EP1706599A1 - Method and system for converting heat energy into mechanical energy - Google Patents

Method and system for converting heat energy into mechanical energy

Info

Publication number
EP1706599A1
EP1706599A1 EP04804988A EP04804988A EP1706599A1 EP 1706599 A1 EP1706599 A1 EP 1706599A1 EP 04804988 A EP04804988 A EP 04804988A EP 04804988 A EP04804988 A EP 04804988A EP 1706599 A1 EP1706599 A1 EP 1706599A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
compressor
energy
condensed
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04804988A
Other languages
German (de)
French (fr)
Other versions
EP1706599B1 (en
Inventor
Erwin Oser
Michael Rannow
Hubert Hamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecoenergy Patent GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34714591&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1706599(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE2003160380 external-priority patent/DE10360380A1/en
Priority claimed from DE2003160379 external-priority patent/DE10360379A1/en
Priority claimed from DE2003160364 external-priority patent/DE10360364A1/en
Priority claimed from DE2003161223 external-priority patent/DE10361223A1/en
Priority claimed from DE2003161203 external-priority patent/DE10361203A1/en
Application filed by Individual filed Critical Individual
Publication of EP1706599A1 publication Critical patent/EP1706599A1/en
Application granted granted Critical
Publication of EP1706599B1 publication Critical patent/EP1706599B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Definitions

  • the invention relates to a method for converting heat energy into mechanical energy by expanding a vaporous working medium through a expansion device connected to a first heat exchanger.
  • thermal power plants are known in which a working fluid is isobarically heated to the boiling point at a high pressure in a boiler, evaporated and then still overheated in a superheater. The steam is then expanded adiabatically in a turbine, performing work, and in a condenser, giving off heat liquefied. The liquid is brought to a pressure by the feed water pump and returned to the boiler.
  • One of the disadvantages of these devices is that high pressure of over 15 bar to 200 bar must be generated in the expansion processes in turbines, since in turbines the pressure ratio of the expansion achieved is decisive for the efficiency achieved.
  • Another disadvantage of the known thermal power plant is the accumulation of condensation heat from the condensation of the working fluid, which is dissipated as waste heat with cooling systems in these plants.
  • the invention has for its object to provide a method and a system for converting thermal energy into mechanical energy, which avoid the disadvantages mentioned, in particular have an improved efficiency.
  • the method according to the invention has a low-pressure expansion circuit and an energy recirculation circuit, in the low-pressure expansion circuit the expansion of the working medium takes place in a low-pressure expansion device and the expanded working medium is condensed in a second heat exchanger downstream of the expansion device, in which evaporation of a Operating fluid is effected in the second heat exchanger within the energy recirculation circuit, which is conveyed via a compressor to the first heat exchanger in which the operating fluid is condensed, the working fluid being evaporated in the first heat exchanger within the low-pressure expansion circuit, the molar evaporation enthalpy of the operating fluid is more than four times the molar enthalpy of vaporization of the working fluid.
  • the "residual heat" of the relaxed working medium can be used to in turn use it for the evaporation process in the first heat exchanger.
  • the relaxed working medium is condensed in the second heat exchanger, with the heat of condensation being released onto the operating medium which evaporates in the process.
  • the energy recirculation circuit which is similar to a heat pump, is furthermore the vaporous equipment is brought to an elevated temperature level by compression.
  • the operating medium condenses in the subsequent first heat exchanger, the heat released being transferred to the evaporating working medium. This significantly improves the system's energy efficiency.
  • the working medium preferably has a large heat capacity, so that the working medium experiences a relatively low temperature decrease during relaxation.
  • the heat pump in which the condensation energy is transformed back to the temperature level of the evaporation of the working medium, can operate with a low energy requirement and a good power factor.
  • the vaporous operating medium is transformed with the help of the heat pump to a temperature level above the boiling point of the working medium.
  • This energy return can be implemented using a one-component device.
  • the heat pump is operated with the liquid-superimposed compressor system, for example a liquid ring pump or a screw compressor, and an operating medium is used to operate the heat pump, the molar enthalpy of vaporization of which is several times, preferably more than four times, particularly preferably more than five times the evaporation enthalpy of the working fluid for the relaxation is. According to the invention, this results in an excess of the energy return over the drive energy of the heat pump.
  • a device is used as the low-pressure expansion device in which neither the mass of the steam nor the pressure ratio, but only the pressure difference is relevant.
  • the low-pressure expansion device is designed as a Roots blower - as a Roots blower - or in the form of an oval gear pump. It is advantageous that the Roots blower can work as an expansion device (expansion motors) with a pressure difference of 500 mbar with almost full efficiency and can be used in a closed system at pressures of 10 to 0.5 bar.
  • the Roots blower is preferably connected to a generator that converts the mechanical energy into electrical energy.
  • the Roots blower expediently has a gas-tight seal between the scoop space and the gear space, in a further embodiment the Roots blower comprising multi-bladed rotors.
  • the working medium has a low volume-specific or low molar enthalpy of vaporization. This ensures that a large amount of motive steam is generated with a predetermined amount of thermal energy.
  • the working medium is preferably a correspondingly selected inorganic or organic solvent.
  • the working medium can also be a solvent mixture which has organic and / or inorganic solvent components with corresponding thermodynamic data. Examples of this are mixtures of water and selected silicones.
  • the temperature of the operating medium in the energy return circuit is increased by the mechanical compression by means of a liquid-superimposed compressor, the operating medium temperature in the compressor additionally by heat exchange with a fluid with which the compressor is operated and which is in direct contact with the Equipment stands, increased.
  • these liquid-superimposed compressors can be operated with a high-boiling fluid. Since the fluid does not have a lubricating function but a pure sealing function in the liquid-superimposed compressors, practically any equipment up to water can be used in the process according to the invention in the energy recirculation circuit, which have high molar heat of evaporation, large temperature jumps in the low pressure range and high operating temperatures of the compressor allow.
  • the liquid ring pump can advantageously transfer a large part of the work output as heat to the operating medium, which can heat up above the saturation temperature, as a result of which the efficiency of the method can be increased considerably. Furthermore, the liquid ring pump ensures that the operating medium does not accumulate in the compressor to such an extent that the pumping speed is possibly reduced as a result.
  • performance figures as a ratio of recirculated thermal energy to compressor drive work can be achieved which are more than three times the value of conventional heat pumps. Temperatures of the equipment after the temperature increase of over 180 ° C can be achieved with the inventive method.
  • Fluids such as high-boiling silicone oils or diester oils or plasticizers such as dioctyl phthalate with viscosities of up to 50 centistokes (cts) are particularly favorable.
  • the boiling temperature of the fluid is advantageously higher than the temperature of the operating medium after the temperature increase.
  • the liquid-superimposed compressor can have ring gassing, which prevents over-compression.
  • a mixture of alcohols for example, can be used as the operating medium, in which the evaporation temperature can be approximately 20 ° C. and the condensation temperature 80 ° C.
  • An A3 solvent as an operating medium is also conceivable, in which the evaporation temperature can be approximately 90 ° C and the condensation temperature 180 ° C.
  • a major advantage of this invention is that higher temperature levels can be achieved in the equipment than has been possible with CFC tools, for example.
  • the thermal energy is generated in a refrigeration machine in which a refrigerant is evaporated in an evaporator.
  • the vaporous refrigerant is conveyed via a compressor to the first heat exchanger, in which the refrigerant condenses. This releases heat of condensation, which is transferred to the working fluid evaporating in the first heat exchanger.
  • the condensed refrigerant is returned to the evaporator via an expansion valve.
  • a warm air flow having a certain degree of moisture, which is passed through the evaporator is preferably cooled with heat being given off to the refrigerant, water being obtained as condensate, which is collected in a container.
  • the electricity generated by the generator can be used as drive power for the electrically driven units of the overall system, including the refrigerant circuit, the low-pressure expansion circuit and the energy recovery circuit.
  • the energy to be applied externally and thus the energy costs of “water extraction from air” are significantly reduced by means of the condensation of work equipment and operating resources described above.
  • the object of the invention is also achieved by a system for converting heat energy into mechanical energy with the features of claim 15. Preferred further developments are set out in the dependent claims.
  • the invention relates to a system which has a refrigerant circuit, a low-pressure expansion circuit and an energy return circuit which are connected to one another.
  • a refrigerant is evaporated in an evaporator in the refrigerant circuit, which is conveyed via a compressor into a first heat exchanger.
  • the refrigerant condenses in the first heat exchanger and is returned to the evaporator via an expansion valve, whereby water that accumulates in the evaporator when an air stream is cooled is collected in a container.
  • a working fluid is evaporated in the first heat exchanger, which absorbs the condensation heat released in the first heat exchanger.
  • the vaporous working medium is expanded, passed into a second heat exchanger, in which it condenses.
  • the relaxation process converts the thermal energy contained in the working fluid into mechanical energy.
  • the low-pressure relaxation device furthermore has a shaft which is connected to a generator, so that the mechanical energy can ultimately be transformed into electrical energy.
  • the condensed work center is pumped back into the first heat exchanger.
  • an operating medium is evaporated in the second heat exchanger, whereby it absorbs the heat of condensation of the working medium of the low-pressure expansion circuit.
  • the vaporous operating medium is then conveyed via a liquid-superimposed compressor into the first heat exchanger, in which the operating medium condenses.
  • the condensed operating fluid is fed back into the first heat exchanger via an expansion valve.
  • Figure 1 shows a system that can extract water from the air.
  • the preferably warm air contains water vapor in the form of atmospheric moisture.
  • An air flow is generated by a fan 12 and is passed through the evaporator 1 of a refrigerant circuit.
  • the evaporator 1 has heat exchange surfaces, not shown, which are cooled.
  • the heat exchange surfaces can be designed, for example, as a tube through which a refrigerant flows. The warm air flow cools down, whereby the heat is transferred via the heat exchange surfaces to the refrigerant, which evaporates.
  • the vaporous refrigerant which in the present exemplary embodiment has a pressure between 2-8 bar and a temperature of approximately 5-10 ° C., is conveyed via a compressor 2 into a first heat exchanger 3, in which the refrigerant condenses.
  • a first heat exchanger 3 in which the refrigerant condenses.
  • the vaporous refrigerant enters the first heat exchanger 3, it has a pressure of approximately 10-20 bar and a temperature of up to approximately 80 ° C or 110 ° C.
  • the heat of condensation released is transferred to a working medium in a low-pressure expansion circuit.
  • the condensed refrigerant is passed back into the evaporator 1 via a relief valve 10.
  • the working fluid is evaporated in the first heat exchanger 3 and expanded in a downstream low-pressure expansion device 4.
  • the low-pressure expansion device 4 is designed as a roots blower 4, in which the thermal energy is converted into mechanical energy.
  • the Roots blower 4 also has a shaft which is connected to a generator 7, whereby the mechanical energy is converted into electrical energy.
  • the relaxed working medium is then condensed in a second heat exchanger 5, with a further operating medium located in the second heat exchanger 5 being evaporated due to the heat of condensation generated.
  • the condensed working fluid is conveyed back into the first heat exchanger 3 via a pump 8.
  • the molar enthalpy of vaporization of the operating medium is five times the molar enthalpy of vaporization of the working medium.
  • the vaporous operating medium is compressed in a liquid ring pump 6.
  • the liquid ring pump 6 is operated with a fluid which is in direct contact with the operating medium. It is advantageous in this embodiment that the equipment is additionally heated within the liquid ring pump 6 in addition to the compression, in that a certain amount of heat is transferred from the fluid to the operating medium.
  • the operating medium is heated above the evaporation temperature of the working medium of the low-pressure expansion circuit, so that the energy can be used to evaporate the working medium in the first heat exchanger 3.
  • the operating medium condenses in the downstream first heat exchanger 3 and is then conveyed back to the second heat exchanger 5 via an expansion valve 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A method of converting heat energy generated in an evaporator to mechanical energy by expanding an evaporated working fluid includes evaporating the working fluid in the evaporator and expanding the evaporated working fluid in an expansion device. The expansion is in a low-pressure expansion device which is formed as a roots blower in which the working fluid is expanded and heat energy is converted to mechanical energy.

