JP5167403B1 - Centrifugal fluid machine - Google Patents

Centrifugal fluid machine Download PDF

Info

Publication number
JP5167403B1
JP5167403B1 JP2011268925A JP2011268925A JP5167403B1 JP 5167403 B1 JP5167403 B1 JP 5167403B1 JP 2011268925 A JP2011268925 A JP 2011268925A JP 2011268925 A JP2011268925 A JP 2011268925A JP 5167403 B1 JP5167403 B1 JP 5167403B1
Authority
JP
Japan
Prior art keywords
working fluid
fluid
wall surface
vane
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011268925A
Other languages
Japanese (ja)
Other versions
JP2013119828A (en
Inventor
誠一 茨木
浩一 杉本
啓一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011268925A priority Critical patent/JP5167403B1/en
Priority to KR1020147002326A priority patent/KR101564858B1/en
Priority to PCT/JP2012/064796 priority patent/WO2013084525A1/en
Priority to CN201280033063.6A priority patent/CN103635699B/en
Priority to EP12856231.1A priority patent/EP2789861A4/en
Application granted granted Critical
Publication of JP5167403B1 publication Critical patent/JP5167403B1/en
Publication of JP2013119828A publication Critical patent/JP2013119828A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0238Details or means for fluid reinjection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Abstract

Provided is a centrifugal fluid machine configured so that the separation of flow due to the difference between the angle of a discharge flow from an impeller and the angle of a vane entrance is prevented to improve the performance of a diffuser provided with vanes. A centrifugal fluid machine is provided with blades, an impeller which has the blades, and a diffuser (21) which is provided downstream of the impeller and which has vanes (24) provided between a shroud-side wall surface (22) and a hub-side wall surface (23), the shroud-side wall surface (22) and the hub-side wall surface (23) facing each other. The centrifugal fluid machine is configured so that fluid, the pressure of which has been increased by rotating the impeller, passes through and flows out of the diffuser (21). The centrifugal fluid machine is provided with one or more working fluid ejection openings (25) which are open at the hub-side wall surface (23) and which eject a working fluid in the flow direction of the fluid along the pressure surfaces (24a) of the vanes (24). The working fluid ejection openings (25) are provided at radial positions closer to the front edges of the vanes (24) than positions located at a throat radius (R2).

Description

本発明は、翼付ディフューザを備えた遠心式流体機械、特に、舶用過給機、自動車用過給機、航空用ガスタービン等に用いられる遠心圧縮機等の遠心式流体機械に関するものである。   The present invention relates to a centrifugal fluid machine including a winged diffuser, and more particularly to a centrifugal fluid machine such as a centrifugal compressor used in a marine supercharger, an automobile supercharger, an aircraft gas turbine, and the like.

過給機等の遠心圧縮機に用いられる遠心式流体機械は、ケーシング内でインペラを回転させることにより、昇圧する流体(気体)がインペラ内の大半の流路を半径方向に通過して流れ、主に遠心力の作用で昇圧されるように構成されている。このような遠心式流体機械は、高圧力比、高効率、広作動範囲が求められることから、インペラの下流に複数枚のベーン(ディフューザ翼)を備えた翼付ディフューザが設けられており、この翼付ディフューザの高性能化が不可欠となっている。   A centrifugal fluid machine used for a centrifugal compressor such as a supercharger rotates an impeller in a casing so that a fluid (gas) to be pressurized flows in a radial direction through most flow paths in the impeller. The pressure is increased mainly by the action of centrifugal force. Since such a centrifugal fluid machine is required to have a high pressure ratio, high efficiency, and a wide operating range, a winged diffuser having a plurality of vanes (diffuser blades) is provided downstream of the impeller. High performance winged diffusers are essential.

特許文献1の遠心圧縮機では、空気の流れがベーンから剥離するのを防止するため、ベーンの負圧面と圧力面とを連通させる連通路を形成している。
また、特許文献2の遠心式流体機械には、シュラウドの側壁面及びハブの側壁面のうち少なくとも一方の壁面に設けた溝、あるいは、壁面と近接するベーンの端部に設けた連通孔により、ベーンの半径方向外側面と半径方向内側面とを連通させた構成が開示されている。このような構成によれば、ベーンの半径方向内側面に形成された境界層の厚さが減少するので、ディフューザの失速限界を低流量側に拡げることができ、広い流量範囲における安定した運転が可能になる。
In the centrifugal compressor of Patent Document 1, in order to prevent the air flow from being separated from the vane, a communication path is formed that allows the negative pressure surface and the pressure surface of the vane to communicate with each other.
Further, the centrifugal fluid machine of Patent Document 2 includes a groove provided on at least one wall surface of the shroud side wall surface and the side wall surface of the hub, or a communication hole provided at the end of the vane adjacent to the wall surface, A configuration is disclosed in which the radially outer surface and the radially inner surface of the vane are in communication with each other. According to such a configuration, since the thickness of the boundary layer formed on the radially inner side surface of the vane is reduced, the stall limit of the diffuser can be extended to the low flow rate side, and stable operation in a wide flow range can be achieved. It becomes possible.

特開平10−331794号公報JP-A-10-331794 特開2005−155565号公報JP 2005-155565 A

ところで、遠心式流体機械のベーンには、インペラから吐出された昇圧後の流体が歪んだ流れとなって流入する。このため、ベーンの性能向上には、インペラの流れを考慮した改善が必要である。
歪んだ流れを具体的に説明すると、ディフューザのベーンには、昇圧した流体の流れが翼高さ方向に速度分布を持って流入する。このため、ベーン入口においては、流れ角と翼入り口角度との不一致が生じることとなる。このような角度の不一致は、ベーンの前縁で昇圧する流体の流れに剥離を生じさせるので、この剥離に起因して、翼付ディフューザの効率低下やベーンの失速を生じるという改善すべき課題がある。
By the way, the pressurized fluid discharged from the impeller flows into the vane of the centrifugal fluid machine as a distorted flow. For this reason, in order to improve the performance of the vane, it is necessary to improve in consideration of the impeller flow.
The distorted flow will be described in detail. The flow of the pressurized fluid flows into the vane of the diffuser with a velocity distribution in the blade height direction. For this reason, inconsistency of a flow angle and a blade inlet angle will arise in a vane entrance. Such angle mismatch causes separation in the fluid flow that is pressurized at the leading edge of the vane, and this separation causes problems to be improved such as a decrease in efficiency of the vaned diffuser and vane stall. is there.

