2 and FIG.
  • the injection into the flow channel is passive, that is without control or actuators. Due to the higher pressure in the collecting cavity 43 relative to the flow channel 42 in the region between the blades 11 of the compressor wheel and the guide vanes 21 of the diffuser results in a compensating flow.
  • a plurality of injection ports 51 may be provided. These can all be connected to a single, annular or at least partially annular air duct 44. Likewise, a plurality of inlet openings 52 can be arranged in the circumferential direction along the collecting cavity 43. Instead of an annular air duct 44, a plurality of divided air ducts divided by radially extending partition walls may be present, which supply one or more injection openings 51 with air for blowing in each case. The openings of the device according to the invention can already be embedded in these during the production of the compressor housing parts.
  • prefabricated nozzle elements 62 poured into the housing wall and materially connected to the housing wall, or by the special contour of the injection openings is already integrated in the mold.
  • a material is used, which connects to the casting wall with the steel of the housing wall without melting itself.
  • the inlet and the injection openings can also be introduced into the compressor housing walls at a later time.
  • nozzle members 61 which are positively or non-positively connected to the compressor housing wall 31. This allows, for example, the retrofitting of existing turbocharger with the inventive device for blowing air into the flow channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

The device has a conical, Coanda structure formed with an injection opening (51) through which air is injected in tangential direction towards the flow channel (42) between the rotor blades (11) of a compressor and guide vanes (21) of a diffuser. Another opening (52) is formed on the compressor stator wall (32) of the device at the downstream side of the injection opening. The other opening is connected to the injection opening via a formed channel (44). The other opening is formed at the downstream side of the guide vanes of the diffuser. An independent claim is included for the exhaust turbocharger including the radial compressor.

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf das Gebiet der Radialverdichter von Abgasturboladern. Sie betrifft eine Vorrichtung zum Einblasen von Luft in den Strömungskanal eines Radialverdichters gemäss dem Oberbegriff des Patentanspruchs 1.
Um die Kennfeldbreite von Radialverdichterstufen zu erhöhen, kommen in einer Vielzahl von Radialverdichterstufen der neusten Generationen Stabilisatoren im Ansaugbereich des Verdichterrades zum Einsatz.
Die Nachfrage vom Markt für stetig höhere Druckverhältnisse bei Verdichtern von Abgasturboladern ist ungebrochen. Der Erhöhung des Druckverhältnisses über eine Erhöhung der Drehzahl sind jedoch Grenzen seitens des Verdichterradmaterials gesetzt, da die das nutzbare Kennfeld begrenzende Pump- und Schluckgrenze mit zunehmender Drehzahl zusammenlaufen. Die nutzbare Kennfeldbreite nimmt somit in Richtung höherer Druckverhältnisse kontinuierlich ab. Um dem entgegenzuwirken und das nutzbare Kennfeld auch bei hohen Druckverhältnissen möglichst breit zu halten, kann bei gleichbleibender Verdichterradgrösse ein Diffusor mit kleinerem Strömungsquerschnitt eingesetzt werden. Die Pumpgrenze verschiebt sich dadurch zu kleineren Volumenströmen und es resultiert bei gleichbleibender Radschluckgrenze eine grössere nutzbare Kennfeldbreite. Nachteilig ist dabei, dass sich der Wirkungsgrad verringert, insbesondere bei Teillast. Dieser Nachteil kann vermieden werden, indem durch geeignete Massnahmen die Stabilität der gegebenen Verdichterstufen bei Maximallast erhöht wird. Dies kann durch gehäuseseitiges Einblasen von Luft in den Strömungskanal im unbeschaufelten Zwischenraum zwischen den Laufschaufeln des Verdichterrades und den Leitschaufeln des Diffusors geschehen. Die dynamische Stabilität im Bereich hoher Druckverhältnisse kann durch das Einblasen von Luft erhöht werden.
The invention relates to the field of centrifugal compressors of exhaust gas turbochargers. It relates to a device for blowing air into the flow channel of a centrifugal compressor according to the preamble of patent claim 1.
In order to increase the map width of radial compressor stages, stabilizers are used in the intake of the compressor wheel in a variety of radial compressor stages of the latest generations.
The demand from the market for steadily higher pressure ratios in compressors of exhaust gas turbochargers is unbroken. However, the increase in the pressure ratio via an increase in the speed are limits set by the Verdichterradmaterials because the usable map limiting pumping and swallowing limit converge with increasing speed. The usable characteristic map width thus decreases continuously in the direction of higher pressure conditions. In order to counteract this and to keep the usable characteristic field as wide as possible even at high pressure conditions, a diffuser with a smaller flow cross section can be used with a constant compressor wheel size. As a result, the pumping limit shifts to smaller volume flows, resulting in a larger usable characteristic map width while maintaining the wheel slip limit. A disadvantage is that the efficiency is reduced, especially at partial load. This disadvantage can be avoided by appropriate measures to increase the stability of the given compressor stages at maximum load. This can be done by injecting air from the housing into the flow channel in the unopened space between the blades of the compressor wheel and the vanes of the diffuser. The dynamic stability in the range of high pressure conditions can be increased by the injection of air.