Description

VERFAHREN UND ANLAGE ZUR UMWANDLUNG VON ANFALLENDER WÄRMEENERGIE IN MECHANISCHE ENERGIEMETHOD AND INSTALLATION FOR CONVERTING HEATING ENERGY INTO MECHANICAL ENERGY
Die Erfindung betrifft ein Verfahren zur Umwandlung von anfallender Wärmeenergie in mechanische Energie durch Entspannung eines dampfförmigen Arbeitsmittels durch eine mit einem ersten Wärmetauscher verbundene Entspannungsvorrichtung.The invention relates to a method for converting heat energy into mechanical energy by expanding a vaporous working medium through a expansion device connected to a first heat exchanger.
Aus dem Stand der Technik sind eine Vielzahl von Anlagen sowie Verfahren zur Umwandlung von Wärmeenergie in mechanische Energie bekannt. Es sind beispielsweise Wärmekraftanlagen bekannt, in denen in einem Kessel ein Arbeitsmittel bei einem hohen Druck isobar bis zum Siedepunkt erwärmt wird, verdampft und anschließend in einem Überhitzer noch überhitzt wird. Der Dampf wird anschließend in einer Turbine unter Verrichtung von Arbeit adiabat entspannt und in einem Kondensator unter Wärmeabgabe verflüssigt. Die Flüssigkeit wird von der Speisewasserpumpe auf einen Druck gebracht und wieder in den Kessel gefordert. Einer der Nachteile dieser Vorrichtungen ist, dass bei den Entspannungsprozessen in Turbinen hohe Drücke von über 15 bar bis 200 bar erzeugt werden müssen, da bei Turbinen das realisierte Druckverhältnis der Entspannung für den erreichten Wirkungsgrad entscheidend ist. Ein weiterer Nachteil der bekannten Wärmekraftanlage ist das Anfallen von Kondensationswärme aus der Kondensation des Arbeitsmittels, die bei diesen Anlagen als Abwärme mit Kühlsystemen abgeführt wird.A large number of plants and methods for converting thermal energy into mechanical energy are known from the prior art. For example, thermal power plants are known in which a working fluid is isobarically heated to the boiling point at a high pressure in a boiler, evaporated and then still overheated in a superheater. The steam is then expanded adiabatically in a turbine, performing work, and in a condenser, giving off heat liquefied. The liquid is brought to a pressure by the feed water pump and returned to the boiler. One of the disadvantages of these devices is that high pressure of over 15 bar to 200 bar must be generated in the expansion processes in turbines, since in turbines the pressure ratio of the expansion achieved is decisive for the efficiency achieved. Another disadvantage of the known thermal power plant is the accumulation of condensation heat from the condensation of the working fluid, which is dissipated as waste heat with cooling systems in these plants.
Des Weiteren sind Kältemaschinen bekannt, bei denen Kondensationsäbwärme anfallt, die nachteiligerweise als Verlustwärme abgeführt wird.Furthermore, refrigeration machines are known in which condensation heat is generated, which is disadvantageously dissipated as heat loss.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie eine Anlage zur Umwandlung von Wärmeenergie in mechanische Energie zu schaffen, die die genannten Nachteile vermeiden, insbesondere einen verbesserten Wirkungsgrad aufweisen.The invention has for its object to provide a method and a system for converting thermal energy into mechanical energy, which avoid the disadvantages mentioned, in particular have an improved efficiency.
Zur Lösung dieser Aufgäbe wird ein Verfahren mit den Merkmalen des Anspruches 1 vorgeschlagen. In den abhängigen Ansprüchen sind bevorzugte Weiterbildungen ausgeführt.To solve these tasks, a method with the features of claim 1 is proposed. Preferred further developments are set out in the dependent claims.
Dazu weist das erfindungsgemäße Verfahren einen Niederdruck-Entspannungskreislauf und einen Energie-Rückführungskreislauf, wobei in dem Niederdruck-Entspannungskreislauf die Entspannung des Arbeitsmittels in einer Niederdruck-Entspannungsvorrichtung erfolgt und das entspannte Arbeitsmittel in einem der Entspannungsvorrichtung nachgeschalteten zweiten Wärmetauscher kondensiert wird, in dem eine Verdampfung eines Betriebsmittels im zweiten Wärmetauscher innerhalb des Energie-Rückfijhrungskreislaufes bewirkt wird, das über einen Verdichter zum ersten Wärmetauscher gefördert wird, in dem das Betriebsmittel kondensiert wird, wobei eine Verdampfung des Arbeitsmittels im ersten Wärmetauscher innerhalb des Niederdruck-Entspannungskreislaufes erfolgt, wobei die molare Verdampfungsenthalpie des Betriebsmittels mehr als das vierfache der molaren Verdampfungsenthalpie des Arbeitsmittels beträgt. Einer der wesentlichen Merkmale der Erfindung ist, dass die „Restwärme" des entspannten Arbeitsmittels genutzt werden kann, um diese wiederum für den Verdampfungsvorgang im ersten Wärmetauscher einzusetzen. Hierbei erfolgt im zweiten Wärmetauscher eine Kondensation des entspannten Arbeitsmittels, wobei die frei werdende Kondensationswärme auf das Betriebsmittel übertragen wird, welches hierbei verdampft. Innerhalb des Energie-Rückführungskreislaufes, der einer Wärmepumpe gleicht, wird ferner das dampfförmige Betriebsmittel durch die Verdichtung auf ein erhöhtes Temperaturniveau gebracht. Im sich anschließenden ersten Wärmetauscher kondensiert das Betriebsmittel, wobei die frei werdende Wärme auf das verdampfende Arbeitsmittel übertragen wird. Somit wird der energetische Wirkungsgrad der Anlage wesentlich verbessert. Das Arbeitsmittel weist vorzugsweise eine große Wärmekapazität auf, so dass das Arbeitsmittel bei der Entspannung eine relativ geringe Temperaturerniedrigung erfährt. Folglich kann die Wärmepumpe, bei der die Kondensationsenergie wieder auf das Temperaturmveau der Verdampfung des Arbeitsmittels transformiert wird, mit einem geringen Energiebedarf und einer guten Leistungsziffer arbeiten.For this purpose, the method according to the invention has a low-pressure expansion circuit and an energy recirculation circuit, in the low-pressure expansion circuit the expansion of the working medium takes place in a low-pressure expansion device and the expanded working medium is condensed in a second heat exchanger downstream of the expansion device, in which evaporation of a Operating fluid is effected in the second heat exchanger within the energy recirculation circuit, which is conveyed via a compressor to the first heat exchanger in which the operating fluid is condensed, the working fluid being evaporated in the first heat exchanger within the low-pressure expansion circuit, the molar evaporation enthalpy of the operating fluid is more than four times the molar enthalpy of vaporization of the working fluid. One of the essential features of the invention is that the "residual heat" of the relaxed working medium can be used to in turn use it for the evaporation process in the first heat exchanger. In this case, the relaxed working medium is condensed in the second heat exchanger, with the heat of condensation being released onto the operating medium which evaporates in the process. Within the energy recirculation circuit, which is similar to a heat pump, is furthermore the vaporous equipment is brought to an elevated temperature level by compression. The operating medium condenses in the subsequent first heat exchanger, the heat released being transferred to the evaporating working medium. This significantly improves the system's energy efficiency. The working medium preferably has a large heat capacity, so that the working medium experiences a relatively low temperature decrease during relaxation. As a result, the heat pump, in which the condensation energy is transformed back to the temperature level of the evaporation of the working medium, can operate with a low energy requirement and a good power factor.