本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、インペラの吐出流れとベーン入口の角度不一致による流れの剥離を抑制し、翼付ディフューザの性能を向上させた遠心式流体機械を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to suppress the separation of the flow due to the angle mismatch between the impeller discharge flow and the vane inlet and improve the performance of the winged diffuser. It is to provide a centrifugal fluid machine.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明の第1態様に係る遠心式流体機械は、複数枚のブレード、及びこれら複数枚のブレードを有するインペラと、前記インペラの下流側に設けられるとともに、対向するシュラウド側壁面及びハブ側壁面との間に複数枚のベーンを有するディフューザとを備え、前記インペラを回転させて昇圧した流体が前記ディフューザを通過して流出するように構成された遠心式流体機械であって、前記ハブ側壁面に開口するとともに作動流体を前記ベーンの圧力面に沿って前記流体の流れ方向へ噴射する1または複数個の作動流体噴射口を備え、該作動流体噴射口がスロート半径(R2)より前記ベーンの前縁側となる半径位置に設けられていることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
A centrifugal fluid machine according to a first aspect of the present invention includes a plurality of blades, an impeller having the plurality of blades, a shroud side wall surface and a hub side wall surface which are provided on the downstream side of the impeller and which are opposed to each other. A centrifugal fluid machine comprising a diffuser having a plurality of vanes in between, and configured to rotate the impeller and pressurize the fluid to flow out through the diffuser. One or a plurality of working fluid ejection ports that open and inject the working fluid along the pressure surface of the vane in the fluid flow direction, and the working fluid ejection port is located in front of the vane from the throat radius (R2). It is provided at a radial position on the edge side.

このような遠心式流体機械によれば、ハブ側壁面に開口するとともに作動流体をベーンの圧力面に沿って流体の流れ方向へ噴射する1または複数個の作動流体噴射口を備え、該作動流体噴射口がスロート半径(R2)よりベーンの前縁側となる半径位置に設けられているので、ベーンの圧力面ハブ側に噴射された作動流体がインペラから吐出される歪んだ流れと合流し、流れ角と翼入り口角度との角度不一致に起因する剥離を抑制する。
すなわち、ベーン前縁部の圧力面から剥離しようとする流れは、作動流体噴射口から圧力面に沿って流体の流れ方向へ噴射された作動流体の影響を受けるため、圧力面から離間しにくくなる。この場合、圧力面側の剥離を抑制するためには、スロート幅の20%以下となる圧力面側の領域に作動流体噴射口を開口させて作動流体を噴射させることが望ましい。
According to such a centrifugal fluid machine, the working fluid is provided with one or a plurality of working fluid ejection ports that are opened in the side wall surface of the hub and inject the working fluid in the fluid flow direction along the pressure surface of the vane. Since the injection port is provided at a radial position on the leading edge side of the vane with respect to the throat radius (R2), the working fluid injected to the pressure surface hub side of the vane merges with the distorted flow discharged from the impeller. Detachment caused by angle mismatch between the corner and the blade entrance angle is suppressed.
That is, the flow to be separated from the pressure surface of the vane leading edge is not easily separated from the pressure surface because it is affected by the working fluid ejected from the working fluid ejection port along the pressure surface in the fluid flow direction. . In this case, in order to suppress the separation on the pressure surface side, it is desirable to open the working fluid injection port in a region on the pressure surface side that is 20% or less of the throat width to inject the working fluid.

本発明の第2態様に係る遠心式流体機械は、複数枚のブレード、及びこれら複数枚のブレードを有するインペラと、前記インペラの下流側に設けられるとともに、対向するシュラウド側壁面及びハブ側壁面との間に複数枚のベーンを有するディフューザとを備え、前記インペラを回転させて昇圧した流体が前記ディフューザを通過して流出するように構成された遠心式流体機械であって、前記シュラウド側壁面に開口するとともに作動流体を前記ベーンの負圧面に沿って前記流体の流れ方向へ噴射する1または複数個の作動流体噴射口を備え、該作動流体噴射口がスロート半径(R2)より前記ベーンの前縁側となる半径位置に設けられていることを特徴とするものである。   A centrifugal fluid machine according to a second aspect of the present invention includes a plurality of blades, an impeller having the plurality of blades, a shroud side wall surface and a hub side wall surface which are provided on the downstream side of the impeller and which are opposed to each other. A centrifugal fluid machine comprising a diffuser having a plurality of vanes in between and configured to rotate the impeller and pressurize the fluid to flow out through the diffuser, on the shroud side wall surface One or a plurality of working fluid ejection ports that open and inject the working fluid along the suction surface of the vane in the flow direction of the fluid, and the working fluid ejection port is located in front of the vane from the throat radius (R2). It is provided at a radial position on the edge side.

このような遠心式流体機械によれば、シュラウド側壁面に開口するとともに作動流体をベーンの負圧面に沿って流体の流れ方向へ噴射する1または複数個の作動流体噴射口を備え、該作動流体噴射口がスロート半径(R2)よりベーンの前縁側となる半径位置に設けられているので、ベーンの負圧面シュラウド側に噴射された作動流体がインペラから吐出される歪んだ流れと合流し、流れ角と翼入り口角度との角度不一致に起因する剥離を抑制する。
すなわち、ベーン前縁部の負圧面から剥離しようとする流れは、作動流体噴射口から負圧面に沿って流体の流れ方向へ噴射された作動流体の影響を受けるため、負圧面から離間しにくくなる。この場合、負圧面側の剥離を抑制するためには、スロート幅の20%以下となる負圧面側の領域に作動流体噴射口を開口させて作動流体を噴射させることが望ましい。
According to such a centrifugal fluid machine, the working fluid is provided with one or a plurality of working fluid ejection ports that open in the shroud side wall surface and inject the working fluid in the fluid flow direction along the suction surface of the vane. Since the injection port is provided at a radial position on the leading edge side of the vane with respect to the throat radius (R2), the working fluid injected to the suction surface shroud side of the vane merges with the distorted flow discharged from the impeller. Detachment caused by angle mismatch between the corner and the blade entrance angle is suppressed.
That is, the flow to be separated from the suction surface of the leading edge of the vane is affected by the working fluid ejected from the working fluid ejection port along the suction surface in the fluid flow direction, and thus is less likely to be separated from the suction surface. . In this case, in order to suppress separation on the suction surface side, it is desirable to open the working fluid injection port in a region on the suction surface side that is 20% or less of the throat width to eject the working fluid.

