EP1707256A1 - Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen - Google Patents

Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen Download PDF

Info

Publication number
EP1707256A1
EP1707256A1 EP06015110A EP06015110A EP1707256A1 EP 1707256 A1 EP1707256 A1 EP 1707256A1 EP 06015110 A EP06015110 A EP 06015110A EP 06015110 A EP06015110 A EP 06015110A EP 1707256 A1 EP1707256 A1 EP 1707256A1
Authority
EP
European Patent Office
Prior art keywords
mixing vessel
emulsion
emulsions
dispersions
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06015110A
Other languages
English (en)
French (fr)
Other versions
EP1707256B1 (de
Inventor
Gerd Dahms
Helmut Hegmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kemira Oyj
Original Assignee
Kemira Pigments Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36741191&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1707256(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kemira Pigments Oy filed Critical Kemira Pigments Oy
Priority to EP06015110.7A priority Critical patent/EP1707256B1/de
Priority claimed from EP03816337A external-priority patent/EP1606044B2/de
Publication of EP1707256A1 publication Critical patent/EP1707256A1/de
Application granted granted Critical
Publication of EP1707256B1 publication Critical patent/EP1707256B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/405Methods of mixing liquids with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/43Mixing liquids with liquids; Emulsifying using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles

Definitions

  • the invention relates to an apparatus and a method for the continuous production of emulsions or dispersions, in particular for the production of nanoemulsions.
  • the preparation of emulsions and dispersions is usually carried out batchwise in stirred reactors.
  • the required amounts of the starting materials are metered into a mixing vessel and emulsified or dispersed with a high degree of stirring.
  • high-performance stirrers are used which allow the generation of cavitation forces.
  • high-pressure homogenization is performed.
  • a control of the emulsions and dispersions prepared and the process is usually carried out only on the finished product of the corresponding mixture batch. A continuous review of the manufacturing process is usually not possible.
  • discontinuous mixing devices must be made large in order to produce suitable product quantities. This is associated with significant investment costs.
  • high degree of stirring results in high energy costs.
  • solid lipid nanoparticles English solid lipid nanoparticles particles - SLN
  • SLN has not been able to assert itself on a large scale so far.
  • SLN dispersions The preparation of SLN dispersions is usually carried out by high-pressure homogenization. Depending on the lipid and surfactant used, different particle shapes are obtained. A distinction is made between hot homogenisation and cold homogenisation. After melting the lipid and dissolving or dispersing the active ingredient is dispersed in the hot homogenization in hot surfactant solution. A high pressure homogenization of this preemulsion is then carried out, which is then transferred to a hot O / W nanoemulsion. After cooling and recrystallization, solid lipid nanoparticles (SLN) are obtained. In cold homogenization, after melting the lipid and dissolving or dispersing the drug, the drug-lipid mixture is solidified and then ground to microparticles.
  • the particles are suspended in cold surfactant solution, and high-pressure homogenization of the particle suspension is carried out.
  • the cavitation and shear forces encountered in high pressure homogenization are sufficiently great to break the lipid microparticles into lipid nanoparticles.
  • the pre-emulsion is usually homogenized in a hot-melt piston-gap homogenizer at pressures between 200 bar and a maximum of 1500 bar. This produces an emulsion whose lipid phase recrystallizes on cooling to SLN.
  • a hot-melt piston-gap homogenizer at pressures between 200 bar and a maximum of 1500 bar.
  • the SLN technology is used in particular for the application of pharmaceutical, cosmetic and / or food technology active ingredients in a solid carrier.
  • the drug carrier can be adapted to the particular application and allows a suitable dosage and release of the drug.
  • the SLNs represent an alternative carrier system to emulsions and liposomes.
  • the nanoparticles may contain hydrophilic or hydrophobic pharmaceutical agents and may be administered orally or parenterally.
  • a solid lipid is used as the matrix material.
  • physiologically acceptable lipids or lipids from physiological components such as glycerides from the body's own fatty acids are used.
  • emulsifiers or surfactants are usually used as in the production of emulsions and dispersions.
  • a process for the preparation of SLN dispersions is for example in EP-B-0 167 825 described.
  • the lipid nano pellets are prepared by dispersing the molten lipid with water using a high speed stirrer. Subsequently, the desired particle size distribution is adjusted by ultrasonic treatment. The stirring is usually carried out at speeds in the range of 20 000 min -1 .
  • the object of the present invention is to provide a continuous, inexpensive process for the preparation of emulsions and dispersions, which in particular allows the production of nanoemulsions with controlled particle size.
  • the device and method are intended to allow in-process / online quality control.
  • the production compared to conventional batch processes should be simplified and accelerated.
  • the production of variable amounts of emulsions or dispersions should also be possible.
  • a device for the continuous production of emulsions or dispersions with exclusion of air comprising a well-closed mixing vessel, the inlet and outlet pipes for the input and output of flowable substances or mixtures and a stirring tool having a stirring entry into the emulsion or dispersion without generation of cavitation forces and without high pressure homogenization allowed.
  • the object is achieved according to the invention by a process for the continuous preparation of emulsions and dispersions in the absence of air, in which at least two flowable streams of at least two phases of the emulsions or dispersions are continuously metered separately into a mixing vessel closed on all sides, in which they are mixed with stirring in an emulsion or dispersion, and the emulsion / dispersion is continuously discharged from the mixing vessel, wherein the stirring entry takes place without generation of cavitation forces and without high-pressure homogenization.
  • the mixing vessel is closed on all sides. This means that apart from inlets and outlets and stirrer feedthroughs or feedthroughs for analytical sensors, the mixing vessel is closed. If both the supply and discharge pipes are filled with flowable materials and stirring and possibly also analytical sensors are present, the mixing vessel is closed to the admission of air or oxygen. This design of the mixing vessel is covered by the term "closed on all sides".
  • the stirrer allows mechanical stirring into the emulsion or dispersion without generating cavitation forces and without high pressure homogenization.
  • suitable stirring elements are arranged on a stirrer axis which is rotated.
  • the stirring tool may be so-called rotor / stator systems in which a rotor is moved by motor-driven operation.
  • the stator is usually the housing, which may be provided with internals such as crushers.
  • Suitable stirrers are, for example, paddle stirrers, which may optionally be provided with scrapers.
  • kneaders and other suitable stirrers such as planetary stirrers, anchor stirrers, bar stirrers, propellers, blade stirrers, dissolver disks or Intermig can be used.
  • Other suitable stirrer configurations are known to those skilled in the art.
  • the stirring tool is operated in such a way that stirring is effected in the emulsion or dispersion without generation of cavitation forces and without high-pressure homogenization.
  • grinding tools such as grinding beads or balls. Suitable grinding tools are known in the art.
  • the mixing vessel may have any suitable geometry, as long as it allows a suitable mixing of the flowable substances or mixtures or the phases of the emulsions and dispersions to be prepared. Suitable geometries are known to the person skilled in the art.
  • the mixing vessel has a substantially cylindrical shape, wherein the axis of the stirring tool lies in the cylinder axis and the supply and discharge pipes are arranged substantially perpendicular to the cylinder axis in the upper and lower peripheral region of the cylinder spaced from each other.
  • the inlet and outlet pipes are thus, as far as possible from one another along the cylinder axis, arranged in positions along the cylinder circumference. They are arranged substantially perpendicular to the cylinder axis.
  • Deviations of ⁇ 10 °, preferably ⁇ 5 ° are possible.
  • the arrangement can be adapted to the practical requirements.
  • the flowable substances or mixtures are introduced or supplied separately in the first mixing vessel.
  • the corresponding feed tubes preferably protrude somewhat into the mixing vessel.
  • the individual components of the oil phase and the individual components of the water phase can be premixed separately. It is also possible for the oil phase and the water phase to be combined in a premixing stage and introduced together into the mixing vessel.
  • the oil phase and the water phase or similar other phases are fed separately from each other into the mixing vessel.
  • One or more supply and discharge pipes can be provided.
  • two or more, in particular two or three feed tubes and a discharge tube are provided.
  • the size of the mixing vessel can be selected according to the respective practical requirements.
  • the internal volume (free volume) of the mixing vessel is preferably from 2 to 70 ml, particularly preferably from 3 to 50 ml, in particular from 5 to 15 ml.
  • the internal volume is preferably from 70 to 500 ml, more preferably from 100 to 400 ml Scale is the volume preferably more than 500 ml, for example 500 to 50 000 ml.
  • mixing vessels of about 7 ml volume can be used, which have a cylindrical shape and an inner diameter of 20 mm and an inner height of 25 mm.
  • the internal volume can also be controlled by the thickness or the diameter of the rotor axis. So it is also possible that configurations are obtained according to an annular chamber reactor.
  • the residence times in the first mixing vessel are preferably 2 to 600 seconds, more preferably 4 to 100 seconds, in particular 8 to 40 seconds.
  • a mixing vessel Preferably, however, at least two mixing vessels are connected in series one behind the other, wherein the discharge from the first mixing vessel is introduced into the second mixing vessel and a further feed pipe is provided in the second mixing vessel. Also, the second (and following) mixing vessel has an agitator as described. It is accordingly also possible to provide longer cascades of mixing vessels, wherein the discharge of a mixing vessel is supplied to the next mixing vessel and optionally further entries in the additional mixing vessel can be registered. Preferably, two or three, in particular two mixing vessels connected in series, are used.
  • a tempering can be achieved by cooling or heating jackets or by integrating the mixing vessel in an oven or a cryostat. Suitable devices for heating / cooling or temperature control of the mixing vessels are known in the art.
  • the ratio of the inflows in the first mixing vessel is set so that it is used in the first mixing vessel in the viscoelastic or highly viscoelastic region during mixing.
  • the viscoelastic region indicates the region in which the viscoelastic fluids exhibit non-Newtonian fluid behavior.
  • the dependence of the viscosity of an emulsion or dispersion on the volume fraction of the disperse phase usually corresponds to an exponential function.
  • the important viscoelastic region in which work is preferably carried out according to the invention is the region in which the viscosity increases very greatly with increasing volume fraction of the disperse phase.
  • the weight ratio of the phases is preferably in a range of 1:15 to 15: 1, preferably 1: 5 to 5: 1, preferably 1: 2 to 2: 1, especially 1: 1.5 to 1.5 : 1 chosen.
  • the weight fractions of the corresponding phases are preferably in this range.
  • this work is highly viscous in the first stage and low-viscosity in the subsequent second stage.
  • the setting of a finely divided emulsion or dispersion is achieved in the first reactor, while the dilution is carried out to the final concentration of the product in the second mixing vessel. Since in this case a supplementary amount of at least one of the phases or a further phase is introduced into the second mixing vessel, the residence time in the second mixing vessel is correspondingly shorter, if both mixing vessels have the same internal volume.
  • the microemulsion obtained when mixing the phases can be understood as a system of two interpenetrating networks, so that the microemulsion exhibits single-phase behavior.
  • At least one sensor for continuously measuring the temperature, conductivity and / or optical properties of the emulsion or dispersion is arranged in the discharge tubes of the mixing vessels or at least one discharge tube of a mixing vessel.
  • a corresponding sensor is usually provided in the vicinity of the mixing vessel in the discharge pipe.
  • Suitable sensors for determining the electrical conductivity, the temperature or optical properties such as turbidity are known in the art.
  • a sight glass can also be provided, by means of which an optical or visual control of the clarity or turbidity of the emulsion / dispersion is possible.
  • Machine-aided optical techniques include laser light scattering and absorbance measurements.
  • Optical methods for determining the particle size in the emulsions or dispersions can also be used for process control. Furthermore, it is possible to carry out viscosity measurements, for example according to Brookfield, for example in line. The visual / visual control can be carried out by suitable and trained personnel. Furthermore, it is possible to determine the amount of energy input by the stirrer. Here, too, can be reacted quickly in deviations of the energy input, as this may indicate a change in the composition of the emulsion / dispersion. Overall, the continuous determination of one or more of the mentioned parameters allows a continuous process control and a continuous control of the composition of the emulsion or dispersion. The quality assurance in the production is thus considerably improved or simplified. This is particularly important in pharmaceutical products of high importance.
  • phase volume ratio About the conductivity statements about the phase volume ratio are possible. By measuring the conductivity, it is therefore easy to determine changes in the emulsion composition or in the phase volumes.
  • the process control is preferably carried out online, ie continuously during the manufacturing process. This makes it possible to react immediately to deviations of the compositions of the emulsions or dispersions. If, for example, the volume flows of the phases used change, the mixing vessel becomes different Phase volume ratio obtained, resulting in a changed conductivity.
  • the adjustment of the volume flows can in turn also be controlled in order to ensure constant volume flows.
  • the supply of the flowable substances and the stirring and optionally the temperature of the mixing vessels are computer controlled.
  • a central computer can be used to control and control all process parameters.
  • the measured values supplied by the sensors can also be fed to the computer and evaluated computer-aided.
  • the dosage of the different flowable substances for example, by suitable pumps.
  • suitable pumps are known in the art. They are preferably independent of the back pressure and can be controlled in fine gradation.
  • suitable pumps are gear pumps, peristaltic / peristaltic pumps and other suitable pumps.
  • the combination of these pumps with the mixing vessels used according to the invention allows the bubbles and air-free production of emulsions. In the entire path of the flowable substances, the access of air is made difficult or impossible, since all process steps are carried out in a closed system. This is a further advantage of the process according to the invention, wherein expensive process steps such as evacuation of the emulsions can be dispensed with.
  • the device according to the invention can be operated at low pressure, in particular at a pressure in the range of 1 to 10 bar, more preferably 1 to 1.5 bar.
  • the process is accordingly carried out at a pressure in this range.
  • the mixing vessels and lines can be constructed of any suitable materials.
  • suitable inert materials are plastics, steels such as V2A or V4A steel or copper. Suitable materials or materials are known in the art.
  • the device can be constructed according to a modular principle of individual components. These individual components can be, for example, pumps, mixing vessels, sensor elements, stirring motors, tempering units and connecting elements. All pumps and stirring motors can be controlled via a central computer.
  • stirrer the size of the mixing vessels and the feed streams is based on the practical requirements and is to be determined by simple preliminary tests. Particularly in the two-stage procedure, low viscosity can be used in the first stage and low viscosity in the second stage, whereby a large number of different emulsions or dispersions can be obtained in a simple manner.
  • thickeners may optionally be added to the individual phases or flowable substances or mixtures of substances. This makes it possible in a simple manner to get into a suitable viscosity range, which allows the production of finely divided emulsions and dispersions with little stirring.
  • the advantages of the continuous versus discontinuous processes according to the invention are manifold:
  • the preparation of the emulsions or dispersions is substantially accelerated.
  • the production of 1 liter of an emulsion in a continuous batch process with heating, cooling and homogenizing takes at least about 1.5 hours.
  • no statements about the quality of the emulsions or dispersions are possible.