Das dampfförmige Betriebsmittel wird mit Hilfe der Wärmepumpe auf ein Temperaturniveau oberhalb der Siedetemperatur des Arbeitsmittels transformiert. Diese Energierückführung kann hierbei über ein einkomponentiges Betriebsmittel realisiert werden. Dazu wird die Wärmepumpe mit dem flüssigkeitsüberlagerten Verdichtersystem, beispielsweise einer Flüssigkeitsringpumpe oder einem Schraubenverdichter, betrieben und für den Betrieb der Wärmepumpe ein Betriebsmittel verwendet, deren molare Verdampfungsenthalpie ein Mehrfaches, vorzugsweise mehr als das Vierfache, besonders bevorzugt mehr als das Fünffache der Verdampfungsenthalpie des Arbeitsmittels für die Entspannung beträgt. Erfindungsgemäß wird dadurch ein Überschuss der Energierückfiihrung über die Antriebsenergie der Wärmepumpe erreicht.The vaporous operating medium is transformed with the help of the heat pump to a temperature level above the boiling point of the working medium. This energy return can be implemented using a one-component device. For this purpose, the heat pump is operated with the liquid-superimposed compressor system, for example a liquid ring pump or a screw compressor, and an operating medium is used to operate the heat pump, the molar enthalpy of vaporization of which is several times, preferably more than four times, particularly preferably more than five times the evaporation enthalpy of the working fluid for the relaxation is. According to the invention, this results in an excess of the energy return over the drive energy of the heat pump.
Als Niederdruck-Entspannungsvorrichtung wird eine Vorrichtung verwendet werden, bei der weder die Masse des Dampfes noch das Druckverhältnis, sondern allein die Druckdifferenz relevant ist.A device is used as the low-pressure expansion device in which neither the mass of the steam nor the pressure ratio, but only the pressure difference is relevant.
In einer besonders bevorzugten Ausführungsform ist die Niederdruck- Entspannungsvorrichtung als Wälzkolbengebläse - als Rootsgebläse - oder in Form einer Ovalradpumpe ausgeführt. Vorteilhaft ist, dass das Wälzkolbengebläse als Entspannungsvorrichtung (Entspannungsmotoren) schon mit einer Druckdifferenz von 500 mbar mit einem nahezu vollen Wirkungsgrad arbeiten kann und in einem geschlossenen System bei Drücken von 10 bis 0,5 bar eingesetzt werden kann. Das Wälzkolbengebläse ist vorzugsweise mit einem Generator verbunden, der die mechanische Energie in elektrische Energie umwandelt. Zweckmäßigerweise weist das Wälzkolbengebläse eine gasdichte Dichtung zwischen Schöpfraum und Getrieberaum auf, wobei in einer weiteren Ausfuhrungsform das Wälzkolbengebläse mehrflügelige Rotoren umfasst.In a particularly preferred embodiment, the low-pressure expansion device is designed as a Roots blower - as a Roots blower - or in the form of an oval gear pump. It is advantageous that the Roots blower can work as an expansion device (expansion motors) with a pressure difference of 500 mbar with almost full efficiency and can be used in a closed system at pressures of 10 to 0.5 bar. The Roots blower is preferably connected to a generator that converts the mechanical energy into electrical energy. The Roots blower expediently has a gas-tight seal between the scoop space and the gear space, in a further embodiment the Roots blower comprising multi-bladed rotors.
In einer bevorzugten Ausführungsform weist das Arbeitsmittel eine geringe volumenspezifische beziehungsweise geringe molare Verdampfungsenthalpie auf. Damit wird erreicht, dass mit einer vorgegebenen Menge an Wärmeenergie eine große Menge an Treibdampf erzeugt wird. Vorzugsweise ist das Arbeitsmittel ein entsprechend ausgewähltes anorganisches oder organisches Lösemittel. Das Arbeitsmittel kann auch ein Lösemittelgemisch sein, das organische und/oder anorganische Lösemittelkomponenten mit entsprechenden thermodynamischen Daten aufweist. Beispiele hierfür sind etwa Gemische aus Wasser und ausgewählten Silikonen.In a preferred embodiment, the working medium has a low volume-specific or low molar enthalpy of vaporization. This ensures that a large amount of motive steam is generated with a predetermined amount of thermal energy. The working medium is preferably a correspondingly selected inorganic or organic solvent. The working medium can also be a solvent mixture which has organic and / or inorganic solvent components with corresponding thermodynamic data. Examples of this are mixtures of water and selected silicones.
In einer weiteren Alternative der Erfindung erfolgt eine Temperaturerhöhung des Betriebsmittels im Energie-Rückführungskreislauf durch die mechanische Verdichtung mittels eines flüssigkeitsüberlagerten Verdichters, wobei zusätzlich die Betriebsmitteltemperatur im Verdichter durch einen Wärmeaustausch mit einem Fluid, mit dem der Verdichter betrieben wird und das unmittelbar in Kontakt mit dem Betriebsmittel steht, erhöht. Besonders vorteilhaft ist, dass diese flüssigkeitsüberlagerten Verdichter mit einem .hochsiedenden Fluid betrieben werden können. Da in den flüssigkeitsüberlagerten Verdichtem das Fluid keine Schmierfunktion sondern eine reine Dichtungsfunktion ausübt, können bei dem erfindungsgemäßen Verfahren in dem Energie-Rückführungskreislauf praktisch beliebige Betriebsmittel bis hin zu Wasser eingesetzt werden, die hohe molare Verdampfungswärmen, im Niederdruckbereich große Temperatursprünge haben und hohe Betriebstemperaturen des Verdichters erlauben. Die Flüssigkeitsringpumpe, als eine mögliche Alternative der Erfindung, kann vorteilhafterweise einen großen Teil der Arbeitsleistung als Wärme auf das Betriebsmittel übertragen, welches sich über die Sättigungstemperatur erwärmen kann, wodurch sich der Wirkungsgrad des Verfahrens erheblich steigern lässt. Ferner wird durch die Flüssigkeitsringpumpe sichergestellt, dass das Betriebsmittel sich in dem Verdichter nicht soweit anreichert, dass dadurch eventuell das Saugvermögen reduziert wird. Nach dem erfindungsgemäßen Verfahren lassen sich in dem Energie- Rückführungskreislauξ der als Wärmepumpensystem mit flüssigkeitsüberlagertem Verdichtersystem realisiert ist, Leistungsziffern als Verhältnis von rückgeführter Wärmeenergie zu Verdichterantriebsarbeit erreichen, die über dem dreifachen Wert von herkömmlichen Wärmepumpen liegen. Temperaturen des Betriebsmittels nach der Temperaturerhöhung von über 180°C sind mit dem erfindungsgemäßen Verfahren realisierbar. Besonders günstig sindFluide wie hochsiedende Silikonöle oder Diesteröle oder Weichmacher wie Dioctylphtalat mit Viskositäten bis zu 50 centistoke (cts). Vorteilhafterweise ist die Siedetemperatur des Fluids höher als die Temperatur des Betriebsmittels nach der Temperaturerhöhung.In a further alternative of the invention, the temperature of the operating medium in the energy return circuit is increased by the mechanical compression by means of a liquid-superimposed compressor, the operating medium temperature in the compressor additionally by heat exchange with a fluid with which the compressor is operated and which is in direct contact with the Equipment stands, increased. It is particularly advantageous that these liquid-superimposed compressors can be operated with a high-boiling fluid. Since the fluid does not have a lubricating function but a pure sealing function in the liquid-superimposed compressors, practically any equipment up to water can be used in the process according to the invention in the energy recirculation circuit, which have high molar heat of evaporation, large temperature jumps in the low pressure range and high operating temperatures of the compressor allow. The liquid ring pump, as a possible alternative of the invention, can advantageously transfer a large part of the work output as heat to the operating medium, which can heat up above the saturation temperature, as a result of which the efficiency of the method can be increased considerably. Furthermore, the liquid ring pump ensures that the operating medium does not accumulate in the compressor to such an extent that the pumping speed is possibly reduced as a result. According to the method of the invention, in the energy recirculation circuit which is implemented as a heat pump system with a liquid-superimposed compressor system, performance figures as a ratio of recirculated thermal energy to compressor drive work can be achieved which are more than three times the value of conventional heat pumps. Temperatures of the equipment after the temperature increase of over 180 ° C can be achieved with the inventive method. Fluids such as high-boiling silicone oils or diester oils or plasticizers such as dioctyl phthalate with viscosities of up to 50 centistokes (cts) are particularly favorable. The boiling temperature of the fluid is advantageously higher than the temperature of the operating medium after the temperature increase.