本発明の遠心式流体機械において、前記作動流体噴射口を設ける半径位置は、前記ベーンの前縁半径(R1)を基準として95%の最小半径(Ro)を内周側限度とし、前記スロート半径(R2)を外周側限度とすることが好ましく、これにより、ベーンの前縁近傍となる領域に作動流体を噴射し、インペラの吐出流れとベーン入口との角度不一致に起因して発生する流れの剥離を最小限の作動流体噴射量で効率よく抑制することができる。   In the centrifugal fluid machine according to the present invention, the radial position at which the working fluid injection port is provided has a minimum radius (Ro) of 95% based on the leading edge radius (R1) of the vane as an inner peripheral limit, and the throat radius. It is preferable to set (R2) to the outer peripheral side limit, so that the working fluid is injected into a region in the vicinity of the leading edge of the vane, and the flow generated due to the angle mismatch between the impeller discharge flow and the vane inlet Separation can be efficiently suppressed with a minimum working fluid injection amount.

上記の発明において、前記作動流体噴射口の作動流体噴射角度(θ)は、前記流体の流れ方向に対して壁面から60度以下となるように設定されていることが好ましく、これにより、噴射した作動流体がベーンの前縁から圧力面ハブ側または負圧面シュラウド側に沿って効率よく流れるようになり、噴射した作動流体による剥離抑制の効率が向上する。   In the above invention, the working fluid ejection angle (θ) of the working fluid ejection port is preferably set to be 60 degrees or less from the wall surface with respect to the fluid flow direction. The working fluid can efficiently flow from the leading edge of the vane along the pressure surface hub side or the suction surface shroud side, and the efficiency of suppression of separation by the injected working fluid is improved.

上記の発明において、前記作動流体は、前記ディフューザの下流から一部を還流させた流体、または、外部の圧力源から導入した流体を使用することが好ましい。   In the above invention, it is preferable that the working fluid is a fluid that is partially recirculated from the downstream of the diffuser or a fluid that is introduced from an external pressure source.

上述した本発明によれば、インペラの吐出流れとベーン入口の角度不一致による流れの剥離を抑制し、翼付ディフューザの性能を向上させた遠心式流体機械を提供するという顕著な効果が得られる。
特に、ベーンの圧力面ハブ側に噴射する作動流体は性能向上に有効であり、ベーンの負圧面シュラウド側に噴射する作動流体は作動範囲の拡大に有効であるから、圧力面ハブ側及び負圧面シュラウド側の両方に作動流体を噴射することで、高圧力比及び高効率で広作動範囲の遠心式流体機械を実現することが可能になる。
According to the present invention described above, a remarkable effect can be obtained in that a centrifugal fluid machine is provided in which the separation of the flow due to the angle mismatch between the impeller discharge flow and the vane inlet is suppressed and the performance of the winged diffuser is improved.
In particular, the working fluid sprayed to the vane's pressure surface hub side is effective in improving performance, and the working fluid sprayed to the vane's suction surface shroud side is effective in expanding the operating range. By injecting the working fluid to both the shroud side, it is possible to realize a centrifugal fluid machine with a high pressure ratio and high efficiency and a wide working range.

本発明に係る遠心式流体機械の一実施形態を示す図で、(a)は翼付ディフューザの要部構成例を示す斜視図、(b)は(a)の翼付ディフューザをシュラウド側から見た断面図、(c)は(b)のA−A断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows one Embodiment of the centrifugal fluid machine which concerns on this invention, (a) is a perspective view which shows the principal part structural example of a diffuser with a wing | blade, (b) looks at the diffuser with a wing | blade of (a) from the shroud side. (C) is AA sectional drawing of (b). 遠心式流体機械の概要を示すインペラ及び翼付ディフューザの縦断面図である。It is a longitudinal cross-sectional view of the impeller and winged diffuser which show the outline | summary of a centrifugal fluid machine. 図2の遠心式流体機械をインペラ上流側から見た図である。It is the figure which looked at the centrifugal fluid machine of FIG. 2 from the impeller upstream.

以下、本発明に係る遠心式流体機械(以下、遠心圧縮機を例示して説明する)の一実施形態を図面に基づいて説明する。
図2及び図3に示すように、遠心圧縮機10は、インペラ11と、ディフューザ21とを主たる要素として構成されたものであり、導入した流体を昇圧して吐出する。インペラ11は、複数枚のブレード12と、これらブレード12の根元部Rに配置されたハブ13とを有するとともに、ブレード12はそれぞれ、ハブ13の小径側端部13aにその前縁LEが位置するとともに、ハブ13の大径側端部13bにその後縁TEが位置するようにして、ハブ13の表面上に設けられている。
なお、図において符号14は、ブレード12の先端側を覆うように配置されたシュラウドを示している。
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a centrifugal fluid machine according to the present invention (hereinafter described by exemplifying a centrifugal compressor) will be described with reference to the drawings.
As shown in FIGS. 2 and 3, the centrifugal compressor 10 is configured with an impeller 11 and a diffuser 21 as main elements, and pressurizes and discharges the introduced fluid. The impeller 11 includes a plurality of blades 12 and a hub 13 disposed at the root portion R of the blades 12, and the blades 12 each have a leading edge LE located at a small-diameter side end portion 13 a of the hub 13. At the same time, it is provided on the surface of the hub 13 such that the rear edge TE is located at the large-diameter side end 13b of the hub 13.
In addition, the code | symbol 14 has shown the shroud arrange | positioned so that the front end side of the braid | blade 12 may be covered.