  • the inventive method allows a corresponding production in a maximum of about 15 minutes, the emulsions or dispersions can be analyzed and controlled in the process (in-process product control).
  • a variation of the product quantities is possible in a simple manner over the length of the production period.
  • very different approach sizes can be realized in a simple manner.
  • By varying the feed streams into the mixing vessels a variation of the composition of the emulsions or dispersions is possible in a simple manner.
  • nanoemulsions with particle or droplet sizes in the range of 15 to 300 nm, at most 1000 nm is possible in a simple manner.
  • the amount of emulsifier used can be significantly reduced. Often you can work with less than half of the usual amount of emulsifier.
  • the device according to the invention can be inexpensively adapted to a variety of applications by selecting suitable stirring tools.
  • a cleaning of the device according to the invention is possible because of the small size in a simple and fast manner.
  • changing the emulsions or dispersions to be produced can also be dispensed with a cleaning.
  • the materials or streams used are varied according to the new product composition, and the first output from the mixing vessels is discarded.
  • the change in the emulsion until the constant desired product composition is obtained can in turn be monitored via the online process control.
  • the apparatus and method of the present invention are applicable to a variety of emulsions or dispersions.
  • emulsions or multiple emulsions are prepared according to the invention.
  • examples are OW emulsions, WO emulsions, PO emulsions, multiple emulsions, LC gels, liposomes or pearlescent concentrates. Since working air-free, oxidation-sensitive active ingredients can be introduced into the emulsions in an advantageous manner.
  • the inventive method allows the production of highly viscous systems such as gels. Liposomes can also be made at low pressure. Thus, the production of emulsions, ointments, gels for all customary pharmaceutical, cosmetic, food technology or detergent technology areas is possible. Other fields of application are accessible according to the invention.
  • Nanoemulsions have emulsion droplets with an average diameter in the range of 5 to 1000 nm, preferably 15 to 300 nm.
  • a finely divided primary emulsion is generally prepared in the first mixture under high-viscosity conditions, which is diluted in the second mixing vessel with one of the two phases to the desired final concentration.
  • an OW emulsion can be prepared in the first mixing vessel with high oil contents, wherein the primary emulsion thus obtained is diluted in the second mixing vessel with the addition of water to the desired final concentration. In this procedure, in the second mixing device, the main part of the external phase is diluted.
  • the active substance and the lipid-based active substance carrier and at least one emulsifier which forms lamellar structures can initially be at a temperature above the melting or softening point of the active ingredient carrier be mixed.
  • a phase B is formed.
  • this phase B can be mixed with an aqueous phase A at a temperature above the melting or softening point of the active ingredient carrier.
  • This mixture is carried out, for example, in the first mixing vessel.
  • the mixed phase can then be diluted with an aqueous phase to the desired final concentration. This dilution can be carried out in the second mixing vessel.
  • the active ingredient carrier particles used are lipid-based particles. These include lipids and lipid-like structures.
  • suitable lipids are the mono-, di- and triglycerides of the saturated straight-chain fatty acids having 12 to 30 carbon atoms, such as lauric, myristic, palmitic, stearic, arachidic, behenic, lignoceric, cerotic, meleinic, as well as their esters with other polyhydric alcohols such as ethylene glycol , Propylene glycol, mannitol, sorbitol, saturated fatty alcohols having 12 to 22 carbon atoms, such as lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, arachidyl alcohol, behenyl alcohol, saturated wax alcohols having 24 to 30 carbon atoms, such as lignoceryl alcohol, ceryl alcohol, cerotyl alcohol, myrizyl alcohol.
  • synthetic mono-, di- and triglycerides are used as individual substances or in the form of a mixture, for example in the form of a hard fat.
  • Glycerol trifatty acid esters are, for example, glycerol trilaurate, glycerol trimyristate, glycerol palmitate, glycerol tristearate or glycerol tribehenate.
  • Suitable waxes are, for example, cetyl palmitate and Cera Alba (bleached wax, DAB 9).
  • Polysaccharides with or in individual cases or polyalkyl acrylates, polyalkyl cyanoacrylates, polyalkyl vinyl pyrrolidones, acrylic polymers, polylactic acids or polylactides can also be used as lipids.
  • the amount of active ingredient carrier particles, based on the total aqueous active ingredient carrier dispersion, is preferably 0.1 to 30 wt .-%, more preferably 1 to 10 wt .-%.
  • dispersion stabilizers can be used. They can be used, for example, in amounts of from 0.01 to 10% by weight, preferably from 0.05 to 5% by weight.
  • Suitable substances are surfactants, in particular ethoxylated sorbitan fatty acid esters, block polymers and block copolymers (such as poloxamers and poloxamines), polyglycerol ethers and esters, lecithins of various origins (for example egg or soya lecithin), chemically modified lecithins (for example hydrogenated lecithin) as well Phospholipids and sphingolipids, mixtures of lecithins with phospholipids, sterols (for example cholesterol and cholesterol derivatives and stigmasterol), esters and ethers of sugars or sugar alcohols with fatty acids or fatty alcohols (for example sucrose monostearate), sterically stabilizing substances such as poloxamers and poloxamines (polyoxyethylene-polyoxypropylene) Block polymers), ethoxylated sorbitan fatty acid esters, ethoxylated mono- and diglycerides, ethoxylated lipids and lipid
  • viscosity increasing agents such as cellulose ethers and esters (for example, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxymethylcellulose), polyvinyl derivatives such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, alginates, polyacrylates (for example Carbopol), xanthans and pectins.
  • cellulose ethers and esters for example, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxymethylcellulose
  • polyvinyl derivatives such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, alginates, polyacrylates (for example Carbopol), xanthans and pectins.
  • aqueous phase A water, aqueous solutions or mixtures of water with water-miscible liquids such as glycerol or polyethylene glycol can be used.
  • Further additional components for the aqueous phase are, for example Mannose, glucose, fructose, xylose, trehalose, mannitol, sorbitol, xylitol or other polyols such as polyethylene glycol and electrolytes such as sodium chloride. These additional components can be used in an amount of 0.5 to 60, for example 1 to 30 wt .-%, based on the aqueous phase A.
  • viscosity increasing agents or charge carriers can also be used, as described in US Pat EP-B-0 605 497 are described.
  • emulsifiers forming lamellar structures natural or synthetic products can be used.
  • the use of surfactant mixtures is possible.
  • suitable emulsifiers are the physiological bile salts such as sodium cholate, sodium dehydrocholate, sodium deoxycholate, sodium glycocholate, sodium taurocholate.
  • Animal and plant phospholipids such as lecithins with their hydrogenated forms as well as polypeptides such as gelatin with their modified forms can also be used.
  • Suitable synthetic surfactants are the salts of sulfosuccinic acid esters, polyoxyethylene acid betanesters, acid betanesters and sorbitan ethers, polyoxyethylene fatty alcohol ethers, polyoxyethylene stearate esters and corresponding blend condensates of polyoxyethylene-methopolyoxypropylene ethers, ethoxylated saturated glycerides, partial fatty acid glycerides and polyglycides.
  • suitable surfactants are Biobase® EP and Ceralution® H.
  • emulsifiers are also glycerol esters, polyglycerol esters, sorbitan esters, sorbitol esters, fatty alcohols, propylene glycol esters, alkylglucositesters, sugar esters, lecithin, silicone copolymers, wool wax and mixtures thereof or derivatives.
  • Glycerol esters, polyglycerol esters, alkoxylates and fatty alcohols and isoalcohols can be derived, for example, from castor fatty acid, 12-hydroxystearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, myristic acid, lauric acid and capric acid.
  • succinates, amides or ethanolamides of the fatty acids may also be present.
  • Particularly suitable fatty acid alkoxylates are the ethoxylates, propoxylates or mixed ethoxylates / propoxylates.
  • Emulsifiers are also generally used to prepare the cosmetic emulsions according to the invention.
  • suitable emulsifiers are glycerol esters, polyglycerol esters, sorbitan esters, sorbitol esters, fatty alcohols, propylene glycol esters, Alkylglucoside esters, sugar esters, lecithin, silicone copolymers, wool wax and their mixtures and derivatives.
  • Glycerol esters, polyglycerol esters, alkoxylates and fatty alcohols and isoalcohols can be derived, for example, from castor fatty acid, 12-hydroxystearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, myristic acid, mauric acid and capric acid.
  • succinates, amides or ethanolamides of the fatty acids may also be present.
  • Particularly suitable fatty acid alkoxylates are the ethoxylates, propoxylates or mixed ethoxylates / propoxylates. It is also possible to use emulsifiers which form lamellar structures.
  • emulsifiers examples include the physiological bile salts such as sodium cheolate, sodium dehydrocheolate, sodium deoxycheolate, sodium glycochelate, sodium taurochalate.
  • physiological bile salts such as sodium cheolate, sodium dehydrocheolate, sodium deoxycheolate, sodium glycochelate, sodium taurochalate.
  • Animal and plant phospholipids such as lecithins with their hydrogenated forms as well as polypeptides such as gelatin with their modified forms can also be used.
  • Suitable synthetic surfactants are the salts of sulfosuccinic, Polyoxiethylenchurebethanester, pressureurebethanester and sorbitan, Polyoxiethylenfettalkoholether, Polyoxiethylenstearinklareester and corresponding mixture condensates of Polyoxiethylen-methpolyoxipropylenethern, ethoxylated saturated glycerides, partial fatty acid glycerides and polyglycides.
  • suitable surfactants are Biobase® EP and Ceralution® H.
  • Lipids and emulsifiers are preferably used in a weight ratio of 50: 1 to 2: 1, preferably 15: 1 to 30: 1.
  • the pharmaceutical, cosmetic and / or food-technological active ingredients are, based on the phase B, preferably used in an amount of 0.1 to 80 wt .-%, particularly preferably 1 to 10 wt .-%.
  • Analgesics / antirheumatics such as morphine, copdein, piritamide, fentanyl and fentanyl derivatives, leyomethadone, tramadol, diclofenac, ibuprofen, indomethacin, naproxen, piroxicam, penicillamine;
  • Antiallergic agents such as pheniramine, dimetinden, terfenadine, asternizole, loratidine, doxylamine, meclozin, bamipin, clemastine;
  • Antibiotics / chemotherapeutics such as polypetid antibiotics such as colistin, polymyxin B, teicplanin, vancomycin;
  • Antimalarials such as quinine, halofantrine, mefloquine, chloroquine, antivirals such as ganciclo
  • Etherlipids such as hexadecylphosphocholine, ilmofosine and analogs described in R. Zeisig, D. Arndt and H. Brachwitz, Pharmacy 45 (1990), 809-818 ,
  • Suitable active ingredients are, for example, also dichlorphenac, ibuprofen, acetylsalicylic acid, salicylic acid, erythromycin, ketoprofen, cortisone, glucocorticoids.
  • cosmetic active ingredients which are particularly susceptible to oxidation or hydrolysis, for example polyphenols.
  • Catechins such as epicatechin, epicatechin-3-gallate, epigallocatechin, epigallocatechin-3-gallate
  • flavonoids such as luteolin, apigenin, rutin, quercitin, fisetin, kaempherol, rhametin
  • isoflavones such as genistein, daidzein, glycitein, Prunetin
  • coumarins such as daphnetin, umbelliferone
  • emodin emodin
  • resveratrol oregonin.
  • vitamins such as retinol, tocopherol, ascorbic acid, riboflavin, pyridoxine.
  • whole extracts from plants which contain, inter alia, the above molecules or classes of molecules.
  • the active substances are, according to one embodiment of the invention, light protection filters. These can be present as organic sunscreen at room temperature (25 ° C) in liquid or solid form.
  • Suitable light protection filters are, for example, compounds based on benzophenone, diphenylcyanoacrylate or p-aminobenzoic acid.
  • organic sunscreen filters are octyltriazone, avobenzone, octylmethoxycinnamates, octylsalicylates, benzotriazoles and triazines.
  • anti-dandruff agents are used as active ingredients, as they are usually present in cosmetic or pharmaceutical formulations.
  • An example of this is Piroctone Olamine (1-hydroxy-4-methyl-6- (2,4,4-dimethylpentyl) -2 (1H) -pyridone, preferably in combination with 2-aminoethanol (1: 1)).
  • Other suitable agents for the treatment of dander are known in the art.
  • ingredients of the emulsions are hydrophilic coated micropigments, electrolytes, glycerol, polyethylene glycol, propylene glycol, barium sulfate, alcohols, waxes, metal soaps, magnesium stearate, vaseline or other ingredients.
  • perfumes perfume oils or perfume flavors.
  • Suitable cosmetic agents for example polyphenols and compounds derived therefrom.
  • Suitable vitamins are retinol, tocopherol, ascorbic acid, riboflavin and pyridoxine.
  • active ingredients for example, all oxidation-sensitive active ingredients such as tocopherol come into consideration.
  • organic dyes are used as active ingredients or instead of active substances.
  • water-in-oil emulsions or oil-in-water emulsions can be prepared by the process according to the invention. These can be used after the emulsifiers described and other ingredients. Furthermore, the preparation of polyol-in-oil emulsions is possible. Any suitable polyols can be used here.
  • the proportions of the two main phases can be varied within wide limits. For example, from 5 to 95% by weight, preferably from 10 to 90% by weight, in particular from 20 to 80% by weight, of the respective phases are present, the total amount being 100% by weight.
  • the described P / O emulsion can also be emulsified in water or a water-in-oil emulsion. This results in a polyol-in-oil-in-water emulsion (P / O / W emulsion) containing at least one described emulsion and additionally at least one aqueous phase.
  • P / O / W emulsion polyol-in-oil-in-water emulsion
  • Such multiple emulsions can be constructed in the structure DE-A-43 41 113 correspond to described emulsions.
  • the weight ratio of the individual phases can be varied within wide limits.
  • the weight fraction of the P / O emulsion is preferably from 0.01 to 80% by weight, particularly preferably from 0.1 to 70% by weight, in particular from 1 to 30% by weight. %, based on the total P / O / W emulsion.
  • the proportion of the P / O emulsion is preferably from 0.01 to 60% by weight, particularly preferably from 0.1 to 40% by weight, in particular 1 to 30 wt .-%, based on the final P / O / W emulsion.
  • the oil content is preferably 1 to 80% by weight, particularly preferably 1 to 30% by weight, based on the O / W emulsion used.
  • a W / O emulsion can also be introduced, which leads to a W / O / W emulsion.
  • the individual phases of the emulsions may still have conventional ingredients known for the individual phases.
  • the individual phases may contain further pharmaceutical or cosmetic active substances which are soluble in these phases.
  • the aqueous phase may contain, for example, organic soluble sunscreen, hydrophilically coated micropigment, electrolytes, alcohols, etc.
  • any or all of the phases may contain solids which are preferably selected from pigments or micropigments, microspheres, silica gel, and the like.
  • the oil phase can For example, organically modified clay minerals, hydrophobic coated (micro) pigments, organic oil-soluble sunscreen, oil-soluble cosmetic agents, waxes, metal soaps such as magnesium stearate, Vaseline or mixtures thereof.
  • Titanium dioxide, zinc oxide and barium sulfate, as well as wollastonite, kaolin, talc, Al 2 O 3 , bismuth oxychloride, micronized polyethylene, mica, ultramarine, eosin dyes, azo dyes, may be mentioned as (micro) pigments.
  • Titanium dioxide or zinc oxide in particular, are customary in cosmetics as light protection filters and can be applied particularly smoothly and evenly to the skin by means of the emulsions according to the invention.
  • Microspheres or silica gel can be used as carriers for drugs, and waxes can be used, for example, as a base for polishes.
  • the water phase may further contain glycerin, polyethylene glycol, propylene glycol, ethylene glycol and the like, as well as derivatives thereof.
  • aqueous phase water, aqueous solutions or mixtures of water with water-miscible liquids such as glycerol or polyethylene glycol can be used. Further, electrolytes such as sodium chloride may be contained in the aqueous phase. If desired, it is also possible to use viscosity-increasing substances or charge carriers, as described in US Pat EP-B-0605497 are described.
  • Phase A Protelan LS 9011 Sodium sarcosinate Lauroyl 0.54% 0.54% Brij 35 P Nena Laureth-23 1.40% 1.40% Pricerine 9091 glycerin 6.32% 1.40% demin. water 2.25% 2.10%
  • Phase B Miglyol 812 N Caprylic / capric triglycerides 60.0% 60.0% Phase C: demin.
  • Phase A Protelan LS 9011 Sodium lauroyl sarcosinate 0.40% Brij 35 P Nena Laureth-23 1.05% hexylene Hexylene glycol 1.50% demin. water 4.50%
  • Phase B Woleekyd L3 alkyd resin 58.0%
  • Phase C demin. water 34.5% 100.0% Speed level 1 [min-1] 3000 Speed level 2 [min-1] 2400 Dwell time level 1 [s] 25 Dwell time level 2 [s] 16 PSA Median [ ⁇ m] 0.39 ⁇ 1 ⁇ m [%] 100.0 cm 2 / cm 3 17.2
  • Phase A Protelan LS 9011 Sodium lauroyl sarcosinate 0.75% Brij 35 P Nena Laureth-23 1.30% Pricerine 9091 glycerin 2.25% demin. water 2.25%
  • Phase B Cutina CP Cetyl palmitate 44.8% a-tocopherol tocopherol 11.2%
  • Phase C demin. water 37.5% 100.0% Speed level 1 [min-1] 4000 Speed level 2 [min-1] 3200 Dwell time level 1 [s] 12 Dwell time level 2 [s] 8th.
  • PSA Area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)