Bei einer bevorzugten Ausführungsform der Erfindung kann der flüssigkeitsüberlagerte Verdichter eine Ringbegasung aufweisen, die eine Überverdichtung verhindert. Als Betriebsmittel kann beispielsweise ein Gemisch aus Alkoholen verwendet werden, bei dem die Verdampfungstemperatur bei ungefähr 20°C und die Kondensationstemperatur bei 80°C liegen kann. Ein A3-Lösemittel als Betriebsmittel ist ebenfalls denkbar, bei dem die Verdampfungstemperatur ungefähr bei 90°C und die Kondensationstemperatur bei 180°C liegen kann. Ein wesentlicher Vorteil dieser Erfindung ist, dass beim Betriebsmittel höhere Temperaturniveaus erreicht werden können, als sie bisher mit beispielsweise FCKW- Arbeitsmitteln möglich sind.In a preferred embodiment of the invention, the liquid-superimposed compressor can have ring gassing, which prevents over-compression. A mixture of alcohols, for example, can be used as the operating medium, in which the evaporation temperature can be approximately 20 ° C. and the condensation temperature 80 ° C. An A3 solvent as an operating medium is also conceivable, in which the evaporation temperature can be approximately 90 ° C and the condensation temperature 180 ° C. A major advantage of this invention is that higher temperature levels can be achieved in the equipment than has been possible with CFC tools, for example.
In einer bevorzugten Ausführungsform der Erfindung fallt die Wärmeenergie in einer Kältemaschine an, in der ein Kältemittel in einem Verdampfer verdampft wird. Das dampfförmige Kältemittel wird über einen Verdichter zum ersten Wärmetauscher gefördert, in dem das Kältemittel kondensiert. Hierbei wird Kondensationswärme frei, die auf das im ersten Wärmetauscher verdampfende Arbeitsmittel übertragen wird. Das kondensierte Kältemittel wird über ein Entspannungsventil in den Verdampfer zurückgeführt. Vorzugsweise wird ein warmer, einen bestimmten Feuchtigkeitsgrad aufweisender Luftstrom, der durch den Verdampfer geführt wird, unter Wärmeabgabe an das Kältemittel gekühlt, wobei Wasser als Kondensat anfallt, das in einem Behältnis aufgefangen wird. Der mit dem Generator erzeugte Strom kann als Antriebsleistung für die elektrisch angetriebenen Aggregate der Gesamtanlage umfassend den Kältemittelkreislauf, den Niederdruck- Entspannungskreislauf sowie den Energie-Rückführungskreislauf genutzt werden. Damit werden die extern aufzubringende Energie und damit die Energiekosten einer „Wassergewinnung aus Luft" mittels der oben beschriebenen Kondensation von Arbeitsmittel und Betriebsmittel wesentlich reduziert. Die Aufgäbe der Erfindung wird ebenfalls durch eine Anlage zur Umwandlung von anfallender Wärmeenergie in mechanische Energie mit den Merkmalen des Anspruches 15 gelöst. In den abhängigen Ansprüchen sind bevorzugte Weiterbildungen ausgeführt.In a preferred embodiment of the invention, the thermal energy is generated in a refrigeration machine in which a refrigerant is evaporated in an evaporator. The vaporous refrigerant is conveyed via a compressor to the first heat exchanger, in which the refrigerant condenses. This releases heat of condensation, which is transferred to the working fluid evaporating in the first heat exchanger. The condensed refrigerant is returned to the evaporator via an expansion valve. A warm air flow having a certain degree of moisture, which is passed through the evaporator, is preferably cooled with heat being given off to the refrigerant, water being obtained as condensate, which is collected in a container. The electricity generated by the generator can be used as drive power for the electrically driven units of the overall system, including the refrigerant circuit, the low-pressure expansion circuit and the energy recovery circuit. In this way, the energy to be applied externally and thus the energy costs of “water extraction from air” are significantly reduced by means of the condensation of work equipment and operating resources described above. The object of the invention is also achieved by a system for converting heat energy into mechanical energy with the features of claim 15. Preferred further developments are set out in the dependent claims.
Erfindungsgemäß bezieht sich die Erfindung auf eine Anlage, die einen Kältemittelkreislauf, einen Niederdruck-Entspannungskreislauf und einen Energie-Rückführungskreislauf aufweist, die miteinander verbunden sind. Hierbei wird im Kältemittelkreislauf ein Kältemittel in einem Verdampfer verdampft, das über einen Verdichter in einen ersten Wärmetauscher gefördert wird. Im ersten Wärmetauscher kondensiert das Kältemittel und wird über ein Entspannungsventil zurück in den Verdampfer gefordert, wobei Wasser, das im Verdampfer bei der Abkühlung eines Luftstroms anfallt, in einem Behältnis aufgefangen wird. Im Niederdruck-Entspannungskreislauf wird ein Arbeitsmittel im ersten Wärmetauscher verdampft, das die im ersten Wärmetauscher freiwerdende Kondensationswärme aufnimmt. In einer nachgeschalteten Niederdruck-Entspannimgsvorrichtung wird das dampfförmige Arbeitsmittel entspannt, in einen zweiten Wärmetauscher geleitet, in dem es kondensiert. Durch den Entspannungsprozess wird die im Arbeitsmittel enthaltende Wärmeenergie in mechanische Energie umgewandelt. Die Niederdruck-Entspannungsvorrichtung weist des weiteren eine Welle auf, die mit einem Generator verbunden ist, so dass die mechanische Energie letztendlich in elektrische Energie transformiert werden kann. Das kondensierte Arbeitsmitte wird über eine Pumpe in den ersten Wärmetauscher zurückgefördert. Im Energie-Rückführungskreislauf wird ein Betriebsmittel im zweiten Wärmetauscher verdampft, wobei es die Kondensationswärme des Arbeitsmittels des Niederdruck- Entspannungskreislaufes aufnimmt. Anschließend wird das dampfförmige Betriebsmittel über einen flüssigkeitsüberlagerten Verdichter in den ersten Wärmetauscher gefördert, in dem das Betriebsmittel kondensiert. Das kondensierte Betriebsmittel wird über ein Entspannungsventil zurück in den ersten Wärmetauscher geführt.According to the invention, the invention relates to a system which has a refrigerant circuit, a low-pressure expansion circuit and an energy return circuit which are connected to one another. Here, a refrigerant is evaporated in an evaporator in the refrigerant circuit, which is conveyed via a compressor into a first heat exchanger. The refrigerant condenses in the first heat exchanger and is returned to the evaporator via an expansion valve, whereby water that accumulates in the evaporator when an air stream is cooled is collected in a container. In the low-pressure expansion circuit, a working fluid is evaporated in the first heat exchanger, which absorbs the condensation heat released in the first heat exchanger. In a downstream low-pressure expansion device, the vaporous working medium is expanded, passed into a second heat exchanger, in which it condenses. The relaxation process converts the thermal energy contained in the working fluid into mechanical energy. The low-pressure relaxation device furthermore has a shaft which is connected to a generator, so that the mechanical energy can ultimately be transformed into electrical energy. The condensed work center is pumped back into the first heat exchanger. In the energy return circuit, an operating medium is evaporated in the second heat exchanger, whereby it absorbs the heat of condensation of the working medium of the low-pressure expansion circuit. The vaporous operating medium is then conveyed via a liquid-superimposed compressor into the first heat exchanger, in which the operating medium condenses. The condensed operating fluid is fed back into the first heat exchanger via an expansion valve.