Stand der TechnikState of the art

Aus " Centrifugal Compressor Flow Range Extension Using Diffuser Flow Control", (Gary J. Skoch; Army Research Laboratory, Vehicle Technology Directorate, Cleveland, Ohio; 5. Dezember , 2000 ) ist ein Radialverdichter mit nachgeschaltetem Diffusor bekannt, bei welchem unter Nutzung des Coanda-Effektes Düsen Druckluft in Strömungsrichtung in den Strömungskanal zwischen dem Verdichterrad und dem Diffusor eingeblasen wird.
Beim Coanda-Effekt (beschrieben in US 2,052,869 ) handelt es sich um einen Strömungseffekt, gemäss dem ein schnell strömendes Fluid (Gas oder Flüssigkeit), welches an einer Oberfläche eines Festkörpers entlang strömt, an dessen Oberfläche anhaftet und sich nicht von der Oberfläche ablöst.
Die Druckluftdüsen sind in der den Strömungskanal begrenzenden Gehäusewand angeordnet und am Verdichtergehäuse festgeschraubt. Sie lassen sich in den Öffnungen bewegen, so dass die Einblasrichtung verändert werden kann. Die Düsen sind über eine Rohrleitung mit einer externen Druckluftversorgung verbunden.
Out " Centrifugal Compressor Flow Range Extension Using Diffuse Flow Control, (Gary J. Skoch, Army Research Laboratory, Vehicle Technology Directorate, Cleveland, Ohio, December 5, 2000 ) is a radial compressor with downstream diffuser known in which using the Coanda effect nozzles compressed air is injected in the flow direction in the flow channel between the compressor and the diffuser.
When Coanda effect (described in US 2,052,869 ) is a flow effect, according to which a fast-flowing fluid (gas or liquid), which flows along a surface of a solid, adheres to the surface and does not detach from the surface.
The compressed air nozzles are arranged in the housing wall defining the flow channel and screwed tight to the compressor housing. They can be moved in the openings, so that the blowing direction can be changed. The nozzles are connected via a pipe to an external compressed air supply.

Kurze Darstellung der ErfindungBrief description of the invention

Aufgabe der Erfindung ist es, eine vereinfachte, kostengünstige Vorrichtung zum Einblasen von Luft in den Strömungskanal eines Radialverdichters zu schaffen, welche insbesondere mit geringem Aufwand montiert werden kann und die eine hohe Zuverlässigkeit im Betrieb aufweist.
Diese Aufgabe löst eine Vorrichtung zum Einblasen von Luft in den Strömungskanal eines Radialverdichters mit den Merkmalen des Patentanspruchs 1.
Bei der erfindungsgemässen Vorrichtung sind die Düsen als Einblasöffnungen in der den Strömungskanal begrenzenden Gehäusewand geformt. Die Einblasöffnungen sind direkt mittels stromab des Diffusors dem Strömungskanal entnommener Luft gespiesen. Diese Luft weist gegenüber der Strömung im Strömungskanal vor dem Diffusor einen erhöhten Druck auf.
Dadurch ergibt sich ein passives, dynamisches Stabilisierungssystem einer Verdichterstufe im Bereich hoher Druckverhältnisse, welches ohne zusätzliche Regel- oder Stellglieder auskommt.
Eine vorteilhafte Ausführungsform der erfindungsgemässen Vorrichtung zum Einblasen von Luft in den Strömungskanal lässt sich einfach realisieren, indem die gegossenen Verdichtergehäuseteile direkt mit den entsprechenden Öffnungen versehen werden. Es sind keine zusätzlichen Düsenelemente oder Druckluftanschlüsse notwendig.
Die Verteilung der Druckluft auf allenfalls mehrere Einblasöffnungen erfolgt über einen zumindest teilweise ringförmig ausgebildeten, als Hohlraum in das Verdichtergehäuse integrierten Luftkanal.
The object of the invention is to provide a simplified, inexpensive device for blowing air into the flow channel of a centrifugal compressor, which can be mounted in particular with little effort and has a high reliability in operation.
This object is achieved by a device for blowing air into the flow channel of a centrifugal compressor with the features of patent claim 1.
In the device according to the invention, the nozzles are shaped as injection openings in the housing wall delimiting the flow channel. The injection openings are fed directly by means of air taken from the flow channel downstream of the diffuser. This air has compared to the flow in the flow channel in front of the diffuser on an increased pressure.
This results in a passive, dynamic stabilization system of a compressor stage in the range of high pressure conditions, which manages without additional control or actuators.
An advantageous embodiment of the inventive device for blowing air into the flow channel can be easily realized by the cast compressor housing parts are provided directly with the corresponding openings. There are no additional nozzle elements or compressed air connections necessary.
The distribution of compressed air on at most several injection openings via an at least partially annular formed, integrated as a cavity in the compressor housing air duct.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Nachfolgend wird anhand der Zeichnungen die erfindungsgemässe Vorrichtung zum Einblasen von Luft in den Strömungskanal eines Radialverdichters genauer erläutert. Hierbei zeigt