Abstract

Eine Vorrichtung zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen unter Luftauschluss umfasst ein allseits geschlossenes Mischgefäss, das Zu- und Abführrohre zum Ein- und Austrag von fliesfähigen Stoffen oder Stoffgemischen sowie ein Rührwerkzeug aufweist, das einen Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erlaubt.

Description

  • Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen, insbesondere zur Herstellung von Nanoemulsionen.
  • Die Herstellung von Emulsionen und Dispersionen erfolgt in der Regel diskontinuierlich in Rührreaktoren. Dabei werden die erforderlichen Mengen der Einsatzstoffe in ein Mischgefäß dosiert und unter hohem Rühreintrag emulgiert oder dispergiert. In der Regel werden dazu Hochleistungsrührer eingesetzt, die die Erzeugung von Kavitationskräften erlauben. Alternativ wird eine Hochdruckhomogenisierung durchgeführt. Eine Kontrolle der hergestellten Emulsionen und Dispersionen und des Verfahrens erfolgt in der Regel erst am fertigen Produkt der entsprechenden Mischungscharge. Eine kontinuierliche Überprüfung des Herstellungsprozesses ist in der Regel nicht möglich.
  • Darüber hinaus ist eine Variation der Produktmengen nur in sehr begrenztem Umfang möglich, da die mögliche Ansatzgröße bei einem Chargenmischer in einem eng begrenzten Bereich liegt. Die minimale Ansatzgröße darf in der Regel die Hälfte der maximalen Ansatzgröße nicht unterschreiten.
  • Auch im Hinblick auf eine sterile Verarbeitung ist ein diskontinuierliches Verfahren problematisch. In der Regel wird in offenen Rührkesseln gearbeitet, so dass Kontaminationen von außen nicht ausgeschlossen werden können. Sofern unter Luftausschluss gearbeitet werden soll, ist ein aufwändiges Verfahren zur Evakuierung der Mischgefäße zum Arbeiten unter Vakuum notwendig.
  • Darüber hinaus müssen diskontinuierliche Mischungsvorrichtungen groß ausgelegt werden, um geeignete Produktmengen erzeugen zu können. Dies ist mit erheblichen Investitionskosten verbunden. Zudem führt der hohe Rühreintrag zu hohen Energiekosten. Insbesondere bei der Herstellung von Nanoemulsionen, speziell festen Lipidnanopartikeln (englisch solid lipid nano particles - SLN) fehlen bislang großtechnische Herstellungsverfahren. Daher konnten sich SLN bislang nicht in größerem Umfang durchsetzen.
  • Die Herstellung von SLN-Dispersionen erfolgt üblicherweise durch Hochdruckhomogenisation. In Abhängigkeit vom eingesetzten Lipid und Tensid erhält man dabei unterschiedliche Partikelformen. Man unterscheidet die Heißhomogenisation und die Kalthomogenisation. Nach dem Schmelzen des Lipids und Lösen oder Dispergieren des Wirkstoffes wird bei der Heißhomogenisation in heißer Tensidlösung dispergiert. Sodann wird eine Hochdruckhomogenisation dieser Präemulsion durchgeführt, die sodann in eine heiße O/W-Nanoemulsion überführt wird. Nach Abkühlen und Rekristallisation werden feste Lipidnanopartikel (SLN) erhalten. Bei der Kalthomogenisation wird nach Schmelzen des Lipids und Lösen oder Dispergieren des Wirkstoffs die Arzneistoff-Lipidmischung erstarrt und sodann zu Mikropartikeln vermahlen. Anschließend werden die Partikel in kalter Tensidlösung suspendiert, und eine Hochdruckhomogenisation der Partikelsuspension wird durchgeführt. Die bei der Hochdruckhomogenisation auftretenden Kavitations- und Scherkräfte sind ausreichend groß, um die Lipidmikropartikel zu Lipidnanopartikeln zu zerbrechen. Bei der Heißhomogenisation wird die Präemulsion in der Regel in einem Kolben-Spalt-Homogenisator bei Drücken zwischen 200 bar und maximal 1500 bar im heißen Zustand homogenisiert. Hierbei entsteht eine Emulsion, deren Lipidphase beim Erkalten zu SLN rekristallisiert. Für eine Beschreibung der Verfahren kann auf R.H. Müller, G. E. Hildebrandt, Pharmazeutische Technologie: Moderne Arzneiformen, wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1998, 2. Auflage, Seiten 357 bis 366 verwiesen werden.
  • Die SLN-Technolgie dient insbesondere der Applikation von pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoffen in einem festen Träger. Der Wirkstoffträger kann dabei an die jeweilige Anwendung angepasst werden und erlaubt eine geeignete Dosierung und Freisetzung des Wirkstoffs. Die SLN stellen ein alternatives Carriersystem zu Emulsionen und Liposomen dar. Die Nanopartikel können hydrophile oder hydrophobe pharmazeutische Wirkstoffe enthalten und können oral oder parenteral verabreicht werden. Als Matrixmaterial wird dabei im Gegensatz zu den bekannten Emulsionen ein festes Lipid eingesetzt. Zur Gewährleistung einer hohen Bioakzeptanz und guter In-Vivo-Abbaubarkeit werden überwiegend physiologisch verträgliche Lipide oder Lipide aus physiologischen Komponenten wie Glyceride aus körpereigenen Fettsäuren verwendet. Bei der Herstellung werden wie bei der Herstellung von Emulsionen und Dispersionen üblicherweise Emulgatoren oder Tenside mit verwendet.
  • Ein Verfahren zur Herstellung von SLN-Dispersionen ist beispielsweise in der EP-B-0 167 825 beschrieben. Die Herstellung der Lipid Nano Pellets erfolgt durch Dispergieren des geschmolzenen Lipids mit Wasser mit einem hochtourigen Rührer. Anschließend wird durch eine Ultraschallbehandlung die gewünschte Teilchengrößenverteilung eingestellt. Das Rühren erfolgt in der Regel mit Drehzahlen im Bereich von 20 000 min-1.
  • Die Herstellung von festen Lipid-Nanoteilchen mit geringem mittleren Teilchendurchmesser gemäß dem Stand der Technik ist aufwendig, da in der Regel Hochdruckhomogenisatoren eingesetzt werden müssen. Durch bloßes Rühren bei hoher Umdrehungszahl werden nur relativ große mittlere Teilchendurchmesser von etwa 3 µm erreicht.
  • Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines kontinuierlichen, unaufwendigen Verfahrens zur Herstellung von Emulsionen und Dispersionen, das insbesondere die Herstellung von Nanoemulsionen mit kontrollierter Partikelgröße erlaubt. Die Vorrichtung und das Verfahren sollen eine In-Process/Online-Qualitätskontrolle erlauben. Zudem soll die Herstellung gegenüber üblichen Batch-Verfahren vereinfacht und beschleunigt werden. Auch die Herstellung variabler Mengen an Emulsionen oder Dispersionen soll möglich sein. Zudem soll unaufwendig luftfrei gearbeitet werden können.
  • Die Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen unter Luftausschluss, umfassend ein allseits geschlossenes Mischgefäß, das Zu- und Abführrohre zum Ein- und Austrag von fließfähigen Stoffen oder Stoffgemischen sowie ein Rührwerkzeug aufweist, das einen Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erlaubt.
  • Zudem wird die Aufgabe erfindungsgemäß gelöst durch ein Verfahren zur kontinuierlichen Herstellung von Emulsionen und Dispersionen unter Luftausschluss, bei dem mindestens zwei fließfähige Ströme mindestens zweier Phasen der Emulsionen oder Dispersionen getrennt kontinuierlich in ein allseitig geschlossenes Mischgefäß dosiert werden, in dem sie unter Rühreintrag in eine Emulsion oder Dispersion überführt werden, und die Emulsion/Dispersion kontinuierlich aus dem Mischgefäß ausgetragen wird, wobei der Rühreintrag ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erfolgt.
  • In der erfindungsgemäßen Vorrichtung ist das Mischgefäß allseitig geschlossen. Dies bedeutet, dass abgesehen von Zu- und Abführungen sowie Rührerdurchführungen oder Durchführungen für Analytiksensoren das Mischgefäß geschlossen ist. Sofern sowohl die Zu- als auch Abführrohre mit fließfähigen Stoffen gefüllt sind und Rührwerkzeug sowie gegebenenfalls Analytiksensoren vorliegen, ist das Mischgefäß gegenüber dem Zutritt von Luft bzw. Sauerstoff abgeschlossen. Diese Auslegung des Mischgefäßes wird unter dem Ausdruck "allseitig geschlossen" erfasst.
  • Das Rührwerkzeug erlaubt einen mechanischen Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationkräften und ohne Hochdruckhomogenisierung. In bevorzugten Rührwerkzeugen werden auf einer Rührerachse, die gedreht wird, geeignete Rührelemente angeordnet. Beim Rührwerkzeug kann es sich um so genannte Rotor/Stator-Systeme handeln, in denen motorbetrieben ein Rotor bewegt wird. Als Stator dient in der Regel das Gehäuse, das mit Einbauten wie Brechern versehen sein kann. Als Rührer kommen beispielsweise Flügelrührer in Betracht, die gegebenenfalls mit Abstreifern versehen sein können. Darüber hinaus können Kneter und andere geeignete Rührer wie Planetenrührer, Ankerrührer, Balkenrührer, Propeller, Blattrührer, Dissolverscheiben oder Intermig eingesetzt werden. Weitere geeignete Rührerkonfigurationen sind dem Fachmann bekannt.
  • Das Rührwerkzeug wird so betrieben, dass der Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erfolgt.
  • Im Mischgefäß können zudem gegebenenfalls Mahlwerkzeuge wie Mahlperlen oder ―kugeln vorliegen. Geeignete Mahlwerkzeuge sind dem Fachmann bekannt.
  • Das Mischgefäß kann jede geeignete Geometrie aufweisen, solange es eine geeignete Durchmischung der fließfähigen Stoffe oder Stoffgemische bzw. der Phasen der herzustellenden Emulsionen und Dispersionen erlaubt. Geeignete Geometrien sind dem Fachmann bekannt. Vorzugsweise weist das Mischgefäß eine im Wesentlichen zylindrische Form auf, wobei die Achse des Rührwerkzeugs in der Zylinderachse liegt und die Zu- und Abführrohre im Wesentlichen senkrecht zur Zylinderachse im oberen und unteren Umfangsbereich des Zylinders voneinander beabstandet angeordnet sind. Die Zu-und Abführrohre sind damit, entlang der Zylinderachse betrachtet, möglichst weit voneinander entfernt in Positionen entlang des Zylinderumfangs angeordnet. Sie sind im Wesentlichen senkrecht zur Zylinderachse angeordnet. Abweichungen von ± 10 °, vorzugsweise ± 5 ° hierzu sind möglich. Die Anordnung kann den praktischen Erfordernissen angepasst werden. Vorzugsweise werden die fließfähigen Stoffe oder Stoffgemische in das erste Mischgefäß getrennt eingetragen bzw. zugeführt. Die entsprechenden Zuführrohre ragen vorzugsweise etwas in das Mischgefäß hinein. Es ist auch möglich, eine Vormischstufe für die fließfähigen Stoffe oder Stoffgemische vorzusehen. Beim Herstellen einer Öl/Wasser-Emulsion oder Wasser/Öl-Emulsion können beispielsweise die einzelnen Komponenten der Ölphase und die einzelnen Komponenten der Wasserphase getrennt vorgemischt werden. Es ist auch möglich, dass die Ölphase und die Wasserphase in einer Vormischstufe zusammengeführt und gemeinsam in das Mischgefäß eingetragen werden. Üblicherweise werden die Ölphase und die Wasserphase oder entsprechende andere Phasen voneinander getrennt in das Mischgefäß geführt. Es können ein oder mehrere Zu- und Abführrohre vorgesehen werden. Üblicherweise werden zwei oder mehr, insbesondere zwei oder drei Zuführrohre und ein Abführrohr vorgesehen.
    Die Größe des Mischgefäßes kann nach den jeweiligen praktischen Erfordernissen gewählt werden. Im Labormaßstab beträgt das Innenvolumen (freie Volumen) des Mischgefäßes vorzugsweise 2 bis 70 ml, besonders bevorzugt 3 bis 50 ml, insbesondere 5 bis 15 ml. Im Technikumsmaßstab beträgt das Innenvolumen vorzugsweise 70 bis 500 ml, besonders bevorzugt 100 bis 400 ml. Im großtechnischen Maßstab beträgt das Volumen vorzugsweise mehr als 500 ml, beispielsweise 500 bis 50 000 ml.
  • Im Labormaßstab können beispielsweise Mischgefäße mit etwa 7 ml Volumen eingesetzt werden, die eine zylindrische Form aufweisen und einen Innendurchmesser von 20 mm und eine Innenhöhe von 25 mm aufweisen. Das Innenvolumen kann dabei auch durch die Dicke bzw. den Durchmesser der Rotorachse gesteuert werden. So ist es auch möglich, dass Konfigurationen entsprechend einem Ringkammerreaktor erhalten werden. Die Verweilzeiten im ersten Mischgefäß betragen vorzugsweise 2 bis 600 Sekunden, besonders bevorzugt 4 bis 100 Sekunden, insbesondere 8 bis 40 Sekunden.
  • Es ist erfindungsgemäß möglich, bereits mit einem Mischgefäß die gewünschten Emulsionen und Dispersionen kontinuierlich herzustellen. Vorzugsweise werden jedoch mindestens zwei Mischgefäße in Reihe hintereinander geschaltet, wobei der Austrag aus dem ersten Mischgefäß ins zweite Mischgefäß eingetragen wird und ein weiteres Zuführrohr in das zweite Mischgefäß vorgesehen ist. Auch das zweite (und folgende) Mischgefäß weist ein Rührwerk auf, wie beschrieben. Es ist entsprechend auch möglich, längere Kaskaden von Mischgefäßen vorzusehen, wobei der Austrag eines Mischgefäßes dem nächsten Mischgefäß zugeführt wird und gegebenenfalls jeweils weitere Einträge in das weitere Mischgefäß eingetragen werden können. Vorzugsweise wird mit zwei oder drei, insbesondere mit zwei hintereinander geschalteten Mischgefäßen gearbeitet.
  • Es ist erfindungsgemäß möglich, ein oder mehrere der Mischgefäße unabhängig voneinander zu temperieren. Eine Temperierung kann durch Kühl- oder Heiz-Mäntel oder durch Integrieren des Mischgefäßes in einen Ofen oder einen Kryostaten erreicht werden. Geeignete Vorrichtungen zum Heizen/Kühlen bzw. Temperieren der Mischgefäße sind dem Fachmann bekannt.