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnungen ein Ausführungsbeispiel der Erfindung im Einzelnen beschrieben ist. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein. Figur 1 zeigt eine Anlage, die der Luft Wasser entziehen kann. In der vorzugsweise warmen Luft ist Wasserdampf in Form von Luftfeuchtigkeit enthalten. Durch einen Ventilator 12 wird ein Luftstrom erzeugt, der durch den Verdampfer 1 eines Kältemittelkreislaufes geleitet wird. Der Verdampfer 1 weist hierbei nicht dargestellte Wärmeaustauschflächen auf, die gekühlt sind. Die Wärmeaustauschflächen können zum Beispiel als Rohr ausgebildet sein, durch die ein Kältemittel fließt. Der warme Luftstrom kühlt sich ab, wobei die Wärme über die Wärmeaustauschflächen auf das Kältemittel übertragen wird, welches verdampft. Der in der Luft gelöste Wasserdampf kondensiert an den Wärmeaustauschflächen, wobei das kondensierte Wasser in einem Behältnis 11 aufgefangen wird. Der gekühlte Luftstrom verläset den Verdampfer 1 mit einem Restfeuchtigkeitsgehalt. Das dampfförmige Kältemittel, das im vorliegenden Ausfuhrungsbeispiel einen Druck zwischen 2-8 bar und eine Temperatur von ungefähr 5-10°C aufweist, wird über einen Verdichter 2 in einen ersten Wärmetauscher 3 gefördert, in dem das Kältemittel kondensiert. Beim Eintritt des dampfförmigen Kältemittels in den ersten Wärmetauscher 3 weist dieses ungefähr einen Druck von 10-20 bar und eine Temperatur bis circa 80°C oder 110°C auf. Die freiwerdende Kondensationswärme wird auf ein Arbeitsmittel eines Niederdruck-Entspannungskreislaufes übertragen. Über ein Entspannungs ventil 10 wird das kondensierte Kältemittel zurück in den Verdampfer 1 geleitet.Further advantages, features and details of the invention result from the following description, in which an embodiment of the invention is described in detail with reference to the drawings. The features mentioned in the claims and in the description can each be essential to the invention individually or in any combination. Figure 1 shows a system that can extract water from the air. The preferably warm air contains water vapor in the form of atmospheric moisture. An air flow is generated by a fan 12 and is passed through the evaporator 1 of a refrigerant circuit. The evaporator 1 has heat exchange surfaces, not shown, which are cooled. The heat exchange surfaces can be designed, for example, as a tube through which a refrigerant flows. The warm air flow cools down, whereby the heat is transferred via the heat exchange surfaces to the refrigerant, which evaporates. The water vapor dissolved in the air condenses on the heat exchange surfaces, the condensed water being collected in a container 11. The cooled air flow leaves the evaporator 1 with a residual moisture content. The vaporous refrigerant, which in the present exemplary embodiment has a pressure between 2-8 bar and a temperature of approximately 5-10 ° C., is conveyed via a compressor 2 into a first heat exchanger 3, in which the refrigerant condenses. When the vaporous refrigerant enters the first heat exchanger 3, it has a pressure of approximately 10-20 bar and a temperature of up to approximately 80 ° C or 110 ° C. The heat of condensation released is transferred to a working medium in a low-pressure expansion circuit. The condensed refrigerant is passed back into the evaporator 1 via a relief valve 10.
Im ersten Wärmetauscher 3 wird das Arbeitsmittel verdampft und in einer nachgeschalteten Niederdruck-Entspannungsvorrichtung 4 entspannt. Die Niederdruck- Entspannungsvorrichtung 4 ist als Wälzkolbengebläse 4 ausgeführt, in der die Wärmeenergie in mechanische Energie umgewandelt wird. Das Wälzkolbengebläse 4 weist femer eine Welle auf, die mit einem Generator 7 verbunden ist, wodurch die mechanische Energie in elektrische Energie umgewandelt wird. Anschließend wird das entspannte Arbeitsmittel in einem zweiten Wärmetauscher 5 kondensiert, wobei ein im zweiten Wärmetauscher 5 sich befindendes weiteres Betriebsmittel aufgrund der entstehenden Kondensationswärme verdampft wird. Das kondensierte Arbeitsmittel wird über eine Pumpe 8 zurück in den ersten Wärmetauscher 3 gefördert. Die molare Verdampfungsenthalpie des Betriebsmittels beträgt im vorliegenden Ausführungsbeispiel das fünffache der molaren Verdampfungsenthalpie des Arbeitsmittels.The working fluid is evaporated in the first heat exchanger 3 and expanded in a downstream low-pressure expansion device 4. The low-pressure expansion device 4 is designed as a roots blower 4, in which the thermal energy is converted into mechanical energy. The Roots blower 4 also has a shaft which is connected to a generator 7, whereby the mechanical energy is converted into electrical energy. The relaxed working medium is then condensed in a second heat exchanger 5, with a further operating medium located in the second heat exchanger 5 being evaporated due to the heat of condensation generated. The condensed working fluid is conveyed back into the first heat exchanger 3 via a pump 8. In the present exemplary embodiment, the molar enthalpy of vaporization of the operating medium is five times the molar enthalpy of vaporization of the working medium.
Das dampfförmige Betriebsmittel wird in einer Flüssigkeitsringpumpe 6 verdichtet. Die Flüssigkeitsringpumpe 6 wird mit einem Fluid betrieben, das im unmittelbaren Kontakt mit dem Betriebsmittel steht. Vorteilhaft bei dieser Ausführungsform ist, dass das Betriebsmittel innerhalb der Flüssigkeitsringpumpe 6 zusätzlich neben der Verdichtung dadurch erwärmt wird, in dem ein bestimmter Wärmebetrag vom Fluid auf das Betriebsmittel übergeht. Das Betriebsmittel wird oberhalb der Verdampfungstemperatur des Arbeitsmittels des Niederdruck-Entspannungskreislaufes erwärmt, so dass die Energie zur Verdampfung des Arbeitsmittels im ersten Wärmetauscher 3 genutzt werden kann. Im nachgeschalteten ersten Wärmetauscher 3 kondensiert das Betriebsmittel und wird anschließend über ein Entspannungsventil 9 zurück zum zweiten Wärmetauscher 5 gefördert. The vaporous operating medium is compressed in a liquid ring pump 6. The liquid ring pump 6 is operated with a fluid which is in direct contact with the operating medium. It is advantageous in this embodiment that the equipment is additionally heated within the liquid ring pump 6 in addition to the compression, in that a certain amount of heat is transferred from the fluid to the operating medium. The operating medium is heated above the evaporation temperature of the working medium of the low-pressure expansion circuit, so that the energy can be used to evaporate the working medium in the first heat exchanger 3. The operating medium condenses in the downstream first heat exchanger 3 and is then conveyed back to the second heat exchanger 5 via an expansion valve 9.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Verdampfer Verdichter erster Wärmetauscher Niederdruck-Entspannungsvorrichtung, Wälzkolbengebläse zweiter Wärmetauscher Verdichter, Flüssigkeitsringpumpe Generator Verdichter Entspannungsventil Entspannungsventil Behältnis Ventilator Evaporator compressor first heat exchanger low-pressure expansion device, Roots blower second heat exchanger compressor, liquid ring pump generator compressor expansion valve expansion valve container fan