Fig. 1
einen Schnitt durch einen Radialverdichter mit einer erfindungsgemässen Vorrichtung zum Einblasen von Luft in den Strömungskanal,
Fig. 2
einen vergrössert dargestellten Ausschnitt der erfindungsgemässen Vorrichtung nach Fig. 1 mit einem aufgesetzten Düsenelement, und
Fig. 3
einen vergrössert dargestellten Ausschnitt der erfindungsgemässen Vorrichtung nach Fig. 1 mit einem materialschlüssig integrierten Düsenelement.
The device according to the invention for injecting air into the flow channel of a radial compressor will be explained in greater detail below with reference to the drawings. This shows
Fig. 1
a section through a radial compressor with an inventive device for blowing air into the flow channel,
Fig. 2
an enlarged section of the inventive device of FIG. 1 with an attached nozzle element, and
Fig. 3
an enlarged detail of the inventive device of FIG. 1 with a material integrated nozzle element.

Weg zur Ausführung der ErfindungWay to carry out the invention

Fig. 1 zeigt einen Schnitt durch einen Radialverdichter mit einem auf einer rotierbar gelagerten Welle angeordneten Verdichterrad. Das Verdichterrad weist eine zentrale Nabe 10 auf und darauf angeordnete Laufschaufeln 11. Das Verdichterrad ist im Verdichtergehäuse angeordnet. Das Verdichtergehäuse umfasst mehrere, den Strömungskanal für das zu verdichtende Medium begrenzende Teile. Im Bereich der Laufschaufeln des Verdichterrades begrenzt eine innere Verdichtergehäusewand, die sogenannte Einsatzwand 31 den Strömungskanal 41 nach radial aussen. Radial innen ist der Strömungskanal in diesem Bereich durch die Nabe des Verdichterrades begrenzt. Weiter stromab des Bereichs der Laufschaufeln des Verdichterrades, wird der Strömungskanal 42 auf Seite gegenüber der Einsatzwand 33 von einer Diffusorwand 20 begrenzt. Der Diffusor umfasst Diffusorieitschaufein 21, welche im Strömungskanal angeordnet sind. Weiter stromab der Diffusorleitschaufeln mündet der Strömungskanal 42 in den Sammelhohlraum 43 des spiralförmigen Schneckengehäuses 32, von wo aus eine nicht dargestellte Leitung zu den Brennkammern der mit dem Abgasturbolader verbundenen Brennkraftmaschine führt. Die Luftströmung ist in den Figuren jeweils mit den dicken, weissen Pfeilen angedeutet.
Die erfindungsgemässe Vorrichtung zum Einblasen von Luft in den Strömungskanal umfasst einen Rückführungs-Luftkanal 44, welcher vom Sammelhohlraum 43 stromab der Diffusorleitschaufeln 21 in den Strömungskanal 42 zwischen den Laufschaufeln 11 des Verdichterrades und den Leitschaufeln 21 des Diffusors führt.
Wie in Fig. 1 dargestellt kann der Luftkanal 44 als ein Hohlraum ausgebildet sein, welcher durch Einsatzwand 31, Schneckengehäuse 32 und eine Trennwand 33 des Verdichtergehäuses begrenzt ist. Der Luftkanal 44 führt von einer Einlassöffnung 52 in der Verdichtergehäusewand im Bereich des Sammelhohlraums 43 zu einer Einblasöffnung 51 in der Verdichtergehäusewand im Bereich zwischen den Laufschaufeln 11 des Verdichterrades und den Leitschaufeln 21 des Diffusors. Die Einblasöffnung 51, welche in den Strömungskanal 42 im Bereich zwischen den Laufschaufeln 11 des Verdichterrades und den Leitschaufeln 21 des Diffusors mündet, ist nicht zylinderförmig ausgebildet, sondern weist eine innere Coanda-Oberflächenstruktur auf. Dies bedeutet, wie in Fig. 3 vergrössert dargestellt, dass die Verdichtergehäusewand eine in die Einblasöffnung hineinragende Rundung aufweist, entlang derer gemäss dem Coanda-Effekt die Luft strömen kann.
Die Strömung im Strömungskanal weist beim Austritt aus dem Bereich der Laufschaufeln des Verdichterrades eine starke tangentiale Komponente auf. Der Coanda-Effekt sorgt dafür, dass beim Einblasen der Luft in den Strömungskanal keine starken Verwirbelungen und Querströmungen entstehen. Stattdessen bleibt die ebenfalls in tangentialer Richtung in den Strömungskanal eingeblasene Luft an der Rundung der Einblasöffnung 51 haften und wird im Randbereich des Strömungskanals in Strömungsrichtung in die Strömung eingeführt, wie dies in Fig. 2 und Fig. 3 mit den dünnen Pfeilen angedeutet ist.
Die Einblasung in den Strömungskanal erfolgt passiv, das heisst ohne Regel- oder Stellglieder. Aufgrund des höheren Drucks im Sammelhohlraum 43 gegenüber dem Strömungskanal 42 im Bereich zwischen den Laufschaufeln 11 des Verdichterrades und den Leitschaufeln 21 des Diffusors ergibt sich eine Ausgleichsströmung.