ディフューザ21は、前述したインペラ11の下流側に設けられるとともに、対向するシュラウド側壁面22及びハブ側壁面23との間に複数枚のベーン(ディフューザ翼)24を有するものであり、インペラ11を通過して昇圧された流体(気体)が有する運動エネルギーを圧力エネルギーに変換する機能を有している。すなわち、ディフューザ21では、流体の流速が減速されることにより、流れの動圧が静圧の上昇に変換される。
こうして静圧が上昇した流れは、渦巻状のボリュート31により遠心圧縮機10の出口に導かれる。
The diffuser 21 is provided on the downstream side of the impeller 11 described above, and has a plurality of vanes (diffuser blades) 24 between the opposed shroud side wall surface 22 and the hub side wall surface 23, and passes through the impeller 11. Thus, the kinetic energy of the pressurized fluid (gas) is converted into pressure energy. That is, in the diffuser 21, the flow dynamic pressure is converted into an increase in static pressure by reducing the flow velocity of the fluid.
The flow with increased static pressure is guided to the outlet of the centrifugal compressor 10 by the spiral volute 31.

すなわち、遠心圧縮機10は、複数枚のブレード12、及びこれら複数枚のブレード12の根元部Rに配置されるハブ13を有するインペラ11と、インペラ11の下流側に設けられるとともに、対向するシュラウド側壁面22及びハブ側壁面23との間に複数枚のベーン24を有するディフューザ21とを備え、インペラ11を回転させて昇圧した流体がディフューザ21を通過して流出するように構成されている。   That is, the centrifugal compressor 10 is provided with a plurality of blades 12 and an impeller 11 having a hub 13 disposed at a root portion R of the plurality of blades 12, and a shroud that is opposed to the impeller 11. A diffuser 21 having a plurality of vanes 24 is provided between the side wall surface 22 and the hub side wall surface 23, and is configured so that fluid whose pressure is increased by rotating the impeller 11 flows out through the diffuser 21.

図1は、ディフューザ21の一部を拡大した斜視図であり、インペラ11を通過した流体の出口側となるブレード12の後縁TE側から、すなわち、ディフューザ21の入口側から見た図である。
上述した流体圧縮機10に対し、図1に示す本実施形態の第1態様では、ハブ側壁面23に開口するとともに作動流体(図中の矢印Fa)をベーン24の圧力面24aに沿って流体の流れ方向へ噴射する1または複数個の作動流体噴射口25を備えている。そして、この作動流体噴射口25は、スロート半径(R2)よりもベーン24の前縁24c側となる半径位置に設けられている。
FIG. 1 is an enlarged perspective view of a part of the diffuser 21, as viewed from the trailing edge TE side of the blade 12 that is the outlet side of the fluid that has passed through the impeller 11, that is, from the inlet side of the diffuser 21. .
With respect to the fluid compressor 10 described above, in the first aspect of the present embodiment shown in FIG. 1, the working fluid (arrow Fa in the figure) opens along the pressure surface 24 a of the vane 24 while opening in the hub side wall surface 23. One or a plurality of working fluid ejection ports 25 for ejecting in the flow direction are provided. The working fluid ejection port 25 is provided at a radial position that is closer to the front edge 24c of the vane 24 than the throat radius (R2).

上述した作動流体噴射口25は、ベーン24の前縁24cに相当する半径R1、すなわち前縁24cの位置を結ぶ円の半径R1を基準とした95%半径位置Ro(95%R1)から、ベーン24のスロート27と翼負圧面24bとが交差する半径位置R2までの範囲内に、圧力面24aに沿って1または複数個の穴が設けられている。換言すれば、作動流体噴射口25を設ける半径位置(半径方向の領域)は、ベーン24の前縁半径R1を基準として定めた95%の最小半径Roを内周側限度とし、かつ、スロート半径R2を外周側限度とした範囲内となる。   The working fluid ejection port 25 described above has a vane from a radius R1 corresponding to the front edge 24c of the vane 24, that is, a 95% radial position Ro (95% R1) based on a radius R1 of a circle connecting the positions of the front edge 24c. One or a plurality of holes are provided along the pressure surface 24a in a range up to a radial position R2 where the 24 throats 27 and the blade suction surface 24b intersect. In other words, the radial position (region in the radial direction) where the working fluid ejection port 25 is provided has a minimum radius Ro of 95% determined on the basis of the leading edge radius R1 of the vane 24 as an inner limit, and a throat radius. It is within the range with R2 as the outer limit.

作動流体噴射口25となる穴は、たとえば図1(c)に示すように、作動流体噴射角度(θ)が、流体の流れ方向に対してハブ側壁面23から60度以下(θ<60度)となるように設定されている。作動流体噴射口25は、一般的には円形断面とするが、これに限定されることはなく、楕円形や四角形等の断面形状は勿論のこと、圧力面24aに沿って細長いスリットとしてもよい。   For example, as shown in FIG. 1C, the hole serving as the working fluid ejection port 25 has a working fluid ejection angle (θ) of 60 degrees or less (θ <60 degrees) from the hub side wall surface 23 with respect to the fluid flow direction. ). The working fluid ejection port 25 generally has a circular cross section, but is not limited to this, and may be an elongated slit along the pressure surface 24a as well as a cross sectional shape such as an ellipse or a quadrangle. .

また、作動流体噴射口25から噴射する作動流体は、たとえば図2に示すように、ディフューザ21の下流から抽気流路28を通って一部を還流させた流体でもよいし、あるいは、外部の圧力源40から導入した流体を使用してもよい。   Further, the working fluid ejected from the working fluid ejection port 25 may be a fluid partially recirculated from the downstream of the diffuser 21 through the bleed passage 28, as shown in FIG. Fluid introduced from the source 40 may be used.