  • Sofern zwei hintereinander geschaltete Mischgefäße eingesetzt werden, wird im ersten Mischgefäß das Verhältnis der Zuströme so eingestellt, dass beim Mischen im ersten Mischgefäß im viskoelastischen bzw. hochviskoelastischen Bereich gearbeitet wird. Der viskoelastische Bereich bezeichnet den Bereich, in dem die viskoelastischen Flüssigkeiten nicht-newton'sches Flüssigkeitsverhalten zeigen. Für eine Beschreibung der Viskoelastizität kann auf Römpp, Chemielexikon, 9. Auflage, Stichwort "Viskoelastizität" verwiesen werden.
  • Üblicherweise entspricht die Abhängigkeit der Viskosität einer Emulsion bzw. Dispersion vom Volumenanteil der dispersen Phase einer Exponentialfunktion. Der wichtige viskoelastische Bereich, in dem erfindungsgemäß vorzugsweise gearbeitet wird, ist der Bereich, in dem sich die Viskosität mit zunehmendem Volumenanteil der dispersen Phase sehr stark erhöht. Bei einer zweiphasigen Emulsion wird das Gewichtsverhältnis der Phasen vorzugsweise in einem Bereich von 1:15 bis 15:1, bevorzugt 1:5 bis 5:1, vorzugsweise 1:2 bis 2:1, insbesondere 1:1,5 bis 1,5:1 gewählt. Insbesondere bei Öl/Wasser-Emulsionen (O/W), Wasser/Öl-Emulsionen (W/O) und Polyol/Öl-Emulsionen (P/O) liegen die Gewichtsanteile der entsprechenden Phasen vorzugsweise in diesem Bereich.
  • Bei einer Abfolge von zwei Mischgefäßen wird damit in der ersten Stufe hochviskos und in der nachfolgenden zweiten Stufe niederviskos gearbeitet. Die Einstellung einer feinteiligen Emulsion bzw. Dispersion wird dabei im ersten Reaktor erreicht, während die Verdünnung auf die endgültige Konzentration des Produktes im zweiten Mischgefäß erfolgt. Da in diesem Fall ins zweite Mischgefäß eine ergänzende Menge mindestens einer der Phasen oder eine weitere Phase eingetragen wird, ist die Verweilzeit im zweiten Mischgefäß entsprechend kürzer, sofern beide Mischgefäße das gleiche Innenvolumen aufweisen.
  • Durch Einhalten des Mengenverhältnisses der beiden Phasen im ersten Mischgefäß kann selbst mit dem Eintrag geringer Scherenergien eine sehr starke Mischwirkung erreicht werden. Ohne an eine Theorie gebunden zu sein, kann die beim Vermischen der Phasen erhaltene Mikroemulsion als ein System zweier interpenetrierender Netzwerke verstanden werden, so dass die Mikroemulsion einphasiges Verhalten zeigt.
  • Erfindungsgemäß ist in den Abführrohren der Mischgefäße bzw. mindestens einem Abführrohr eines Mischgefäßes mindestens ein Sensor zur kontinuierlichen Messung der Temperatur, Leitfähigkeit und/oder optischen Eigenschaften der Emulsion oder Dispersion angeordnet. Ein entsprechender Sensor ist dabei in der Regel in der Nähe des Mischgefäßes im Abführrohr vorgesehen. Geeignete Sensoren zur Bestimmung der elektrischen Leitfähigkeit, der Temperatur oder optischer Eigenschaften wie Trübungen sind dem Fachmann bekannt. Bei der Beurteilung der optischen Eigenschaften kann auch ein Schauglas vorgesehen sein, durch das eine optische bzw. visuelle Kontrolle der Klarheit oder Trübung der Emulsion/Dispersion möglich ist. Maschinengestützte optische Verfahren schließen die Laserlichtstreuung und Extinktionsmessungen ein.
  • Optische Verfahren zur Bestimmung der Teilchengröße in den Emulsionen oder Dispersionen können ebenfalls zur Prozesskontrolle eingesetzt werden. Weiterhin ist es möglich, Viskositätsmessungen, beispielsweise nach Brookfield, zum Beispiel in line durchzuführen. Die visuelle/optische Kontrolle kann durch geeignetes und geschultes Personal vorgenommen werden. Ferner ist es möglich, die eingetragene Energiemenge durch den Rührer zu bestimmen. Auch hier kann bei Abweichungen der eingetragenen Energie schnell reagiert werden, da dies auf eine geänderte Zusammensetzung der Emulsion/Dispersion hindeuten kann. Insgesamt erlaubt die kontinuierliche Bestimmung eines oder mehrerer der genannten Parameter eine kontinuierliche Prozesskontrolle und eine kontinuierliche Kontrolle der Zusammensetzung der Emulsion bzw. Dispersion. Die Qualitätssicherung bei der Herstellung wird damit erheblich verbessert bzw. vereinfacht. Dies ist insbesondere bei pharmazeutischen Produkten von hoher Wichtigkeit.
  • Über die Leitfähigkeit sind Aussagen über das Phasenvolumenverhältnis möglich. Durch Messung der Leitfähigkeit lassen sich deshalb Veränderungen in der Emuslionszusammensetzung bzw. in den Phasenvolumina leicht bestimmen. Die Prozesskontrolle wird vorzugsweise online durchgeführt, d. h. kontinuierlich während des Herstellungsverfahrens. Dies erlaubt es, auf Abweichungen der Zusammensetzungen der Emulsionen oder Dispersionen sofort zu reagieren. Ändern sich beispielsweise die Volumenströme der eingesetzten Phasen, so wird im Mischgefäß ein anderes Phasenvolumenverhältnis erhalten, was zu einer veränderten Leitfähigkeit führt. Durch die Bestimmung der Leitfähigkeit kann beispielsweise auch die Einstellung der Volumenströme wiederum gesteuert werden, um konstante Volumenströme sicher zu stellen.
  • Gemäß einer Ausführungsform der Erfindung sind die Zufuhr der fließfähigen Stoffe und der Rühreintrag und gegebenenfalls die Temperierung der Mischgefäße rechnergesteuert. Über einen zentralen Rechner (Computer) können damit alle Prozessparameter gesteuert und kontrolliert werden. Die von den Sensoren gelieferten Messwerte können ebenfalls dem Rechner zugeführt und rechnergestützt ausgewertet werden.
  • Die Dosierung der unterschiedlichen fließfähigen Stoffe erfolgt beispielsweise durch geeignete Pumpen. Derartige Pumpen sind dem Fachmann bekannt. Sie sind vorzugsweise unabhängig vom Gegendruck und können in feiner Abstufung angesteuert werden. Beispiele geeigneter Pumpen sind Zahnradpumpen, Peristaltik/Schlauchpumpen und andere geeignete Pumpen. Die Kombination dieser Pumpen mit den erfindungsgemäß eingesetzten Mischgefäßen erlaubt das blasen- und luftfreie Herstellen von Emulsionen. Im gesamten Weg der fließfähigen Stoffe ist der Zutritt von Luft erschwert bzw. unmöglich gemacht, da alle Verfahrensschritte in einem geschlossenen System durchgeführt werden. Dies ist ein weiterer Vorteil des erfindungsgemäßen Verfahrens, wobei auf aufwendige Verfahrensschritte wie ein Evakuieren der Emulsionen verzichtet werden kann.
  • Die erfindungsgemäße Vorrichtung kann bei Niederdruck, insbesondere bei einem Druck im Bereich von 1 bis 10 bar, besonders bevorzugt 1 bis 1,5 bar betrieben werden. Das Verfahren wird entsprechend bei einem Druck in diesem Bereich durchgeführt.
  • Die Mischgefäße und Leitungen können aus beliebigen geeigneten Materialien aufgebaut sein. Beispiele geeigneter inerter Materialien sind Kunststoffe, Stähle wie V2A- oder V4A-Stahl oder Kupfer. Geeignete Materialien oder Werkstoffe sind dem Fachmann bekannt.
  • Es ist erfindungsgemäß möglich, die Vorrichtung in modularer Bauweise auszuführen. Dies bedeutet, dass mehrere Mischgefäße in einfacher Weise hintereinander oder auch parallel geschaltet werden können. Die Vorrichtung kann nach einem Baukastenprinzip aus Einzelkomponenten aufgebaut sein. Diese Einzelkomponenten können beispielsweise Pumpen, Mischgefäße, Sensorelemente, Rührmotoren, Temperiereinheiten und Verbindungselemente sein. Sämtliche Pumpen und Rührmotoren können dabei über einen zentralen Rechner angesteuert werden.
  • Die Auswahl der Rührer, der Größe der Mischgefäße und der Eintragsströme erfolgt nach den praktischen Erfordernissen und ist durch einfache Vorversuche zu ermitteln.
    Insbesondere bei der zweistufigen Vorgehensweise kann in der ersten Stufe hochviskos und in der zweiten Stufe niederviskos gearbeitet werden, wodurch eine Vielzahl unterschiedlicher Emulsionen oder Dispersionen in einfacher Weise zugänglich wird.
  • Um im ersten Mischgefäß im viskoelastischen, vorzugsweise hochviskoelastischen Bereich arbeiten zu können, können den einzelnen Phasen oder fließfähigen Stoffen oder Stoffgemischen gegebenenfalls Verdicker zugesetzt werden. Hierdurch ist es in einfacher Weise möglich, in einen geeigneten Viskositätsbereich zu gelangen, der die Herstellung feinteiliger Emulsionen und Dispersionen unter geringem Rühreintrag erlaubt.
  • Die Vorteile des erfindungsgemäßen kontinuierlichen gegenüber diskontinuierlichen Verfahren sind vielfältig: Die Herstellung der Emulsionen oder Dispersionen wird wesentlich beschleunigt. Beispielweise dauert die Herstellung von 1 Liter einer Emulsion im kontinuierlichen Batch-Verfahren mit Heizen, Abkühlen und Homogenisieren mindestens etwa 1,5 Stunden. Hierbei sind noch keine Aussagen über die Qualität der Emulsionen oder Dispersionen möglich. Das erfindungsgemäße Verfahren erlaubt eine entsprechende Herstellung in maximal etwa 15 Minuten, wobei die Emulsionen oder Dispersionen im Verfahren analysiert und kontrolliert werden können (In-Process-Produktkontrolle). Eine Variation der Produktmengen ist in einfacher Weise über die Länge der Produktionsdauer möglich. Damit sind sehr unterschiedliche Ansatzgrößen in einfacher Weise realisierbar. Durch Veränderung der Zuführströme in die Mischgefäße ist eine Variation der Zusammensetzung der Emulsionen oder Dispersionen in einfacher Weise möglich.
  • Da in geschlossenen Rohrleitungssystemen und geschlossenen Mischgefäßen gearbeitet wird, ist eine sterile Verarbeitung möglich. Kontaminationen von außen werden ausgeschlossen. Die Auslegung der Vorrichtung bzw. Anlage kann kleiner und leichter als bei einer Chargenanlage sein, so dass erhebliche Einsparungen an Investitionskosten möglich sind. Auf den Einsatz von Kühlmitteln kann in der Regel verzichtet werden, da zum Beispiel die Temperatur über die in das zweite Mischgefäß eingebrachte Phase gesteuert werden kann. Auch der Raumbedarf ist wesentlich geringer. Durch die kontinuierliche Verfahrensweise sind auch Energieeinsparungen möglich, wie sie vorstehend bereits beschrieben sind. Durch die Genauigkeit der verfügbaren Dosierpumpen sind sehr hohe Genauigkeiten bei der Zusammensetzung der Emulsionen oder Dispersionen möglich. Übliche Dosierpumpen erlauben Genauigkeiten im Bereich von ± 0,5 % bis zu ± 0,15 %.
  • Die Herstellung von Nanoemulsionen mit Teilchen- oder Tröpfchengrößen im Bereich von 15 bis 300 nm, maximal 1000 nm ist in einfacher Weise möglich.
  • Im Vergleich zu bekannten Verfahren ist die Herstellung wesentlich feinteiligerer Emulsionen mit wesentlich geringerem Aufwand möglich.
  • Gegenüber der diskontinuierlichen chargenweisen Herstellung kann die eingesetzte Emulgatormenge deutlich vermindert werden. Häufig kann mit weniger als der Hälfte der üblichen Emulgatormenge gearbeitet werden.
  • Die erfindungsgemäße Vorrichtung kann durch Auswahl geeigneter Rührwerkzeuge an eine Vielzahl von Anwendungen in unaufwendiger Weise angepasst werden.
  • Eine Reinigung der erfindungsgemäßen Vorrichtung ist aufgrund der geringen Größe in einfacher und schneller Weise möglich. Bei einem Wechsel der herzustellenden Emulsionen oder Dispersionen kann auch auf eine Reinigung verzichtet werden. In diesem Fall werden die eingesetzten Stoffe oder Ströme gemäß der neuen Produktzusammensetzung variiert, und die erste Austragmenge aus den Mischgefäßen wird verworfen. Die Veränderung der Emulsion bis zum Erhalt der konstanten gewünschten Produktzusammensetzung kann wiederum über die Online-Prozeßkontrolle verfolgt werden.
  • Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren sind auf eine Vielzahl von Emulsionen oder Dispersionen anwendbar. Insbesondere werden erfindungsgemäß Emulsionen oder multiple Emulsionen hergestellt. Beispiele sind OW-Emulsionen, WO-Emulsionen, PO-Emulsionen, multiple Emulsionen, LC-Gele, Liposome oder Perlglanzkonzentrate. Da luftfrei gearbeitet wird, können oxidationsempfindliche Wirkstoffe in vorteilhafter Weise in die Emulsionen eingebracht werden.
  • Das erfindungsgemäße Verfahren erlaubt die Herstellung hochviskoser Systeme wie Gele. Liposome können ebenfalls bei Niederdruck hergestellt werden. So ist die Herstellung von Emulsionen, Salben, Gelen für alle üblichen pharmazeutischen, kosmetischen, lebensmitteltechnologischen oder waschmitteltechnologischen Bereiche möglich. Auch andere Anwendungsgebiete sind erfindungsgemäß zugänglich.
  • Nanoemulsionen weisen Emulsionströpfchen mit einem mittleren Durchmesser im Bereich von 5 bis 1000 nm, vorzugsweise 15 bis 300 nm, auf. Bei der Herstellung von zweiphasigen Emulsionen wird in der Regel im ersten Gemisch unter hochviskosen Bedingungen eine feinteilige Primäremulsion hergestellt, die im zweiten Mischgefäß mit einer der beiden Phasen auf die gewünschte Endkonzentration verdünnt wird. Beispielsweise kann eine OW-Emulsion im ersten Mischgefäß mit hohen Ölanteilen hergestellt werden, wobei die so erhaltene Primäremulsion im zweiten Mischgefäß unter Wasserzusatz auf die gewünschte Endkonzentration verdünnt wird. Bei dieser Vorgehensweise wird in der zweiten Mischvorrichtung mit dem Hauptteil der externen Phase verdünnt. Bei der Herstellung multipler Emulsionen ist es beispielsweise möglich, in dem ersten Mischgefäß eine PO-Emulsion herzustellen, die im zweiten Mischgefäß zusammen mit Wasser in eine POW-Emulsion überführt wird. Es können jeweils systemangepasste Drehzahlen und Rührwerkzeuge verwendet werden.