Entlang dem Umfang des Strömungskanals, also auf gleicher radialer Höhe bezüglich der Welle des Turboladers, können mehrere Einblasöffnungen 51 vorgesehen sein. Diese können alle mit einem einzigen, ringförmig oder zumindest teilweise ringförmig ausgebildeten Luftkanal 44 verbunden sein. Ebenso können in Umfangsrichtung entlang dem Sammelhohlraum 43 mehrere Einlassöffnung 52 angeordnet sein.
Anstelle von einem, ringförmigen Luftkanal 44 können mehrere, durch radial verlaufende Trennwände unterteilte Teilluftkanäle vorhanden sein, welche jeweils eine oder mehrere Einblasöffnungen 51 mit Luft zum Einblasen versorgen.
Die Öffnungen der erfindungsgemässen Vorrichtung können bereits bei der Herstellung der Verdichtergehäuseteile in diese eingelassen werden. Dies kann direkt beim Giessen der Verdichtergehäuseteile erfolgen, indem entweder vorfabrizierte Düsenelemente 62 in die Gehäusewand eingegossen und materialschlüssig mit der Gehäusewand verbunden werden, oder indem die spezielle Kontur der Einblasöffnungen bereits in der Gussform integriert ist. Bei den vorfabrizierten Düsenelementen 62 wird ein Material verwendet, welches sich beim Giessen mit dem Stahl der Gehäusewand verbindet, ohne selber zu verschmelzen. Alternativ können die Einlass- und die Einblasöffnungen auch zu einem späteren Zeitpunkt in die Verdichtergehäusewände eingebracht werden.
Es können auch Düsenelemente 61 vorgesehen sein, welche form- oder kraftschlüssig mit den Verdichtergehäusewand 31 verbunden werden. Dies ermöglicht beispielsweise das Nachrüsten bereits bestehender Turbolader mit der erfindungsgemässen Vorrichtung zum Einblasen von Luft in den Strömungskanal.
Zur Schubentlastung im Bereich der Verdichterradrückwand oder als Sperrluft zur Ölabdichtung der Lager mittels Überdruck kann dem Verdichter im Bereich stromab der Laufschaufeln des Verdichterrades Luft entnommen werden. Diese sogenannte Leckageströmung 53 kann wiederum eine destabilisierende Wirkung auf die Verdichterströmung haben, wodurch sich die Pumpgrenze zu höheren Volumenströmen verschiebt, was zu einer unterwünschten Verminderung der nutzbaren Kennfeldbreite führt. Mittels dem erfindungsgemässen Einblasen kann der Verlauf der Pumpgrenze wieder auf den Verlauf ohne Leckageströmung 53 zurückversetzt werden.
Fig. 1 shows a section through a centrifugal compressor with a mounted on a rotatably mounted shaft compressor wheel. The compressor wheel has a central hub 10 and thereon arranged rotor blades 11. The compressor wheel is arranged in the compressor housing. The compressor housing comprises a plurality of the flow channel for the medium to be compressed limiting parts. In the area of the rotor blades of the compressor wheel, an inner compressor housing wall, the so-called insert wall 31, limits the flow channel 41 radially outwards. Radially inside the flow channel is limited in this area by the hub of the compressor wheel. Further downstream of the area of the rotor blades of the compressor wheel, the flow channel 42 on the side opposite the insert wall 33 is bounded by a diffuser wall 20. The diffuser comprises diffuser 21 in the flow channel are arranged. Further downstream of the Diffusorleitschaufeln the flow channel 42 opens into the collecting cavity 43 of the spiral-shaped screw housing 32, from where a line, not shown, leads to the combustion chambers of the internal combustion engine connected to the exhaust gas turbocharger. The air flow is indicated in the figures in each case with the thick, white arrows.
The inventive device for blowing air into the flow channel comprises a return air duct 44, which leads from the collection cavity 43 downstream of the diffuser vanes 21 into the flow channel 42 between the rotor blades 11 of the compressor wheel and the vanes 21 of the diffuser.
As shown in Fig. 1, the air duct 44 may be formed as a cavity, which is bounded by insert wall 31, screw housing 32 and a partition wall 33 of the compressor housing. The air duct 44 leads from an inlet opening 52 in the compressor housing wall in the region of the collecting cavity 43 to an injection opening 51 in the compressor housing wall in the region between the rotor blades 11 of the compressor wheel and the guide vanes 21 of the diffuser. The injection opening 51, which opens into the flow channel 42 in the region between the rotor blades 11 of the compressor wheel and the guide vanes 21 of the diffuser, is not cylindrical, but has an inner Coanda surface structure. This means, as shown enlarged in FIG. 3, that the compressor housing wall has a rounding projecting into the injection opening, along which the air can flow according to the Coanda effect.