このような作動流体噴射口25を有する遠心式圧縮機10は、ハブ側壁面23に開口してベーン24の圧力面24aに作動流体Faを噴射するので、ベーン24の圧力面ハブ側に噴射された作動流体がインペラ11から吐出される昇圧流体の歪んだ流れと合流し、流れ角と翼入り口角度との角度不一致に起因する剥離を抑制する。
すなわち、ベーン24の前縁部においては、前縁24cの周辺で圧力面24aから剥離しようとする流体の流れが、作動流体噴射口25から圧力面24aに沿って流体の流れ方向へ噴射された作動流体Faの影響を受けるため、圧力面24aから離間しにくくなる。換言すれば、前縁部周辺で圧力面24aから剥離しようとする流体の流れは、作動流体噴射口25から圧力面24aに沿って流体の流れ方向へ噴射された作動流体Faの流れによって剥離方向へ向かう流れが抑えられるため、圧力面24aから離間しにくくなる。
Since the centrifugal compressor 10 having such a working fluid injection port 25 opens to the hub side wall surface 23 and injects the working fluid Fa to the pressure surface 24a of the vane 24, it is injected to the pressure surface hub side of the vane 24. The working fluid thus joined merges with the distorted flow of the pressurized fluid discharged from the impeller 11 to suppress separation caused by the angle mismatch between the flow angle and the blade inlet angle.
That is, at the front edge portion of the vane 24, the fluid flow to be separated from the pressure surface 24 a around the front edge 24 c is ejected from the working fluid ejection port 25 along the pressure surface 24 a in the fluid flow direction. Since it is influenced by the working fluid Fa, it is difficult to separate from the pressure surface 24a. In other words, the flow of the fluid to be separated from the pressure surface 24a around the leading edge is separated by the flow of the working fluid Fa ejected from the working fluid ejection port 25 along the pressure surface 24a in the fluid flow direction. Since the flow toward is suppressed, it is difficult to separate from the pressure surface 24a.

このようにして、作動流体噴射口25からベーン24の圧力面ハブ側に作動流体を噴射することにより、インペラ11の吐出流れとベーン24の翼入り口角度との不一致による流れの剥離が抑制され、この結果、ディフューザ21及び遠心圧縮機10の性能が向上する。
この場合、圧力面24aから流体の流れが剥離することを効率よく抑制するためには、スロート27の幅方向において、スロート幅の10%以下となる圧力面24a側の領域に作動流体噴射口25を開口させ流ことが望ましい。すなわち、スロート27の幅方向において、剥離抑制対象となる圧力面24aに近い位置から作動流体を噴射させることが望ましい。
Thus, by ejecting the working fluid from the working fluid injection port 25 to the pressure surface hub side of the vane 24, separation of the flow due to mismatch between the discharge flow of the impeller 11 and the blade inlet angle of the vane 24 is suppressed, As a result, the performance of the diffuser 21 and the centrifugal compressor 10 is improved.
In this case, in order to efficiently suppress the separation of the fluid flow from the pressure surface 24 a, the working fluid injection port 25 is formed in the region on the pressure surface 24 a side that is 10% or less of the throat width in the width direction of the throat 27. It is desirable to open the flow. That is, in the width direction of the throat 27, it is desirable to eject the working fluid from a position close to the pressure surface 24a that is a target for suppressing separation.

また、このような剥離抑制に必要な作動流体の噴射流量は、圧縮する流体流量の2〜5%程度であり、5%以上にすると剥離防止の効果にほとんど変化はなく、2%以下では十分な剥離防止効果が得られない。
また、作動流体噴射口25を設ける半径位置について、内周側限度を最小半径(Ro)としたのは、噴射口作動流体による剥離防止効果が顕在化するためであり、外周側限度をスロート半径(R2)としたのは、これ以上では、剥離防止効果の変化がほとんど無いためである。
Further, the injection flow rate of the working fluid necessary for suppressing such separation is about 2 to 5% of the fluid flow rate to be compressed, and if it is 5% or more, there is almost no change in the effect of preventing separation, and 2% or less is sufficient. The effect of preventing peeling is not obtained.
The reason why the inner circumferential side limit is set to the minimum radius (Ro) for the radial position where the working fluid ejection port 25 is provided is that the effect of preventing separation by the ejection port working fluid becomes obvious, and the outer circumferential side limit is set to the throat radius. The reason why (R2) is selected is that there is almost no change in the peeling prevention effect above this.

続いて、上述した流体圧縮機10に対し、図1に示す本実施形態の第2態様では、シュラウド側壁面22に開口するとともに作動流体(図中の矢印Fa)をベーン24の負圧面24bに沿って流体の流れ方向へ噴射する1または複数個の作動流体噴射口26を備えている。
そして、この作動流体噴射口26は、上述した作動流体噴射口25と同様に、スロート半径(R2)よりもベーン24の前縁24c側となる半径位置に設けられている。すなわち、上述した第1態様とは、作動流体噴射口26の位置がシュラウド側壁面22となって異なるものの、作動流体噴射口26の設置位置(領域)や作動流体等の基本事項については、ハブ側壁面23をシュラウド側壁面22に読み替え、圧力面24aを負圧面24aに読み替えればよい。
Subsequently, in the second aspect of the present embodiment shown in FIG. 1 with respect to the fluid compressor 10 described above, the working fluid (arrow Fa in the figure) opens to the negative pressure surface 24 b of the vane 24 while opening in the shroud side wall surface 22. One or a plurality of working fluid ejection ports 26 for ejecting along the fluid flow direction are provided.
The working fluid ejection port 26 is provided at a radial position closer to the front edge 24c of the vane 24 than the throat radius (R2), as with the above-described working fluid ejection port 25. That is, although the position of the working fluid ejection port 26 differs from the first aspect described above as the shroud side wall surface 22, the basic matters such as the installation position (region) of the working fluid ejection port 26 and the working fluid are the hub. The side wall surface 23 may be read as the shroud side wall surface 22, and the pressure surface 24a may be read as the negative pressure surface 24a.