Claims

P ate n t a n s p r ü c h e P ate claims
1. Verfahren zur Umwandlung von anfeilender Wärmeenergie in mechanische Energie durch Entspannung eines dampfförmigen Afbeitsmittels durch eine mit einem ersten Wärmetauscher (3) verbundene Entspannungsvorrichtung (4), gekennzeichnet durch einen Niederdruck-Entspamiungskreislauf und einen Energie-Rückfiihrungskreislauf, wobei in dem Niederdruck-Entspannungskreislauf die Entspannung des Arbeitsmittels in einer Niederdruck- Entspannungsvorrichtung (4) erfolgt und das entspannte Arbeitsmittel in einem der Entspannungsvorrichtung (4) nachgeschalteten zweiten Wärmetauscher (5) kondensiert wird, in dem eine Verdampfung eines Betriebsmittels im zweiten Wärmetauscher (5) innerhalb des Energie-Rückführungskreislaufes bewirkt wird, das über einen Verdichter (6) zum ersten Wärmetauscher (3) gefördert wird, in dem das Betriebsmittel kondensiert wird, wobei eine Verdampfung des Arbeitsmittels im ersten Wärmetauscher (3) innerhalb des Niederdruck- Entspannungskreislaufes erfolgt, wobei die molare Verdampfungsenthalpie des Betriebsmittels mehr als das vierfache der molaren Verdampfungsenthalpie des Arbeitsmittels beträgt.1. A method for converting incipient thermal energy into mechanical energy by expanding a vaporous working medium through a relaxation device (4) connected to a first heat exchanger (3), characterized by a low-pressure relaxation circuit and an energy return circuit, the low-pressure relaxation circuit being the Relaxation of the working medium takes place in a low-pressure relaxation device (4) and the relaxed working medium is condensed in a second heat exchanger (5) connected downstream of the relaxation device (4), in which evaporation of an operating medium in the second heat exchanger (5) causes within the energy recirculation circuit is, which is conveyed via a compressor (6) to the first heat exchanger (3), in which the operating medium is condensed, with evaporation of the working medium in the first heat exchanger (3) taking place within the low-pressure expansion circuit, d The molar enthalpy of vaporization of the equipment is more than four times the molar enthalpy of vaporization of the equipment.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Niederdruck- Entspannungsvorrichtung (4) ein Wälzkolbengebläse ist.2. The method according to claim 1, characterized in that the low-pressure expansion device (4) is a Roots blower.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Wälzkolbengebläse (4) mit einem Generator (7) verbunden ist, der die mechanische Energie in elektrische Energie umwandelt.3. The method according to claim 2, characterized in that the Roots blower (4) is connected to a generator (7) which converts the mechanical energy into electrical energy.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Arbeitsmittel eine geringe volumenspezifische Verdampfungsenthalpie aufweist.4. The method according to any one of the preceding claims, characterized in that the working fluid has a low volume-specific evaporation enthalpy.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Arbeitsmittel ein anorganisches oder organisches Lösemittel oder ein Lösemittelgemisch ist, das organische und/oder anorganische Lösemittelkomponenten aufweist. 5. The method according to any one of the preceding claims, characterized in that the working medium is an inorganic or organic solvent or a solvent mixture which has organic and / or inorganic solvent components.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Verdichter (6) als ein flüssigkeitsüberlagerter Verdichter ausgebildet ist.6. The method according to any one of the preceding claims, characterized in that the compressor (6) is designed as a liquid-superimposed compressor.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet^ dass der Verdichter (6) eine Flüssigkeitsringpumpe oder ein Schraubenverdichter ist.7. The method according to claim 6, characterized in that the compressor (6) is a liquid ring pump or a screw compressor.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass eine Temperaturerhöhung des Betriebsmittels durch die mechanische Verdichtung mittels Verdichter (6) erfolgt, wobei zusätzlich die Temperatur des Betriebsmittels im Verdichter (6) durch einen Wärmeaustausch mit einem Fluid, mit dem der Verdichter (6) betrieben wird und das unmittelbar in Kontakt mit dem Arbeitsmittel steht, erhöht wird.8. The method according to claim 6 or 7, characterized in that the temperature of the operating medium is increased by the mechanical compression by means of a compressor (6), the temperature of the operating medium in the compressor (6) additionally being increased by heat exchange with a fluid with which the compressor (6) is operated and is in direct contact with the work equipment, is increased.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Siedetemperatur des Fluids höher ist als die Temperatur des Betriebsmittels nach der Temperaturerhöhung.9. The method according to claim 8, characterized in that the boiling temperature of the fluid is higher than the temperature of the operating medium after the temperature increase.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Fluid ein Silikonöl, insbesondere ein hochsiedendes Silikonöl ist, oder ein Weichmacher ist, der insbesondere eine Viskosität aufweist, die kleiner ist als 50 cst.10. The method according to claim 8 or 9, characterized in that the fluid is a silicone oil, in particular a high-boiling silicone oil, or a plasticizer, which in particular has a viscosity that is less than 50 cst.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das kondensierte Arbeitsmittel aus dem zweiten Wärmetauscher (5) über eine Pumpe (8) in den ersten Wärmetauscher (3) gefördert wird.11. The method according to any one of the preceding claims, characterized in that the condensed working fluid from the second heat exchanger (5) via a pump (8) is conveyed into the first heat exchanger (3).
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das kondensierte Betriebsmittel aus dem ersten Wärmetauscher (3) über ein Entspannungsventil (9) zurück in den zweiten Wärmetauscher (5) gefördert wird.12. The method according to any one of the preceding claims, characterized in that the condensed operating medium from the first heat exchanger (3) via a relief valve (9) is conveyed back into the second heat exchanger (5).
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmeenergie in einer Kältemaschine anfallt, in der ein Kältemittel in einem Verdampfer (1) verdampft wird, das über einen Verdichter (2) zum ersten Wärmetauscher (3) gefördert wird, in dem das Kältemittel kondensiert wird, wodurch im ersten Wärmetauscher (3) das Arbeitsmittel verdampft wird, wobei das kondensierte Kältemittel über ein Entspannungsventil (10) in den Verdampfer (1) zurückgeführt wird. 13. The method according to any one of the preceding claims, characterized in that the thermal energy accumulates in a refrigerator, in which a refrigerant is evaporated in an evaporator (1), which is conveyed via a compressor (2) to the first heat exchanger (3) in to which the refrigerant is condensed, whereby the working fluid is evaporated in the first heat exchanger (3), the condensed refrigerant being returned to the evaporator (1) via an expansion valve (10).
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass ein warmer, einen bestimmten Feuchtigkeitsgrad aufweisender Luftstrom, der durch den Verdampfer (1) geführt wird, unter Wärmeabgabe an das Kältemittel gekühlt wird, wobei Wasser als Kondensat anfallt, das in einem Behältnis (11) aufgefangen wird.14. The method according to claim 13, characterized in that a warm airflow having a certain degree of moisture, which is passed through the evaporator (1), is cooled with heat being given off to the refrigerant, water being obtained as condensate, which is contained in a container (11 ) is caught.
15. Anlage zur Umwandlung von anfallender Wärmeenergie in mechanische Energie, dadurch gekennzeichnet, dass sie folgende Komponenten umfasst: a) einen Kältemittelkreislauf, in dem ein Kältemittel in einem Verdampfer (1) verdampft wird, das über einen Verdichter (2) in einen ersten Wärmetauscher (3) gefördert wird, in dem das Kältemittel kondensiert und über ein Entspannungsventil (10) zurück in den Verdampfer (1) gefördert wird, wobei Wasser, das im Verdampfer (1) anfällt in einem Behältnis (11) aufgefangen wird, b) einen Niederdruck-Entspannungskreislauf, in dem ein Arbeitsmittel in dem ersten Wärmetauscher (3) verdampft wird, das in einer nachgeschalteten, mit einem Generator (7) verbundenen Niederdruck-Entspannungsvorrichtung (4) entspannt wird und in einem zweiten Wärmetauscher (5) kondensiert wird, wobei das kondensierte Arbeitsmittel über eine Pumpe (8) in den ersten Wärmetauscher (3) zurückgefordert wird, c) einen Energie-Rück tuhrungskreislauf, in dem ein Betriebsmittel im zweiten Wärmetauscher (5) verdampft wird und anschließend über einen flüssigkeitsüberlagerten Verdichter (6) in den ersten Wärmetauscher (3) gefördert wird, in dem das Betriebsmittel kondensiert, wobei das kondensierte Betriebsmittel über ein Entspannungsventil (9) zurück in den ersten Wärmetauscher (5) geführt wird,15. Plant for converting heat energy into mechanical energy, characterized in that it comprises the following components: a) a refrigerant circuit, in which a refrigerant is evaporated in an evaporator (1), which via a compressor (2) into a first heat exchanger (3) is promoted in which the refrigerant condenses and is conveyed back into the evaporator (1) via a relief valve (10), water which is produced in the evaporator (1) being collected in a container (11), b) one Low-pressure expansion circuit in which a working medium is evaporated in the first heat exchanger (3), which is expanded in a downstream low-pressure expansion device (4) connected to a generator (7) and condensed in a second heat exchanger (5), whereby the condensed working fluid is reclaimed via a pump (8) in the first heat exchanger (3), c) an energy return circuit, in which an operation iebsmittel is evaporated in the second heat exchanger (5) and is then conveyed via a liquid-superimposed compressor (6) into the first heat exchanger (3), in which the operating medium condenses, the condensed operating medium back into the first heat exchanger (9) 5) is carried out
16. Anlage nach Anspruch 15, die nach einem der vorhergehenden Ansprüche 1 bis 14 betreibbar ist. 16. Plant according to claim 15, which is operable according to one of the preceding claims 1 to 14.
EP04804988.6A 2003-12-22 2004-12-22 Method and system for converting heat energy into mechanical energy Active EP1706599B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE2003160380 DE10360380A1 (en) 2003-12-22 2003-12-22 Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium
DE2003160379 DE10360379A1 (en) 2003-12-22 2003-12-22 Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium
DE2003160364 DE10360364A1 (en) 2003-12-22 2003-12-22 Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium
DE2003161223 DE10361223A1 (en) 2003-12-24 2003-12-24 Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium
DE2003161203 DE10361203A1 (en) 2003-12-24 2003-12-24 Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium
PCT/EP2004/053655 WO2005066466A1 (en) 2003-12-22 2004-12-22 Method and system for converting heat energy into mechanical energy

Publications (2)

Publication Number Publication Date
EP1706599A1 true EP1706599A1 (en) 2006-10-04
EP1706599B1 EP1706599B1 (en) 2017-02-15

Family

ID=34714591

Family Applications (5)

Application Number Title Priority Date Filing Date
EP04816348A Active EP1702140B1 (en) 2003-12-22 2004-12-22 Method for converting heat energy into mechanical energy with a low-pressure expansion device
EP04804985A Withdrawn EP1706681A1 (en) 2003-12-22 2004-12-22 Method and system for increasing the temperature of a vaporous working medium
EP04804984A Withdrawn EP1702139A1 (en) 2003-12-22 2004-12-22 Device and method for converting heat energy into mechanical energy
EP04804983.7A Active EP1706598B1 (en) 2003-12-22 2004-12-22 Method and installation for converting heat energy from refrigerating machines
EP04804988.6A Active EP1706599B1 (en) 2003-12-22 2004-12-22 Method and system for converting heat energy into mechanical energy

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP04816348A Active EP1702140B1 (en) 2003-12-22 2004-12-22 Method for converting heat energy into mechanical energy with a low-pressure expansion device
EP04804985A Withdrawn EP1706681A1 (en) 2003-12-22 2004-12-22 Method and system for increasing the temperature of a vaporous working medium
EP04804984A Withdrawn EP1702139A1 (en) 2003-12-22 2004-12-22 Device and method for converting heat energy into mechanical energy
EP04804983.7A Active EP1706598B1 (en) 2003-12-22 2004-12-22 Method and installation for converting heat energy from refrigerating machines

Country Status (6)

Country Link
US (2) US7726128B2 (en)
EP (5) EP1702140B1 (en)
AT (1) ATE371101T1 (en)
DE (1) DE502004004776C5 (en)
ES (2) ES2293384T3 (en)
WO (5) WO2005066465A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021928A1 (en) * 2005-06-02 2007-11-15 Lutz Giechau Device for generating mechanical energy
DE102006022792B3 (en) * 2006-05-16 2007-10-11 Erwin Dr. Oser Converting solar heat to mechanical energy with beam compressor involves operating compressor so end temperature is above working medium evaporation temperature, pumping condensate into compensation container, back to collector, evaporator
DE102007041457B4 (en) * 2007-08-31 2009-09-10 Siemens Ag Method and device for converting the heat energy of a low-temperature heat source into mechanical energy
DE102008013737A1 (en) 2008-03-06 2009-09-10 Heinz Manfred Bauer Method for converting thermal energy into mechanical energy and electrical energy, involves obtaining energy from heat supply source at temperature of eighty degree Celsius, where energy is supplied to medium over heat exchanger
DE102008024116A1 (en) * 2008-05-17 2009-11-19 Hamm & Dr. Oser GbR (vertretungsberechtiger Gesellschafter: Dr. Erwin Oser, 50670 Köln) Conversion of the pressure energy of gases and vapors at low output pressures into mechanical energy
DE102008036917A1 (en) 2008-08-05 2010-02-11 Heinz Manfred Bauer Method for transformation of thermal energy into mechanical energy and then into electric energy, involves extracting energy from heat supplier by heat exchanger and guiding medium that changes physical condition from liquid to gas
WO2010104601A1 (en) * 2009-03-12 2010-09-16 Seale Joseph B Heat engine with regenerator and timed gas exchange
US20130174552A1 (en) * 2012-01-06 2013-07-11 United Technologies Corporation Non-azeotropic working fluid mixtures for rankine cycle systems
CN103321778A (en) * 2012-02-29 2013-09-25 伊顿公司 Volumetric energy recovery device and systems
DE102012016991A1 (en) 2012-08-25 2014-02-27 Erwin Oser Method for converting energy from pressurized gaseous medium into mechanical or electric energy, involves releasing pressurized medium in unit, which has defining outer walls, two connection flanges and two rotors
DE102013112024A1 (en) * 2013-10-31 2015-04-30 ENVA Systems GmbH Positive displacement blower with a sealing system
US10648745B2 (en) 2016-09-21 2020-05-12 Thermal Corp. Azeotropic working fluids and thermal management systems utilizing the same
DE102019135820A1 (en) 2019-12-27 2021-07-01 Corinna Ebel Process for steam generation, steam generator and use of a Roots blower
CN112412560A (en) * 2020-10-28 2021-02-26 北京工业大学 Kalina circulation system based on single screw expander
DE202021100874U1 (en) 2021-02-23 2022-05-30 Marlina Hamm Roots blower for expansion of a vaporous medium at high pressure and good tightness

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1601003A1 (en) 1966-12-02 1970-07-16 Gohee Mamiya Power generation system
FR1546326A (en) * 1966-12-02 1968-11-15 Advanced energy generator, particularly for creating energy using refrigerant
GB1301214A (en) 1970-05-26 1972-12-29 Wallace Louis Minto Prime mover system
US3972195A (en) * 1973-12-14 1976-08-03 Biphase Engines, Inc. Two-phase engine
US4009575A (en) * 1975-05-12 1977-03-01 said Thomas L. Hartman, Jr. Multi-use absorption/regeneration power cycle
FR2374539A1 (en) * 1976-12-15 1978-07-13 Air Ind WATER VAPOR COMPRESSION PROCESS, AND THERMAL CIRCUITS FOR ITS IMPLEMENTATION
US4295335A (en) * 1978-01-09 1981-10-20 Brinkerhoff Verdon C Regenative absorption engine apparatus and method
DE2803118B2 (en) * 1978-01-25 1980-07-31 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Method for heating with an absorption heat pump system and device for carrying out the method
US4195485A (en) * 1978-03-23 1980-04-01 Brinkerhoff Verdon C Distillation/absorption engine
US4307572A (en) * 1978-05-15 1981-12-29 New Energy Dimension Corporation Externally cooled absorption engine
US4429661A (en) * 1981-11-27 1984-02-07 Mcclure Michael C Heat recovery apparatus and method
US4534175A (en) * 1982-03-11 1985-08-13 Gason Energy Engineering Ltd. Method and apparatus for the absorption of a gas in a liquid and their use in energy conversion cycles
DE3219680A1 (en) * 1982-05-21 1983-11-24 Siemens AG, 1000 Berlin und 8000 München HEAT PUMP SYSTEM
AU3780385A (en) * 1983-12-22 1985-07-12 Lipovetz Ivan System for converting heat energy, particularly for utilizingheat energy of the environment
DE3417833A1 (en) * 1984-05-14 1985-11-14 VEB Wärmeanlagenbau "DSF" im VE Kombinat Verbundnetze Energie, DDR 1020 Berlin Arrangement for a resorption heat-pump installation for generating heating heat from industrial and environmental heat
DE3619547A1 (en) 1984-12-13 1987-12-17 Peter Koch Process and device for generating a force from a temperature difference between two media
JPS61171811A (en) 1985-01-28 1986-08-02 Sanyo Electric Co Ltd Absorption heatpump for taking out power
US4622820A (en) * 1985-09-27 1986-11-18 Sundquist Charles T Absorption power generator
JPH0696978B2 (en) 1985-12-03 1994-11-30 トヨタ自動車株式会社 Internal combustion engine with supercharger
US4848088A (en) * 1987-12-03 1989-07-18 Lazarevich Milan P M Heat recycling process
US5027602A (en) * 1989-08-18 1991-07-02 Atomic Energy Of Canada, Ltd. Heat engine, refrigeration and heat pump cycles approximating the Carnot cycle and apparatus therefor
US5791157A (en) * 1996-01-16 1998-08-11 Ebara Corporation Heat pump device and desiccant assisted air conditioning system
DE19712325A1 (en) 1997-03-24 1998-10-15 Wilhelm Holzapfel Low level thermal energy conversion system
KR20010002901A (en) * 1999-06-18 2001-01-15 김창선 Reusing method of substance thermal expansion energy
GB0007917D0 (en) * 2000-03-31 2000-05-17 Npower An engine
HU0100463D0 (en) * 2001-01-29 2001-03-28 Szopko Mihaly Method and device for absorption heat pumping
US6672064B2 (en) 2002-03-14 2004-01-06 The Sun Trust, L.L.C. Rankine cycle generation of electricity
DE10214183C1 (en) * 2002-03-28 2003-05-08 Siemens Ag Drive mechanism, for refrigeration, has absorption refrigeration machine connected to steam turbine, operated by steam extracted from turbine, preferably from low pressure part of turbine
US7019412B2 (en) * 2002-04-16 2006-03-28 Research Sciences, L.L.C. Power generation methods and systems
DE10221145A1 (en) * 2002-05-11 2003-11-20 Juergen Uehlin Thermal power engine for electricity generation and operating process, has internal heat sink based on the state of aggregation of a fluid
US7028476B2 (en) * 2004-05-22 2006-04-18 Proe Power Systems, Llc Afterburning, recuperated, positive displacement engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005066466A1 *

Also Published As

Publication number Publication date
ES2624638T3 (en) 2017-07-17
US7726128B2 (en) 2010-06-01
WO2005061973A1 (en) 2005-07-07
EP1702139A1 (en) 2006-09-20
EP1706598B1 (en) 2013-10-16
DE502004004776D1 (en) 2007-10-04
WO2005061857A1 (en) 2005-07-07
DE502004004776C5 (en) 2020-01-16
WO2005066466A1 (en) 2005-07-21
EP1702140A1 (en) 2006-09-20
US20080134680A1 (en) 2008-06-12
ES2293384T3 (en) 2008-03-16
ATE371101T1 (en) 2007-09-15
WO2005061858A1 (en) 2005-07-07
US20080289336A1 (en) 2008-11-27
WO2005066465A1 (en) 2005-07-21
EP1702140B1 (en) 2007-08-22
EP1706598A1 (en) 2006-10-04
US8132413B2 (en) 2012-03-13
EP1706599B1 (en) 2017-02-15
EP1706681A1 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
EP1706599B1 (en) Method and system for converting heat energy into mechanical energy
DE10214183C1 (en) Drive mechanism, for refrigeration, has absorption refrigeration machine connected to steam turbine, operated by steam extracted from turbine, preferably from low pressure part of turbine
EP2021634B1 (en) Device and associated method for the conversion of heat energy into mechanical, electrical and/or thermal energy
EP2059104A2 (en) Cooling device for a computer system
DE102013210177A1 (en) Cooling system and cooling process for use in high-temperature environments
DE2829134C2 (en) Heating system with a heat pump
DE102012220188B4 (en) Integrated ORC process on intercooled compressors to increase efficiency and reduce required drive power by utilizing waste heat
DE102008013545B4 (en) Apparatus and method for waste heat recovery by means of an ORC process
DE102011052776B4 (en) Supercritical heat pump
WO2008055720A2 (en) Working medium for steam circuit process
DE102009016775A1 (en) Method and device for generating water vapor at a high temperature level
EP2449228A2 (en) Method for operating a power plant using a gas turbine system
DE2921257A1 (en) Heat pump for central heating - combines heat exchanger and evaporator in common unit in refrigeration section of circuit
DE102008005036A1 (en) Internal combustion engine, has heat recovery device comprising conveying unit for compressing liquid working medium to large extent, where mixture of water with ethanol, and methanol is used as working medium
DE102012024031B4 (en) Apparatus and method for converting thermal energy with an expander
DE102012100645B4 (en) ORC - Organic Rankine cycle
DE102005063056A1 (en) Internal combustion engine for vehicle, has stream circuits provided for producing stream in exhaust gas heat exchanger and engine heat exchanger, respectively, where exhaust stream of turbine is condensed with refrigeration capacity
WO2008031613A2 (en) Current generation in the base load region with geothermal energy
EP3563098A1 (en) Method for operating a heat pump installation, heat pump installation and power plant having a heat pump installation
DE102022127011A1 (en) Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device
DE102004037934B4 (en) working procedures
DE102004030367A1 (en) Method for production of current through condensation on cooled heat exchange surfaces entails using heat energy released during cooling of air and condensation of water vapour to drive cyclic process for production of current
DE102022124989A1 (en) Heat engine and method for operating a heat engine
DE102022132021A1 (en) System and method for energy conversion and energy storage
WO2024017531A1 (en) Compression refrigeration machine, system of compression refrigeration machines, and method for operating a compression refrigeration machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOENERGY PATENT GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOENERGY PATENT GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160708

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOENERGY PATENT GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004015458

Country of ref document: DE

Owner name: AAA EFFICIENCY AG, CH

Free format text: FORMER OWNER: OSER, ERWIN, DR., 50670 KOELN, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 868044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015458

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2624638

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170515

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015458

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WEINMANN ZIMMERLI, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: AAA EFFICIENCY AG, CH

Free format text: FORMER OWNER: ECOENERGY PATENT GMBH, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: AAA EFFICIENCY AG

Effective date: 20200414

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200402 AND 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004015458

Country of ref document: DE

Representative=s name: MICHALSKI HUETTERMANN & PARTNER PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004015458

Country of ref document: DE

Owner name: AAA EFFICIENCY AG, CH

Free format text: FORMER OWNER: ECOENERGY PATENT GMBH, 45772 MARL, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: AAA EFFICIENCY AG; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: ECOENERGY PATENT GMBH

Effective date: 20200330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 868044

Country of ref document: AT

Kind code of ref document: T

Owner name: AAA EFFICIENCY AG, CH

Effective date: 20200626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201231

Year of fee payment: 17

Ref country code: GB

Payment date: 20201230

Year of fee payment: 17

Ref country code: FR

Payment date: 20201230

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201230

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201230

Year of fee payment: 17

Ref country code: CH

Payment date: 20210120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201230

Year of fee payment: 17

Ref country code: ES

Payment date: 20210219

Year of fee payment: 17

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 868044

Country of ref document: AT

Kind code of ref document: T

Owner name: SATORIUS AG, CH

Effective date: 20210618

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015458

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 868044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211222

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211223