The flow in the flow channel has a strong tangential component on exit from the area of the rotor blades of the compressor wheel. The Coanda effect ensures that when the air is blown into the flow channel no strong turbulences and cross flows occur. Instead, the air, which is likewise injected into the flow channel in the tangential direction, remains attached to the rounding of the injection opening 51 and is introduced into the flow in the edge region of the flow channel, as indicated by the thin arrows in FIG. 2 and FIG.
The injection into the flow channel is passive, that is without control or actuators. Due to the higher pressure in the collecting cavity 43 relative to the flow channel 42 in the region between the blades 11 of the compressor wheel and the guide vanes 21 of the diffuser results in a compensating flow.
Along the circumference of the flow channel, ie at the same radial height with respect to the shaft of the turbocharger, a plurality of injection ports 51 may be provided. These can all be connected to a single, annular or at least partially annular air duct 44. Likewise, a plurality of inlet openings 52 can be arranged in the circumferential direction along the collecting cavity 43.
Instead of an annular air duct 44, a plurality of divided air ducts divided by radially extending partition walls may be present, which supply one or more injection openings 51 with air for blowing in each case.
The openings of the device according to the invention can already be embedded in these during the production of the compressor housing parts. This can be done directly when casting the compressor housing parts by either prefabricated nozzle elements 62 poured into the housing wall and materially connected to the housing wall, or by the special contour of the injection openings is already integrated in the mold. In the prefabricated nozzle elements 62, a material is used, which connects to the casting wall with the steel of the housing wall without melting itself. Alternatively, the inlet and the injection openings can also be introduced into the compressor housing walls at a later time.
It can also be provided nozzle members 61 which are positively or non-positively connected to the compressor housing wall 31. This allows, for example, the retrofitting of existing turbocharger with the inventive device for blowing air into the flow channel.
For relieving the thrust in the region of the compressor wheel back wall or as sealing air for oil sealing of the bearings by means of overpressure, air can be taken from the compressor in the region downstream of the rotor blades of the compressor wheel. This so-called leakage flow 53 can in turn have a destabilizing effect on the compressor flow, as a result of which the pumping limit shifts to higher volume flows, which leads to an undesired reduction of the usable characteristic map width. By means of the injection according to the invention, the progression of the surge limit can be restored to the course without leakage flow 53.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Verdichterrad-NabeCompressor wheel hub
1111
Verdichterrad-SchaufelnCompressor blades
2020
Diffusor-WandDiffuser wall
2121
Diffusor-LeitschaufelDiffuser vane
3131
Innere Verdichtergehäusewand, EinsatzwandInner compressor housing wall, insert wall
3232
Äussere Verdichtergehäusewand, SchneckengehäuseExternal compressor housing wall, screw housing
3333
Trennwandpartition wall
4141
Strömungskanal, AnsaugbereichFlow channel, intake area
4242
Strömungskanal, DiffusorbereichFlow channel, diffuser area
4343
Sammelhohlraum, SchneckengehäuseCollective cavity, screw housing
4444
Luftkanal, HohlraumAir duct, cavity
5151
Einblasöffnunginflation opening
5252
Einlassöffnunginlet port
5353
LeckströmungsöffnungLeakage opening
6161
Düsenelement, aufgesetztNozzle element, mounted
6262
Düsenelement, in Gehäusewand integriertNozzle element integrated in housing wall