  • Zur Herstellung einer wässrigen Wirkstoffträger-Nanodispersion, die mindestens einen pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoff enthält, können zunächst der Wirkstoff und der Wirkstoffträger auf Lipidbasis und mindestens ein Emulgator, der Lamellarstrukturen ausbildet, bei einer Temperatur oberhalb des Schmelz- oder Erweichungspunktes des Wirkstoffträgers vermischt werden. Hierbei wird eine Phase B ausgebildet. Sodann kann diese Phase B mit einer wässrigen Phase A bei einer Temperatur oberhalb des Schmelz- oder Erweichungspunktes des Wirkstoffträgers vermischt werden. Diese Mischung wird beispielsweise im ersten Mischgefäß durchgeführt. Sodann kann die Mischphase mit einer wässrigen Phase auf die gewünschte Endkonzentration verdünnt werden. Diese Verdünnung kann im zweiten Mischgefäß durchgeführt werden.
  • Als Wirkstoffträgerteilchen werden Teilchen auf Lipidbasis eingesetzt. Hierzu gehören Lipide und lipidähnliche Strukturen. Beispiele geeigneter Lipide sind die Mono-, Di- und Triglyceride der gesättigten geradkettigen Fettsäuren mit 12 bis 30 Kohlenstoffatomen, wie Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Arachinsäure, Behensäure, Lignocerinsäure, Cerotinsäure, Melesinsäure, sowie deren Ester mit anderen mehrwertigen Alkoholen wie Ethylenglykol, Propylenglykol, Mannit, Sorbit, gesättigten Fettalkoholen mit 12 bis 22 Kohlenstoffatomen wie Laurylalkohol, Myrestylalkohol, Cetylalkohol, Stearylalkohol, Arachidylalkohol, Behenylalkohol, gesättigten Wachsalkoholen mit 24 bis 30 Kohlenstoffatomen wie Lignocerylalkohol, Cerylalkohol, Cerotylalkohol, Myrizylalkohol. Bevorzugt sind Mono-, Di-, Triglyceride, Fettalkohole, deren Ester oder Ether, Wachse, Lipidpeptide oder Mischungen davon. Insbesondere werden synthetische Mono-, Di- und Triglyceride als Einzelsubstanzen oder in Form einer Mischung, zum Beispiel in Form eines Hartfettes, eingesetzt. Glycerintrifettsäureester sind beispielsweise Glycerintrilaurat, Glycerintrimyristat, Glycerinpalmitat, Glycerintristearat oder Glycerintribehenat. Geeignete Wachse sind beispielsweise Cetylpalmitat und Cera alba (gebleichtes Wachs, DAB 9). Als Lipide können auch Polysaccharide mit oder in Einzelfällen oder Polyalkylacrylate, Polyalkylcyanoacrylate, Polyalkylvinylpyrrolidone, Acrylpolymere, Polymilchsäuren oder Polylactide eingesetzt werden.
  • Die Menge der Wirkstoffträgerteilchen, bezogen auf die gesamte wässrige Wirkstoffträger-Dispersion, beträgt vorzugsweise 0,1 bis 30 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-%. Zusätzlich zu den Lipiden können Dispersionsstabilisatoren eingesetzt werden. Sie können beispielsweise in Mengen von 0,01 bis 10 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-% eingesetzt werden. Beispiele geeigneter Substanzen sind Tenside, insbesondere ethoxylierte Sorbitanfettsäureester, Blockpolymere und Blockcopolymere (wie zum Beispiel Poloxamere und Poloxamine), Polyglycerinether und -ester, Lecithine verschiedenen Ursprungs (zum Beispiel Ei- oder Sojalecithin), chemisch modifizierte Lecithine (zum Beispiel hydriertes Lecithin) als auch Phospholipide und Sphingolipide, Mischungen von Lecithinen mit Phospholipiden, Sterine (zum Beispiel Cholesterin und Cholesterinderivate sowie Stigmasterin), Ester und Ether von Zuckern oder Zuckeralkoholen mit Fettsäuren oder Fettalkoholen (zum Beispiel Saccharosemonostearat), sterisch stabilsierende Substanzen wie Poloxamere und Poloxamine (Polyoxyethylen-Polyoxypropylen-Blockpolymere), ethoxylierte Sorbitanfettsäureester, ethoxylierte Mono- und Diglyceride, ethoxylierte Lipide und Lipoide, ethoxylierte Fettalkohole oder Fettsäuren und Ladungsstabilisatoren bzw. Ladungsträger wie zum ' Beispiel Dicetylphosphat, Phosphatidylglycerin sowie gesättigte und ungesättigte Fettsäuren, Natriumcholat, Natriumglykolcholat, Natriumtaurocholat oder deren Mischungen, Aminosäuren oder Peptisatoren wie Natriumcitrat (siehe J. S. Lucks, B. W. Müller, R. H. Müller, Int. J. Pharmaceutics 63, Seiten 183 bis 189 (1990)), viskositätserhöhende Stoffe wie Celluloseether und -ester (zum Beispiel Methylcellulose, Hydroxyethylcellulose, Hydroxypropylcellulose, Natriumcarboxymethylcellulose), Polyvinylderivate wie Polyvinylalkohol, Polyvinylpyrrolidon, Polyvinylacetat, Alginate, Polyacrylate (zum Beispiel Carbopol), Xanthane und Pektine.
  • Als wässrige Phase A können Wasser, wässrige Lösungen oder Mischungen von Wasser mit wassermischbaren Flüssigkeiten wie Glycerin oder Polyethylenglycol eingesetzt werden. Weitere zusätzliche Komponenten für die wässrige Phase sind beispielsweise Mannose, Glucose, Fructose, Xylose, Trehalose, Mannit, Sorbit, Xylit oder andere Polyole wie Polyethylenglykol sowie Elektrolyte wie Natriumchlorid. Diese zusätzlichen Komponenten können in einer Menge von 0,5 bis 60, zum Beispiel 1 bis 30 Gew.-%, bezogen auf die wässrige Phase A, eingesetzt werden.
  • Falls gewünscht, können ferner viskositätserhöhende Stoffe oder Ladungsträger eingesetzt werden, wie Sie in EP-B-0 605 497 beschrieben sind.
  • Als Emulgatoren, die Lamellarstrukturen ausbilden, können natürliche oder synthetische Produkte eingesetzt werden. Auch der Einsatz von Tensidgemischen ist möglich. Beispiele geeigneter Emulgatoren sind die physiologischen Gallensalze wie Natriumcholat, Natriumdehydrocholat, Natriumdeoxycholat, Natriumglykocholat, Natriumtaurocholat. Tierische und pflanzliche Phospholipide wie Lecithine mit ihren hydrierten Formen sowie Polypeptide wie Gelatine mit ihrem modifizierten Formen können ebenso verwendet werden.
  • Als synthetische grenzflächenaktive Substanzen eignen sich die Salze der Sulfobernsteinsäureester, Polyoxyethylensäurebetanester, Säurebetanester und Sorbitanether, Polyoxyethylenfettalkoholether, Polyoxyethylenstearinsäureester sowie entsprechende Mischungkondensate von Polyoxyethylen-Methpolyoxypropylenethern, ethoxylierte gesättigte Glyceride, partielle Fettsäure-Glyceride und Polyglycide. Beispiele geeigneter Tenside sind Biobase® EP und Ceralution® H.
  • Beispiele geeigneter Emulgatoren sind ferner Glycerinester, Polyglycerinester, Sorbitanester, Sorbitolester, Fettalkohole, Propylenglykolester, Alkylglucositester, Zuckerester, Lecithin, Silikoncopolymere, Wollwachs und deren Mischungen oder Derivate. Glycerinester, Polyglycerinester, Alkoxylate und Fettalkohole sowie Isoalkohole können sich beispielsweise ableiten von Rizinusfettsäure, 12-Hydroxystearinsäure, Isostearinsäure, Ölsäure, Linolsäure, Linolensäure, Stearinsäure, Myristinsäure, Laurinsäure und Caprinsäure. Neben den genannten Estern können auch Succinate, Amide oder Ethanolamide der Fettsäuren vorliegen. Als Fettsäurealkoxylate kommen insbesondere die Ethoxylate, Propoxylate oder gemischten Ethoxylate/Propoxylate in Betracht.
  • Auch zur Herstellung der erfindungsgemäßen kosmetischen Emulsionen werden in der Regel Emulgatoren verwendet. Beispiele geeigneter Emulgatoren sind Glycerinester, Polyglycerinester, Sorbitanester, Sorbitolester, Fettalkohole, Propylenglykolester, Alkylglucosidester, Zuckerester, Lecithin, Silikoncopolymere, Wollwachs und ihre Mischungen und Derivate. Glycerinester, Polyglycerinester, Alkoxylate und Fettalkohole sowie Isoalkohole können sich beispielsweise ableiten von Rhizinusfettsäure, 12-Hydroxystearinsäure, Isostearinsäure, Ölsäure, Linolsäure, Linolensäure, Stearinsäure, Myrestinsäure, Maurinsäure und Caprinsäure. Neben den genannten Estern können auch Succinate, Amide oder Ethanolamide der Fettsäuren vorliegen. Als Fettsäurealkoxylate kommen insbesondere die Ethoxylate, Propoxylate oder gemischten Ethoxylate/Propoxylate in Betracht. Ferner können Emulgatoren eingesetzt werden, die Lamelarstrukturen ausbilden. Beispiele derartiger Emulgatoren sind die physiologischen Gallensalze wie Natriumcheolat, Natriumdehydrocheolat, Natriumdeoxycheolat, Natriumglycochealat, Natriumtaurochealat. Tierische und pflanzliche Phospholipide wie Lecithine mit Ihren hydrierten Formen sowie Polypeptide wie Gelatine mit ihren modifizierten Formen können ebenso verwendet werden.
  • Als synthetische grenzflächenaktive Substanzen eignen sich die Salze der Sulfobernsteinsäureester, Polyoxiethylensäurebethanester, Säurebethanester und Sorbitanether, Polyoxiethylenfettalkoholether, Polyoxiethylenstearinsäureester sowie entsprechende Mischungskondensate von Polyoxiethylen-methpolyoxipropylenethern, ethoxylierte gesättigte Glyceride, partielle Fettsäure-Glyceride und Polyglycide. Beispiele geeigneter Tenside sind Biobase® EP und Ceralution® H.
  • Lipide und Emulgatoren werden vorzugsweise in einem Gewichtsverhältnis von 50: 1 bis 2: 1, vorzugsweise 15:1 bis 30:1 eingesetzt.
  • Die pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoffe werden, bezogen auf die Phase B, vorzugsweise in einer Menge von 0,1 bis 80 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-% eingesetzt.
  • Nachfolgend werden beispielhaft pharmazeutische Wirkstoffe aufgeführt, die beispielsweise in freier Form, als Salz, Ester oder Ether eingesetzt werden können:
    Analgetika/Antirheumatika, wie Morphin, Copdein, Piritamid, Fentanyl und Fentanylderivate, Leyomethadon, Tramadol, Diclofenac, Ibuprofen, Indometacin, Naproxen, Piroxicam, Penicillamin; Antiallergika, wie Pheniramin, Dimetinden, Terfenadin, Asternizol, Loratidin, Doxylamin, Meclozin, Bamipin, Clemastin; Antibiotika / Chemotherapeutika, wie Polypetidantibiotika wie Colistin, Polymyxin B, Teicplanin, Vancomycin; Malariamittel wie Chinin, Halofantrin, Mefloquin, Chloroquin, Virustatika wie Ganciclovir, Foscamet, Zidovudin, Aciclovir und andere wie Dapson, Fosfomycin, Fusafungin, Trimetoprim; Antiepileptika, wie Phenytoin, Mesuximid, Ethosuximid, Primidon, Phenobarbital, Valproinsäure, Carbamazepin, Clonazepam; Antimykotika, wie intern: Nystatin, Natarrycin, Amphotericin B, Flucytoan, Miconazol, Fluconazol, Itraconazol; extern außerdem: Clotrimazol, Econazol, Tioconazol, Fenticonazol, Bifonazol, Oxiconazol, Ketoconazol, isoconazol, Tlnattat; Corticoide (Interna), wie Aldosteron Fludrocortison, Betametason, Dexametason, Triamcinolon, Fluocortolon, Hydroxycortison, Prednisolon, Prednyliden, Cloprednol, Methylprednisolon; Dermatika, wie Antibiotika: Tetracyclin, Erythromycin, Neomycin, Gentamycin, Clindamiycin, Framycetin, Tyrothricin, Chlortetracyclin Mipirocin, Fusidnsäure; Virustatika wie oben, außerdem: Podohyllotoxin, Vidarabin, Tromantadin; Corticoide wie oben, außerdem: Amcinonid, Flupredniden, Alclometason, Clobetasol, Diflorason, Halcinonid, Fluocinolon, Clocortolon, Flumetason, Difluocortolon, Fludroxycortid, Halometason, Desoximtason, Fluocinolid, Fluocortinbutyl, Flupredniden, Prednicarbat, Desonid; Diagnostika, wie radioaktive Isotope wie Te99m, In111 oder I131, kovalent gebunden an Lipide oder Lipoide oder andere Moleküle oder in Komplexen, hochsubstituierte iodhaltige Verbindungen wie zum Beispiel Lipide; Hämostyptika, wie Blutungsgerinnungsfaktoren VIII, IX; Hypnotika, Sedativa, wie Cyclobarbital, Pentobarbital, Phenobarbital, Methaqualon, Benzodiazepine (Flurazepam, Midazolam, Netrazepam, Lormetazepam, Flunitrazepam, Trazolam, Brotizolam, Temazepam, Loprazolam); Hypophysen-, Hypothalamushormone, regulatorische Peptide und ihre Hemmstoffe, wie Corticotrophin, Tetracosactid, Choriongonadotropin, Urofollitropin, Urogonadotropin, Somatropin, Metergolin, Bromocriptin, Terlipressin, Desmopressin, Oxrtocin, Argipressin, Ornipressin, Leuprorelin, Triptorelin, Gonadorelin, Buserelin, Nafarelin, Goselerin, Somatostatin; Immuntherapeutika und Zytokine, wie Dimepranol-4-acetatamidobenzoat, Thymopentin, α-Interferon, β-Interferon, Filgrastim, Interleukine, Azathioprin, Ciclosporin; Lokalanaesthetika, wie intern: Butanilicain, Mepivacain, Bupivacain, Etidocain, Lidocain, Articain, Prilocain; extern außerdem: Propipocain, Oxybuprocain, Etracain, Benzocain; Migränemittel, wie Proxibarbal, Lisurid, Methysergid, Dihydroergotamin, Clonidin, Ergotamin, Pizotifen; Narkosemittel, wie Methohexital, Propofol, Etomidat, Ketamin, Alfentanil, Thiopental, Droperidol, Fentanyl; Nebenschilddrüsenhormone, Caiciumstoffwechselregulatoren, wie Dihydrotachysterol, Calcitonin, Clodronsäure, Etidronsäure; Opthalmika, wie Atropin, Cyclodrin, Cyclopentolat, Homatropin, Tronicamid, Scopolamin, Pholedrin, Edoxudin, Idouridin, Tromantadin, Aciclovir, Acetazolamid, Diclofenamid, Carteolol, Timolol, Metipranolol, Betaxolol, Pindolol, Befunolol, Bupranolol, Levobununol, Carbachol, Pilocarpin, Clonidin, Neostigmin; Psychopharmaka, wie Benzodiazepne (Lorazepam, Diazepam), Clomethiazol; Schilddrüsentherapeutika, wie 1-Thyroxin, Carbirnazol, Thiamazol, Propylthiouracil; Sera, Immunglobuline, Impfstoffe, wie Immunglobuline allgemein und spezifisch wie Hepatitis-Typen, Röteln, Cytomegalie, Tollwut; FSME, VaricellaZoster, Tetanus, Rhesusfaktoren, Immunsera wie Botulismus-Antitoxin, Diphterie, Gasbrand, Schlangengift, Skorpiongift, Impfstoffe wie Influenza, Tuberkulose Cholera, Diphterie, Hepatitis-Typen, FSME, Röteln, Hämophilus influenzae, Masern, Neisseria, Mumps, Poliomyelitis, Tetanus, Tollwut, Typhus; Sexualhormone und ihre Hemmstoffe, wie Anabolika, Androgene, Antiandrogene, Gestagene, Estrogene, Antiestrogene (Tamoxifen etc.); Zystostatika und Metastasenhemmer, wie Alkylantien wie Nimustin, Melphalan, Carmustin, Lomustin, Cyclophosphamid, Ifosfamid, Trofosfamid, Chlorambucil, Busulfan, Treosulfan, Predninmustin, Thiotepa,