このような遠心圧縮機10によれば、シュラウド側壁面22に開口するとともに作動流体をベーン24の負圧面24bに沿って流体の流れ方向へ噴射する1または複数個の作動流体噴射口26を備え、この作動流体噴射口26がスロート半径(R2)よりベーン24の前縁24c側となる半径位置に設けられているので、ベーン24の負圧面シュラウド側に噴射された作動流体がインペラ11から吐出される歪んだ流れと合流し、流れ角と翼入り口角度との角度不一致に起因する剥離を抑制する。この結果、ディフューザ21及び遠心圧縮機10の作動範囲、具体的には、サージング発生の流量値により規定される低流量側(下限値)から、チョーク発生の流量値が規定する高流量値(上限値)までの作動流量範囲を広げることが可能になる。   According to such a centrifugal compressor 10, one or a plurality of working fluid ejection ports 26 that are opened in the shroud side wall surface 22 and eject the working fluid along the negative pressure surface 24 b of the vane 24 in the fluid flow direction are provided. Since the working fluid ejection port 26 is provided at a radial position on the front edge 24c side of the vane 24 from the throat radius (R2), the working fluid ejected to the suction surface shroud side of the vane 24 is discharged from the impeller 11. The flow is merged with the distorted flow to suppress separation caused by the angle mismatch between the flow angle and the blade inlet angle. As a result, the operating range of the diffuser 21 and the centrifugal compressor 10, specifically, the high flow rate value (upper limit) defined by the choke generation flow rate value from the low flow rate side (lower limit value) defined by the surging generation flow rate value. Value) can be expanded.

すなわち、ベーン24の前縁部24cにおける負圧面24bから剥離しようとする流れは、作動流体噴射口26から負圧面24bに沿って流体の流れ方向へ噴射された作動流体の影響を受けるため、負圧面24bから離間しにくくなる。この場合、負圧面24b側の剥離を抑制するためには、作動流体噴射口25と同様に、スロート幅の10%以下となる負圧面24b側の領域に作動流体噴射口26を開口させて作動流体を噴射させることが望ましい。
また、圧縮する流体流量に対する噴射流量の割合や、内周側限度を最小半径(Ro)とし、かつ、外周側限度をスロート半径(R2)とすること、作動流体噴射角度(θ)を60度以下とする理由や作動流体の供給源等については、上述したハブ側壁面23側の作動流体噴射口25と同様である。
That is, the flow to be separated from the suction surface 24b at the leading edge 24c of the vane 24 is affected by the working fluid ejected from the working fluid ejection port 26 along the suction surface 24b in the fluid flow direction. It becomes difficult to separate from the pressure surface 24b. In this case, in order to suppress separation on the negative pressure surface 24b side, similarly to the working fluid injection port 25, the working fluid injection port 26 is opened in a region on the negative pressure surface 24b side that is 10% or less of the throat width. It is desirable to eject the fluid.
Also, the ratio of the injection flow rate to the fluid flow rate to be compressed, the inner circumferential limit is the minimum radius (Ro), the outer circumferential limit is the throat radius (R2), and the working fluid ejection angle (θ) is 60 degrees. The reason for the following, the supply source of the working fluid, and the like are the same as those of the working fluid ejection port 25 on the hub side wall surface 23 described above.

最後に、上述した流体圧縮機10に対し、図1に示す本実施形態の第3態様では、ハブ側壁面23に開口するとともに作動流体をベーン24の圧力面24aに沿って流体の流れ方向へ噴射する1または複数個の作動流体噴射口25と、シュラウド側壁面22に開口するとともに作動流体をベーン24の負圧面24bに沿って流体の流れ方向へ噴射する1または複数個の作動流体噴射口26とを備えている。すなわち、上述した第1態様及び第2態様の作動流体噴射口25,26を共に備えた構成となる。
このような構成とすれば、上述した第1態様及び第2態様の作用効果が得られるので、ディフューザ21及び遠心圧縮機10の性能向上及び作動範囲拡大が可能になる。
Finally, in the third aspect of the present embodiment shown in FIG. 1 with respect to the fluid compressor 10 described above, the working fluid opens along the pressure surface 24 a of the vane 24 and opens in the hub side wall surface 23. One or a plurality of working fluid jets 25 to be jetted, and one or a plurality of working fluid jets that open in the shroud side wall surface 22 and jet the working fluid along the negative pressure surface 24b of the vane 24 in the fluid flow direction. 26. That is, the working fluid ejection ports 25 and 26 of the first aspect and the second aspect described above are both provided.
With such a configuration, the effects of the first aspect and the second aspect described above can be obtained, so that the performance of the diffuser 21 and the centrifugal compressor 10 can be improved and the operating range can be expanded.

このように、上述した本実施形態によれば、インペラ11の吐出流れとベーン入口の角度不一致による流れの剥離を抑制し、ベーン24を備えたディフューザ21の性能を向上させた遠心圧縮機10等の遠心式流体機械を提供することができる。
特に、作動流体噴射口25からベー24の圧力面ハブ側に噴射する作動流体は性能向上に有効であり、作動流体噴射口26からベーン24の負圧面シュラウド側に噴射する作動流体は作動範囲の拡大に有効であるから、圧力面ハブ側及び負圧面シュラウド側の両方に作動流体を噴射することで、高圧力比及び高効率で広作動範囲の遠心式流体機械を実現することが可能になる。
なお、本発明は上述した実施形態に限定されることはなく、たとえば遠心式流体機械が遠心式流体機械(舶用過給機、自動車用過給機、航空用ガスタービン等)に限定されることはなく、遠心ポンプや遠心ブロワを包含するというように、その要旨を逸脱しない範囲内において適宜変更することができる。
As described above, according to the present embodiment described above, the centrifugal compressor 10 and the like that improve the performance of the diffuser 21 including the vane 24 by suppressing the separation of the flow due to the angle mismatch between the discharge flow of the impeller 11 and the vane inlet. The centrifugal fluid machine can be provided.
In particular, the working fluid ejected from the working fluid ejection port 25 to the pressure surface hub side of the bay 24 is effective in improving the performance, and the working fluid ejected from the working fluid ejection port 26 to the suction surface shroud side of the vane 24 has a working range. Since it is effective for expansion, it is possible to realize a centrifugal fluid machine with a high pressure ratio and high efficiency and a wide operating range by injecting the working fluid to both the pressure surface hub side and the suction surface shroud side. .
In addition, this invention is not limited to embodiment mentioned above, For example, a centrifugal fluid machine is limited to a centrifugal fluid machine (a marine supercharger, a supercharger for vehicles, an aeronautical gas turbine, etc.). However, it can be appropriately changed within a range not departing from the gist thereof, such as including a centrifugal pump and a centrifugal blower.