Claims (9)

Vorrichtung zum Einblasen von Luft in den Strömungskanal (42) eines Radialverdichters, umfassend mindestens eine düsenförmige, mit einer Coandastruktur versehene Einblasöffnung (51), durch welche Luft in tangentialer Richtung in den Strömungskanal (42) zwischen Laufschaufeln (11) des Verdichterrades und Leitschaufeln (21) eines Diffusors eingeblasen werden kann,
dadurch gekennzeichnet, dass
in der Verdichtergehäusewand (32) mindestens eine zweite Öffnung (52) vorgesehen ist, dass
die mindestens eine zweite Öffnung (52) stromab der mindestens einen Einblasöffnung (51) angeordnet ist, und dass
die mindestens eine Einblasöffnung (51) über einen Kanal (44) mit der mindestens einen zweiten Öffnung (52) verbunden ist.
Device for injecting air into the flow channel (42) of a centrifugal compressor comprising at least one nozzle-shaped, coanda-structured injection opening (51) through which air in the tangential direction into the flow channel (42) between blades (11) of the compressor wheel and vanes ( 21) of a diffuser can be injected,
characterized in that
in the compressor housing wall (32) at least one second opening (52) is provided that
the at least one second opening (52) is arranged downstream of the at least one injection opening (51), and in that
the at least one injection opening (51) is connected via a channel (44) to the at least one second opening (52).
Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine zweite Öffnung (52) stromab der Leitschaufeln (21) des Diffusors angeordnet ist.Apparatus according to claim 1, characterized in that the at least one second opening (52) is arranged downstream of the guide vanes (21) of the diffuser. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mehrere Einblasöffnungen (51) in Umfangsrichtung entlang dem Strömungskanal verteilt angeordnet sind.Apparatus according to claim 1 or 2, characterized in that a plurality of injection openings (51) are arranged distributed in the circumferential direction along the flow channel. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Kanal zwischen der mindestens einen Einblasöffnung (51) und der mindestens einen zweiten Öffnung (52) als ein zumindest teilweise ringförmig ausgebildeter, in Umfangsrichtung verlaufender Hohlraum (44) ausgebildet ist.Device according to one of the preceding claims, characterized in that the channel between the at least one injection opening (51) and the at least one second opening (52) as an at least partially annular formed, extending in the circumferential direction cavity (44) is formed. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Hohlraum (44) durch Verdichtergehäusewände (31, 32, 33) begrenzt ist.Apparatus according to claim 4, characterized in that the cavity (44) by compressor housing walls (31, 32, 33) is limited. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Einblasöffnung (51) in die den Strömungskanal begrenzende Verdichtergehäusewand (31) eingelassen und durch die den Strömungskanal begrenzende Verdichtergehäusewand (31) geformt ist.Device according to one of the preceding claims, characterized in that the at least one injection opening (51) in the flow passage delimiting the compressor housing wall (31) and formed by the flow passage limiting compressor housing wall (31) is formed. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die mindestens eine Einblasöffnung (51) durch ein ein- oder mehrteiliges Düsenelement geformt (61) ist, welches in einer Öffnung der Verdichtergehäusewand (31) angeordnet und mit der Verdichtergehäusewand verbunden ist.Device according to one of claims 1 to 6, characterized in that the at least one injection opening (51) by a one-piece or multi-part nozzle member shaped (61), which is disposed in an opening of the compressor housing wall (31) and connected to the compressor housing wall. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die mindestens eine Einblasöffnung (51) durch ein ein- oder mehrteiliges Düsenelement (62) geformt ist, welches materialschlüssig in der Verdichtergehäusewand (31) integriert ist.Device according to one of claims 1 to 6, characterized in that the at least one injection opening (51) is formed by a one-piece or multi-part nozzle member (62), which is material-integrated in the compressor housing wall (31). Abgasturbolader, umfassend einen Radialverdichter mit einer Vorrichtung zum Einblasen von Luft in den Strömungskanal (42) des Radialverdichters nach einem der vorangehenden Ansprüche.Exhaust gas turbocharger, comprising a radial compressor with a device for blowing air into the flow channel (42) of the centrifugal compressor according to one of the preceding claims.
EP05405278A 2005-04-04 2005-04-04 Flow stabilisation system for radial compressor Withdrawn EP1710442A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP05405278A EP1710442A1 (en) 2005-04-04 2005-04-04 Flow stabilisation system for radial compressor
CNB2006800178281A CN100529427C (en) 2005-04-04 2006-03-22 Flow stabilization system for centrifugal compressor
EP06705411.4A EP1866545B1 (en) 2005-04-04 2006-03-22 Flow stabilization system for centrifugal compressor
RU2007140869/06A RU2389907C2 (en) 2005-04-04 2006-03-22 Spiral air charging
KR1020077025533A KR101265814B1 (en) 2005-04-04 2006-03-22 Flow stabilization system for centrifugal compressor
JP2008504596A JP4819872B2 (en) 2005-04-04 2006-03-22 Introduction of spiral air
PCT/CH2006/000171 WO2006105678A1 (en) 2005-04-04 2006-03-22 Flow stabilization system for centrifugal compressor
US11/865,837 US7648331B2 (en) 2005-04-04 2007-10-02 Spiral air induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05405278A EP1710442A1 (en) 2005-04-04 2005-04-04 Flow stabilisation system for radial compressor

Publications (1)

Publication Number Publication Date
EP1710442A1 true EP1710442A1 (en) 2006-10-11

Family

ID=35005737

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05405278A Withdrawn EP1710442A1 (en) 2005-04-04 2005-04-04 Flow stabilisation system for radial compressor
EP06705411.4A Not-in-force EP1866545B1 (en) 2005-04-04 2006-03-22 Flow stabilization system for centrifugal compressor

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06705411.4A Not-in-force EP1866545B1 (en) 2005-04-04 2006-03-22 Flow stabilization system for centrifugal compressor

Country Status (7)

Country Link
US (1) US7648331B2 (en)
EP (2) EP1710442A1 (en)
JP (1) JP4819872B2 (en)
KR (1) KR101265814B1 (en)
CN (1) CN100529427C (en)
RU (1) RU2389907C2 (en)
WO (1) WO2006105678A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103811A3 (en) * 2008-03-20 2012-07-11 Rolls-Royce Deutschland Ltd & Co KG Fluid injection nozzle
CN104822948A (en) * 2013-02-05 2015-08-05 三菱重工业株式会社 Centrifugal compressor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021968A1 (en) * 2009-05-19 2010-12-16 Man Diesel & Turbo Se Compressor for a turbocharger and turbocharger equipped therewith
US9567942B1 (en) * 2010-12-02 2017-02-14 Concepts Nrec, Llc Centrifugal turbomachines having extended performance ranges
FR2975451B1 (en) 2011-05-16 2016-07-01 Turbomeca PROCESS FOR BLOWING IN GAS TURBINE DIFFUSER AND CORRESPONDING DIFFUSER
US8596035B2 (en) 2011-06-29 2013-12-03 Opra Technologies B.V. Apparatus and method for reducing air mass flow for extended range low emissions combustion for single shaft gas turbines
JP5167403B1 (en) * 2011-12-08 2013-03-21 三菱重工業株式会社 Centrifugal fluid machine
KR102031233B1 (en) * 2012-10-15 2019-10-11 보르그워너 인코퍼레이티드 Exhaust-gas turbocharger
JP6367660B2 (en) * 2014-09-19 2018-08-01 三菱重工コンプレッサ株式会社 Centrifugal compressor
JP7047468B2 (en) * 2018-03-05 2022-04-05 いすゞ自動車株式会社 Turbo turbocharger, turbocharger system and turbocharger system supercharging method
DE102018115446A1 (en) * 2018-06-27 2020-01-02 Ihi Charging Systems International Gmbh turbocharger
US11143201B2 (en) * 2019-03-15 2021-10-12 Pratt & Whitney Canada Corp. Impeller tip cavity
CN111963490B (en) * 2020-08-07 2022-06-21 中国北方发动机研究所(天津) Vibration suppression structure of vane diffuser of turbocharger
US11268536B1 (en) 2020-09-08 2022-03-08 Pratt & Whitney Canada Corp. Impeller exducer cavity with flow recirculation
CN114321014B (en) * 2021-12-24 2024-10-08 中国科学院工程热物理研究所 Local self-circulation flow control structure of radial diffuser of centrifugal compressor
DE102022120820A1 (en) * 2022-08-17 2024-02-22 Rolls-Royce Solutions GmbH Compressor housing, radial compressor with such a compressor housing, radial compressor arrangement, exhaust gas turbocharger and internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2052869A (en) 1934-10-08 1936-09-01 Coanda Henri Device for deflecting a stream of elastic fluid projected into an elastic fluid
CH204331A (en) * 1937-02-24 1939-04-30 Rheinmetall Borsig Ag Device to prevent jet separation in turbo compressors.
FR963540A (en) * 1950-07-17
GB775784A (en) * 1954-10-14 1957-05-29 Blackburn & Gen Aircraft Ltd Improvements in or relating to turbine engines
DE1096536B (en) * 1953-08-17 1961-01-05 Rheinische Maschinen Und App G Centrifugal compressor, from the impeller of which the conveying medium enters a guide device concentrically surrounding the impeller at supersonic speed
US4131389A (en) * 1975-11-28 1978-12-26 The Garrett Corporation Centrifugal compressor with improved range
EP0280205A2 (en) * 1987-02-19 1988-08-31 BMW ROLLS-ROYCE GmbH Radial compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2656096A (en) * 1946-01-04 1953-10-20 Rateau Soc Centrifugal pump and compressor
DE3443324C1 (en) * 1984-11-28 1986-08-07 M.A.N.-B & W Diesel GmbH, 8900 Augsburg Internal combustion engine with supercharging
DE4334466A1 (en) * 1993-10-09 1995-04-13 Abb Management Ag Exhaust gas turbocharger
US6168375B1 (en) * 1998-10-01 2001-01-02 Alliedsignal Inc. Spring-loaded vaned diffuser
US6357374B1 (en) * 2000-07-21 2002-03-19 Cortana Corporation Method and apparatus for increasing the effectiveness and efficiency of multiple boundary layer control techniques

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR963540A (en) * 1950-07-17
US2052869A (en) 1934-10-08 1936-09-01 Coanda Henri Device for deflecting a stream of elastic fluid projected into an elastic fluid
CH204331A (en) * 1937-02-24 1939-04-30 Rheinmetall Borsig Ag Device to prevent jet separation in turbo compressors.
DE1096536B (en) * 1953-08-17 1961-01-05 Rheinische Maschinen Und App G Centrifugal compressor, from the impeller of which the conveying medium enters a guide device concentrically surrounding the impeller at supersonic speed
GB775784A (en) * 1954-10-14 1957-05-29 Blackburn & Gen Aircraft Ltd Improvements in or relating to turbine engines
US4131389A (en) * 1975-11-28 1978-12-26 The Garrett Corporation Centrifugal compressor with improved range
EP0280205A2 (en) * 1987-02-19 1988-08-31 BMW ROLLS-ROYCE GmbH Radial compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103811A3 (en) * 2008-03-20 2012-07-11 Rolls-Royce Deutschland Ltd & Co KG Fluid injection nozzle
CN104822948A (en) * 2013-02-05 2015-08-05 三菱重工业株式会社 Centrifugal compressor
EP2955387A4 (en) * 2013-02-05 2016-09-07 Mitsubishi Heavy Ind Ltd Centrifugal compressor

Also Published As

Publication number Publication date
RU2007140869A (en) 2009-05-20
US20080038112A1 (en) 2008-02-14
KR20070113323A (en) 2007-11-28
KR101265814B1 (en) 2013-05-20
WO2006105678A1 (en) 2006-10-12
EP1866545A1 (en) 2007-12-19
RU2389907C2 (en) 2010-05-20
EP1866545B1 (en) 2015-06-17
JP4819872B2 (en) 2011-11-24
JP2008534858A (en) 2008-08-28
CN101180468A (en) 2008-05-14
CN100529427C (en) 2009-08-19
US7648331B2 (en) 2010-01-19

Similar Documents

Publication Publication Date Title
EP1866545B1 (en) Flow stabilization system for centrifugal compressor
DE60011400T2 (en) COMPRESSOR BLOW-OFF BY INTERRUPTED RING-SHAPED GAP
DE102006007347A1 (en) Compressor for an internal combustion engine
EP2181268B1 (en) Radial compressor with a diffuser for use in a turbocharger
EP1898067B1 (en) Liquid return in baffles of fluid-flow engines with bypass flow configuration
WO2019063384A1 (en) Diffuser for a compressor
DE2042478A1 (en) Gas turbine jet engine for aircraft with devices for component cooling and compressor control
EP2824282A1 (en) Gas turbine with high pressure turbine cooling system
DE112015003934B4 (en) gas turbine
DE3627306A1 (en) DEVICE FOR VENTILATING ROTOR COMPONENTS FOR COMPRESSORS OF GAS TURBINE ENGINE PLANTS
CH713406B1 (en) Centrifugal compressor and turbocharger.
EP2532898A1 (en) Axial turbo compressor
EP2054595B1 (en) Compressor housing
WO2008023068A2 (en) Turbine housing
EP2652290B1 (en) Compressor for the supercharging of an internal combustion engine
EP3164578B1 (en) Discharge region of a turbocharger turbine
WO2019034740A1 (en) Diffuser for a radial compressor
WO2009130262A1 (en) Carrier ring of a conducting device with sealing air channel
DE102020202967A1 (en) Exhaust gas turbocharger with integral housing
DE102017114007A1 (en) Diffuser for a centrifugal compressor
WO2015169509A1 (en) Compressor housing
DE102014226341A1 (en) Compressor, exhaust gas turbocharger and internal combustion engine
DE102010040823A1 (en) Turbo supercharger for use in e.g. internal combustion engine, of motor car, has turbine wheel spine whose outer diameter is greater than outer diameter of turbine blade ring to partially compensate occurrence of axial forces
EP1541803B1 (en) Gas turbine comprising a bearing relief arrangement
DE102015103615A1 (en) centrifugal compressors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070703