    Antimetabolite wie Cytarabin, Fluorouracil, Methotrexat, Mercaptopurin, Tioguanin,
    Alkaloide wie Vinblastin, Vincristin, Vindesin; Antibiotika wie Aclarubicin, Bleomycin, Dactinomycin, Daunorubicin, Epirubicin, Idarubicin, Mitomycin, Plicamycin,
    Komplexe von Nebengruppenelementen (zum Beispiel Ti, Zr, V, Nb, Ta, Mo, W, Pt) wie Carboplatin, Cisplatin und Metallocenverbindungen wie Titanocendichlorid
    Amsacrin, Dacarbazin, Estramustin, Etoposid, Hydroxycarbamid, Mitoxynthron, Procarbazin, Temiposid
    Alkylamidophospholipide (beschrieben in J. M. Zeidler, F. Emling, W. Zimmermann und H. J. Roth, Archiv der Pharmazie, 324 (1991), 687)
    Etherlipide wie Hexadecylphosphocholin, Ilmofosin und Analoga, beschrieben in R. Zeisig, D. Arndt und H. Brachwitz, Pharmazie 45 (1990), 809 bis 818.
  • Geeignete Wirkstoffe sind beispielsweise auch Dichlorphenac, Ibuprofen, Acetylsalicylsäure, Salicylsäure, Erythromycin, Ketoprofen, Cortison, Glucocorticoide.
  • Weiterhin geeignet sind kosmetische Wirkstoffe, die insbesondere oxidations- oder hydrolyseempfindlich sind wie beispielsweise Polyphenole. Hier seien genannt Catechine (wie Epicatechin, Epicatechin-3-gallat, Epigallocatechin, Epigallocatechin-3-gallat), Flavonoide (wie Luteolin, Apigenin, Rutin, Quercitin, Fisetin, Kaempherol, Rhametin), Isoflavone (wie Genistein, Daidzein, Glycitein, Prunetin), Cumarine (wie Daphnetin, Umbelliferon), Emodin, Resveratrol, Oregonin.
  • Geeignet sind Vitamine wie Retinol, Tocopherol, Ascorbinsäure, Riboflavin, Pyridoxin.
    Geeignet sind ferner Gesamtextrakte aus Pflanzen, die u.a. obige Moleküle oder Molekülklassen enthalten.
  • Bei den Wirkstoffen handelt es sich gemäß einer Ausführungsform der Erfindung um Lichtschutzfilter. Diese können als organische Lichtschutzfilter bei Raumtemperatur (25°C) in flüssiger oder fester Form vorliegen. Geeignete Lichtschutzfilter (UV-Filter) sind beispielsweise Verbindungen auf Basis von Benzophenon, Diphenylcyanacrylat oder p-Aminobenzoesäure. Konkrete Beispiele sind (INCI- oder CTFA-Bezeichnungen) Benzophenone-3, Benzophenone-4, Benzophenone-2, Benzophenone-6, Benzophenone-9, Benzophenone-1, Benzophenone-11, Etocrylene, Octocrylene, PEG-25 PABA, Phenylbenzimidazole Sulfonic Acid, Ethylhexyl Methoxycinnamate, Ethylhexyl Dimethyl PABA, 4-Methylbenzylidene Camphor, Butyl Methoxydibenzoylmethane, Ethylhexyl Salicylate, Homosalate sowie Methylene-Bis-Benzotriazolyl Tetramethylbutylphenol (2,2'-Methylen-bis-{6-(2H-benzoetriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol}, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und 2,4,6-Trianilino-p-(carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin.
  • Weitere organische Lichtschutzfilter sind Octyltriazone, Avobenzone, Octylmethoxycinnamate, Octylsalicylate, Benzotriazole und Triazine.
  • Gemäß einer weiteren Ausführungsform der Erfindung werden als Wirkstoffe Antischuppen-Wirkstoffe eingesetzt, wie sie üblicherweise in kosmetischen oder pharmazeutischen Formulierungen vorliegen. Ein Beispiel hierfür ist Piroctone Olamine (1-Hydroxy-4-methyl-6-(2,4,4-dimethylpentyl)-2(1H)-pyridone; vorzugsweise in Kombination mit 2-Aminoethanol (1:1)). Weitere geeignete Mittel zur Behandlung von Hautschuppen sind dem Fachmann bekannt.
  • Weitere mögliche Inhaltstoffe der Emulsionen sind hydrophil beschichtete Mikropigmente, Elektrolyte, Glycerin, Polyethylenglykol, Propylenglykol, Bariumsulfat, Alkohole, Wachse, Metallseifen, Magnesiumstearat, Vaseline oder andere Inhaltsstoffe. Beispielsweise können weiterhin Parfums, Parfumöle oder Parfumaromen zugesetzt werden. Geeignete kosmetische Wirkstoffe beispielsweise Polyphenole und davon abgeleitete Verbindungen. Geeignete Vitamine sind Retinol, Tocopherol, Ascorbinsäure, Riboflavin und Pyridoxin.
  • Als Wirkstoffe kommen zudem beispielsweise alle oxidationssensiblen Wirkstoffe wie Tocopherol in Betracht.
    Gemäß einer weiteren Ausführungsform der Erfindung werden organische Farbstoffe als Wirkstoffe bzw. an Stelle von Wirkstoffen eingesetzt.
  • Mit dem erfindungsgemäßen Verfahren können alle bekannten und geeigneten Wasser-in-Öl-Emulsionen oder Öl-in-Wasser-Emulsionen hergestellt werden. Dazu können die nach den beschriebenen Emulgatoren und weiteren Inhaltsstoffe eingesetzt werden. Ferner ist die Herstellung von Polyol-in-Öl-Emulsionen möglich. Hierbei können beliebige geeignete Polyole eingesetzt werden.
  • In den Emulsionen können die Anteile der zwei Hauptphasen in weiten Bereichen variiert werden. Beispielsweise liegen 5 bis 95 Gew.-%, vorzugsweise 10 bis 90 Gew.-%, insbesondere 20 bis 80 Gew.-% der jeweiligen Phasen vor, wobei die Gesamtmenge 100 Gew.-% ergibt.
  • Die beschriebene P/O-Emulsion kann auch in Wasser oder eine Wasser-in-Öl-Emulsion emulgiert werden. Dabei resultiert eine Polyol-in-Öl-inWasser-Emulsion (P/O/W-Emulsion), die mindestens eine beschriebene Emulsion und zusätzlich mindestens eine wässrige Phase enthält. Derartige multiple Emulsionen können im Aufbau den in DE-A-43 41 113 beschriebenen Emulsionen entsprechen.
  • Beim Einbringen der erfindungsgemäßen P/O-Emulsion in Wasser oder wässrige Systeme kann das Gewichtsverhältnis der einzelnen Phasen in weiten Bereichen variiert werden. Vorzugsweise beträgt in der letztendlich erhaltenen P/O/W-Emulsion der Gewichtsanteil der P/O-Emulsion 0,01 bis 80 Gew.-%, besonders bevorzugt 0,1 bis 70 Gew.-%, insbesondere 1 bis 30 Gew.-%, bezogen auf die gesamte P/O/W-Emulsion.
  • Beim Einbringen der erfindungsgemäßen P/O-Emulsion in eine O/W-Emulsion beträgt der' Anteil der P/O-Emulsion vorzugsweise 0,01 bis 60 Gew.-%, besonders bevorzugt 0,1 bis 40 Gew.-%, insbesondere 1 bis 30 Gew.-%, bezogen auf die letztendlich erhaltene P/O/W-Emulsion. In der O/W-Emulsion, die hierzu verwendet wird, beträgt der Ölanteil vorzugsweise 1 bis 80 Gew.-%, besonders bevorzugt 1 bis 30 Gew.-%, bezogen auf die eingesetzte O/W-Emulsion. Anstelle einer P/O-Emulsion kann auch eine W/O-Emulsion eingebracht werden, was zu einer W/O/W-Emulsion führt. Die einzelnen Phasen der Emulsionen können noch übliche für die einzelnen Phasen bekannte Inhaltsstoffe aufweisen. Beispielsweise können die einzelnen Phasen weitere in diesen Phasen lösliche pharmazeutische oder kosmetische Wirkstoffe enthalten. Die wässrige Phase kann beispielsweise organische lösliche Lichtschutzfilter, hydrophil gecoatetes Micropigment, Elektrolyte, Alkohole usw. enthalten. Einzelne oder alle der Phasen können zudem Feststoffe enthalten, die vorzugsweise ausgewählt sind aus Pigmenten oder Micropigmenten, Mikrosphären, Silikagel und ähnlichen Stoffen. Die Ölphase kann beispielsweise organisch modifizierte Tonmineralien, hydrophob gecoatete (Micro)Pigmente, organische öllösliche Lichtschutzfilter, öllösliche kosmetische Wirkstoffe, Wachse, Metallseifen wie Magnesiumstearat, Vaseline oder Gemische davon enthalten. Als (Micro)Pigmente können Titandioxid, Zinkoxid und Bariumsulfat sowie Wollastonit, Kaolin, Talk, Al2O3, Bismutoxidchlorid, micronisiertes Polyethylen, Glimmer, Ultramarin, Eosinfarben, Azofarbstoffe, genannt werden. Insbesondere Titandioxid oder Zinkoxid sind in der Kosmetik als Lichtschutzfilter gebräuchlich und lassen sich mittels der erfindungsgemäßen Emulsionen besonders glatt und gleichmäßig auf die Haut auftragen. Mikrosphären oder Silicagel können als Träger für Wirkstoffe eingesetzt werden, und Wachse können beispielsweise als Grundlage für Polituren verwendet werden.
  • Die Wasserphase kann darüber hinaus Glycerin, Polyethylenglykol, Propylenglykol, Ethylenglykol und ähnliche Verbindungen sowie Derivate davon enthalten.
  • Die Verwendung von üblichen Hilfs- und Zusatzstoffen in den Emulsionen ist dem Fachmann bekannt.
  • Als wässrige Phase können Wasser, wässrige Lösungen oder Mischungen von Wasser mit wassermischbaren Flüssigkeiten wie Glycerin oder Polyethylenglykol eingesetzt werden. Ferner können in der wässrigen Phase Elektrolyte wie Natriumchlorid enthalten sein. Falls gewünscht, können ferner viskositätserhöhende Stoffe oder Ladungsträger eingesetzt werden, wie sie in der EP-B-0605 497 beschrieben sind.
  • Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
  • Beispiele
  • Alle Versuche wurden in einer zweistufigen Vorrichtung durchgeführt, wobei Phase A und Phase B getrennt in das erste Mischgefäß geführt wurden, der Austrag und Phase C sodann getrennt in das zweite Mischgefäß geführt wurden. Die angegebenen Prozentangaben beziehen sich auf das Gewicht. Es wurden Teilchengrößen und innere Oberflächen mit einem Particle Size Analyzer (PSA) bestimmt.
  • Beispielrezepturen für kontinuierliche Emulsionsherstellung
  • Beispiel 1
  • Emulgierung eines Triglycerides
    Phase A:
    Protelan LS 9011 Sodium Sarcosinate Lauroyl 0,54 % 0,54 %
    Brij 35 P Nena Laureth-23 1,40 % 1,40 %
    Pricerine 9091 Glycerin 6,32 % 1,40 %
    demin. Wasser 2,25 % 2,10 %
    Phase B:
    Miglyol 812 N Caprylic/capric triglyceride 60,0 % 60,0 %
    Phase C:
    demin. Wasser 29,5 % 34,3 %
    100,0 % 99,7%
    Drehzahl Stufe 1 [min-1] 4000 4000
    Drehzahl Stufe 2 [min-1] 3200 3200
    Verweilzeit Stufe 1 [s] 10 10
    Verweilzeit Stufe 2 [s] 5 5
    PSA
    Median [µm] 0,39 0,44
    < 1 µm [%] 100,0 98,3
    cm2/cm3 16,5 15,3
  • Beispiel 2
  • Emulgierung eines Alkydharzes
    Probe
    Phase A:
    Protelan LS 9011 Sodium Lauroyl Sarcosinate 0,40 %
    Brij 35 P Nena Laureth-23 1,05 %
    Hexylenglykol Hexylene Glycol 1,50 %
    demin. Wasser 4,50 %
    Phase B:
    Woleekyd L3 Alkydharz 58,0 %
    Phase C:
    demin. Wasser 34,5 %
    100,0 %
    Drehzahl Stufe 1 [min-1] 3000
    Drehzahl Stufe 2 [min-1] 2400
    Verweilzeit Stufe 1 [s] 25
    Verweilzeit Stufe 2 [s] 16
    PSA
    Median [µm] 0,39
    < 1 µm [%] 100,0
    cm2/cm3 17,2
  • Beispiel 3
  • Emulgierung eines Acrylatharzes (80 % in EEP)
    Probe
    Phase A:
    Protelan LS 9011 Sodium Lauroyl Sarcosinate 0,38 %
    Brij 35 P Nena Laureth-23 0,41 %
    Brij 700 Steareth-100 0,41 %
    demin. Wasser 6,00 %
    Phase B:
    WorleeCryl-Produkt Acrylatharz 63,0 %
    Phase C:
    demin. Wasser 29,8 %
    100,0 %
    Drehzahl Stufe 1 [min-1] 3000
    Drehzahl Stufe 2 [min-1] 2400
    Verweilzeit Stufe 1 [s] 25
    Verweilzeit Stufe 2 [s] 16
    PSA
    Median [µm] 0,67
    < 1 µm [%] 82,0
    m2/cm3 11,0
  • Beispiel 4
  • Herstellung einer W/O Emulsion
    Rezeptur-Nr.:
    Handelsname Gew.-%
    Phase A
    Arlacel 1690 Sorbitan oleate, 7,00
    polyglyceryl ricinoleate
    Isopar L C10-13 isoparaffin 3,50
    Phase B
    demin. Wasser 40,00
    NaCl Sodium chloride 1,00
    Phase C
    Isopar L C10-13 isoparaffin 48,50
    Summe: 100,00
    Drehzahl Stufe 1 [min-1] 3750
    Drehzahl Stufe 2 [min-1] 3000
    Verweilzeit Stufe 1 [s] 25
    Verweilzeit Stufe 2 [s] 13
    PSA (Volume)
    Median [µm] 0,39
    < 1 µm [%] 100
    m2/cm3 17,3
  • Beispiel 5
  • Herstellung einer P/O Emulsion
    Rezeptur-Nr Produktionstag: Leer-PO
    Handelsname [Gew.-%]
    Phase A
    Dow Coming DC DC 5225 C Cyclomethicone, PEG/PPG- 13,80
    18/18 dimethicone
    Abil EM 97 Cetyl PEG/PPG-10/1 dimethicone 5,20
    Wacker Belsil CM 040 Cyclomethicone
    Phase B
    Propylene glycol (0,5 % NaCl) Propylene Glycol 71,00
    Phase C
    Wacker Belsil CM 040 Cyclomethicone 10,00
    Summe 100,00
    Drehzahl Stufe 1 [min-1] 3000
    Drehzahl Stufe 2 [min-1] 2400
    Verweilzeit Stufe 1 [s] 20
    Verweilzeit Stufe 2 [s] 18
    PSA (Volume)
    Median [µm] 0,71
    < 1 µm [%] 83
    m2/cm3 9,97
  • Beispiel 6
  • Herstellung einer Basis-OW
    Rezeptur-Nr.:
    Handelsname [Gew.-%]
    Phase A
    Biobase RS Glycerin stearate, cetyl alcohol, sodium stearoyl lactylate, tocopherol 2,50
    Vara AB Petrolatum 5,00
    Cosmacol EBI C12 - 15 Alkyl benzoate 5,00
    Cetiol J 600 Oleyl-erucate 3,70
    Abil 350 Dimethicone 1,30
    Vitamin E Acetat Tocopheryl acatate 1,00
    Phase B
    demin. Wasser 3,70
    Brij 700 Stearath-100 0,50
    Keltrol Xanthan-Gum 0,30
    Phase C
    demin. Wasser 77,0
    Summe 100,00
    Drehzahl Stufe 1 [min-1] 4000
    Drehzahl Stufe 2 [min-1] 3200
    Verweilzeit Stufe 1 [s] 20
    Verweilzeit Stufe 2 [s] 5
  • Beispiel 7
  • Herstellung einer SLN Emulsion
    Phase A:
    Protelan LS 9011 Sodium Lauroyl Sarcosinate 0,75 %
    Brij 35 P Nena Laureth-23 1,30 %
    Pricerine 9091 Glycerin 2,25 %
    demin. Wasser 2,25 %
    Phase B:
    Cutina CP Cetyl palmitate 44,8 %
    a-Tocopherol Tocopherol 11,2 %
    Phase C:
    demin. Wasser 37,5 %
    100,0 %
    Drehzahl Stufe 1 [min-1] 4000
    Drehzahl Stufe 2 [min-1] 3200
    Verweilzeit Stufe 1 [s] 12
    Verweilzeit Stufe 2 [s] 8.
    PSA (Area)
    Median [µm] 0,36
    < 1 µm [%] 100,0
    cm2/cm3 16,8

Claims (13)

  1. Vorrichtung zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen unter Luftausschluss, umfassend ein allseits geschlossenes Mischgefäss, das Zu-und Abführrohre zum Ein-und Austrag von fliessfähigen Stoffen oder Stoffgemischen sowie ein Rührwerkzeug aufweist, das einen Rühreintrag in die Emulsion oder Dispersion ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erlaubt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Mischgefäss eine im wesentlichen zylindrische Form aufweist, die Achse des-Rührwerkzeugs in der Zylinderachse liegt und die Zu-und Abführrohre im wesentlichen senkrecht zur Zylinderachse im oberen und unteren Umfangsbereich des Zylinders voneinander beabstandet angeordnet sind.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Abführrohr mindestens ein Sensor zur kontinuierlichen Messung der Temperatur, Leitfähigkeit und/oder optischen Eigenschaften der Emulsion oder Dispersion angeordnet ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie mindestens zwei in Reihe hintereinander geschaltete Mischgefässe aufweist, wobei der Austrag aus dem ersten Mischgefäss ins zweite Mischgefäss eingetragen wird und ein weiteres Zuführrohr in das zweite Mischgefäss vorgesehen ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mischgefässe unabhängig voneinander temperiert werden können.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Zufuhr der fliessfähigen Stoffe und der Rühreintrag und gegebenenfalls die Temperierung der Mischgefässe rechnergesteuert sind.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Vorrichtung bei Niederdruck, insbesondere bei einem Druck im Bereich von 1 bis 10 bar, besonders bevorzugt bei 1 bis 1,5 bar betrieben werden kann.
  8. Verfahren zur kontinuierlichen Herstellung von Emulsionen und Dispersionen unter Luftausschluss, bei dem mindestens zwei fliessfähige Ströme mindestens zweier Phasen der Emulsionen oder Dispersionen getrennt kontinuierlich in ein allseitig geschlossenes Mischgefäss dosiert werden, in dem sie unter Rühreintrag in eine Emulsion oder Dispersion überführt werden, und die Emulsion/Dispersion kontinuierlich aus dem Mischgefäss ausgetragen wird, wobei der Rühreintrag ohne Erzeugung von Kavitationskräften und ohne Hochdruckhomogenisierung erfolgt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Verhältnis der mindestens zwei fliessfähigen Ströme zueinander so eingestellt wird, dass im Mischgefäss einviskoelastischer Bereich der Mischung eingestellt wird.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die aus dem ersten Mischgefäss ausgetragene Emulsion oder Dispersion und ein weiterer fliessfähiger Strom in ein zweites allseitig geschlossenes Mischgefäss dosiert werden, aus dem die gewünschte Emulsion oder Dispersion ausgetragen wird.
  11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass es in einer Vorrichtung gemäss einem der Ansprüche 1 bis 6 durchgeführt wird.
  12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass es zur Herstellung von Nanoemulsionen, Nanodispersionen oder SLN-Dispersionen eingesetzt wird.
  13. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass das Verfahren bei Niederdruck, insbesondere bei einem Druck im Bereich von 1 bis 10 bar, besonders bevorzugt bei 1 bis 1,5 bar durchgeführt wird.
EP06015110.7A 2003-03-21 2003-03-21 Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen Expired - Lifetime EP1707256B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06015110.7A EP1707256B1 (de) 2003-03-21 2003-03-21 Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06015110.7A EP1707256B1 (de) 2003-03-21 2003-03-21 Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen
EP03816337A EP1606044B2 (de) 2003-03-21 2003-03-21 Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP03816337A Division EP1606044B2 (de) 2003-03-21 2003-03-21 Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen

Publications (2)

Publication Number Publication Date
EP1707256A1 true EP1707256A1 (de) 2006-10-04
EP1707256B1 EP1707256B1 (de) 2016-10-19

Family

ID=36741191

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06015110.7A Expired - Lifetime EP1707256B1 (de) 2003-03-21 2003-03-21 Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen

Country Status (1)

Country Link
EP (1) EP1707256B1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040902A1 (en) 2008-10-09 2010-04-15 Tikkurila Oy Wood impregnation
WO2010040903A1 (en) 2008-10-09 2010-04-15 Tikkurila Oy Impregnation with an emulsion
CN113750888A (zh) * 2021-09-13 2021-12-07 名生科技发展集团有限公司 一种化工染液混合处理设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579461A (en) * 1967-11-20 1971-05-18 Johnson & Son Inc S C Emulsification process
US4539139A (en) * 1983-05-06 1985-09-03 Fuji Photo Film Co., Ltd. Process for the preparation of oil-in-water emulsions
US5250576A (en) * 1991-08-12 1993-10-05 The Procter & Gamble Company Process for preparing emulsions that are polymerizable to absorbent foam materials

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1584126A (en) 1925-01-27 1926-05-11 Milk Oil Corp Process of emulsifying and converting fats into cream
DE1297445B (de) 1966-05-25 1969-06-12 Buehner Willy Vorrichtung zum kontinuierlichen Dispergieren und Homogenisieren von vorwiegend viskosen Stoffen
US3600328A (en) 1968-12-10 1971-08-17 Union Oil Co Apparatus for forming emulsions
DE2625149C3 (de) 1976-06-04 1981-01-08 Hoechst Ag, 6000 Frankfurt Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Vinylchloridpolymerisaten in wäßriger Emulsion
JPS5334809A (en) 1976-09-10 1978-03-31 Funken Kk Apparatus and method of making emulsion colloid fuels and emulsion fuel by continuous spray mixture machine
US4123403A (en) 1977-06-27 1978-10-31 The Dow Chemical Company Continuous process for preparing aqueous polymer microsuspensions
EP0082908A1 (de) 1981-12-29 1983-07-06 Willy A. Bachofen AG Verfahren zur Herstellung einer Dispersion oder Suspension und Vorrichtung zur Durchführung des Verfahrens
GB2117666B (en) 1982-03-09 1986-02-26 Univ Manchester Emulsification
JPS6168131A (ja) 1984-09-11 1986-04-08 Pola Chem Ind Inc 多段分散室を有する連続乳化装置
FR2627342B1 (fr) 1988-02-16 1990-07-20 Applic Util Proprietes Ele Dispositif d'alimentation de tube luminescent
DE4202212A1 (de) 1992-01-28 1993-07-29 Basf Ag Kontinuierliches verfahren zur herstellung von waessriger polyacrylat-sekundaerdispersionen
JP3765598B2 (ja) 1995-07-20 2006-04-12 富士写真フイルム株式会社 連続乳化槽及び連続乳化方法
US5749653A (en) 1996-03-28 1998-05-12 Union Carbide Chemicals & Plastics Technology Corporation Continuous squeeze flow mixing process
FR2747321B1 (fr) 1996-04-16 1998-07-10 Centre Nat Rech Scient Procede de preparation d'une emulsion
JP3705461B2 (ja) 1996-12-26 2005-10-12 富士写真フイルム株式会社 ハロゲン化銀乳剤の製造方法及びハロゲン化銀写真乳剤
DE19828742A1 (de) 1998-06-27 1999-12-30 Basf Coatings Ag Taylorreaktor für Stoffumwandlungen, bei deren Verlauf einer Änderung der Viskosität v des Reaktionsmediums eintritt
FR2786780B1 (fr) 1998-12-08 2001-03-02 Elf Antar France Procede de preparation d'un combustible emulsionne et son dispositif de mise en oeuvre
FR2787326B1 (fr) 1998-12-17 2001-01-26 Oreal Nanoemulsion a base d'esters gras de glycerol, et ses utilisations dans les domaines cosmetique, dermatologique et/ou ophtalmologique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579461A (en) * 1967-11-20 1971-05-18 Johnson & Son Inc S C Emulsification process
US4539139A (en) * 1983-05-06 1985-09-03 Fuji Photo Film Co., Ltd. Process for the preparation of oil-in-water emulsions
US5250576A (en) * 1991-08-12 1993-10-05 The Procter & Gamble Company Process for preparing emulsions that are polymerizable to absorbent foam materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040902A1 (en) 2008-10-09 2010-04-15 Tikkurila Oy Wood impregnation
WO2010040903A1 (en) 2008-10-09 2010-04-15 Tikkurila Oy Impregnation with an emulsion
CN113750888A (zh) * 2021-09-13 2021-12-07 名生科技发展集团有限公司 一种化工染液混合处理设备

Also Published As

Publication number Publication date
EP1707256B1 (de) 2016-10-19

Similar Documents

Publication Publication Date Title
EP1606044B2 (de) Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen
EP1868573B1 (de) Verfahren zur herstellung ultrafeiner submicron-suspensionen
EP0605497B2 (de) Arzneistoffträger aus festen lipidteilchen (feste lipidnanosphären (sln))
EP1194123B1 (de) Verfahren zur schonenden herstellung von hochfeinen mikropartikeln und nanopartikeln
WO2004026452A1 (de) Verfahren und durchflusszelle zur kontinuierlichen bearbeitung von fliessfähigen zusammensetzungen mittels ultraschall
EP2412431A1 (de) Dispersion und herstellungsverfahren dafür
EP0790821A1 (de) Pharmazeutische nanosuspensionen zur arzneistoffapplikation als systeme mit erhöhter sättigungslöslichkeit und lösungsgeschwindigkeit
Zielińska et al. Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients
DE10312763A1 (de) Verfahren zur Herstellung einer SLN-Dispersion
EP1707256B1 (de) Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen
EP1929271A1 (de) Vorrichtung zur in-line-prozesskontrolle bei der herstellung von emulsionen oder dispersionen
DE202005015341U1 (de) Vorrichtung zur In-Line-Prozesskontrolle bei der Herstellung von Emulsionen oder Dispersionen
KR20060004918A (ko) 에멀젼 또는 분산액을 연속적으로 제조하는 장치 및 방법
US20220273582A1 (en) Continuous method for nano-emulsification by concentration phase inversion
KR20090010153A (ko) 유화물 또는 분산물 제조과정 중에 인라인 프로세스 제어를위한 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1606044

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060913

17Q First examination report despatched

Effective date: 20061012

AKX Designation fees paid

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KEMIRA OYJ

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 3/12 20060101ALI20160421BHEP

Ipc: B01F 13/10 20060101ALI20160421BHEP

Ipc: B01F 3/08 20060101AFI20160421BHEP

INTG Intention to grant announced

Effective date: 20160503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1606044

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315565

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50315565

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BASF SE

Effective date: 20170710

26 Opposition filed

Opponent name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

Effective date: 20170718

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50315565

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20190116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210323

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210324

Year of fee payment: 19

Ref country code: DE

Payment date: 20210319

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50315565

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003080000

Ipc: B01F0023400000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315565

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220321

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001