10 遠心圧縮機(遠心式流体機械)
11 インペラ
12 ブレード
13 ハブ
14 シュラウド
21 ディフューザ
22 シュラウド側壁面
23 ハブ側壁面
24 ベーン(ディフューザ翼)
24a 圧力面
24b 負圧面
24c 前縁
25,26 作動流体噴射口
27 スロート
28 抽気流路
40 圧力源
10 Centrifugal compressor (centrifugal fluid machine)
11 Impeller 12 Blade 13 Hub 14 Shroud 21 Diffuser 22 Shroud Side Wall 23 Hub Side Wall 24 Vane (diffuser blade)
24a Pressure surface 24b Negative pressure surface 24c Front edge 25, 26 Working fluid injection port 27 Throat 28 Extraction flow path 40 Pressure source

Claims (5)

複数枚のブレード、及びこれら複数枚のブレードを有するインペラと、
前記インペラの下流側に設けられるとともに、対向するシュラウド側壁面及びハブ側壁面との間に複数枚のベーンを有するディフューザとを備え、
前記インペラを回転させて昇圧した流体が前記ディフューザを通過して流出するように構成された遠心式流体機械であって、
前記ハブ側壁面に開口するとともに作動流体を前記ベーンの圧力面に沿って前記流体の流れ方向へ噴射する1または複数個の作動流体噴射口を備え、該作動流体噴射口がスロート半径(R2)より前記ベーンの前縁側となる半径位置に設けられていることを特徴とする遠心式流体機械。
A plurality of blades, and an impeller having the plurality of blades;
A diffuser provided on the downstream side of the impeller and having a plurality of vanes between the opposing shroud side wall surface and the hub side wall surface;
A centrifugal fluid machine configured such that a fluid whose pressure is increased by rotating the impeller flows out through the diffuser,
There is provided one or a plurality of working fluid jets that open in the side wall surface of the hub and jet the working fluid along the pressure surface of the vane in the fluid flow direction, and the working fluid jet port has a throat radius (R2). The centrifugal fluid machine is further provided at a radial position on the leading edge side of the vane.
複数枚のブレード、及びこれら複数枚のブレードを有するインペラと、
前記インペラの下流側に設けられるとともに、対向するシュラウド側壁面及びハブ側壁面との間に複数枚のベーンを有するディフューザとを備え、
前記インペラを回転させて昇圧した流体が前記ディフューザを通過して流出するように構成された遠心式流体機械であって、
前記シュラウド側壁面に開口するとともに作動流体を前記ベーンの負圧面に沿って前記流体の流れ方向へ噴射する1または複数個の作動流体噴射口を備え、該作動流体噴射口がスロート半径(R2)より前記ベーンの前縁側となる半径位置に設けられていることを特徴とする遠心式流体機械。
A plurality of blades, and an impeller having the plurality of blades;
A diffuser provided on the downstream side of the impeller and having a plurality of vanes between the opposing shroud side wall surface and the hub side wall surface;
A centrifugal fluid machine configured such that a fluid whose pressure is increased by rotating the impeller flows out through the diffuser,
One or a plurality of working fluid ejection ports that open to the shroud side wall surface and inject the working fluid along the suction surface of the vane in the fluid flow direction, and the working fluid ejection port has a throat radius (R2). The centrifugal fluid machine is further provided at a radial position on the leading edge side of the vane.
前記作動流体噴射口を設ける半径位置は、前記ベーンの前縁半径(R1)を基準として95%の最小半径(Ro)を内周側限度とし、前記スロート半径(R2)を外周側限度としたことを特徴とする請求項1または2に記載の遠心式流体機械。   The radial position at which the working fluid ejection port is provided has a minimum radius (Ro) of 95% based on the leading edge radius (R1) of the vane as an inner limit, and the throat radius (R2) as an outer limit. The centrifugal fluid machine according to claim 1 or 2, characterized by the above. 前記作動流体噴射口の作動流体噴射角度(θ)は、前記流体の流れ方向に対して壁面から60度以下となるように設定されていることを特徴とする請求項1から3のいずれか1項に記載の遠心式流体機械。   The working fluid ejection angle (θ) of the working fluid ejection port is set so as to be 60 degrees or less from the wall surface with respect to the flow direction of the fluid. The centrifugal fluid machine according to Item. 前記作動流体は、前記ディフューザの下流から一部を還流させた流体、または、外部の圧力源から導入した流体を使用することを特徴とする請求項1から4のいずれか1項に記載の遠心式流体機械。
The centrifuge according to any one of claims 1 to 4, wherein the working fluid uses a fluid partially recirculated from the downstream of the diffuser or a fluid introduced from an external pressure source. Fluid machine.
JP2011268925A 2011-12-08 2011-12-08 Centrifugal fluid machine Expired - Fee Related JP5167403B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011268925A JP5167403B1 (en) 2011-12-08 2011-12-08 Centrifugal fluid machine
KR1020147002326A KR101564858B1 (en) 2011-12-08 2012-06-08 Centrifugal fluid machine
PCT/JP2012/064796 WO2013084525A1 (en) 2011-12-08 2012-06-08 Centrifugal fluid machine
CN201280033063.6A CN103635699B (en) 2011-12-08 2012-06-08 Centrifugal type fluid machine
EP12856231.1A EP2789861A4 (en) 2011-12-08 2012-06-08 Centrifugal fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011268925A JP5167403B1 (en) 2011-12-08 2011-12-08 Centrifugal fluid machine

Publications (2)

Publication Number Publication Date
JP5167403B1 true JP5167403B1 (en) 2013-03-21
JP2013119828A JP2013119828A (en) 2013-06-17

Family

ID=48134649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011268925A Expired - Fee Related JP5167403B1 (en) 2011-12-08 2011-12-08 Centrifugal fluid machine

Country Status (5)

Country Link
EP (1) EP2789861A4 (en)
JP (1) JP5167403B1 (en)
KR (1) KR101564858B1 (en)
CN (1) CN103635699B (en)
WO (1) WO2013084525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041721A (en) * 2015-07-15 2015-11-11 黑龙江凯普瑞机械设备有限公司 Blade diffuser and volute assembly and compressor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064272A1 (en) 2013-10-31 2015-05-07 株式会社Ihi Centrifugal compressor and supercharger
US9803652B2 (en) 2014-02-10 2017-10-31 Pratt & Whitney Canada Corp. Centrifugal compressor diffuser and method for controlling same
US9926942B2 (en) 2015-10-27 2018-03-27 Pratt & Whitney Canada Corp. Diffuser pipe with vortex generators
US10570925B2 (en) 2015-10-27 2020-02-25 Pratt & Whitney Canada Corp. Diffuser pipe with splitter vane
CN106089808B (en) * 2016-07-28 2018-11-16 中南大学 A kind of blade diffuser and its formative method with trailing edge structures before swallow-tail form
DE102017118950A1 (en) * 2017-08-18 2019-02-21 Abb Turbo Systems Ag Diffuser for a centrifugal compressor
KR102329915B1 (en) * 2018-03-19 2021-11-23 한화에어로스페이스 주식회사 Centrifugal compressor
CN109162933A (en) * 2018-11-02 2019-01-08 珠海格力电器股份有限公司 compressor and air conditioner
KR102210694B1 (en) 2019-08-14 2021-02-03 현대건설주식회사 Reclaming Apparatus using Rotating Disc slinging device
JP2021032106A (en) * 2019-08-22 2021-03-01 三菱重工業株式会社 Vaned diffuser and centrifugal compressor
EP3901468A1 (en) * 2020-04-24 2021-10-27 ABB Schweiz AG Secondary-fluid supply for the diffuser of a compressor stage
CN111550444A (en) * 2020-05-11 2020-08-18 中国航发湖南动力机械研究所 Mixed blade radial/oblique diffuser
US11378005B1 (en) 2020-12-17 2022-07-05 Pratt & Whitney Canada Corp. Compressor diffuser and diffuser pipes therefor
TWI827145B (en) * 2022-07-15 2023-12-21 復盛股份有限公司 Centrifugal compressor
CN117725704A (en) * 2024-02-07 2024-03-19 浙江飞旋科技有限公司 Design method of vaned diffuser and vaned diffuser

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131142A (en) * 1990-10-30 1992-07-21 Carrier Corporation Method of making pipe diffuser structure
DE4334466A1 (en) * 1993-10-09 1995-04-13 Abb Management Ag Exhaust gas turbocharger
JPH10331794A (en) * 1997-05-29 1998-12-15 Ishikawajima Harima Heavy Ind Co Ltd Centrifugal compressor
US6550574B2 (en) * 2000-12-21 2003-04-22 Dresser-Rand Company Acoustic liner and a fluid pressurizing device and method utilizing same
JP4126269B2 (en) * 2003-11-28 2008-07-30 三菱重工業株式会社 Centrifugal fluid machine
US7326027B1 (en) * 2004-05-25 2008-02-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Devices and methods of operation thereof for providing stable flow for centrifugal compressors
JP2006029200A (en) * 2004-07-15 2006-02-02 Toshiba Corp Centrifugal pump and operation method for the same
EP1710442A1 (en) * 2005-04-04 2006-10-11 ABB Turbo Systems AG Flow stabilisation system for radial compressor
US7722316B2 (en) * 2005-09-13 2010-05-25 Rolls-Royce Power Engineering Plc Acoustic viscous damper for centrifugal gas compressor
CN100398840C (en) * 2005-12-15 2008-07-02 上海交通大学 Wedge blade for diffuser of compressor mechanical blade
US7685819B2 (en) * 2006-03-27 2010-03-30 Aqwest Llc Turbocharged internal combustion engine system
CN201092978Y (en) * 2007-09-21 2008-07-30 露笑集团有限公司 Turbocharger
JP2010255609A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp Centrifugal compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041721A (en) * 2015-07-15 2015-11-11 黑龙江凯普瑞机械设备有限公司 Blade diffuser and volute assembly and compressor

Also Published As

Publication number Publication date
KR101564858B1 (en) 2015-10-30
WO2013084525A1 (en) 2013-06-13
EP2789861A1 (en) 2014-10-15
KR20140039065A (en) 2014-03-31
JP2013119828A (en) 2013-06-17
EP2789861A4 (en) 2015-11-11
CN103635699B (en) 2016-06-01
CN103635699A (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5167403B1 (en) Centrifugal fluid machine
JP3816150B2 (en) Centrifugal fluid machinery
US8475111B2 (en) Ring fan and shroud air guide system
US10041500B2 (en) Venturi effect endwall treatment
US9163642B2 (en) Impeller and rotary machine
JP5444836B2 (en) Centrifugal compressor
EP2930371B1 (en) Turbomachine with a bleeding port
JP2014502700A (en) Bypass turbojet
WO2016103799A1 (en) Axial flow device and jet engine
JP2009133267A (en) Impeller of compressor
US20150354588A1 (en) Centrifugal compressor
JP5319958B2 (en) Transonic two-stage centrifugal compressor
US20140212291A1 (en) Ring fan and shroud air guide system
JP6854687B2 (en) Multi-stage fluid machine
US10823197B2 (en) Vane diffuser and method for controlling a compressor having same
JPH08284892A (en) Diffuser of centrifugal compressor
JP2012202260A (en) Impeller and turbo machine including the same
US11326619B2 (en) Diffuser for a radial compressor
JP2014062504A (en) Centrifugal fluid machine
JP2018141422A (en) Impeller and rotating machine
US10760499B2 (en) Turbo-machinery rotors with rounded tip edge
JP2008202415A (en) Centrifugal compressor
JP2005240680A (en) Centrifugal compressor
JP7041033B2 (en) Axial flow compressor
CN114321014A (en) Local self-circulation flow control structure of radial diffuser of centrifugal compressor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees