DE102022127011A1 - Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device - Google Patents

Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device Download PDF

Info

Publication number
DE102022127011A1
DE102022127011A1 DE102022127011.4A DE102022127011A DE102022127011A1 DE 102022127011 A1 DE102022127011 A1 DE 102022127011A1 DE 102022127011 A DE102022127011 A DE 102022127011A DE 102022127011 A1 DE102022127011 A1 DE 102022127011A1
Authority
DE
Germany
Prior art keywords
heat
cycle fluid
pressure stage
pump device
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102022127011.4A
Other languages
German (de)
Inventor
Bernd Feuerriegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luebbers Fts De GmbH
Original Assignee
Luebbers Fts GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luebbers Fts GmbH filed Critical Luebbers Fts GmbH
Priority to DE102022127011.4A priority Critical patent/DE102022127011A1/en
Priority to PCT/DE2023/200208 priority patent/WO2024078669A1/en
Publication of DE102022127011A1 publication Critical patent/DE102022127011A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

Die Erfindung betrifft eine Wärmepumpenvorrichtung zum energieeffizienten Erzeugen einer Prozesswärme mit einem Kreisprozessfluid, einem Verdampfer und mindestens einem Verdichter, wobei die Wärmepumpenvorrichtung einen ersten Mischseparator in einer zweiten Druckstufe aufweist, wobei der erste Mischseparator einen ersten Anschluss zum Eintritt von dampfförmigen Kreisprozessfluid, einen zweiten Anschluss zum Eintritt von kondensiertem Kreisprozessfluid, einen dritten Anschluss zum Austritt von dampfförmigen Kreisprozessfluid und optional einen vierten Anschluss zum Austritt von kondensierten Kreisprozessfluid aufweist und dem Mischseparator ein zweiter Verdichter nachgeschaltet ist, sodass austretendes dampfförmiges Kreisprozessfluid in dem zweiten Verdichter von der zweiten Druckstufe auf eine erste Druckstufe verdichtbar ist und mittels des einen zugeordneten Wärmeübertragers von dem dampfförmigen Kreisprozessfluid der ersten Druckstufe indirekt Prozesswärme auf die mindestens eine zuordenbare Wärmesenke übertragbar ist und jenes in einem Wärmeübertrager kondensierte Kreisprozessfluid in den ersten Mischseparator der zweiten Druckstufe zurückführbar ist, wobei gleichzeitig dampfförmiges Kreisprozessfluid aus dem ersten Verdichter in den Mischseparator einleitbar ist. Des Weiteren betrifft die Erfindung eine Trocknervorrichtung und ein Verfahren zum Betreiben einer Wärmepumpenvorrichtung.The invention relates to a heat pump device for the energy-efficient generation of process heat with a cycle fluid, an evaporator and at least one compressor, wherein the heat pump device has a first mixing separator in a second pressure stage, wherein the first mixing separator has a first connection for the inlet of vaporous cycle fluid, a second connection for the inlet of condensed cycle fluid, a third connection for the outlet of vaporous cycle fluid and optionally a fourth connection for the outlet of condensed cycle fluid and a second compressor is connected downstream of the mixing separator, so that escaping vaporous cycle fluid can be compressed in the second compressor from the second pressure stage to a first pressure stage and by means of the one assigned heat exchanger, process heat can be indirectly transferred from the vaporous cycle fluid of the first pressure stage to the at least one assignable heat sink and that cycle fluid condensed in a heat exchanger can be returned to the first mixing separator of the second pressure stage, wherein at the same time vaporous cycle fluid can be introduced from the first compressor into the mixing separator. Furthermore, the invention relates to a drying device and a method for operating a heat pump device.

Description

Die Erfindung betrifft eine Wärmepumpenvorrichtung zum energieeffizienten Erzeugen einer Prozesswärme, wobei die Wärmepumpenvorrichtung eine wärmeaufnehmende Seite, eine wärmeabgebende Seite, ein Kreisprozessfluid und einen Verdampfer auf der wärmeaufnehmenden Seite aufweist, und der Wärmepumpenvorrichtung auf der wärmeabgebenden Seite ein Wärmeübertrager und mindestens eine Wärmesenke und auf der wärmeaufnehmenden Seite mindestens eine Wärmequelle zuordenbar sind, wobei mittels des Verdampfers flüssiges Kreisprozessfluid durch Wärmezufuhr von der zuordenbaren Wärmequelle indirekt beheizbar und auf einer Druckstufe des Verdampfers verdampfbar ist, und die Wärmepumpenvorrichtung mindestens einen dem Verdampfer nachgeschalteten ersten Verdichter aufweist, wobei mittels des mindestens ersten Verdichters dampfförmiges Kreisprozessfluid von der Druckstufe des Verdampfers auf eine zweite Druckstufe verdichtbar ist. Des Weiteren betrifft die Erfindung eine Trocknervorrichtung zum Trocknen eines zu trocknenden Gutes mittels eines erhitzten Prozessgasstroms und ein Verfahren zum Betreiben einer Wärmepumpenvorrichtung.The invention relates to a heat pump device for energy-efficient generation of process heat, wherein the heat pump device has a heat-absorbing side, a heat-emitting side, a cycle fluid and an evaporator on the heat-absorbing side, and a heat exchanger and at least one heat sink can be assigned to the heat pump device on the heat-emitting side and at least one heat source on the heat-absorbing side, wherein liquid cycle fluid can be indirectly heated by means of the evaporator by supplying heat from the assignable heat source and can be evaporated at a pressure stage of the evaporator, and the heat pump device has at least one first compressor downstream of the evaporator, wherein vaporous cycle fluid can be compressed from the pressure stage of the evaporator to a second pressure stage by means of the at least first compressor. The invention further relates to a drying device for drying a material to be dried by means of a heated process gas flow and a method for operating a heat pump device.

Im Zuge der Energiewende und durch die aktuelle Krise in der Erdgasversorgung rücken Wärmepumpen-Prozesse in den Fokus der Prozesswärme-Erzeugung. Während die Wärmeabgabe zur Wohnraumbeheizung auf niedrigem Temperaturniveau erfolgt, benötigen industrielle Beheizungsprozesse oftmals deutlich höhere Temperaturen. Beispielsweise benötigen industrielle Trocknungsprozesse große Wärmemengen von teilweise mehreren MW auf hohem Temperaturniveau von deutlich über 100°C, oftmals über 200°C, und stellen insgesamt einen der größten Emittenten an Treibhausgasen im Industriesektor dar, weil die hohen Temperaturen bisher üblicherweise durch Verbrennungsprozesse von festen, flüssigen oder gasförmigen Brennstoffen auf Kohlenstoffbasis erzeugt werden.As part of the energy transition and the current crisis in the natural gas supply, heat pump processes are becoming the focus of process heat generation. While heat is released for heating residential buildings at low temperatures, industrial heating processes often require significantly higher temperatures. For example, industrial drying processes require large amounts of heat, sometimes several MW, at high temperatures of well over 100°C, often over 200°C, and are one of the largest emitters of greenhouse gases in the industrial sector, because the high temperatures have so far usually been generated by combustion processes of solid, liquid or gaseous carbon-based fuels.

Bei der Erzeugung von Prozesswärme durch Verbrennungsprozesse oder elektrisch betriebene Erhitzer wird ein Primärenergieeinsatz etwa in Höhe der zu erzeugenden Prozesswärmeleistung benötigt. Zur Dekarbonisierung der Industrie kann und sollte also der Primärenergieeinsatz zur Prozesswärmeerzeugung drastisch reduziert werden, indem die bisher zur Erreichung von Temperaturen über 120°C bis über 200°C erforderlichen Verbrennungsprozesse weitestgehend durch geeignete hocheffiziente Hochtemperatur-Wärmepumpen mit elektrischem Antrieb substituiert werden.When generating process heat through combustion processes or electrically operated heaters, a primary energy input is required that is approximately equal to the process heat output to be generated. In order to decarbonize industry, the primary energy input for process heat generation can and should be drastically reduced by replacing the combustion processes previously required to achieve temperatures of over 120°C to over 200°C as far as possible with suitable, highly efficient high-temperature heat pumps with electric drive.

Generell lassen sich Wärmepumpen-Prozesse zur Erzeugung von Prozesswärme durch die Heizleistungsziffer COPh als Quotient der Wärmeleistung bezogen auf die Antriebsleistung, die erforderlichen Temperaturen der wärmeaufnehmenden Seite, die erreichbaren Temperaturen der wärmeabgebenden Seite und den daraus resultierenden Temperaturhub zwischen Wärmeaufnahme und Wärmeabgabe charakterisieren. Bisher scheiterte die Entwicklung von wirtschaftlichen Hochtemperatur-Wärmepumpen mit einer Wärmeabgabe oberhalb beispielsweise 200°C am zu geringen Temperaturhub, da aufgrund thermodynamischer Zusammenhänge im Kreisprozess die Heizleistungsziffer mit steigendem Temperaturhub sinkt. Bislang sind daher für den Betrieb bekannter Kreisprozesse hohe Wärmequellen-Temperaturen auf der wärmeaufnehmenden Seite erforderlich, die an sich bereits hochwertige Wärmequellen mit entsprechend unwirtschaftlich hohem Preis darstellen oder gar nicht als Abwärmequellen verfügbar sind, sondern hergestellt werden müssten.In general, heat pump processes for generating process heat can be characterized by the heat output coefficient (COP h) as the quotient of the heat output in relation to the drive power, the required temperatures on the heat-absorbing side, the achievable temperatures on the heat-emitting side and the resulting temperature difference between heat absorption and heat emission. To date, the development of economical high-temperature heat pumps with a heat emission above, for example, 200°C has failed due to the temperature difference being too low, since the heat output coefficient decreases with increasing temperature difference due to thermodynamic relationships in the cycle. To date, high heat source temperatures on the heat-absorbing side have therefore been required for the operation of known cycle processes, which in themselves already represent high-quality heat sources with a correspondingly uneconomically high price or are not even available as waste heat sources and would have to be manufactured.

Die Wertigkeit von Prozesswärme wird üblicherweise nach der Höhe ihres Temperaturniveaus bemessen. In einem Wärmepumpen-Kreisprozess wird das Temperaturniveau der abgegebenen Prozesswärme typischerweise durch Verdichtung des Kreisprozessfluides erreicht. Die spezifische Antriebsarbeit für die Verdichtung entspricht der Aufwendung, also der Vernichtung, von spezifischer Exergie. Die Höhe der spezifischen Exergievernichtung korreliert wiederum mit dem mindestens aufzubringenden Verdichtungsdruck, der überwunden werden muss, damit das Kreisprozessfluid die erforderliche Temperatur erreicht, damit Prozesswärme bei der höchsten Senkentemperatur übertragen werden kann.The value of process heat is usually measured according to its temperature level. In a heat pump cycle, the temperature level of the released process heat is typically achieved by compressing the cycle fluid. The specific drive work for compression corresponds to the expenditure, i.e. the destruction, of specific exergy. The level of specific exergy destruction in turn correlates with the minimum compression pressure that must be overcome so that the cycle fluid reaches the required temperature so that process heat can be transferred at the highest sink temperature.

Je höher also die höchste erforderliche Senkentemperatur zur Übertragung von Prozesswärme ist, desto mehr spezifische Exergie wird vernichtet und desto höherwertiger ist die erzeugte Prozesswärme. Dementsprechend ist also zur Erzeugung von minderwertigerer Prozesswärme weniger spezifische Exergievernichtung erforderlich als für höherwertigere Prozesswärme.The higher the highest sink temperature required for transferring process heat, the more specific exergy is destroyed and the higher the quality of the process heat generated. Accordingly, less specific exergy destruction is required to generate lower quality process heat than for higher quality process heat.

Wärmepumpen-Prozesse lassen sich generell einteilen in Kreisprozesse ohne Phasenübergang eines Kreisprozessgases und solche mit Phasenübergang eines Kreisprozessfluids von flüssig nach gasförmig in einem Verdampfer auf der wärmeaufnehmenden Seite, deren Phasenübergang von gasförmig zu flüssig entweder durch Kondensation in einem Kondensator oder durch transkritische Abkühlung in Gaskühlern erfolgt.Heat pump processes can generally be divided into cycle processes without phase transition of a cycle gas and those with phase transition of a cycle fluid from liquid to gaseous in an evaporator on the heat-absorbing side, whose phase transition from gaseous to liquid occurs either by condensation in a condenser or by transcritical cooling in gas coolers.

Bekannte Hochtemperatur-Wärmepumpen ohne Phasenübergang des stets gasförmigen Kreisprozessgases, wie beispielsweise Rotationswärmepumpen des österreichischen Unternehmens ecop Technologies GmbH aus AT-4531 Neuhofen an der Krems (www.ecop.at), die auf einem linkslaufenden Joule-Prozess basieren, können zwar immerhin Senkentemperaturen von 150°C mit relativ hohen Heizleistungsziffern von etwa 4 beheizen, erreichen aber nur einen sehr geringen Temperaturhub von etwa 55 K und sind bauartbedingt in der maximalen Wärmeleistung je Wärmepumpe begrenzt. Eine mehrstufige Anordnung solcher Wärmepumpen zur Überwindung eines insgesamt höheren Temperaturhubs ist prinzipiell möglich, scheitert dabei aber aufgrund deutlich höherer Antriebsleistung bei gleichbleibender Wärmeleistung an deutlich verringerten Heizleistungsziffern und der damit einhergehenden geringen Wirtschaftlichkeit sowie der bauartbedingten Begrenzung der aufnehmbaren und abzugebenden Wärmeleistung.Well-known high-temperature heat pumps without phase transition of the always gaseous cycle gas, such as rotary heat pumps from the Austrian company ecop Technologies GmbH from AT-4531 Neuhofen an der Krems (www.ecop.at), which are based on a counterclockwise Joule process, can heat sink temperatures of 150°C with relatively high heat output coefficients of around 4, but only achieve a very low temperature lift of around 55 K and are limited in the maximum heat output per heat pump due to their design. A multi-stage arrangement of such heat pumps to overcome an overall higher temperature lift is possible in principle, but fails due to significantly higher drive power with constant heat output and significantly reduced heat output coefficients and the associated low economic efficiency as well as the design-related limitation of the heat output that can be absorbed and released.

Bei Wärmepumpen-Kreisprozessen mit einem Phasenübergang des Kreisprozessfluides durch Verdampfung wird unterschieden zwischen Wärmepumpen einerseits mit Kondensation des Kreisprozessfluides auf der wärmeabgebenden Seite und andererseits transkritisch betriebenen Wärmepumpen mit der Wärmeabgabe des Kreisprozessfluides in Gaskühlern bei überkritischem Druck, beispielsweise mit Kohlenstoffdioxid (CO2) als Kreisprozessfluid. Wesentlicher Unterschied zwischen beiden Kreisprozess-Arten mit Phasenübergang des Kreisprozessfluides ist, dass transkritisch betriebene Wärmepumpen die Wärmeleistung über einen erweiterten Temperaturbereich übertragen und nicht auf einem festen Temperaturplateau, wie es beim Kondensationsbetrieb der Fall ist.In heat pump cycles with a phase transition of the cycle fluid through evaporation, a distinction is made between heat pumps with condensation of the cycle fluid on the heat-emitting side and transcritically operated heat pumps with heat emission from the cycle fluid in gas coolers at supercritical pressure, for example with carbon dioxide (CO 2 ) as the cycle fluid. The main difference between the two types of cycle with phase transition of the cycle fluid is that transcritically operated heat pumps transfer the heat output over an extended temperature range and not on a fixed temperature plateau, as is the case with condensation operation.

Transkritisch betriebene CO2-Wärmepumpen konnten in jüngerer Vergangenheit bereits bis zu Senkentemperaturen von etwa 120°C gebaut werden, wie beispielsweise in EP 2 321 589 B1 beschrieben ist. Bei transkritisch betriebenen Wärmepumpen ist zwar kein Kondensationsdruck zu erreichen, weil keine eigentliche Kondensation in einem Kondensator stattfindet. Dennoch muss ein entsprechend hoher Verdichtungsdruck auf einen Druck oberhalb des kritischen Punktes des Kreisprozessfluides für die Wärmeübertragung in einem Gaskühler vom überkritischen Kreisprozessfluid auf diejenige zu versorgende Wärmesenke mit der höchsten Temperatur erreicht werden, indem mechanische Arbeit für die Verdichtung bis auf den entsprechenden überkritischen Druck der wärmeabgebenden Seite aufgewendet wird.In the recent past, transcritical CO 2 heat pumps have already been built up to sink temperatures of around 120°C, for example in EP 2 321 589 B1 described. In transcritically operated heat pumps, no condensation pressure can be achieved because no actual condensation takes place in a condenser. Nevertheless, a correspondingly high compression pressure to a pressure above the critical point of the cycle fluid for the heat transfer in a gas cooler from the supercritical cycle fluid to the heat sink to be supplied with the highest temperature must be achieved by applying mechanical work for compression up to the corresponding supercritical pressure of the heat-emitting side.

Ein Vorteil von transkritisch betriebenen Wärmepumpen mit überkritisch betriebenen Gaskühlern besteht darin, dass sich das Kreisprozessfluid im Gaskühler nur höchstens auf eine Temperatur oberhalb der Eintrittstemperatur der Wärmesenke abkühlen kann und anschließend noch einen Teil seiner spezifischen Wärme besitzt, was möglicherweise noch zur Prozesswärmeversorgung minderwertigerer Wärmesenken ausreicht. Hierdurch ist zwar mechanische Arbeit zur Überschreitung der höchsten Senkentemperatur aufzuwenden, aber für die nachfolgende Versorgung einer minderwertigeren Wärmesenke wäre keine zusätzliche mechanische Verdichtung erforderlich.One advantage of transcritically operated heat pumps with supercritically operated gas coolers is that the cycle fluid in the gas cooler can only cool down to a maximum temperature above the inlet temperature of the heat sink and then still has a portion of its specific heat, which may still be sufficient to supply process heat to lower-quality heat sinks. This means that mechanical work is required to exceed the highest sink temperature, but no additional mechanical compression would be required for the subsequent supply to an inferior heat sink.

Dieser Vorteil von transkritisch betriebenen Wärmepumpen ist jedoch gleichzeitig ein erheblicher Nachteil, da das sukzessive Abkühlen des überkritischen Kreisprozessfluides durch Wärmeübertragung im Gaskühler voraussetzt, dass die jeweilige Wärmesenke trotz dieses sukzessiven Temperaturverlusts des Kreisprozessfluides noch ausreichend Prozesswärme übertragen bekommt, denn hierzu müssen die Eintritts- und Austrittstemperatur der jeweiligen Wärmesenke ausreichend tief liegen. Wenn dieses nicht gegeben ist, und somit die tiefste Senkentemperatur immer noch zu hoch liegt, um das überkritische Kreisprozessfluid auf Temperaturen weit genug unterhalb des kritischen Punktes abzukühlen, wird der transkritische Prozess unwirtschaftlich oder sogar unmöglich, da dann der Verdampfer auf der wärmeaufnehmenden Niederdruckseite des transkritischen Kreisprozesses häufig nicht korrekt betrieben werden kann.However, this advantage of transcritically operated heat pumps is also a significant disadvantage, since the gradual cooling of the supercritical cycle fluid through heat transfer in the gas cooler requires that the respective heat sink still receives sufficient process heat despite this gradual loss of temperature of the cycle fluid, because for this to happen, the inlet and outlet temperatures of the respective heat sink must be sufficiently low. If this is not the case, and the lowest sink temperature is still too high to cool the supercritical cycle fluid to temperatures far enough below the critical point, the transcritical process becomes uneconomical or even impossible, since the evaporator on the heat-absorbing low-pressure side of the transcritical cycle often cannot be operated correctly.

Ein weiterer wesentlicher Nachteil von transkritisch betriebenen Wärmepumpen mit dem Kältemittel CO2 für das Ziel, Senkentemperaturen von deutlich über 120°C mit Prozesswärme versorgen zu können, besteht in den hohen Kompressionsdrücken von dann deutlich über 120 bar in Kombination mit der hohen CO2-Austrittstemperatur von deutlich über 130°C, welches die Konstruktion der gezwungenermaßen ölgeschmierten Kolben- oder Schraubenverdichter bezüglich Materialfestigkeiten und Temperaturbeständigkeit des Öls vor bisher ungelöste technische Probleme stellt. Allein die Tatsache, dass die Verdichter ölgeschmiert sein müssen, weil die Reibungskräfte bei den hohen Drücken viel zu hoch für eine ölfreie Kompression sind, erfordert ein funktionierendes Ölmanagement, damit nachfolgende Aggregate, beispielsweise Gaskühler und Verdampfer, durch den im Kreisprozessfluid mitgetragenen Ölanteil in ihrer Wirksamkeit nicht beeinträchtigt werden.Another significant disadvantage of transcritical heat pumps with the refrigerant CO 2 for the purpose of being able to supply process heat to sink temperatures of well over 120°C is the high compression pressures of well over 120 bar in combination with the high CO 2 outlet temperature of well over 130°C, which poses as yet unsolved technical problems for the design of the necessarily oil-lubricated piston or screw compressors with regard to material strength and temperature resistance of the oil. The mere fact that the compressors have to be oil-lubricated because the frictional forces at the high pressures are far too high for oil-free compression requires a functioning oil management system so that subsequent units, such as gas coolers and evaporators, are not impaired in their effectiveness by the oil content carried in the cycle fluid.

Ein zusätzlicher Nachteil von bekannten Wärmepumpen mit Kältemitteln wie CO2, NH3 sowie Kohlenwasserstoffen ist deren Einschränkung bei der Beheizung auf der wärmeaufnehmenden Seite von Wärmequellen deutlich oberhalb 30-40°C. Falls dieses technisch aufwändig ermöglicht wird, dann ist jeweils der technisch erreichbare Temperaturhub so gering, dass auf der wärmeabgebenden Seite keine Hochtemperatur zur Prozesswärmeübertragung auf eine Wärmesenke von über 200°C erreichbar ist.An additional disadvantage of known heat pumps with coolants such as CO 2 , NH 3 and hydrocarbons is their limitation when heating the heat-absorbing side of heat sources significantly above 30-40°C. If this is made possible with great technical effort, then the technically achievable temperature increase is so small that no high temperature for process heat transfer to a heat sink of over 200°C can be achieved on the heat-emitting side.

In einem Wärmepumpen-Kreisprozess mit Kondensation des Kreisprozessfluides muss die herzustellende Kondensationstemperatur zur Wärmeübertragung ausreichend höher liegen als die Temperatur derjenigen zu versorgenden Wärmesenke mit der höchsten Senkentemperatur. Die höchste erforderliche Senkentemperatur und die Auswahl des Kreisprozessfluides bezüglich dessen druckabhängiger Kondensationstemperatur bestimmen also den erforderlichen Druck im Kondensator, also dem Wärmeübertrager der Wärmesenke, in dem eine Wärmeabgabe des WärmepumpenKreisprozesses stattfindet, wobei der Kondensationsdruck gewöhnlich durch Verdichtung des Kreisprozessfluides mittels mechanischer Arbeit, also der Vernichtung von Exergie, erreicht werden muss.In a heat pump cycle with condensation of the cycle fluid, the condensation temperature to be achieved for heat transfer must be sufficiently higher than the temperature of the heat sink to be supplied with the highest sink temperature. The highest required sink temperature and the selection of the cycle fluid with regard to its pressure-dependent condensation temperature therefore determine the required pressure in the condenser, i.e. the heat exchanger of the heat sink in which heat is released from the heat pump cycle, whereby the condensation pressure must usually be achieved by compressing the cycle fluid using mechanical work, i.e. the destruction of exergy.

Die aktuelle Entwicklung neuer Wärmepumpen mit Kondensation eines Kreisprozessfluides konzentriert sich seit längerem auf die Untersuchung von geeigneten Kreisprozessfluiden hinsichtlich der Erreichung einer möglichst hohen Kondensationstemperatur bei möglichst niedrigem Kondensationsdruck auf der wärmeabgebenden Seite sowie gleichzeitig einem hohen Verdampfungsdruck bei möglichst niedriger Verdampfungstemperatur auf der wärmeaufnehmenden Seite.The current development of new heat pumps with condensation of a cycle fluid has for some time been focused on the investigation of suitable cycle fluids with regard to achieving the highest possible condensation temperature at the lowest possible condensation pressure on the heat-emitting side and, at the same time, a high evaporation pressure at the lowest possible evaporation temperature on the heat-absorbing side.

Jedoch weisen viele als Kreisprozessfluid geeignete Fluide, auch Kältemittel genannt, die diesen Eigenschaften möglichst nahekommen, in der Regel eine sehr schlechte Umweltverträglichkeit bezüglich Klimaschädlichkeit, Ozonabbau, Brennbarkeit oder Toxizität auf. Daher wird vermehrt auf natürliche Kältemittel wie CO2, NH3 sowie minderschädliche, aber brennbare Kohlenwasserstoffe gesetzt. Allerdings bleibt festzustellen, dass bei quasi allen aktuell von der EU-Kommission noch zugelassenen Kältemitteln starke bis sehr starke Restriktionen bezüglich der Höhe der maximalen Senkentemperatur und bezüglich des erreichbaren Temperaturhubs bestehen.However, many fluids suitable as cycle fluids, also known as refrigerants, which come as close as possible to these properties, generally have very poor environmental compatibility in terms of climate damage, ozone depletion, flammability or toxicity. Therefore, natural refrigerants such as CO 2 , NH 3 and less harmful but flammable hydrocarbons are increasingly being used. However, it should be noted that almost all refrigerants currently approved by the EU Commission have strong to very strong restrictions on the level of the maximum sink temperature and the achievable temperature rise.

Hierzu zählen beispielsweise Industrie-Wärmepumpen mit dem natürlichen Kältemittel NH3, welche in der Regel mit Kondensation des Kreisprozessfluides betrieben und in der Vergangenheit bereits als Hochtemperatur-Wärmepumpen bezeichnet wurden, wenn die maximal mögliche Senkentemperatur beispielsweise bei 80-90°C lag. Dieses ist auf den kritischen Punkt von NH3 zurückzuführen, der bei 132,35°C und 113,53 bar liegt, womit Temperaturen von 80-90°C bereits kurz unterhalb des kritischen Punktes anzusiedeln sind. Bei 200°C liegt also NH3 bereits überkritisch vor und wäre nicht mehr kondensierbar, sondern nur noch in einem transkritischen Prozess unter sehr hohen Drücken einsetzbar.These include, for example, industrial heat pumps with the natural refrigerant NH 3 , which are usually operated with condensation of the cycle fluid and were already referred to as high-temperature heat pumps in the past when the maximum possible sink temperature was, for example, 80-90°C. This is due to the critical point of NH 3 , which is 132.35°C and 113.53 bar, which means that temperatures of 80-90°C are already just below the critical point. At 200°C, NH 3 is already supercritical and would no longer be condensable, but could only be used in a transcritical process under very high pressures.

Durch den relativ niedrigen kritischen Punkt von NH3 ist für dessen Kondensation beispielsweise bei 100°C bereits ein Druck von über 62,55 bar zu überwinden. Dieses hohe Druckniveau bedarf einer hohen spezifischen Verdichterarbeit und erhöht die Betriebskosten für die Verdichtung. Zusätzlich macht es sowohl die Konstruktion der ölgeschmierten Verdichter als auch die Konstruktion von Wärmeübertragern aufwändig und teuer. Darüber hinaus beträgt die spezifische Kondensationsenthalpie von NH3 bei 100°C nur 715,7 kJ/kg, wodurch die resultierenden Heizleistungsziffern auf unwirtschaftlich tiefem Niveau liegen. Auch ist ein Temperaturniveau von 100°C für viele industrielle Prozesse nicht ausreichend.Due to the relatively low critical point of NH 3, a pressure of over 62.55 bar must be overcome for its condensation at 100°C, for example. This high pressure level requires a high specific compressor work and increases the operating costs for compression. In addition, it makes both the design of oil-lubricated compressors and the design of heat exchangers complex and expensive. In addition, the specific condensation enthalpy of NH 3 at 100°C is only 715.7 kJ/kg, which means that the resulting heating performance figures are at an uneconomically low level. A temperature level of 100°C is also not sufficient for many industrial processes.

Bei CO2 liegt der kritische Punkt noch tiefer, nämlich bei 31,06°C und 73,83 bar, sodass CO2 bereits oberhalb 31,06°C außerhalb des Zweiphasengebietes nicht mehr kondensierbar, sondern nur noch in einem transkritischen Prozess oberhalb des kritischen Drucks zur Wärmeübertragung einsetzbar ist. Aufgrund der hohen aufzuwendenden Drücke gelten bei der Konstruktion und dem Betrieb ähnlich starke Restriktionen wie bei NH3.For CO 2 the critical point is even lower, namely at 31.06°C and 73.83 bar, so that CO 2 can no longer be condensed outside the two-phase region above 31.06°C, but can only be used for heat transfer in a transcritical process above the critical pressure. Due to the high pressures involved, similar restrictions apply to the design and operation as for NH 3 .

Vorgenannte Kreisprozessfluide liegen bei Normbedingungen gasförmig vor und sind aufgrund hoher Dampfdrücke beispielsweise bei 0°C von 34,85 bar bei CO2 sowie 4,29 bar bei NH3 sehr gut zur Erzeugung von Prozesskälte geeignet, welches deren gute Eignung als Kältemittel hervorhebt. Für beide Fluide vorteilhaft ist deren relativ niedriges spezifisches Volumen beispielsweise bei einer Verdampfungstemperatur von 54°C, welches für NH3 bei 57 l/kg und für CO2 bei 5,6 l/kg liegt. Dieses ermöglicht selbst bei hohen Verdampfungsleistungen noch relativ geringe Apparategrößen. Im überkritischen Bereich liegen die spezifischen Volumina beider Fluide sogar unter 10-20 l/kg, welches sehr vorteilhaft für die Baugrößen von Wärmeübertragern ist, allerdings kommt hier wieder der hohe überkritische Druck zum Tragen, welcher die Konstruktion von Apparaten aufwändig macht.The aforementioned cycle fluids are gaseous under standard conditions and are very well suited to generating process cooling due to high vapor pressures, for example at 0°C of 34.85 bar for CO 2 and 4.29 bar for NH 3 , which underlines their good suitability as refrigerants. An advantage for both fluids is their relatively low specific volume, for example at an evaporation temperature of 54°C, which is 57 l/kg for NH 3 and 5.6 l/kg for CO 2. This allows relatively small apparatus sizes even with high evaporation rates. In the supercritical range, the specific volumes of both fluids are even less than 10-20 l/kg, which is very advantageous for the size of heat exchangers, but here again the high supercritical pressure comes into play, which makes the construction of apparatus complex.

Der Einsatz von Wasserdampf als Kreisprozessfluid ist insbesondere in der Kraftwerkstechnik als rechtslaufender Kraftprozess zur Stromerzeugung bereits bekannt, während elektrisch angetriebene Wärmepumpen mit Wasserdampf als Kreisprozessfluid in einem linkslaufenden Arbeitsprozess bisher nicht als solche benannt sind. Werden jedoch aktuell sogenannte Wasser-Wärmepumpen besprochen, dann sind in der Regel Wärmepumpen gemeint, die zumindest auf der wärmeabgebenden Seite einen Wasserstrom erwärmen und möglicherweise auch auf der wärmeaufnehmenden Seite einen Wasserstrom abkühlen, aber deren Kreisprozessfluid ist jedoch nicht Wasser, sondern ein anderes Fluid.The use of steam as a cycle fluid is already known, particularly in power plant technology, as a clockwise power process for generating electricity, while electrically driven heat pumps with steam as a cycle fluid in a counterclockwise working process have not yet been named as such. However, when so-called water heat pumps are currently discussed, this usually means heat pumps that heat a water flow at least on the heat-emitting side and possibly also cool a water flow on the heat-absorbing side, but their cycle fluid is not water, but another fluid.

Weitläufig bekannt als eine Art Wärmepumpe, jedoch in der Regel nicht in Form eines herkömmlichen Kreisprozesses aufgebaut, ist die Verdichtung von Wasserdampf beispielsweise mittels der häufig eingesetzten Brüdenverdichtung zur Anhebung der Kondensationstemperatur von Wasserdampf, um diesen dadurch für eine Wärmeübertragung auf häufig geringfügig höherem Temperaturniveau verfügbar zu machen, wie es beispielsweise bei modernen Verdampfungsprozessen mit mechanischer Brüdenverdichtung der Fall ist. Hierbei werden mit einem niedrigen Temperaturhub von wenigen Kelvin durchaus sehr hohe rechnerische Heizleistungsziffern erreicht, die teilweise deutlich über 20 liegen. Jedoch ist dieses eine irreführende Bewertung, da es sich eben nicht um einen für Wärmepumpen typischen linkslaufenden Kreisprozess handelt, der stofflich geschlossen ist. Ohnehin ist für einen höheren Temperaturhub von über 10-20 Kelvin in der Regel ein mehrstufiger Aufbau erforderlich, durch den die insgesamt erreichbare Heizleistungsziffer deutlich sinkt.Widely known as a type of heat pump, but usually not constructed in the form of a conventional cycle, is the compression of water vapor, for example by means of the frequently used vapor compression to raise the condensation temperature of water vapor in order to make it available for heat transfer at a frequently slightly higher temperature level, as is the case with modern evaporation processes with mechanical vapor compression. With a low temperature lift of just a few Kelvin, very high calculated heating output figures can be achieved, some of which are well over 20. However, this is a misleading assessment, since it is not a counterclockwise cycle process that is typical for heat pumps and is materially closed. In any case, a higher temperature lift of over 10-20 Kelvin usually requires a multi-stage structure, which significantly reduces the overall achievable heating output figure.

Verdichter für Wasserdampf werden in verschiedenen Bauweisen als Strömungsmaschinen, beispielsweise einerseits in Form von Radial-Gebläsen für geringe Verdichtungsraten unter 2 und hohe Volumenströme bei geringen Enddrücken unter 5 bar oder andererseits als Turbo-Kompressoren für mittlere Verdichtungsraten bis etwa 3 und höheren Enddrücken bis etwa 20 bar gebaut, sowie auch als Verdrängermaschinen in der Bauform von Rotationskolbenverdichtern für hohe Volumenströme bei mittleren Verdichtungsraten oder Kolbenmaschinen für hohe Verdichtungsraten bis 6 und besonders hohe Enddrücke bis über 70 bar.Compressors for water vapor are built in various designs as flow machines, for example on the one hand in the form of radial blowers for low compression rates below 2 and high volume flows at low final pressures below 5 bar or on the other hand as turbo compressors for medium compression rates up to about 3 and higher final pressures up to about 20 bar, as well as positive displacement machines in the design of rotary piston compressors for high volume flows at medium compression rates or piston machines for high compression rates up to 6 and particularly high final pressures up to over 70 bar.

Beispielsweise beschreibt das Unternehmen Spilling Technologies GmbH in Hamburg (www.spilling.de) solche Kolben-Dampfkompressoren für hohe Austrittsdrücke bis 70 bar, die jedoch aufgrund der Bauweise generell keinen Vakuumdampf unter 100°C ansaugen können, sondern ausschließlich Dampf deutlich über Atmosphärendruck. Mittlerweile werden diese Kolben-Dampfkompressoren bis zu einer Druckstufe von etwa 40 bar in einer Bauweise und einer Begrenzung auf eine Dampftemperatur von etwa 250°C sogar ohne Ölschmierung der Kolben hergestellt. Um dieses zu erreichen, wird dem angesaugten Dampfstrom jeweils vor dem Eintritt in die Zylinder zum Abbau der Überhitzung im Verdichter eine definierte Menge Wasser eingespritzt, sodass vor der Verdichtung übersättigter Nassdampf mit einem Dampfanteil xD und gleichzeitig einem flüssigen Anteil (1 - xD) entsteht, wobei dessen flüssiger Anteil während der Verdichtung für ausreichende Schmierung der Kolben sorgt und durch die Temperaturerhöhung während der polytropen Verdichtung verdampft, sodass im Austritt des Verdichters idealerweise gesättigter Dampf ohne nennenswerte Überhitzung vorliegt.For example, the company Spilling Technologies GmbH in Hamburg (www.spilling.de) describes such piston steam compressors for high outlet pressures of up to 70 bar, which, however, due to their design, cannot generally suck in vacuum steam below 100°C, but only steam well above atmospheric pressure. These piston steam compressors are now manufactured up to a pressure level of around 40 bar in a design and limited to a steam temperature of around 250°C even without oil lubrication of the pistons. To achieve this, a defined amount of water is injected into the sucked-in steam flow before it enters the cylinders to reduce the superheat in the compressor, so that supersaturated wet steam with a steam portion x D and a liquid portion (1 - x D ) is created before compression, with the liquid portion ensuring sufficient lubrication of the pistons during compression and evaporating due to the increase in temperature during polytropic compression, so that ideally saturated steam without any significant overheating is present at the outlet of the compressor.

Das Unternehmen Piller Blowers & Compressors GmbH in Moringen (www.piller.de) beschreibt Dampfverdichter in Ventilator-Bauweise, welche zur Brüdenverdichtung im Vakuumbereich eingesetzt werden und aktuell bis zu Austrittsdrücken von 5 bar Überdruck gebaut werden. Zur Erreichung eines höheren Temperaturhubs werden diese mehrstufig in Reihe geschaltet. Aufgrund der temperaturabhängigen Materialfestigkeit der Verdichter-Laufräder ist es bei den für die Verdichtung erforderlichen hohen Umfangsgeschwindigkeiten erforderlich, dem angesaugten Dampfstrom vor dem Eintritt in das Verdichterlaufrad eine definierte Menge Wasser zur Kühlung einzuspritzen.The company Piller Blowers & Compressors GmbH in Moringen (www.piller.de) describes steam compressors in fan design, which are used for vapor compression in the vacuum range and are currently built up to outlet pressures of 5 bar overpressure. To achieve a higher temperature lift, these are connected in series in several stages. Due to the temperature-dependent material strength of the compressor impellers, it is necessary to inject a defined amount of water for cooling into the sucked-in steam flow before it enters the compressor impeller at the high circumferential speeds required for compression.

Ebenso beschreibt das Unternehmen Boldrocchi Group S.r.l. in Biassono, Italien (www.boldrocchigroup.com) Dampfgebläse und Turbokompressoren in Ventilator-Bauweise für Kompressionsverhältnisse zwischen etwa 1,2-3,0 und Enddrücke bis 100 bar sowie mehrstufige Anordnungen verschiedener Verdichter zur Erreichung eines höheren Temperaturhubs. Auch die Boldrocchi Group beschreibt die Übersättigung von Dampf mit eingespritztem Wasser vor dem Eintritt in das Verdichterlaufrad zum Abbau der Überhitzung im Verdichter.The company Boldrocchi Group S.r.l. in Biassono, Italy (www.boldrocchigroup.com) also describes steam blowers and turbo compressors in fan design for compression ratios between about 1.2-3.0 and final pressures of up to 100 bar, as well as multi-stage arrangements of different compressors to achieve a higher temperature lift. The Boldrocchi Group also describes the supersaturation of steam with injected water before it enters the compressor impeller to reduce superheating in the compressor.

Der Vorteil einer Nassdampfverdichtung liegt in der durchgängigen Kühlung während der Verdichtung durch den verdampfenden flüssigen Anteil. Ebenso erfolgt die Verdichtung durch die kompensierte Überhitzung bei insgesamt niedrigeren Temperaturen, als es bei trockenem, überhitztem Dampf der Fall wäre, wodurch das spezifische Volumen während der Nassdampfverdichtung gegenüber einer ungekühlten Verdichtung trockenen Dampfes im Überhitzungsgebiet geringer ist, was die Baugröße der Verdichter bei gleichem Massenstrom reduziert.The advantage of wet steam compression is the continuous cooling during compression by the evaporating liquid portion. Likewise, compression due to compensated superheating takes place at lower temperatures overall than would be the case with dry, superheated steam, which means that the specific volume during wet steam compression is lower in the superheating area than with uncooled compression of dry steam, which reduces the size of the compressors for the same mass flow.

Ein Nachteil einer Kompression von Nassdampf ist jedoch, dass zusätzlich zum Massedurchfluss des dampfförmigen Dampfanteils xD auch der vor der Verdichtung eingespritzte Massedurchfluss an flüssigem Wasser (1 - xD), der während der Verdichtung verdampft, im Verdichterlaufrad auf die hohe Umfangsgeschwindigkeit beschleunigt und auf den Austrittsdruck verdichtet werden muss. Zusätzlich erfährt dieser zu Sattdampf verdampfende Wasseranteil des Nassdampfs innerhalb des Verdichterlaufrades eine Vergrößerung seines spezifischen Volumens um einen dreistelligen Faktor und durch den zunehmenden Volumenstrom eine entsprechende Beschleunigung, welches auf den Massenstrom bezogen zu einem höheren spezifischen Antriebs-Drehmoment führt.A disadvantage of compressing wet steam, however, is that in addition to the mass flow of the vaporous steam portion x D, the mass flow of liquid water (1 - x D ) injected before compression, which evaporates during compression, accelerates to the high circumferential speed in the compressor impeller and must be compressed to the outlet pressure. In addition, this water portion of the wet steam, which evaporates to saturated steam, experiences an increase in its specific volume by a three-digit factor within the compressor impeller and a corresponding acceleration due to the increasing volume flow, which leads to a higher specific drive torque in relation to the mass flow.

Ein weiterer Nachteil besteht darin, dass der Wasseranteil des Nassdampfs flüssig in das Verdichterlaufrad eintritt und als Tropfen auf die Laufrad-Struktur trifft, was zu stärkerer mechanischer Beanspruchung der Oberflächen und höherer Fluidreibung innerhalb des Verdichterlaufrades führt.A further disadvantage is that the water portion of the wet steam enters the compressor impeller in liquid form and hits the impeller structure as droplets, which leads to greater mechanical stress on the surfaces and higher fluid friction within the compressor impeller.

Zusätzlich muss das eingespritzte Wasser aufbereitet oder zumindest entkalkt sein, um Kalkablagerungen im Verdichter zu vermeiden.In addition, the injected water must be treated or at least decalcified to avoid limescale deposits in the compressor.

Insbesondere bei einer mehrstufigen Verdichtungs-Anordnung zur Lieferung eines Sattdampf-Massenstroms am Austritt der letzten Verdichterstufe muss jede der Verdichterstufen jeweils den aus der vorhergehenden Stufe austretenden Sattdampf-Massenstrom und zusätzlich den in der jeweiligen Stufe eingespritzten Wasser-Massenstrom verdichten, welcher für den Abbau der Überhitzung erforderlich ist.In particular, in a multi-stage compression arrangement for supplying a saturated steam mass flow at the outlet of the last compressor stage, each of the compressor stages must compress the saturated steam mass flow exiting from the previous stage and additionally the water mass flow injected in the respective stage, which is required to reduce the superheat.

Das Zusammenwirken dieser Nachteile erhöht insgesamt die spezifische Antriebsleistung der Verdichtung bezogen auf den gelieferten Sattdampf-Massenstrom.The combination of these disadvantages increases the overall specific drive power of the compression in relation to the saturated steam mass flow delivered.

Ein weiterer, wesentlicher Nachteil der bekannten Brüdenverdichtung oder Dampfkompression zur Bereitstellung von höherwertigem Dampf unter Nutzung von Niedertemperatur-Abwärme zwischen 60-80°C beispielsweise in Form von Vakuumdampf liegt darin, dass der kondensierte Dampf bei der Übertragung von Kondensationswärme auf eine Wärmesenke einer hohen Senkentemperatur, also das flüssige Dampfkondensat, noch eine deutlich zu hohe Temperatur hat, um in einem stofflich geschlossenen Kreisprozess mittels der gleichen Niedertemperatur-Abwärmequelle zwischen 60-80°C erneut verdampft werden zu können. Somit fehlt bei der bekannten Brüdenverdichtung neben dem Aufbau eines stofflich geschlossenen Kreisprozesses, der als Wärmepumpen-Kreisprozess bezeichnet werden könnte, die erforderliche Kühlung des kondensierten Kreisprozessfluids auf die Verdampfungstemperatur der wärmeaufnehmenden Niederdruckseite.Another significant disadvantage of the known vapor compression or steam compression for providing higher-quality steam using low-temperature waste heat between 60-80°C, for example in the form of vacuum steam, is that the condensed steam when the condensation heat is transferred to a heat sink with a high sink temperature, i.e. the liquid steam condensate, is still at a temperature that is significantly too high to be able to be evaporated again in a materially closed cycle using the same low-temperature waste heat source between 60-80°C. Thus, in addition to the construction of a materially closed cycle, which could be referred to as a heat pump cycle, the known vapor compression lacks the necessary cooling of the condensed cycle fluid to the evaporation temperature of the heat-absorbing low-pressure side.

Hinzu kommt, dass industrielle Prozesse häufig mehrere Wärmesenken haben, welche mit Prozesswärme zu versorgen sind und diese oftmals sogar auf unterschiedlichen Temperaturniveaus liegen. Zu einer gekoppelten Versorgung derart unterschiedlicher Wärmesenken mit einem gemeinsamen Wärmepumpen-Prozess im Kondensationsbetrieb muss dessen Auslegung ebenfalls nach der Versorgung derjenigen höchstwertigen Wärmesenke erfolgen, welche die höchste erforderliche Senkentemperatur hat.In addition, industrial processes often have several heat sinks that need to be supplied with process heat, and these are often even at different temperature levels. In order to supply such different heat sinks with a common heat pump process in condensation mode, the design of the process must also be based on the supply of the highest-value heat sink that has the highest required sink temperature.

Ein typisches Beispiel für industrielle Prozesse mit einem hohen Prozesswärmebedarf von teilweise mehreren Megawatt bis zu einem Hochtemperaturniveau von über 200°C sind großtechnische Trocknungsprozesse, beispielsweise Sprühtrocknungsprozesse zur Erzeugung von Pulvern. Bei solchen Sprühtrocknungsprozessen entstehen durch große Durchflüsse von verbrauchtem, mit Wasserdampf angereichertem Prozessgas in der Regel große Abwärmeleistungen, die in ähnlicher Größenordnung wie der Wärmebedarf für die Beheizung des Trocknungsprozesses liegen. Jedoch fällt diese Abwärme prozessbedingt durchgängig auf niedrigem Temperaturniveau an, beispielsweise zwischen 60-80°C.A typical example of industrial processes with a high process heat requirement of sometimes several megawatts up to a high temperature level of over 200°C are large-scale drying processes, for example spray drying processes for producing powders. In such spray drying processes, large flows of used process gas enriched with water vapor usually result in large amounts of waste heat, which are of a similar magnitude to the heat requirement for heating the drying process. However, due to the nature of the process, this waste heat is consistently generated at a low temperature level, for example between 60-80°C.

Wenn eine Beheizung mit Prozesswärme bei einer hohen Senkentemperatur von beispielsweise über 200°C erfolgen soll, dann können herkömmliche Wärmepumpen nur dann eine hohe Heizleistungsziffer erreichen, wenn dem Wärmepumpen-Kreisprozess entsprechend viel Wärme auf der Niedertemperaturseite zugeführt wird und der technisch erreichbare Temperaturhub nicht geringer ist als die Differenz zwischen der höchsten erforderlichen Senkentemperatur und dem niedrigsten verfügbaren Temperaturniveau der Niedertemperatur-Wärmequelle.If heating with process heat is to take place at a high sink temperature of, for example, over 200°C, then conventional heat pumps can only achieve a high heating output coefficient if a corresponding amount of heat is supplied to the heat pump cycle on the low-temperature side and the technically achievable temperature increase is not less than the difference between the highest required sink temperature and the lowest available temperature level of the low-temperature heat source.

Um Niedertemperatur-Abwärmeströme von einem in der Industrie häufig auftretenden Temperaturniveau zwischen 60-80°C mittels einer Wärmepumpentechnologie mit einer wirtschaftlich sinnvollen Heizleistungsziffer von deutlich über 2 bis idealerweise über beispielsweise 3 bis 5 aufwerten und insgesamt als hochwertige Prozesswärme auf einem durchgängig hohen Temperaturniveau von über 200°C nutzbar machen zu können, wäre ein Temperaturhub von mindestens 120-140 Kelvin vonnöten. Eine Wärmepumpentechnologie, die einen solchen Wärmepumpen-Kreisprozess ermöglicht, ist bisher nicht verfügbar.In order to upgrade low-temperature waste heat flows from a temperature level frequently encountered in industry between 60-80°C using heat pump technology with an economically viable heat output factor of well over 2 to ideally over 3 to 5, and to be able to use it as high-quality process heat at a consistently high temperature level of over 200°C, a temperature increase of at least 120-140 Kelvin would be necessary. A heat pump technology that enables such a heat pump cycle is not yet available.

Aufgabe der Erfindung ist es, den Stand der Technik zu verbessern.The object of the invention is to improve the state of the art.

Gelöst wird die Aufgabe durch eine Wärmepumpenvorrichtung zum energieeffizienten Erzeugen einer Prozesswärme, wobei die Wärmepumpenvorrichtung eine wärmeaufnehmende Seite, eine wärmeabgebende Seite, ein Kreisprozessfluid und einen Verdampfer auf der wärmeaufnehmenden Seite aufweist, und der Wärmepumpenvorrichtung auf der wärmeabgebenden Seite mindestens ein Wärmeübertrager und mindestens eine Wärmesenke und auf der wärmeaufnehmenden Seite mindestens eine Wärmequelle zuordenbar sind, wobei mittels des Verdampfers flüssiges Kreisprozessfluid durch Wärmezufuhr von der zuordenbaren Wärmequelle indirekt beheizbar und auf einer Druckstufe des Verdampfers verdampfbar ist, und die Wärmepumpenvorrichtung mindestens einen dem Verdampfer nachgeschalteten ersten Verdichter aufweist, wobei mittels des mindestens ersten Verdichters dampfförmiges Kreisprozessfluid von der Druckstufe des Verdampfers auf eine zweite Druckstufe verdichtbar ist, und die Wärmepumpenvorrichtung mindestens einen ersten Mischseparator in der zweiten Druckstufe aufweist, wobei der mindestens erste Mischseparator einen ersten Anschluss zum Eintritt von dampfförmigem Kreisprozessfluid, einen zweiten Anschluss zum Eintritt von kondensiertem Kreisprozessfluid, einen dritten Anschluss zum Austritt von dampfförmigem Kreisprozessfluid und optional einen vierten Anschluss zum Austritt von kondensiertem Kreisprozessfluid aufweist und dem Mischseparator mindestens ein zweiter Verdichter nachgeschaltet ist, sodass aus dem dritten Anschluss austretendes dampfförmiges Kreisprozessfluid in dem mindestens zweiten Verdichter von der zweiten Druckstufe auf eine erste Druckstufe verdichtbar ist und mittels des mindestens einen zugeordneten Wärmeübertragers von dem dampfförmigen Kreisprozessfluid der ersten Druckstufe indirekt Prozesswärme auf die mindestens eine zuordenbare Wärmesenke übertragbar ist und jenes in dem mindestens einen Wärmeübertrager kondensiertes Kreisprozessfluid über den zweiten Anschluss in den mindestens ersten Mischseparator der zweiten Druckstufe zurückführbar ist, wobei gleichzeitig dampfförmiges Kreisprozessfluid aus dem mindestens ersten Verdichter über den ersten Anschluss in den Mischseparator einleitbar ist.The object is achieved by a heat pump device for energy-efficient generation of process heat, wherein the heat pump device has a heat-absorbing side, a heat-emitting side, a cycle fluid and an evaporator on the heat-absorbing side, and at least one heat exchanger and at least one heat sink can be assigned to the heat pump device on the heat-emitting side and at least one heat source on the heat-absorbing side, wherein liquid cycle fluid can be indirectly heated by means of the evaporator by supplying heat from the assignable heat source and can be evaporated at a pressure level of the evaporator, and the heat pump device has at least one evaporator has a first compressor downstream of the heat pump device, wherein vaporous cycle fluid can be compressed from the pressure stage of the evaporator to a second pressure stage by means of the at least first compressor, and the heat pump device has at least one first mixing separator in the second pressure stage, wherein the at least first mixing separator has a first connection for the inlet of vaporous cycle fluid, a second connection for the inlet of condensed cycle fluid, a third connection for the outlet of vaporous cycle fluid and optionally a fourth connection for the outlet of condensed cycle fluid and at least one second compressor is connected downstream of the mixing separator, so that vaporous cycle fluid emerging from the third connection can be compressed in the at least second compressor from the second pressure stage to a first pressure stage and process heat can be indirectly transferred from the vaporous cycle fluid of the first pressure stage to the at least one assignable heat sink by means of the at least one assigned heat exchanger and that condensed in the at least one heat exchanger Cycle fluid can be returned via the second connection into the at least first mixing separator of the second pressure stage, wherein at the same time vaporous cycle fluid from the at least first compressor can be introduced into the mixing separator via the first connection.

Somit wird eine Hochtemperaturwärmepumpe bereitgestellt, bei welcher bei Anordnung des mindestens einen Mischseparators in der zweiten Druckstufe mittels des mindestens einen Wärmeübertragers der ersten Druckstufe Prozesswärme in einem Temperaturbereich von circa 100 °C bis 250 °C auf der wärmeabgebenden Seite abgebbar ist.Thus, a high-temperature heat pump is provided in which, when the at least one mixing separator is arranged in the second pressure stage, process heat can be released in a temperature range of approximately 100 °C to 250 °C on the heat-emitting side by means of the at least one heat exchanger of the first pressure stage.

Es ist besonders vorteilhaft, dass die Wärmepumpenvorrichtung insbesondere bevorzugt mit Wasser als natürliches und vollständig umweltverträgliches Kreisprozessfluid betreibbar ist.It is particularly advantageous that the heat pump device can be operated particularly preferably with water as a natural and completely environmentally friendly circulating process fluid.

Wasser liegt bei Normbedingungen flüssig und weist den Vorteil eines hohen kritischen Druckes von 221,2 bar und der hohen kritischen Temperatur von 374,15°C auf, wodurch im Zweiphasengebiet beispielsweise bei einem vergleichsweise niedrigen Druck von 16 bar und bei bereits über 201°C Kondensationstemperatur eine hohe Kondensationsenthalpie von 1.933 kJ/kg für eine Wärmeübertragung auf eine Wärmesenke nutzbar ist, während im Vergleich die spezifische Kondensationsenthalpie von NH3 bei nur 100°C und bereits 62,55 bar lediglich 715,7 kJ/kg beträgt.Water is liquid under standard conditions and has the advantage of a high critical pressure of 221.2 bar and a high critical temperature of 374.15°C, whereby in the two-phase region, for example at a comparatively low pressure of 16 bar and a condensation temperature of over 201°C, a high condensation enthalpy of 1,933 kJ/kg can be used for heat transfer to a heat sink, while in comparison the specific condensation enthalpy of NH 3 at only 100°C and already 62.55 bar is only 715.7 kJ/kg.

Somit wird eine Wärmepumpenvorrichtung mit einem Wärmepumpenkreisprozesses bereitgestellt, welcher auf einem Kreisprozess mit mindestens drei Druckstufen mit unterschiedlich hohen Drücken basiert, mit

  • - mindestens einer ersten Druckstufe mit einem Druck des dampfförmigen Kreisprozessfluids, welcher dem höchsten Kondensationsdruck des Kreisprozessfluids im Kreisprozess auf dessen wärmeabgebender Seite entspricht, sodass die Kondensationstemperatur des Kreisprozessfluids so weit oberhalb der höchsten erforderlichen Senkentemperatur der höchstwertigen zu versorgenden Wärmesenke liegt, dass dieses zur Wärmeübertragung vom kondensierenden Kreisprozessfluid auf die höchstwertige Wärmesenke ausreicht,
  • - sowie mindestens einer zweiten Druckstufe, in welcher der mindestens eine Mischseparator angeordnet ist und welche einen Druck des dampfförmigen Kreisprozessfluids aufweist, welcher tiefer liegt als derjenige der ersten Druckstufe und höher liegt als derjenige Verdampfungsdruck des Kreisprozessfluids im Verdampfer, und
  • - mindestens einer unteresten Druckstufe mit einem Druck des dampfförmigen Kreisprozessfluids entsprechend dem Verdampfungsdruck im Verdampfer, welche dem niedrigsten Kondensationsdruck des Kreisprozessfluids innerhalb des Kreisprozesses der Wärmepumpenvorrichtung entspricht.
Thus, a heat pump device is provided with a heat pump cycle process which is based on a cycle process with at least three pressure stages with different pressure levels, with
  • - at least one first pressure stage with a pressure of the vaporous cycle fluid which corresponds to the highest condensation pressure of the cycle fluid in the cycle on its heat-emitting side, so that the condensation temperature of the cycle fluid is so far above the highest required sink temperature of the highest-value heat sink to be supplied that this is sufficient for heat transfer from the condensing cycle fluid to the highest-value heat sink,
  • - and at least one second pressure stage in which the at least one mixing separator is arranged and which has a pressure of the vaporous cycle fluid which is lower than that of the first pressure stage and higher than the evaporation pressure of the cycle fluid in the evaporator, and
  • - at least one lowest pressure stage with a pressure of the vaporous cycle fluid corresponding to the evaporation pressure in the evaporator, which corresponds to the lowest condensation pressure of the cycle fluid within the cycle of the heat pump device.

Ein wesentlicher Gedanke der Erfindung beruht darauf, dass eine Reduzierung der Vernichtung von spezifischer Exergie bei der insgesamt aufzuwendenden spezifischen Verdichterarbeit bezogen auf die spezifische nutzbare Prozesswärme auf dem Temperaturniveau der jeweils höchsten erforderlichen Senkentemperatur erfolgt. Dies wird erreicht durch sukzessive Enthalpienutzung von kondensiertem Kreisprozessfluid, nachdem dessen Kondensationsenthalpie auf dem Kondensationsdruck einer ersten Druckstufe als Prozesswärme für eine Wärmesenke der höchsten erforderlichen Senkentemperatur nutzbar gemacht und im kondensierten Kreisprozessfluid dieser ersten Druckstufe enthaltene Enthalpie teilweise dem dampfförmigen Kreisprozessfluid zumindest einer zweiten Druckstufe in mindestens einem Mischseparator im Verdichtungsstrang zugeführt wird. Beim Übergang des mit etwa der Kondensationstemperatur des kondensierten Kreisprozessfluids der ersten Druckstufe in dem mindestens einen Mischseparator einer zweiten, also einer niedrigeren, Druckstufe mit niedrigerer Kondensationstemperatur kühlt sich das flüssige Kreisprozessfluid auf die Kondensationstemperatur der niedrigeren Druckstufe ab und einen Teil seiner Enthalpie wird zur Verdampfung eines Teils des flüssigen Kreisprozessfluids genutzt. Dieser verdampfte Anteil wird dem bereits dampfförmigen Durchfluss an Kreisprozessfluid im Verdichtungsstrang auf dieser niedrigeren Druckstufe ohne Verdichterarbeit zugeführt, wodurch die auf dieser Druckstufe verfügbare Kondensationsenthalpie des auf dieser Druckstufe verfügbaren dampfförmigen Kreisprozessfluids erhöht wird, während die bis zu dieser Druckstufe aufzuwendende Verdichterarbeit konstant bleibt. Dadurch wird die Heizleistungsziffer erhöht und die Energieeffizienz gesteigert.A key idea of the invention is that a reduction in the destruction of specific exergy in the total specific compressor work to be applied in relation to the specific usable process heat takes place at the temperature level of the highest required sink temperature in each case. This is achieved by successive enthalpy utilization of condensed cycle fluid after its condensation enthalpy at the condensation pressure of a first pressure stage has been made usable as process heat for a heat sink of the highest required sink temperature and the enthalpy contained in the condensed cycle fluid of this first pressure stage is partially fed to the vaporous cycle fluid of at least a second pressure stage in at least one mixing separator in the compression line. When the liquid cycle fluid, which is at approximately the condensation temperature of the condensed cycle fluid of the first pressure stage, passes into the at least one mixing separator of a second, i.e. a lower, pressure stage with a lower condensation temperature, the liquid cycle fluid cools down to the condensation temperature of the lower pressure stage and part of its enthalpy is used to evaporate part of the liquid cycle fluid. This evaporated portion is added to the already vaporous flow of cycle fluid in the compression train is supplied at this lower pressure level without compressor work, which increases the condensation enthalpy of the vaporous cycle fluid available at this pressure level, while the compressor work required up to this pressure level remains constant. This increases the heat output coefficient and improves energy efficiency.

Folgendes Begriffliche sei erläutert:

  • Eine „Wärmepumpenvorrichtung“ ist insbesondere eine Maschine, welche unter Aufwendung von technischer Arbeit thermische Energie aus einem Reservoir und/oder einer Wärmequelle mit niedriger Temperatur aufnimmt und zusammen mit einer Antriebsenergie als Nutzwärme auf ein zu beheizendes System und/oder eine Wärmesenke mit höherer Temperatur überträgt. Eine Wärmepumpenvorrichtung ist insbesondere derart eingerichtet, um einen Wärmepumpenkreisprozess an einem Kreisprozessfluid durchzuführen mit dem Ziel, Prozesswärme an eine Wärmesenke zu übertragen, indem Wärme von einer verfügbaren Wärmequelle mit niedriger Temperatur aufgenommen wird und die aufgenommene Wärme durch Temperaturerhöhung mittels mechanischer Arbeit auf mindestens eine für die Wärmesenke höchste erforderliche Senkentemperatur aufgewertet wird.
The following terminology is explained:
  • A "heat pump device" is in particular a machine which, by expending technical work, absorbs thermal energy from a reservoir and/or a heat source with a low temperature and, together with drive energy, transfers it as useful heat to a system to be heated and/or a heat sink with a higher temperature. A heat pump device is in particular designed to carry out a heat pump cycle on a cycle fluid with the aim of transferring process heat to a heat sink by absorbing heat from an available heat source with a low temperature and upgrading the absorbed heat by increasing the temperature by means of mechanical work to at least one highest sink temperature required for the heat sink.

Ein „Wärmepumpenkreisprozess“ ist insbesondere ein Kreislaufprozess, bei dem eine abgeschlossene Stoffmenge eines Kreisprozessfluids insbesondere durch Wärmezufuhr seitens eines Reservoirs und/oder einer Wärmequelle bei einem niedrigen Druck verdampft wird, anschließend dampfförmiges Kreisprozessfluid insbesondere durch Verrichtung von mechanischer Arbeit oder durch andere Prozesse, wie beispielsweise Mischung mit dampfförmigem Kreisprozessfluid eines höheren Drucks in einem Mischseparator, oder eine Kombination daraus, auf einen hohen Druck verdichtet wird und dabei eine höhere Temperatur annimmt, anschließend durch Wärmeentzug seitens einer Wärmesenke bei diesem hohen Druck zumindest abgekühlt oder auch kondensiert wird und anschließend zumindest durch Drosselung oder auch Wärmeentzug wieder auf einen niedrigen Druck vor der Verdampfung gebracht wird. A "heat pump cycle" is in particular a cycle process in which a closed quantity of a cycle fluid is evaporated at a low pressure, in particular by supplying heat from a reservoir and/or a heat source, then vaporous cycle fluid is compressed to a high pressure, in particular by performing mechanical work or by other processes, such as mixing with vaporous cycle fluid of a higher pressure in a mixing separator, or a combination thereof, and in the process assumes a higher temperature, then is at least cooled or condensed by heat extraction from a heat sink at this high pressure and then is brought back to a low pressure before evaporation at least by throttling or heat extraction.

Ein „Kreisprozessfluid“ ist insbesondere ein Fluid, welches bei bestimmten physikalischen Zustandsbedingungen insbesondere einerseits entweder flüssig, gasförmig oder beides zugleich vorliegt, wobei letzteres als sogenanntes Zweiphasenzustand bezeichnet wird, dessen Darstellung in Zustandsdiagrammen innerhalb des sogenannten Zweiphasengebietes zwischen Siedelinie und Kondensationslinie erfolgt, oder andererseits überkritisch vorliegt, welches Zustandsbedingungen außerhalb des Zweiphasengebietes beschreibt, also entweder ein Druck höher als der kritische Druck des Fluides oder eine Temperatur höher als die kritische Temperatur des Fluides. Zudem kann eine Menge an flüssigem oder dampfförmigem Kreisprozessfluid einer beliebigen Druckstufe für anderweitige thermische oder stoffliche Verwertung aus dem Kreisprozess pro Zeiteinheit entnommen werden und dem Kreisprozess zeitgleich wieder die gleiche Menge an flüssigem oder dampfförmigem Kreisprozessfluid an anderer Stelle in der gleichen Zeiteinheit zugeführt werden. Dieses kann beispielsweise dampfförmiges Kreisprozessfluid sein, welches für einen externen Prozess als Heizmedium oder Treibdampf verwendet und an anderer Stelle beispielsweise flüssig als kondensiertes Kreisprozessfluid zurück in den Kreisprozess eingespeist wird. Ebenso ist eine Entnahmestelle realisierbar, an welcher insbesondere sporadisch oder kontinuierlich Kreisprozessfluid für Reinigungszwecke entnommen und gereinigtes Kreisprozessfluid an einer weiteren Einspeisestelle wieder in den Kreisprozess eingeleitet wird, um die Qualität des Kreisprozessfluids und dessen Füllstand innerhalb der Wärmepumpenvorrichtung zu kontrollieren und/oder einzustellen.A “cycle fluid” is in particular a fluid which, under certain physical conditions, is either liquid, gaseous or both at the same time, the latter being referred to as a so-called two-phase state, which is represented in state diagrams within the so-called two-phase region between the boiling line and the condensation line, or is supercritical, which describes state conditions outside the two-phase region, i.e. either a pressure higher than the critical pressure of the fluid or a temperature higher than the critical temperature of the fluid. In addition, a quantity of liquid or vaporous cycle fluid of any pressure level can be removed from the cycle per unit of time for other thermal or material utilization, and at the same time the same quantity of liquid or vaporous cycle fluid can be fed back into the cycle at another point in the same unit of time. This can, for example, be vaporous cycle fluid which is used as a heating medium or motive steam for an external process and fed back into the cycle at another point, for example in liquid form as condensed cycle fluid. Likewise, a withdrawal point can be realized at which circulating process fluid is withdrawn, in particular sporadically or continuously, for cleaning purposes and cleaned circulating process fluid is fed back into the circulating process at a further feed point in order to control and/or adjust the quality of the circulating process fluid and its fill level within the heat pump device.

Eine „Prozesswärme“ ist insbesondere eine mittels zumindest eines Wärmeübertragers der ersten Druckstufe an eine Wärmesenke oder auch mittels eines weiteren Wärmeübertragers einer weiteren Druckstufe an eine weitere Wärmesenke abgegebene Wärme.A “process heat” is in particular heat transferred by means of at least one heat exchanger of the first pressure stage to a heat sink or by means of another heat exchanger of a further pressure stage to a further heat sink.

Eine „Wärmesenke“ ist insbesondere ein Reservoir und/oder ein Durchfluss mit einem Zulauf und einem Ablauf eines Fluids oder Wärmeträgermedium, dessen Temperatur angehoben werden soll von einer Eingangstemperatur des Zulaufs auf eine Ausgangstemperatur des Ablaufs, wobei die zu erreichende Zieltemperatur für die Ausgangstemperatur des Ablaufs der Wärmesenke die „höchste erforderliche Senkentemperatur“ einer Wärmesenke ist. Eine Wärmesenke kann ein Wärmeträgermedium sein, welches erhitzt wird für den Zweck des Erwärmens eines anderen Fluides und/oder Stoffstroms insbesondere in einer externen Vorrichtung außerhalb der Wärmepumpenvorrichtung, sodass beispielsweise in einem Wärmeübertrager ein Wärmeträgermedium erhitzt wird, welches dazu verwendet wird, einen externen Prozess in einer anderen Vorrichtung zu beheizen, beispielsweise einen Trockner oder dessen Hilfsmedien oder dessen Trocknungsgut. Auch kann die Wärmesenke ein Prozessgasstrom sein, welcher in einer Trocknungsvorrichtung zum Trocknen eines feuchten Materials erhitzt wird, damit anschließend mit dem Prozessgasstrom ein Trocknungsprozess betrieben wird, indem das erhitzte Prozessgas Wärme an ein feuchtes Material und somit ein Trocknungsgut überträgt, darin enthaltene Feuchtigkeit verdampft und möglicherweise auch vom Trocknungsgut entfernt wird.A “heat sink” is in particular a reservoir and/or a flow with an inlet and an outlet of a fluid or heat transfer medium, the temperature of which is to be raised from an inlet temperature of the inlet to an outlet temperature of the outlet, wherein the target temperature to be achieved for the outlet temperature of the heat sink is the “highest required sink temperature” of a heat sink. A heat sink can be a heat transfer medium which is heated for the purpose of heating another fluid and/or material flow, in particular in an external device outside the heat pump device, so that, for example, a heat transfer medium is heated in a heat exchanger, which is used to heat an external process in another device, for example a dryer or its auxiliary media or its drying material. The heat sink can also be a process gas flow which is heated in a drying device for drying a moist material, so that a drying process is then operated with the process gas flow by the heated process gas transferring heat to a moist material. and thus transfers a material to be dried, the moisture contained therein evaporates and is possibly also removed from the material to be dried.

Eine „Wärmequelle“ ist insbesondere ein Reservoir, dessen Temperatur genutzt werden kann, um Wärme und/oder Abwärme auf ein Kreisprozessfluid zu übertragen. Bei einer Wärmequelle kann es sich auch um einen Durchfluss mit einem Zulauf und einem Ablauf eines Fluids oder Wärmeträgermediums handeln, dessen Temperatur von einer höchsten verfügbaren Temperatur, also der niedrigste verfügbaren Quellentemperatur, gesenkt werden kann von einer Eingangstemperatur des Zulaufs auf eine Ausgangstemperatur des Ablaufs, wobei insbesondere eine Zieltemperatur für die Wärmeübertragung in einem Verdampfer die „niedrigste mögliche Quellentemperatur“ des Ablaufs einer Wärmequelle ist. Eine Wärmequelle kann auch ein Abwärmestrom sein, welcher genutzt wird, um den Verdampfer der Wärmepumpenvorrichtung zu beheizen, um den Kreisprozess mit ausreichend Wärme auf niedriger Druckstufe des Kreisprozessfluids zu versorgen, damit ausreichend Prozesswärme in zumindest einem Wärmeübertrager bereitzustellen ist. Ebenso kann eine Wärmequelle ein Prozessgasstrom sein, welcher aus einer Trocknungsvorrichtung nach dem Trocknen eines feuchten Materials austritt, also Abwärme, und der Wärmeinhalt des Prozessgasstroms zur Wärmerückgewinnung über einen Wärmeübertrager der Wärmequelle genutzt wird, um den Verdampfer der Wärmepumpenvorrichtung zu beheizen, wobei Trocknungsvorrichtungen häufig einen hohen Wärmeverlust über einen Prozessgasstrom haben können, der aus einer Trocknungsvorrichtung nach dem Trocknen eines feuchten Materials austritt und sich im Allgemeinen etwa auf die Höhe des Prozesswärmebedarfs der Trocknungsanlage beläuft, jedoch regelmäßig auf deutlich niedrigerem Temperaturniveau verfügbar ist und daher möglicherweise zur Beheizung des Verdampfers der Wärmepumpenvorrichtung einsetzbar ist. Eine Wärmequelle kann auch eine wärmeabgebende Seite, beispielsweise Abwärme, einer zur Erzeugung von Prozesskälte verwendeten Kälteanlage sein, deren abgegebene Wärme genutzt wird, um den Verdampfer der Wärmepumpenvorrichtung zu beheizen. Auch kann eine Wärmequelle eine wärmeabgebende Seite einer zur Erzeugung von Prozesskälte verwendeten Kälteanlage sein, deren abgegebene Wärme in einem Wärmeübertrager der Wärmequelle genutzt wird, um indirekt den Verdampfer der Wärmepumpenvorrichtung zu beheizen. Bei Kälteanlagen, welche häufig intermittierenden Betrieb haben und dadurch Schwankungen in der Wärmeabgabe unterliegen, kann insbesondere für einen Ausgleich zusätzlich eine möglichst konstante Wärmeversorgung zur Beheizung des Verdampfers der Wärmepumpenvorrichtung bereitgestellt werden. Ein solcher Ausgleich ist insbesondere realisierbar in Form einer Kombination aus verschiedenen Abwärmeströmen, beispielsweise Abwärme aus einem Prozessgasstrom in Kombination mit Abwärme aus einer Kälteanlage oder mit weiterer Abwärme.A "heat source" is in particular a reservoir whose temperature can be used to transfer heat and/or waste heat to a cyclic process fluid. A heat source can also be a flow with an inlet and an outlet of a fluid or heat transfer medium, the temperature of which can be reduced from a highest available temperature, i.e. the lowest available source temperature, from an inlet temperature of the inlet to an outlet temperature of the outlet, wherein in particular a target temperature for the heat transfer in an evaporator is the "lowest possible source temperature" of the outlet of a heat source. A heat source can also be a waste heat flow which is used to heat the evaporator of the heat pump device in order to supply the cyclic process with sufficient heat at a low pressure level of the cyclic process fluid so that sufficient process heat is provided in at least one heat exchanger. Likewise, a heat source can be a process gas stream that exits a drying device after drying a moist material, i.e. waste heat, and the heat content of the process gas stream is used for heat recovery via a heat exchanger of the heat source in order to heat the evaporator of the heat pump device, wherein drying devices can often have a high heat loss via a process gas stream that exits a drying device after drying a moist material and generally amounts to approximately the level of the process heat requirement of the drying system, but is regularly available at a significantly lower temperature level and can therefore possibly be used to heat the evaporator of the heat pump device. A heat source can also be a heat-emitting side, for example waste heat, of a refrigeration system used to generate process cooling, the heat emitted by which is used to heat the evaporator of the heat pump device. A heat source can also be a heat-emitting side of a refrigeration system used to generate process cooling, the heat emitted by which is used in a heat exchanger of the heat source to indirectly heat the evaporator of the heat pump device. In the case of refrigeration systems that frequently operate intermittently and are therefore subject to fluctuations in heat emission, a heat supply that is as constant as possible can also be provided to heat the evaporator of the heat pump device, in particular for compensation. Such compensation can be implemented in particular in the form of a combination of different waste heat flows, for example waste heat from a process gas flow in combination with waste heat from a refrigeration system or with other waste heat.

Als „Abwärme“ wird insbesondere eine Wärmequelle bezeichnet, deren Wärme auf einem so niedrigen Temperaurniveau verfügbar ist, dass insbesondere in der Nähe der Wärmequelle keine Wärmsenke mit einer darunterliegenden höchsten erforderlichen Senkentemperatur zur Nutzung dieser Wärme als Prozesswärme vorliegt oder genutzt werden kann, oder wenn diese Wärme nur noch mit einem ökonomisch nicht mehr vertretbaren Aufwand als Prozesswärme genutzt werden könnte.“Waste heat” refers in particular to a heat source whose heat is available at such a low temperature level that, in particular in the vicinity of the heat source, there is no heat sink with a lower maximum required sink temperature for using this heat as process heat or it can be used, or if this heat could only be used as process heat at an expense that is no longer economically justifiable.

Eine „Heizleistungsziffer“ mit der Kurzbezeichnung COPh (aus dem Englischen „Coefficient of Performance - heat“) ist insbesondere der Quotient aus nutzbarer Prozesswärme pro Zeiteinheit bezogen auf die aufgewendete mechanische Arbeit pro Zeiteinheit und stellt insbesondere für eine Wärmepumpenvorrichtung eine Kennzahl für die Energieeffizienz einer Erzeugung von Prozesswärme dar.A "heating performance coefficient" with the abbreviation COP h (from the English "Coefficient of Performance - heat") is in particular the quotient of usable process heat per unit of time in relation to the mechanical work expended per unit of time and represents a key figure for the energy efficiency of a heat pump device when generating process heat.

Ein „Wärmeübertrager“ ist insbesondere eine Vorrichtung, in welcher thermische Energie, also Wärme, von einem Stoffstrom höherer Temperatur auf einen anderen Stoffstrom niedrigerer Temperatur übertragen wird, wobei die Stoffströme räumlich und stofflich durch eine Wand des Wärmeübertragers voneinander getrennt sind. Vorzugsweise handelt es sich bei einem Wärmeübertrager um einen indirekten Wärmeübertrager. Bei einem der Stoffströme, welche einen Wärmeübertrager durchströmen, kann es sich beispielsweise um das Kreisprozessfluid oder einen Zulauf oder Ablauf eines Fluids oder Wärmeträgermediums einer Wärmesenke oder Wärmequelle handeln. Die Wärmepumpenvorrichtung kann auch zwei oder mehrere Wärmeübertrager auf der wärmeaufnehmenden Seite und/oder wärmeabgebenden Seite aufweisen.A "heat exchanger" is in particular a device in which thermal energy, i.e. heat, is transferred from a material flow of higher temperature to another material flow of lower temperature, wherein the material flows are spatially and materially separated from one another by a wall of the heat exchanger. A heat exchanger is preferably an indirect heat exchanger. One of the material flows that flow through a heat exchanger can be, for example, the circulating process fluid or an inlet or outlet of a fluid or heat transfer medium of a heat sink or heat source. The heat pump device can also have two or more heat exchangers on the heat-absorbing side and/or heat-emitting side.

Ein „Verdampfer“ ist insbesondere eine Vorrichtung oder ein Apparat, in welcher oder welchem ein flüssiges Kreisprozessfluid seine Zustandsform von flüssig zu gasförmig durch insbesondere indirekte Wärmeübertragung seitens einer Wärmequelle ändert und somit einen „Phasenübergang“ von flüssig zu gasförmig vollzieht, wobei der gasförmige Zustand eines Kreisprozessfluids im Allgemeinen als „Dampf“ und die Zustandsform als „dampfförmig“ bezeichnet wird, wenn es sich um einen Kreisprozess handelt, bei dem zumindest ein Phasenübergang zwischen zwei Zustandsformen stattfindet, wohingegen ein gasförmiger Zustand verdeutlicht, dass kein Phasenübergang stattfindet. Ein Verdampfer ist insbesondere in der niedrigsten und/oder untersten Druckstufe des Kreisprozesses angeordnet.An "evaporator" is in particular a device or apparatus in which a liquid cycle fluid changes its state from liquid to gaseous, in particular through indirect heat transfer from a heat source, and thus undergoes a "phase transition" from liquid to gaseous, wherein the gaseous state of a cycle fluid is generally referred to as "vapor" and the state is referred to as "vaporous" if it is a cycle in which at least one phase transition between two states takes place, whereas a gaseous state indicates that no phase transition takes place. An evaporator is arranged in particular in the lowest and/or lowest pressure stage of the cycle.

Ein „Verdichter“ (auch Kompressor genannt) ist insbesondere eine Vorrichtung oder ein Apparat zur Verdichtung und/oder Druckerhöhung eines kompressiblen Fluids, beispielsweise eines dampfförmigen Kreisprozessfluids, insbesondere mit dem Ziel, eine höhere Druckstufe zu erreichen, um dadurch die Kondensationstemperatur des dampfförmigen Kreisprozessfluids anzuheben. Dies wird auch als „Aufwerten“ des Wärmeinhalts des dampfförmigen Kreisprozessfluids zur Nutzung als eine „höherwertige“ Prozesswärme bezeichnet. Ein Verdichter ist insbesondere in der Bauweise einer Strömungsmaschine ausgebildet, wie beispielsweise einem Axialgebläse, einem Radialgebläse, einem Turbokompressor oder einer Turbine. Auch kann ein Verdichter in der Bauweise einer Verdrängermaschine ausgebildet sein, wie beispielsweise einem Kolbenkompressor, einem Rotationskolbenkompressor oder einem Schraubenkompressor. Bei einem Verdichter kann es sich um einen thermischen Verdichter, wie beispielsweise einer Vakuumdampfstrahlpumpe, handeln, in welchem dampfförmiges Kreisprozessfluid einer zweiten oder ersten Druckstufe eingesetzt wird als Treibdampf, welcher im thermischen Verdichter hohe Geschwindigkeiten erreicht und dadurch einen Saugdampf in Form von dampfförmigem Kreisprozessfluid mit einem Druck niedriger als der des Treibdampfes ansaugt, wobei sich Treibdampf und Saugdampf anschließend zu einem Mischdampf mischen mit dem Druck einer Druckstufe, die einen höheren Druck als der Saugdampf und einen niedrigeren Druck als der Treibdampf aufweist.A "compressor" (also called a compressor) is in particular a device or apparatus for compressing and/or increasing the pressure of a compressible fluid, for example a vaporous cycle fluid, in particular with the aim of achieving a higher pressure level in order to thereby raise the condensation temperature of the vaporous cycle fluid. This is also referred to as "upgrading" the heat content of the vaporous cycle fluid for use as "higher-quality" process heat. A compressor is in particular designed in the design of a turbomachine, such as an axial blower, a radial blower, a turbocompressor or a turbine. A compressor can also be designed in the design of a positive displacement machine, such as a piston compressor, a rotary piston compressor or a screw compressor. A compressor can be a thermal compressor, such as a vacuum steam jet pump, in which vaporous cycle fluid of a second or first pressure stage is used as motive steam, which reaches high speeds in the thermal compressor and thereby sucks in suction steam in the form of vaporous cycle fluid with a pressure lower than that of the motive steam, with motive steam and suction steam subsequently mixing to form a mixed steam with the pressure of a pressure stage that has a higher pressure than the suction steam and a lower pressure than the motive steam.

Ein „Verdichtungsstrang“ ist insbesondere eine Folge von Verdichtungsvorgängen von dampfförmigem Kreisprozessfluid in mindestens zwei direkt oder indirekt nacheinander verbundenen Verdichtern unabhängig von der Bauart mit dem Ziel der Verdichtung des dampfförmigen Kreisprozessfluids von zumindest einer niedrigeren Druckstufe auf zumindest eine höhere Druckstufe.A “compression train” is in particular a sequence of compression processes of vaporous cycle fluid in at least two compressors connected directly or indirectly one after the other, regardless of the design, with the aim of compressing the vaporous cycle fluid from at least one lower pressure level to at least one higher pressure level.

Eine „Überhitzung“ ist insbesondere eine Zustandsbedingung eines dampfförmigen Kreisprozessfluids, dessen Temperatur oberhalb derjenigen Kondensationstemperatur liegt, welche mit dessen vorherrschendem Druck und/oder Druckstufe korreliert und weitläufig vereinfacht als Temperaturdifferenz in Kelvin ausgedrückt wird. Dagegen wird als Grad der Überhitzung richtigerweise die Differenz der spezifischen Enthalpie des dampfförmigen Kreisprozessfluids zur spezifischen Sattdampf-Enthalpie in kJ/kg bei dem vorherrschenden Druck verstanden."Superheating" is in particular a condition of a vaporous cycle fluid whose temperature is above the condensation temperature that correlates with its prevailing pressure and/or pressure level and is expressed in broadly simplified terms as a temperature difference in Kelvin. In contrast, the degree of superheating is correctly understood as the difference between the specific enthalpy of the vaporous cycle fluid and the specific saturated steam enthalpy in kJ/kg at the prevailing pressure.

Eine „Druckstufe“ ist insbesondere zu verstehen als ein Synonym für einen erreichten Gesamtdruck im Austritt eines Verdichters unabhängig von der Bauform nach einer Verdichtung von dampfförmigem Kreisprozessfluid zur besonderen Kenntlichmachung, dass es sich in einer Wärmepumpenvorrichtung um eine stufenweise Verdichtung von dampfförmigem Kreisprozessfluid handelt. Damit einher geht die korrespondierende Siede- und Kondensationstemperatur des Kreisprozessfluids bei dem Druck dieser Druckstufe.A "pressure stage" is to be understood in particular as a synonym for a total pressure achieved at the outlet of a compressor, regardless of the design, after compression of vaporous cycle fluid to specifically indicate that a heat pump device involves a step-by-step compression of vaporous cycle fluid. This is accompanied by the corresponding boiling and condensation temperature of the cycle fluid at the pressure of this pressure stage.

Eine „erste Druckstufe“ ist insbesondere zu verstehen als diejenige Druckstufe mit dem höchsten Kondensationsdruck des Kreisprozessfluids innerhalb der Wärmepumpenvorrichtung, der erforderlich ist, um diejenige Wärmesenke mit der höchsten erforderlichen Senkentemperatur durch Kondensation mit Prozesswärme versorgen zu können, beispielsweise in einem Druckbereich zwischen etwa 1 bar für Prozesswärme von etwa 100°C bis etwa 40 bar für Prozesswärme von etwa 250°C.A “first pressure stage” is to be understood in particular as the pressure stage with the highest condensation pressure of the cycle fluid within the heat pump device, which is required in order to be able to supply the heat sink with the highest required sink temperature with process heat by condensation, for example in a pressure range between approximately 1 bar for process heat of approximately 100°C to approximately 40 bar for process heat of approximately 250°C.

Eine „Druckstufe eines Verdampfers“ ist insbesondere zu verstehen als diejenige Druckstufe, mit der ein Verdampfer der Wärmepumpenvorrichtung betrieben wird, um flüssiges Kreisprozessfluid unter Wärmezufuhr von einer Wärmequelle zu verdampfen, beispielsweise in einem Druckbereich zwischen etwa 40 hPa bei einer niedrigsten Quellentemperatur von etwa 30°C bis etwa 1,4 bar bei einer niedrigsten Quellentemperatur von etwa 110°C.A “pressure level of an evaporator” is to be understood in particular as the pressure level at which an evaporator of the heat pump device is operated in order to evaporate liquid cycle fluid with the supply of heat from a heat source, for example in a pressure range between approximately 40 hPa at a lowest source temperature of approximately 30°C to approximately 1.4 bar at a lowest source temperature of approximately 110°C.

Eine „zweite Druckstufe“ ist insbesondere zu verstehen als eine Druckstufe unterhalb einer ersten Druckstufe sowie oberhalb der Druckstufe eines Verdampfers. In der zweiten Druckstufe ist insbesondere der mindestens eine Mischseparator angeordnet.A "second pressure stage" is to be understood in particular as a pressure stage below a first pressure stage and above the pressure stage of an evaporator. In particular, the at least one mixing separator is arranged in the second pressure stage.

Eine „dritte Druckstufe“ ist insbesondere zu verstehen als eine Druckstufe unterhalb einer zweiten Druckstufe sowie oberhalb der Druckstufe eines Verdampfers. Eine „vierte Druckstufe“ ist insbesondere zu verstehen als eine Druckstufe unterhalb einer dritten Druckstufe sowie oberhalb der Druckstufe eines Verdampfers. Eine „fünfte, sechste, siebte und optional weitere Druckstufe“ ist insbesondere analog zu verstehen. Die Bezeichnung der Druckstufen dient insbesondere zur Unterscheidung des jeweiligen vorliegenden Druckes und stellt keine festgelegte Reihenfolge da.A "third pressure level" is to be understood in particular as a pressure level below a second pressure level and above the pressure level of an evaporator. A "fourth pressure level" is to be understood in particular as a pressure level below a third pressure level and above the pressure level of an evaporator. A "fifth, sixth, seventh and optionally further pressure level" is to be understood in an analogous manner. The designation of the pressure levels serves in particular to distinguish the respective pressure present and does not represent a fixed order.

Ein „Mischseparator“ ist insbesondere eine Vorrichtung, welche jeweils einer spezifischen Druckstufe mit einem Druck oberhalb der Druckstufe eines Verdampfers und kleiner und/oder gleich der ersten Druckstufe zugeordnet wird, wobei ein Mischseparator ein Volumen einschließt und zumindest einen Anschluss für den Eintritt für dampfförmiges Kreisprozessfluid der zugeordneten Druckstufe, einen Anschluss für den Eintritt für flüssiges Kreisprozessfluid und einen Anschluss für den Austritt für dampfförmiges Kreisprozessfluid der zugeordneten Druckstufe aufweist. Eine wesentliche Funktion eines Mischseparators ist insbesondere die Sättigung eines Durchflusses von dampfförmigem, überhitztem Kreisprozessfluid nach einer Verdichtung durch Mischen mit flüssigem Kreisprozessfluid. Auch kann eine weitere Funktion eines Mischseparators die Entspannung und Spontanverdampfung von flüssigem Kreisprozessfluid, beispielsweise aus einer höheren Druckstufe, sein, wenn dessen Temperatur höher ist als die korrelierende Kondensationstemperatur der zugeordneten Druckstufe des Mischseparators.A "mixing separator" is in particular a device which is assigned to a specific pressure level with a pressure above the pressure level of an evaporator and less than and/or equal to the first pressure level, wherein a mixing separator encloses a volume and has at least one connection for the inlet for vaporous cycle fluid of the assigned pressure level, one connection for the inlet for liquid cycle fluid and one connection for the outlet for vaporous cycle fluid of the assigned pressure level. An essential function of a mixing separator is in particular the saturation of a flow of vaporous, superheated cycle fluid after compression by mixing with liquid cycle fluid. Another function of a mixing separator can also be the expansion and spontaneous evaporation of liquid cycle fluid, for example from a higher pressure stage, if its temperature is higher than the correlating condensation temperature of the associated pressure stage of the mixing separator.

In einer weiteren Ausführungsform der Wärmepumpenvorrichtung weist der mindestens erste Mischseparator den vierten Anschluss zum Austritt von kondensiertem Kreisprozessfluid auf, sodass das austretende kondensierte Kreisprozessfluid direkt oder indirekt in den Verdampfer zurückführbar und/oder dem mindestens zweiten Verdichter zuführbar ist.In a further embodiment of the heat pump device, the at least first mixing separator has the fourth connection for the outlet of condensed cycle fluid, so that the escaping condensed cycle fluid can be returned directly or indirectly to the evaporator and/or fed to the at least second compressor.

Dadurch kann zumindest der erste Mischseparator den Anschluss für den Austritt für flüssiges Kreisprozessfluid der dem Mischseparator zugeordneten Druckstufe aufweisen, durch welchen möglicherweise überschüssiges flüssiges Kreisprozessfluid austritt, welches nicht zur Sättigung von an einem Anschluss für den Eintritt überhitzt in den Mischseparator eintretendem dampfförmigem Kreisprozessfluid benötigt oder verbraucht wird oder welches nicht durch Spontanverdampfung beim Eintritt in den Mischseparator verdampft, und welches dann mit der korrespondierenden Kondensationstemperatur der betreffenden zugeordneten Druckstufe des Mischseparators aus diesem austritt.As a result, at least the first mixing separator can have the connection for the outlet for liquid cycle fluid of the pressure stage assigned to the mixing separator, through which excess liquid cycle fluid possibly exits, which is not required or consumed for the saturation of vaporous cycle fluid entering the mixing separator superheated at an inlet connection or which does not evaporate by spontaneous evaporation when entering the mixing separator, and which then exits from the mixing separator at the corresponding condensation temperature of the relevant assigned pressure stage of the mixing separator.

Das aus dem zumindest ersten Mischseparator austretende flüssige Kreisprozessfluid kann über einen Kondensatabscheider in den Verdampfer zurückgeführt werden. Auch kann ein Teilstrom des flüssigen Kreisprozessfluides über eine Kondensatpumpe und/oder ein Regelventil dem zweiten Verdichter zugeführt werden. Dadurch kann das aus dem zumindest ersten Mischseparator austretende flüssige Kreisprozessfluid zur Erzeugung von Nassdampf verwendet werden.The liquid cycle fluid emerging from at least the first mixing separator can be returned to the evaporator via a condensate separator. A partial flow of the liquid cycle fluid can also be fed to the second compressor via a condensate pump and/or a control valve. As a result, the liquid cycle fluid emerging from at least the first mixing separator can be used to generate wet steam.

Um eine Schnittstelle zu mindestens einer Wärmesenke bereitzustellen, weist die Wärmepumpenvorrichtung den mindestens einen der ersten Druckstufe zugeordneten Wärmeübertrager und/oder einen der zweiten Druckstufe zugeordneten Wärmeübertrager und/oder einen einer unterhalb der zweiten Druckstufe zugeordneten Wärmeübertrager auf der wärmeabgebenden Seite aufweist.In order to provide an interface to at least one heat sink, the heat pump device has at least one heat exchanger assigned to the first pressure stage and/or one heat exchanger assigned to the second pressure stage and/or one heat exchanger assigned below the second pressure stage on the heat-emitting side.

In einer weiteren Ausführungsform kann die Wärmepumpenvorrichtung die mindestens eine Wärmequelle und/oder die mindestens eine Wärmesenke aufweisen.In a further embodiment, the heat pump device may comprise at least one heat source and/or at least one heat sink.

Um einen anpassbaren mehrstufigen, modularen Aufbau bereitzustellen und eine Unterteilung der Verdichtung zu realisieren, weist die Wärmepumpenvorrichtung einen zweiten Mischseparator, einen dritten Mischseparator, einen vierten Mischseparator und/oder optional weitere Mischseparatoren auf, wobei dem jeweiligen Mischseparator jeweils ein weiterer Verdichter vorgeschaltet ist.In order to provide an adaptable multi-stage, modular structure and to realize a subdivision of the compression, the heat pump device has a second mixing separator, a third mixing separator, a fourth mixing separator and/or optionally further mixing separators, wherein a further compressor is connected upstream of the respective mixing separator.

Somit können zwei oder mehrere Mischseparatoren zwischen dem Verdampfer und der ersten Druckstufe, insbesondere in Reihe verschaltet, angeordnet sein.Thus, two or more mixing separators can be arranged between the evaporator and the first pressure stage, in particular connected in series.

Durch einen mehrstufigen Aufbau und die Unterteilung der Verdichtung des dampfförmigen Kreisprozessfluids in mehrere Verdichtungsschritte auf einzelne Druckstufen, also vom tiefsten Druck des Kreisprozesses einer Druckstufe in einem Verdampfer bis zum höchsten erforderlichen Druck der ersten Druckstufe, welche aufeinander aufbauen, kann der gewünschte Temperaturhub zwischen tiefster verfügbarer Wärmequellen- und/oder Abwärmetemperatur und höchster erforderlicher Senkentemperatur sehr variabel konfiguriert werden. Dadurch ist das pro Verdichtungsschritt erforderliche Druckverhältnis reduziert, also der Quotient aus erreichtem Verdichtungsdruck bezogen auf den Eintrittsdruck vor einer Verdichtung, wodurch die Überhitzung des verdichteten Kreisprozessfluids, herkömmlich ausgedrückt in Kelvin oberhalb der Kondensationstemperatur bei dem erreichten Verdichtungsdruck, deutlich geringer ist als bei einer einstufigen Verdichtung vom tiefsten bis zum höchsten Druck im Kreisprozess. Somit werden sehr hohe Enddrücke erreichbar, welche je nach Auswahl des Kreisprozessfluids und der Lage von dessen kritischem Punkt und Zweiphasengebiet entsprechend hohe Kondensationstemperaturen und Kondensationsenthalpien für die Übertragung von Prozesswärme auf eine Wärmesenke ermöglichen. Somit sind insbesondere mit Wasser als Kreisprozessfluid Kondensationsbedingungen beispielsweise bei nur 40 bar bis immerhin etwa 250°C möglich.Through a multi-stage structure and the division of the compression of the vaporous cycle fluid into several compression steps at individual pressure levels, i.e. from the lowest pressure of the cycle of a pressure level in an evaporator to the highest required pressure of the first pressure level, which build on each other, the desired temperature difference between the lowest available heat source and/or waste heat temperature and the highest required sink temperature can be configured very variably. This reduces the pressure ratio required per compression step, i.e. the quotient of the compression pressure achieved in relation to the inlet pressure before compression, whereby the superheating of the compressed cycle fluid, conventionally expressed in Kelvin above the condensation temperature at the compression pressure achieved, is significantly lower than with a single-stage compression from the lowest to the highest pressure in the cycle. This means that very high final pressures can be achieved, which, depending on the choice of cycle fluid and the location of its critical point and two-phase region, enable correspondingly high condensation temperatures and condensation enthalpies for the transfer of process heat to a heat sink. This means that, particularly with water as the cycle fluid, condensation conditions of just 40 bar up to around 250°C are possible.

Durch die variabel skalierbare Wärmepumpenvorrichtung und den in weiten Grenzen konfigurierbaren Aufbau der Wärmepumpenvorrichtung kann der Einsatzbereich unter Beibehaltung der Nutzung von Abwärme mit Temperaturen unterhalb 60°C bis 80°C für die Erzeugung von Prozesswärme auf ein Temperaturniveau von bis zu 250°C mit einem Temperaturhub von annähernd 200 Kelvin bei Heizleistungsziffern von über 2,5 erweitert werden, wobei Prozesswärme auch gleichzeitig auf mehreren unterschiedlich hohen Temperaturniveaus zwischen beispielsweise 100°C und 250°C abgegeben werden kann.Thanks to the variably scalable heat pump device and the widely configurable structure of the heat pump device, the area of application can be expanded to a temperature level of up to 250°C with a temperature lift of almost 200 Kelvin at heating performance factors of over 2.5, while maintaining the use of waste heat with temperatures below 60°C to 80°C for the generation of process heat, whereby process heat can also be released simultaneously at several different temperature levels between, for example, 100°C and 250°C.

Dieser mehrstufige Aufbau ist aus mehreren Gründen vorteilhaft. Zum einen kann die Überhitzung bei der Verdichtung reduziert werden, welches zwar keinen thermischen Vorteil darstellt, jedoch beispielsweise bei Hochdruck-Verdichtern nach dem Verdrängerprinzip eine Schmierung von Kolben oder anderen Gleitflächen von Verdrängerkörpern überflüssig machen kann und somit eine ölfreie Ausführung der Verdichter und eine vereinfachte Konstruktion ermöglicht sowie das Anwendungsgebiet auf hygienischen Dampf erweitert.This multi-stage design is advantageous for several reasons. Firstly, overheating during compression can be reduced, which does not represent a thermal advantage, but can, for example, make lubrication of pistons or other sliding surfaces of displacement bodies superfluous in high-pressure compressors based on the displacement principle, thus enabling an oil-free design of the compressor and a simplified construction, as well as expanding the area of application to include hygienic steam.

Zum anderen können Verzweigungen im Kreisprozess geschaffen werden, die eine Nutzung von Prozesswärme auf unterschiedlichen Temperaturniveaus ermöglicht, indem nicht nur höchstwertige Prozesswärme für die höchste erforderliche Senkentemperatur erzeugt wird, sondern auch Wärmesenken mit einer niedrigeren erforderlichen Senkentemperatur gezielt mit dafür erzeugter Prozesswärme einer niederwertigeren Kondensationstemperatur des Kreisprozessfluids auf einer zweiten, dritten, vierten und/oder weiteren Druckstufe versorgt werden. Dies reduziert die Vernichtung von spezifischer Exergie insgesamt, da für niederwertigere Prozesswärme weniger spezifische Verdichtungsarbeit aufgebracht werden muss als für eine höchstwertige Prozesswärme. Durch einen Aufbau mit mehr als drei Druckstufen und einer getrennten Erzeugung von verschiedenwertiger Prozesswärme auf unterschiedlichen Temperaturniveaus wird insgesamt die Heizleistungsziffer des Wärmepumpenprozesses erhöht.On the other hand, branches can be created in the cycle that allow the use of process heat at different temperature levels by not only generating the highest-value process heat for the highest required sink temperature, but also supplying heat sinks with a lower required sink temperature with process heat generated for this purpose at a lower-value condensation temperature of the cycle fluid at a second, third, fourth and/or further pressure level. This reduces the overall destruction of specific exergy, since less specific compression work has to be applied for lower-value process heat than for the highest-value process heat. By setting up a structure with more than three pressure levels and separate generation of different-value process heat at different temperature levels, the overall heating performance factor of the heat pump process is increased.

In einer weiteren Ausführungsform der Wärmepumpenvorrichtung ist oder sind ein Mischseparator oder sind zwei oder mehrere Mischseparatoren dem ersten Mischseparator vorgeschaltet, wobei das dampfförmige Kreisprozessfluid des jeweils vorgeschalteten Mischseparators über einen jeweiligen nachgeschalteten Verdichter dem nachfolgenden Mischseparator zuführbar ist und/oder das flüssige Kreisprozessfluid aus dem jeweiligen nachgeschalteten Mischseparator mit einem höheren Druck und/oder einer höheren Temperatur als in dem vorgeschalteten Mischseparator in den vorgeschalteten Mischseparator zurückführbar ist.In a further embodiment of the heat pump device, a mixing separator or two or more mixing separators are connected upstream of the first mixing separator, wherein the vaporous cycle fluid of the respective upstream mixing separator can be fed to the subsequent mixing separator via a respective downstream compressor and/or the liquid cycle fluid from the respective downstream mixing separator can be returned to the upstream mixing separator at a higher pressure and/or a higher temperature than in the upstream mixing separator.

Dadurch wird eine Wärmepumpenvorrichtung bereitgestellt, bei der dampfförmiges Kreisprozessfluid zumindest einer zweiten, dritten, vierten und/oder weiteren Druckstufe in zumindest einem Wärmeübertrager einer zumindest zweiten Wärmesenke kondensiert und indirekt Wärme an diese überträgt, wobei ein auf dieser zweiten, dritten, vierten und/oder weiteren Druckstufe im Wärmeübertrager einer zweiten oder weiteren Wärmesenke kondensiertes Kreisprozessfluid in einen Mischseparator einer jeweils niedrigeren Druckstufe, also einer dritten, vierten, fünften und/oder weiteren Druckstufe, mit einem Druck unterhalb des desjenigen Drucks des im Wärmeübertrager kondensierenden Kreisprozessfluids eintritt.This provides a heat pump device in which vaporous cycle fluid of at least a second, third, fourth and/or further pressure stage condenses in at least one heat exchanger of at least a second heat sink and indirectly transfers heat to it, wherein a cycle fluid condensed on this second, third, fourth and/or further pressure stage in the heat exchanger of a second or further heat sink enters a mixing separator of a respectively lower pressure stage, i.e. a third, fourth, fifth and/or further pressure stage, with a pressure below the pressure of the cycle fluid condensing in the heat exchanger.

Somit wird mittels der Wärmepumpenvorrichtung ein erweiterter Wärmepumpenkreisprozesses ermöglicht, welcher auf einem Kreisprozess mit mindestens vier Druckstufen mit unterschiedlich hohen Drücken basiert, also mindestens einer ersten, mindestens einer zweiten, mindestens einer dritten Druckstufe und mindestens einer niedrigsten Druckstufe des Wärmepumpenkreisprozesses auf dem Druck eines Verdampfers, wobei die Wärmepumpenvorrichtung einfach skalierbar und variabel konfigurierbar ist, indem dieses um weitere Druckstufen, also eine vierte, fünfte, sechste und/oder nachfolgende Druckstufe mit entsprechenden Mischseparatoren und Verdichtern ergänzt, aufgebaut werden kann, um den insgesamt erreichbaren Temperaturhub nach Bedarf anzupassen.Thus, the heat pump device enables an extended heat pump cycle process, which is based on a cycle process with at least four pressure stages with different pressure levels, i.e. at least a first, at least a second, at least a third pressure level and at least one lowest pressure level of the heat pump cycle process at the pressure of an evaporator, wherein the heat pump device is easily scalable and variably configurable by adding further pressure levels, i.e. a fourth, fifth, sixth and/or subsequent pressure level with corresponding mixing separators and compressors, in order to adapt the overall achievable temperature rise as required.

Bei der Wärmepumpenvorrichtung mit einer stufenweisen Verdichtung wird das dampfförmige Kreisprozessfluid aus einem Mischseparator einer Druckstufe pro Verdichtungsschritt auf eine jeweils höhere Druckstufe verdichtet und dabei aufgrund einer polytrop verlaufenden Verdichtung überhitzt. Die Überhitzung, welche nach einer Verdichtung und anschließend im Anschluss für den Eintritt in einen einer Druckstufe zugeordneten Mischseparator im dampfförmigen Kreisprozessfluid vorliegt, wird genutzt, um flüssiges Kreisprozessfluid, welches über einen Anschluss für den Eintritt in den jeweiligen Mischseparator der durch vorgeschaltete Verdichtung erreichten Druckstufe eintritt, anteilig zu verdampfen. Dieser verdampfte Anteil wird dem bereits dampfförmigen Durchfluss an Kreisprozessfluid im Verdichtungsstrang auf dieser Druckstufe ohne Verdichterarbeit zugeführt, wodurch die auf dieser Druckstufe insgesamt verfügbare Kondensationsenthalpie des später als Prozesswärme verfügbaren dampfförmigen Kreisprozessfluids erhöht wird, während die Verdichterarbeit bis dahin konstant bleibt. Dadurch wird die Heizleistungsziffer erhöht.In the heat pump device with step-by-step compression, the vaporous cycle fluid from a mixing separator of a pressure stage is compressed to a higher pressure stage for each compression step and is superheated due to polytropic compression. The superheat that is present in the vaporous cycle fluid after compression and then after entry into a mixing separator assigned to a pressure stage is used to partially evaporate liquid cycle fluid that enters the pressure stage reached by upstream compression via a connection for entry into the respective mixing separator. This evaporated portion is fed to the already vaporous flow of cycle fluid in the compression line at this pressure stage without compressor work, thereby increasing the total condensation enthalpy available at this pressure stage of the vaporous cycle fluid that is later available as process heat, while the compressor work remains constant until then. This increases the heating output coefficient.

Ein weiterer Vorteil der Wärmepumpenvorrichtung mit stufenweiser Verdichtung ist die Verwendung von Kreisprozessfluid zum Abbau der aufgrund einer Verdichtung auftretenden Überhitzung, da das Kreisprozessfluid an sich bereits für die Erstbefüllung der Wärmepumpenvorrichtung einmalig aufbereitet oder zumindest entkalkt wurde und wegen des geschlossenen Kreisprozesses wiederverwendet wird, womit ein kontinuierlicher Wasserverbrauch durch eine Einspritzung von Leitungswasser oder anderem kalkhaltigen Wasser sowie die dabei unvermeidbaren Kalkablagerungen gegenüber dem Stand der Technik vollständig vermieden werden.A further advantage of the heat pump device with step-by-step compression is the use of cycle fluid to reduce the overheating that occurs due to compression, since the cycle fluid itself has already been treated or at least decalcified once for the initial filling of the heat pump device and is reused due to the closed cycle process, which completely avoids continuous water consumption through injection of tap water or other calcareous water as well as the unavoidable limescale deposits compared to the state of the art.

Ein weiterer Vorteil der Wärmepumpenvorrichtung mit stufenweiser Verdichtung ist die stufenweise Abkühlung von kondensiertem Kreisprozessfluid zur Vollendung des Kreisprozesses durch Entspannung in jeweils niedrigeren Druckstufen unter vollständiger Ausnutzung der darin enthaltenen Enthalpie, wobei letztere zur zusätzlichen Verdampfung von flüssigem Kreisprozessfluid jeweils als zusätzlicher Sattdampf-Anteil dem Dampfmassenstrom der jeweils niedrigeren Druckstufe ohne Verdichterarbeit hinzugefügt wird. Dadurch wird die Heizleistungsziffer nochmals erhöht.A further advantage of the heat pump device with step-by-step compression is the step-by-step cooling of condensed cycle fluid to complete the cycle by relaxation in lower pressure stages with full utilization of the enthalpy contained therein, whereby the latter is added as an additional saturated steam portion to the steam mass flow of the lower pressure stage without compressor work for the additional evaporation of liquid cycle fluid. This increases the heating performance coefficient even further.

Ein weiterer Vorteil der Wärmepumpenvorrichtung mit stufenweiser Abkühlung von kondensiertem Kreisprozessfluid in einzelnen Druckstufen ist die während der stufenweisen Verdichtung im Verdichtungsstrang entlang des Druckanstiegs deutlich ansteigende Menge an dampfförmigem Kreisprozessfluid, wodurch erheblich weniger flüssiges Kreisprozessfluid im Verdampfer verdampft werden muss, als zur Beheizung von Wärmesenken zur Kondensation bereitgestellt werden muss. Dadurch muss nur ein deutlich geringerer Massendurchfluss an dampfförmigem Kreisprozessfluid durch den Verdampfer transportiert und in den Verdichtern der niedrigeren Druckstufen des Verdichterstrangs nacheinander verdichtet werden, welche aufgrund des großen spezifischen Volumens des dampfförmigen Kreisprozessfluids bei niedrigem Druck typischerweise die größten Baugrößen aufweisen. Dadurch wird die Baugröße dieser Vorrichtungen ohne Leistungseinbußen erheblich reduziert.A further advantage of the heat pump device with gradual cooling of condensed cycle fluid in individual pressure stages is the significantly increasing amount of vaporous cycle fluid during the gradual compression in the compression line along the pressure increase, which means that considerably less liquid cycle fluid has to be evaporated in the evaporator than has to be provided for heating heat sinks for condensation. As a result, only a significantly lower mass flow of vaporous cycle fluid has to be transported through the evaporator and compressed one after the other in the compressors of the lower pressure stages of the compressor line, which typically have the largest sizes due to the large specific volume of the vaporous cycle fluid at low pressure. This significantly reduces the size of these devices without any loss of performance.

Zur Verbesserung der Rückführung des in mindestens einem Wärmeübertrager kondensierten Kreisprozessfluids aus der ersten und/oder weiteren Druckstufe ist oder sind dem mindestens einen Wärmeübertrager jeweils ein Kondensatabscheider und/oder dem zweiten Wärmeübertrager jeweils ein Kondensatabscheider und/oder weiteren Wärmeübertragern jeweils ein Kondensatabscheider zum Rückführen von kondensiertem Kreisprozessfluid aus der ersten Druckstufe in den ersten Mischseparator und/oder von kondensiertem Kreisprozessfluid aus der zweiten oder einer dritten Druckstufe in einen vorgeschalteten Mischkondensator, insbesondere einer jeweils niedrigeren Druckstufe, nachgeschaltet.In order to improve the return of the cycle fluid condensed in at least one heat exchanger from the first and/or further pressure stage, a condensate separator is or are connected downstream of the at least one heat exchanger and/or a condensate separator is or are connected downstream of the second heat exchanger and/or a condensate separator is or are connected downstream of the further heat exchangers for returning condensed cycle fluid from the first pressure stage to the first mixing separator and/or condensed cycle fluid from the second or a third pressure stage to an upstream mixing condenser, in particular a lower pressure stage.

In einer weiteren Ausführungsform der Wärmepumpenvorrichtung ist oder sind nach dem vierten Anschluss zum Austritt von kondensiertem Kreisprozessfluid des ersten Mischseparators, eines vorgeschalteten Mischseparators und/oder des jeweiligen Mischseparators ein Kondensatabscheider zum Zurückführen des kondensierten Kreisprozessfluids in den jeweils vorgeschalteten Mischseparator oder in den Verdampfer angeordnet.In a further embodiment of the heat pump device, a condensate separator for returning the condensed cycle fluid to the respective upstream mixing separator or to the evaporator is or are arranged after the fourth connection for the outlet of condensed cycle fluid of the first mixing separator, an upstream mixing separator and/or the respective mixing separator.

Um Mischdampf einer Druckstufe zu erzeugen und dazu Saugdampf aus einer niedrigeren Druckstufe oder der Druckstufe des Verdampfers anzusaugen, ist der erste Verdichter als thermischer Verdichter ausgebildet, sodass mittels des thermischen Verdichters das dampfförmige Kreisprozessfluid der ersten Druckstufe als Treibdampf mit dem dampfförmigen Kreisprozessfluid aus dem Verdampfer als Saugdampf mischbar und als verdichteter Mischdampf dem ersten Mischseparator oder dem ersten vorgeschalteten Mischseparator zuführbar ist.In order to generate mixed steam of a pressure stage and to suck in suction steam from a lower pressure stage or the pressure stage of the evaporator, the first compressor is designed as a thermal compressor, so that by means of the thermal compressor the vaporous cycle fluid of the first pressure stage can be mixed as motive steam with the vaporous cycle fluid from the evaporator as suction steam and can be fed as compressed mixed steam to the first mixing separator or the first upstream mixing separator.

Demgemäß ist ein dem Mischseparator der jeweiligen Druckstufe vorgeschalteter Verdichter als thermischer Verdichter ausgebildet, sodass mittels des thermischen Verdichters das dampfförmige Kreisprozessfluid einer höheren Druckstufe als Treibdampf mit dem dampfförmigen Kreisprozessfluid einer niedrigeren Druckstufe als Saugdampf mischbar und als verdichteter Mischdampf dem Mischseparator dieser Druckstufe zuführbar ist.Accordingly, a compressor upstream of the mixing separator of the respective pressure stage is designed as a thermal compressor, so that by means of the thermal compressor the vaporous cycle fluid of a higher pressure stage can be mixed as motive steam with the vaporous cycle fluid of a lower pressure stage as suction steam and can be fed to the mixing separator of this pressure stage as compressed mixed steam.

In dem thermischen Verdichter kann insbesondere ein Strom oder Teilstrom dampfförmiges Kreisprozessfluid einer ersten oder einer weiteren Druckstufe als Treibdampf eingesetzt werden, welcher im thermischen Verdichter hohe Geschwindigkeiten erreicht und dadurch aufgrund von Venturi- oder Coanda-Effekten einen Saugdampf in Form von dampfförmigem Kreisprozessfluid mit einem Druck niedriger als der des Treibdampfes ansaugt, wobei sich Treibdampf und Saugdampf anschließend zu einem Mischdampf mischen mit einem Druck einer Druckstufe, der höher ist als der Druck des Saugdampfes und niedriger ist als der Druck des Treibdampfes.In the thermal compressor, in particular a stream or partial stream of vaporous cycle fluid of a first or a further pressure stage can be used as motive steam, which reaches high speeds in the thermal compressor and thereby sucks in a suction steam in the form of vaporous cycle fluid with a pressure lower than that of the motive steam due to Venturi or Coanda effects, wherein the motive steam and suction steam subsequently mix to form a mixed steam with a pressure of a pressure stage that is higher than the pressure of the suction steam and lower than the pressure of the motive steam.

In einer weiteren Ausführungsform der Wärmepumpenvorrichtung ist vor dem thermischen Verdichter ein weiterer Verdichter in der ersten Druckstufe oder der zweiten Druckstufe oder einer weiteren Druckstufe angeordnet, sodass das verdichtete dampfförmige Kreisprozessfluid, insbesondere das aus der ersten Druckstufe stammende und auf den Druck einer Treibdampf-Druckstufe weiter verdichtete dampfförmige Kreisprozessfluid, als Treibdampf verwendbar ist.In a further embodiment of the heat pump device, a further compressor in the first pressure stage or the second pressure stage or a further pressure stage is arranged upstream of the thermal compressor, so that the compressed vaporous cycle fluid, in particular the vaporous cycle fluid originating from the first pressure stage and further compressed to the pressure of a motive steam pressure stage, can be used as motive steam.

Um eine Nassdampfverdichtung oder eine trockene Verdichtung zu realisieren, ist ein weiterer Mischseparator dem ersten Mischseparator in der zweiten Druckstufe nachgeschaltet, wobei der weitere Mischseparator in der ersten Druckstufe angeordnet ist.In order to realize wet steam compression or dry compression, a further mixing separator is arranged downstream of the first mixing separator in the second pressure stage, whereby the further mixing separator is arranged in the first pressure stage.

Der nachgeschaltete Mischseparator in der ersten Druckstufe kann einen nachgeschalteten Verdichter aufweisen oder dieser kann frei von einem VerdichterThe downstream mixing separator in the first pressure stage can have a downstream compressor or it can be free from a compressor

In einer weiteren Ausführungsform weist die Wärmepumpenvorrichtung eine Steuer- und/oder Regeleinrichtung zum Steuern und/oder Regeln von Komponenten der Wärmepumpenvorrichtung und optional der mindestens einen Wärmequelle und/oder der mindestens einen Wärmesenke auf.In a further embodiment, the heat pump device has a control and/or regulating device for controlling and/or regulating components of the heat pump device and optionally the at least one heat source and/or the at least one heat sink.

Dadurch wird das Steuern und/oder Regeln der Wärmepumpenvorrichtung und dessen Prozesswärmelieferung im Hinblick auf möglichst hohe Energieeffizienz aufgrund möglichst geringer Antriebsleistung durch Regelung von Drücken und Temperaturen einzelner Druckstufen mittels Regelung von Verdichtern und Regelung der Heizleistung der Wärmequelle sowie Regelung von Durchflüssen an kondensiertem Kreisprozessfluid im Eintritt zu einzelnen Mischseparatoren und/oder Verdichtern ermöglicht. Somit kann zumindest ein in der Wärmepumpenvorrichtung enthaltener oder daran angeschlossener Teilprozess oder auch der Gesamtprozess der Wärmepumpenvorrichtung durch zumindest eine Steuer- und/oder Regeleinrichtung kontrolliert und geregelt werden.This enables the control and/or regulation of the heat pump device and its process heat supply with a view to achieving the highest possible energy efficiency due to the lowest possible drive power by controlling pressures and temperatures of individual pressure stages by controlling compressors and controlling the heating output of the heat source as well as controlling flows of condensed cycle fluid at the inlet to individual mixing separators and/or compressors. Thus, at least one sub-process contained in or connected to the heat pump device or the entire process of the heat pump device can be controlled and regulated by at least one control and/or regulating device.

Um das kondensierte Kreisprozessfluid in Form von Tröpfchen dem jeweiligen Mischseparator zurückzuführen, weist der zweite Anschluss zum Eintritt von kondensiertem Kreisprozessfluid eine Versprüheinrichtung zum Versprühen des in den ersten Mischseparator oder den jeweiligen Mischseparator eintretenden, flüssigen Kreisprozessfluids auf.In order to return the condensed cycle fluid in the form of droplets to the respective mixing separator, the second connection for the inlet of condensed cycle fluid has a spraying device for spraying the liquid cycle fluid entering the first mixing separator or the respective mixing separator.

Bei einer Versprüheinrichtung kann es sich beispielsweise um eine Sprühdüse handeln. Dadurch wird das eintretende flüssige Kreisprozessfluid unter Aufbau eines Druckverlustes in Form von Tröpfchen in den Mischseparator eingesprüht, wobei ein Teil des am zweiten Anschluss für den Eintritt von flüssigem Kreisprozessfluid je nach dessen Temperatur verdampft und eine Überhitzung des an dem ersten Anschluss eintretenden dampfförmigen Kreisprozessfluids reduziert wird.A spraying device can be, for example, a spray nozzle. As a result, the incoming liquid cycle fluid is sprayed into the mixing separator in the form of droplets, creating a pressure loss, whereby a portion of the liquid cycle fluid entering the second connection evaporates depending on its temperature and overheating of the vaporous cycle fluid entering the first connection is reduced.

In einem weiteren Aspekt der Erfindung wird die Aufgabe gelöst durch eine Trocknervorrichtung zum Trocknen eines zu trocknenden Gutes mittels eines erhitzten Prozessgasstroms, wobei die Trocknervorrichtung eine zuvor beschriebene Wärmepumpenvorrichtung aufweist, sodass auf der wärmeabgebenden Seite der Wärmepumpenvorrichtung der Prozessgasstrom als Wärmesenke erhitzbar ist.In a further aspect of the invention, the object is achieved by a drying device for drying a material to be dried by means of a heated process gas flow, wherein the drying device has a heat pump device as described above, so that the process gas flow can be heated as a heat sink on the heat-emitting side of the heat pump device.

Somit kann Prozesswärme auf einem hohen Temperaturniveau von bis zu 250°C zum Erhitzen eines Prozessgasstroms der Trocknervorrichtung genutzt werden.Thus, process heat at a high temperature level of up to 250°C can be used to heat a process gas stream of the drying device.

In einem zusätzlichen Aspekt der Erfindung wird die Aufgabe gelöst durch ein Verfahren zum Betreiben einer Wärmepumpenvorrichtung zum energieeffizienten Erzeugen einer Prozesswärme, insbesondere in einem Temperaturbereich zwischen 100 °C und 250 °C, mittels einer zuvor beschriebenen Wärmepumpenvorrichtung, mit folgenden Schritten:

  • - Beheizen eines flüssigen Kreisprozessfluids durch indirekte Wärmezufuhr von einer Wärmequelle und Verdampfen des flüssigen Kreisprozessfluids in einem Verdampfer auf einer Druckstufe des Verdampfers,
  • - Verdichten des dampfförmigen Kreisprozessfluids mittels eines ersten Verdichters auf eine zweite Druckstufe,
  • - Zuführen des verdichteten dampfförmigen Kreisprozessfluids in mindestens einem Mischseparator einer zweiten Druckstufe,
  • - Zuführen des aus dem mindestens einem Mischseparator austretenden dampfförmigen Kreisprozessfluids in mindestens einem zweiten Verdichter und Verdichten des dampfförmigen Kreisprozessfluid von der zweiten Druckstufe auf eine erste Druckstufe,
  • - Übertragen einer Prozesswärme von dem verdichteten, dampfförmigen Kreisprozessfluid der ersten Druckstufe auf mindestens eine zuordenbare Wärmesenke,
  • - und optional Rückführen des kondensierten Kreisprozessfluids der ersten Druckstufe in den mindestens einen Mischseparator.
In an additional aspect of the invention, the object is achieved by a method for operating a heat pump device for energy-efficient generation of process heat, in particular in a temperature range between 100 °C and 250 °C, by means of a previously described heat pump device, with the following steps:
  • - Heating a liquid cycle fluid by indirect heat supply from a heat source and evaporating the liquid cycle fluid in an evaporator at a pressure level of the evaporator,
  • - compressing the vaporous cycle fluid by means of a first compressor to a second pressure stage,
  • - feeding the compressed vaporous cycle fluid in at least one mixing separator to a second pressure stage,
  • - feeding the vaporous cycle fluid emerging from the at least one mixing separator into at least one second compressor and compressing the vaporous cycle fluid from the second pressure stage to a first pressure stage,
  • - Transferring process heat from the compressed, vaporous cycle fluid of the first pressure stage to at least one assignable heat sink,
  • - and optionally returning the condensed cycle fluid of the first pressure stage to the at least one mixing separator.

In einer weiteren Ausgestaltungsform des Verfahrens wird oder werden als Kreisprozessfluid Wasser, ein Alkohol und/oder eine wasserlösliche organische Substanz verwendet.In a further embodiment of the process, water, an alcohol and/or a water-soluble organic substance is or are used as the circulating process fluid.

Bevorzugt wird die Wärmepumpenvorrichtung mit Wasser (chemische Formel H2O) als natürliches und vollständig umweltverträgliches Kreisprozessfluid betrieben. Ebenso kann die Wärmepumpenvorrichtung auch mit einem Alkohol und/oder einer wässrigen Lösung eines Alkohols als Kreisprozessfluid betrieben werden. Ebenso kann auch eine wässrige Lösung einer wasserlöslichen organischen Substanz und/oder eines oder mehrerer organischen Stoffe als Kreisprozessfluid verwendet werden. Ebenso ist eine beliebige Kombination aus Wasser, Alkohol und/oder wasserlöslicher organischer Substanz als Kreisprozessfluid verwendbar.Preferably, the heat pump device is operated with water (chemical formula H 2 O) as a natural and completely environmentally friendly cycle fluid. Likewise, the heat pump device can also be operated with an alcohol and/or an aqueous solution of an alcohol as a cycle fluid. Likewise, an aqueous solution of a water-soluble organic substance and/or one or more organic substances can also be used as a cycle fluid. Likewise, any combination of water, alcohol and/or water-soluble organic substance can be used as a cycle fluid.

Als Alkohol kann beispielsweise Methanol, Ethanol, Propanol und als organische Substanz ein Ester und/oder ein Ether eingesetzt werden.For example, methanol, ethanol or propanol can be used as alcohol and an ester and/or an ether can be used as organic substance.

In einer weiteren Ausgestaltungsform des Verfahrens, kann in einem aus dem mindestens einen Mischseparator austretenden Strom des kondensierten Kreisprozessfluids, insbesondere einer Druckstufe höher als die Druckstufe des Verdampfers, mittels einer Kondensatpumpe eine Druckerhöhung durchgeführt werden, anschließend dieser Strom einem Strom flüssigen Kreisprozessfluids, welches zuvor in einem Wärmeübertrager einer Wärmequelle indirekt erwärmt wurde, zugemischt werden und die gemischten Ströme können zur indirekten Beheizung des Verdampfers verwendet werden, bevor insbesondere der zugemischte Strom wieder in den Verdampfer zurückgeführt wird.In a further embodiment of the method, in a stream of the condensed cycle fluid emerging from the at least one mixing separator, in particular a Pressure level higher than the pressure level of the evaporator, a pressure increase can be carried out by means of a condensate pump, then this stream can be mixed with a stream of liquid circulating process fluid which has previously been indirectly heated in a heat exchanger of a heat source, and the mixed streams can be used for indirectly heating the evaporator before, in particular, the mixed stream is returned to the evaporator.

In einer weiteren Ausführungsform des Verfahrens wird in einem aus dem mindestens einen Mischseparator austretenden Strom des kondensierten Kreisprozessfluids mittels zumindest einer Kondensatpumpe eine Druckerhöhung durchgeführt, abschließend dieser Strom in dampfförmiges Kreisprozessfluid aus dem mindestens einen Mischseparator zur Erzeugung von Kreisprozessfluid-Nassdampf eingeleitet, bevor der Kreisprozessfluid-Nassdampf in dem nachgeschalteten Verdichter auf die erste Druckstufe verdichtet wird.In a further embodiment of the method, a pressure increase is carried out in a stream of the condensed cycle fluid emerging from the at least one mixing separator by means of at least one condensate pump, and finally this stream is introduced into vaporous cycle fluid from the at least one mixing separator to generate cycle fluid wet steam before the cycle fluid wet steam is compressed to the first pressure stage in the downstream compressor.

Im Weiteren wird die Erfindung anhand von Ausführungsbeispielen erläutert. Es zeigen

  • 1 eine stark schematische Darstellung einer Wärmepumpenvorrichtung mit einem Verdampfer, einem ersten Verdichter, einem Mischseparator einer zweiten Druckstufe, einem zweiten Verdichter und einem Wärmeübertrager einer ersten Druckstufe,
  • 2 eine stark schematische Darstellung einer Alternative der in 1 gezeigten Wärmepumpenvorrichtung mit einer Beheizung eines Verdampfers über einen Kreislauf durch einen Wärmeübertrager einer Wärmequelle,
  • 3 eine stark schematische Darstellung einer Alternative der in 2 gezeigten Wärmepumpenvorrichtung mit einem zusätzlichen Mischseparator nach einer Verdichtung auf eine erste Druckstufe,
  • 4 eine stark schematische Darstellung einer Alternative der in 3 gezeigten Wärmepumpenvorrichtung und einem mit Treibdampf aus einer ersten Druckstufe versorgten thermischen Verdichter zur Verdichtung von dampfförmigem Kreisprozessfluid von der Druckstufe des Verdampfers auf eine zweite Druckstufe,
  • 5 eine stark schematische Darstellung einer Alternative der in 4 gezeigten Wärmepumpenvorrichtung und einem mit Treibdampf aus einer Treibdampf-Druckstufe versorgten thermischen Verdichter zur Verdichtung von dampfförmigem Kreisprozessfluid von der Druckstufe des Verdampfers auf eine zweite Druckstufe,
  • 6 eine stark schematische Darstellung einer weiteren Alternative der in 3 gezeigten Wärmepumpenvorrichtung mit einer zusätzlichen dritten Druckstufe,
  • 7 eine stark schematische Darstellung einer Alternative der in 6 gezeigten Wärmepumpenvorrichtung mit einer zusätzlichen Übertragung von Prozesswärme einer zweiten Druckstufe in einem Wärmeübertrager einer zweiten Wärmesenke,
  • 8 eine stark schematische Darstellung einer weiteren Alternative der in 6 gezeigten Wärmepumpenvorrichtung mit einer zusätzlichen vierten Druckstufe,
  • 9 eine stark schematische Darstellung einer Alternative der in 8 gezeigten Wärmepumpenvorrichtung mit einem mit Treibdampf aus einer Treibdampf-Druckstufe versorgten thermischen Verdichter zur Verdichtung von dampfförmigem Kreisprozessfluid von der Druckstufe des Verdampfers auf eine vierte Druckstufe,
  • 10 eine stark schematische Darstellung einer weiteren Alternative der in 8 gezeigten Wärmepumpenvorrichtung mit einer zusätzlichen Übertragung von Prozesswärme einer zweiten Druckstufe in einem Wärmeübertrager einer zweiten Wärmesenke,
  • 11 eine stark schematische Darstellung einer Alternative der in 10 gezeigten Wärmepumpenvorrichtung mit einer Übertragung von Prozesswärme einer dritten anstelle einer zweiten Druckstufe in einem Wärmeübertrager einer zweiten Wärmesenke, und
  • 12 eine schematische Darstellung eines Mischseparators einer Wärmepumpenvorrichtung.
The invention is explained below using exemplary embodiments.
  • 1 a highly schematic representation of a heat pump device with an evaporator, a first compressor, a mixing separator of a second pressure stage, a second compressor and a heat exchanger of a first pressure stage,
  • 2 a highly schematic representation of an alternative to the 1 shown heat pump device with heating of an evaporator via a circuit through a heat exchanger of a heat source,
  • 3 a highly schematic representation of an alternative to the 2 shown heat pump device with an additional mixing separator after compression to a first pressure stage,
  • 4 a highly schematic representation of an alternative to the 3 shown heat pump device and a thermal compressor supplied with motive steam from a first pressure stage for compressing vaporous cycle fluid from the pressure stage of the evaporator to a second pressure stage,
  • 5 a highly schematic representation of an alternative to the 4 shown heat pump device and a thermal compressor supplied with motive steam from a motive steam pressure stage for compressing vaporous cycle fluid from the pressure stage of the evaporator to a second pressure stage,
  • 6 a highly schematic representation of another alternative of the 3 shown heat pump device with an additional third pressure stage,
  • 7 a highly schematic representation of an alternative to the 6 shown heat pump device with an additional transfer of process heat of a second pressure stage in a heat exchanger of a second heat sink,
  • 8th a highly schematic representation of another alternative of the 6 shown heat pump device with an additional fourth pressure stage,
  • 9 a highly schematic representation of an alternative to the 8th shown heat pump device with a thermal compressor supplied with motive steam from a motive steam pressure stage for compressing vaporous cycle fluid from the pressure stage of the evaporator to a fourth pressure stage,
  • 10 a highly schematic representation of another alternative of the 8th shown heat pump device with an additional transfer of process heat of a second pressure stage in a heat exchanger of a second heat sink,
  • 11 a highly schematic representation of an alternative to the 10 shown heat pump device with a transfer of process heat of a third instead of a second pressure stage in a heat exchanger of a second heat sink, and
  • 12 a schematic representation of a mixing separator of a heat pump device.

Eine in 1 gezeigte Wärmepumpenvorrichtung 1 weist einen Verdampfer 200 mit einer Beheizung über einen Zulauf 14 und einen Ablauf 15 einer Wärmequelle, einen Verdichter 401 von der Druckstufe des Verdampfers 200 auf eine zweite Druckstufe, einen Mischseparator 400 einer zweiten Druckstufe, einen Verdichter 501 von einer zweiten auf eine erste Druckstufe, einen Wärmeübertrager 520 einer ersten Wärmesenke zur Übertragung von Prozesswärme einer ersten Druckstufe sowie einen Zulauf 10 und einen Ablauf 11 einer Trocknervorrichtung 5 als Wärmesenke auf. Die Wärmepumpenvorrichtung 1 weist eine Steuerungs- und Regelungseinheit 2 zum Steuern und Regeln der Funktionen und Komponenten der Wärmepumpenvorrichtung 1 auf.One in 1 The heat pump device 1 shown has an evaporator 200 with heating via an inlet 14 and an outlet 15 of a heat source, a compressor 401 from the pressure stage of the evaporator 200 to a second pressure stage, a mixing separator 400 of a second pressure stage, a compressor 501 from a second to a first pressure stage, a heat exchanger 520 of a first heat sink for transferring process heat of a first pressure stage and an inlet 10 and an outlet 11 of a dryer device 5 as a heat sink. The heat pump device 1 has a control and regulation unit 2 for controlling and regulating the functions and components of the heat pump device 1.

Der Mischseparator 400 der zweiten Druckstufe weist einen Anschluss 406 für den Eintritt von dampfförmigen Kreisprozessfluid, einen Anschluss 407 für den Eintritt von flüssigen Kreisprozessfluid, einen Anschluss 408 für den Austritt 408 von dampfförmigen Kreisprozessfluid und einen Anschluss 409 für den Austritt von flüssiges Kreisprozessfluid auf. In dem Anschluss 407 für den Eintritt von flüssigem Kreisprozessfluid ist eine Versprüheinrichtung zum Versprühen des flüssigen Kreisprozessfluids integriert, um das eintretende flüssige Kreisprozessfluid unter Aufbau eines Druckverlustes in Form von Tröpfchen in den Mischseparator 400 einzusprühen, wobei ein Teil des am Anschluss 407 eintretenden flüssigen Kreisprozessfluids je nach dessen Temperatur verdampft und dabei eine Überhitzung des am Anschluss 406 eintretenden dampfförmigen Kreisprozessfluids reduziert wird.The mixing separator 400 of the second pressure stage has a connection 406 for the inlet of vaporous cycle fluid, a connection 407 for the inlet of liquid cycle fluid, a connection 408 for the outlet 408 of vaporous cycle fluid and a connection 409 for the outlet of liquid cycle fluid. A spraying device for spraying the liquid cycle fluid is integrated in the connection 407 for the inlet of liquid cycle fluid in order to spray the incoming liquid cycle fluid into the mixing separator 400 in the form of droplets while building up a pressure loss, wherein a portion of the liquid cycle fluid entering at connection 407 evaporates depending on its temperature and in the process overheating of the vaporous cycle fluid entering at connection 406 is reduced.

Beim niedrigsten Druck des Kreisprozesses im Verdampfer 200, üblicherweise ein Teilvakuum unterhalb Atmosphärendruck, und gleichzeitig bei den niedrigsten Temperaturen des Kreisprozesses, wird aus einem Mischseparator 400 der zweiten Druckstufe zurückgeführtes flüssiges Kreisprozessfluid mittels Zulauf 14 und Ablauf 15 von einer Wärmequelle beheizt und verdampft und anschließend dampfförmiges Kreisprozessfluid als trockener Dampf von der Druckstufe des Verdampfers in einem Verdichter 401 auf eine zweite Druckstufe verdichtet und tritt überhitzt in den Mischseparator 400 der zweiten Druckstufe ein.At the lowest pressure of the cycle in the evaporator 200, usually a partial vacuum below atmospheric pressure, and at the same time at the lowest temperatures of the cycle, liquid cycle fluid returned from a mixing separator 400 of the second pressure stage is heated and evaporated by a heat source by means of inlet 14 and outlet 15 and then vaporous cycle fluid is compressed as dry vapor from the pressure stage of the evaporator in a compressor 401 to a second pressure stage and enters the mixing separator 400 of the second pressure stage superheated.

Aus dem Mischseparator 400 tritt dampfförmiges Kreisprozessfluid als trockener Dampf einer zweiten Druckstufe aus und wird vor einer Verdichtung in einem Verdichter 501 über eine Kondensatpumpe 250 mit eingespritztem Kondensat und somit flüssigem Kreisprozessfluid soweit übersättigt und dadurch in Nassdampf mit einem Anteil flüssigen Kreisprozessfluids überführt, dass während der anschließenden Verdichtung auf eine erste Druckstufe im Verdichter 501 dieser flüssige Anteil verdampft und aus dem Verdichter 501 trockengesättigtes dampfförmiges Kreisprozessfluid einer ersten Druckstufe austritt. In einem Wärmeübertrager 520 einer Wärmesenke wird Prozesswärme auf der Kondensationstemperatur einer ersten Druckstufe vom dampfförmigen Kreisprozessfluid an die Wärmesenke mit einem Zulauf 10 und einem Ablauf 11 übertragen, wobei das Kreisprozessfluid kondensiert. Flüssiges Kreisprozessfluid tritt mit annähernd Kondensationstemperatur und auf einer ersten Druckstufe über einen Kondensatabscheider 522 aus dem Wärmeübertrager 520 aus und wird in den Mischseparator 400 der zweiten Druckstufe eingeleitet, wobei es sich auf dessen zweite Druckstufe entspannt und sich auf dessen Kondensationstemperatur der zweiten Druckstufe abkühlt. Dabei verdampft ein Teil des flüssig eingeleiteten Kreisprozessfluids aus dem Wärmeübertrager 520 und bildet dampfförmiges Kreisprozessfluid auf der zweiten Druckstufe. Ein weiterer flüssig eingeleiteter Teil des eingeleiteten Kreisprozessfluids aus dem Wärmeübertrager 520 verdampft durch den Grad der Überhitzung des aus dem Verdichter 401 in den Mischseparator 400 überhitzt eintretenden dampfförmigen Kreisprozessfluids. Der restliche flüssig in den Mischseparator 400 eingeleitete Teil des eingeleiteten Kreisprozessfluids aus dem Wärmeübertrager 520 gilt als überschüssiges flüssiges Kreisprozessfluid und tritt mit dem Druck und der Kondensationstemperatur der zweiten Druckstufe aus dem Mischseparator 400 aus, bevor es wieder in den Verdampfer 200 eingeleitet wird.Vaporous cycle fluid emerges from the mixing separator 400 as dry vapor of a second pressure stage and, before compression in a compressor 501, is supersaturated with injected condensate and thus liquid cycle fluid via a condensate pump 250 and is thereby converted into wet steam with a portion of liquid cycle fluid, such that during the subsequent compression to a first pressure stage in the compressor 501, this liquid portion evaporates and dry-saturated vaporous cycle fluid of a first pressure stage emerges from the compressor 501. In a heat exchanger 520 of a heat sink, process heat at the condensation temperature of a first pressure stage is transferred from the vaporous cycle fluid to the heat sink with an inlet 10 and an outlet 11, whereby the cycle fluid condenses. Liquid cycle fluid exits the heat exchanger 520 at approximately condensation temperature and at a first pressure level via a condensate separator 522 and is introduced into the mixing separator 400 of the second pressure level, where it expands at its second pressure level and cools down to its condensation temperature of the second pressure level. In the process, a portion of the cycle fluid introduced in liquid form from the heat exchanger 520 evaporates and forms vaporous cycle fluid at the second pressure level. Another portion of the cycle fluid introduced in liquid form from the heat exchanger 520 evaporates due to the degree of superheating of the vaporous cycle fluid entering the mixing separator 400 superheated from the compressor 401. The remaining portion of the cycle fluid introduced from the heat exchanger 520 that is introduced into the mixing separator 400 in liquid form is considered excess liquid cycle fluid and exits the mixing separator 400 at the pressure and condensation temperature of the second pressure stage before being reintroduced into the evaporator 200.

In einer in 2 gezeigten Alternative weist eine Wärmepumpenvorrichtung 1 eine indirekte Beheizung des Verdampfers 200 über einen Kreislauf durch einen Wärmeübertrager 220 einer Wärmequelle (14, 15) auf, wobei im Unterschied zur Darstellung in 1 ein Durchfluss kondensierten Kreisprozessfluids aus einem Mischseparator 400 einer zweiten Druckstufe in einen Durchfluss flüssigen Kreisprozessfluids, welches zuvor in dem Wärmeübertrager 220 der Wärmequelle indirekt erwärmt wurde, eingeleitet wird und die Mischung beider Durchflüsse zur indirekten Beheizung eines Verdampfers 200 verwendet wird. Zur Überwindung einer Druckdifferenz vom Austritt aus der zweiten Druckstufe zum Kreislauf mit einer Umlaufpumpe 222 wird eine Kondensatpumpe 201 eingesetzt.In a 2 In the alternative shown, a heat pump device 1 has an indirect heating of the evaporator 200 via a circuit through a heat exchanger 220 of a heat source (14, 15), wherein, in contrast to the representation in 1 a flow of condensed cycle fluid from a mixing separator 400 of a second pressure stage is introduced into a flow of liquid cycle fluid, which was previously indirectly heated in the heat exchanger 220 of the heat source, and the mixture of both flows is used to indirectly heat an evaporator 200. A condensate pump 201 is used to overcome a pressure difference from the outlet from the second pressure stage to the circuit with a circulation pump 222.

Weiterhin ist die in 2 gezeigte Wärmepumpenvorrichtung 1 im Unterschied zur Darstellung in 1 ausgebildet, um ein auf einer zweiten Druckstufe kondensiertes Kreisprozessfluid aus einem Mischseparator 400 einer zweiten Druckstufe in dampfförmiges Kreisprozessfluid aus einer zweiten Druckstufe zur Erzeugung von Kreisprozessfluid-Nassdampf einzuleiten, bevor dieser Nassdampf in einem Verdichter 501 auf eine erste Druckstufe verdichtet wird. Dabei fördert eine Kondensatpumpe 201 diejenige Menge kondensiertes Kreisprozessfluid, welches aus dem Mischkondensator 400 der nächsthöheren Druckstufe oberhalb der Druckstufe des Verdampfers 200 austritt. Gleichzeitig stellt eine Kondensatpumpe 201 einen ausreichenden Einspritzdruck von flüssigem Kreisprozessfluid einer zweiten Druckstufe vor einer Verdichtung 501 auf eine erste Druckstufe bereit. Ansonsten wird die in 2 gezeigte Wärmepumpenvorrichtung 1 wie oben beschrieben betrieben.Furthermore, the 2 shown heat pump device 1 in contrast to the representation in 1 designed to introduce a cycle fluid condensed at a second pressure level from a mixing separator 400 of a second pressure level into vaporous cycle fluid from a second pressure level to generate cycle fluid wet steam before this wet steam is compressed in a compressor 501 to a first pressure level. In this case, a condensate pump 201 conveys the amount of condensed cycle fluid that exits from the mixing condenser 400 of the next higher pressure level above the pressure level of the evaporator 200. At the same time, a condensate pump 201 provides a sufficient injection pressure of liquid cycle fluid of a second pressure level before compression 501 to a first pressure level. Otherwise, the 2 The heat pump device 1 shown is operated as described above.

Eine in 3 gezeigte Alternative einer Wärmepumpenvorrichtung 1 weist im Unterschied zur Darstellung in 2 auf, dass dampfförmiges Kreisprozessfluid nach einer Verdichtung 501 von einer zweiten Druckstufe auf eine erste Druckstufe sowie kondensiertes Kreisprozessfluid einer zweiten Druckstufe gleichzeitig in einen Mischseparator 500 einer ersten Druckstufe eingeleitet werden, um eine Überhitzung des dampfförmigen Kreisprozessfluids bei einer Verdichtung ohne vorige Einspritzung von flüssigem Kreisprozessfluid abzubauen und gesättigten Dampf auf einer ersten Druckstufe am Austritt 508 aus dem Mischseparator 500 bereitzustellen.One in 3 The alternative heat pump device 1 shown in FIG. 1 has, in contrast to the illustration in 2 that vaporous cycle fluid after a compression 501 from a second pressure stage to a first pressure stage and condensed cycle fluid of a second pressure stage are simultaneously introduced into a mixing separator 500 of a first pressure stage in order to reduce superheating of the vaporous cycle fluid during compression without prior injection of liquid cycle fluid and to provide saturated vapor at a first pressure stage at the outlet 508 from the mixing separator 500.

In einer minimalen Ausführung der Wärmepumpenvorrichtung 1 mit mindestens drei Druckstufen gemäß 1, 2 oder 3 und dem bevorzugten Einsatz von Wasser als Kreisprozessfluid kann der Verdampfer 200 unter Nutzung von Abwärme mit Temperaturen von beispielsweise 60-80°C bei einer Verdampfungstemperatur von beispielsweise 54°C betrieben werden, welches einem Verdampfungsdruck des Kreisprozessfluids von 150 hPa entspricht. Dieser Verdampfungsdruck definiert die Betriebsbedingungen einer wärmeaufnehmenden Seite des Kreisprozesses und entspricht dem niedrigsten Kondensationsdruck des Kreisprozessfluids innerhalb des Kreisprozesses, welches gleichzeitig der niedrigsten Druckstufe der Wärmepumpenvorrichtung 1 entspricht.In a minimal design of the heat pump device 1 with at least three pressure stages according to 1 , 2 or 3 and the preferred use of water as the cycle fluid, the evaporator 200 can be operated using waste heat at temperatures of, for example, 60-80°C at an evaporation temperature of, for example, 54°C, which corresponds to an evaporation pressure of the cycle fluid of 150 hPa. This evaporation pressure defines the operating conditions of a heat-absorbing side of the cycle and corresponds to the lowest condensation pressure of the cycle fluid within the cycle, which at the same time corresponds to the lowest pressure level of the heat pump device 1.

Ausgehend von dieser niedrigsten Druckstufe im Verdampfer 200 wird das dampfförmige Kreisprozessfluid, beispielsweise Wasser, in zumindest einem Verdichter 401 auf eine zweite Druckstufe verdichtet. Der Druck der zweiten Druckstufe richtet sich nach dem erreichbaren Kompressionsverhältnis des gewählten Verdichters 401, welches beispielsweise in einem Bereich von 1,2-6,0 liegen kann. Je nach Verdichterbauweise findet während der Verdichtung eine unterschiedlich starke Erwärmung des dampfförmigen Kreisprozessfluids statt.Starting from this lowest pressure level in the evaporator 200, the vaporous cycle fluid, for example water, is compressed to a second pressure level in at least one compressor 401. The pressure of the second pressure level depends on the achievable compression ratio of the selected compressor 401, which can be in a range of 1.2-6.0, for example. Depending on the compressor design, the vaporous cycle fluid is heated to varying degrees during compression.

Ausgehend von einem Verdampfungsdruck des Kreisprozessfluids im Verdampfer 200 von 150 hPa und einem Kompressionsverhältnis im Verdichter 401 von beispielsweise 3,0 würde der Druck der zweiten Druckstufe rechnerisch bei 450 hPa liegen. Für das Kreisprozessfluid Wasser läge die mit 450 hPa korrespondierende Siede- und Kondensationstemperatur der zweiten Druckstufe bei 78,7°C.Based on an evaporation pressure of the cycle fluid in the evaporator 200 of 150 hPa and a compression ratio in the compressor 401 of, for example, 3.0, the pressure of the second pressure stage would be calculated to be 450 hPa. For the cycle fluid water, the boiling and condensation temperature of the second pressure stage corresponding to 450 hPa would be 78.7°C.

Vergleicht man diese beiden Druckstufen (150 hPa; 54,0°C) und (450 hPa; 78,7°C) beispielsweise mit einer isentropen Verdichtung mit n = κ = 1,333 von einer Verdampfer-Druckstufe (150 hPa; 54,0°C) auf eine zweite Druckstufe mit 450 hPa, was einem Verdichtungsverhältnis von 3,0 entspricht, dann läge die Temperatur nach der isentropen Verdichtung bei TV2 = 157,4°C, was gegenüber der korrespondierenden Kondensationstemperatur der zweiten Druckstufe von TD2 = 78,7°C eine Überhitzung von TV2 - TD2 = 157,4°C - 78,7°C = 78,7 K darstellt.If one compares these two pressure stages (150 hPa; 54.0°C) and (450 hPa; 78.7°C), for example, with an isentropic compression with n = κ = 1.333 from an evaporator pressure stage (150 hPa; 54.0°C) to a second pressure stage with 450 hPa, which corresponds to a compression ratio of 3.0, then the temperature after the isentropic compression would be T V2 = 157.4°C, which represents a superheat of T V2 - T D2 = 157.4°C - 78.7°C = 78.7 K compared to the corresponding condensation temperature of the second pressure stage of T D2 = 78.7°C.

Diese positive Temperaturdifferenz von 78,7 K macht es möglich, dass eine Wärmeübertragung von einem auf eine Druckstufe pV2 verdichteten und dadurch überhitzen Dampf auf solch flüssiges Kreisprozessfluid möglich ist, dessen Temperatur höchstens der korrespondierenden Siedetemperatur TD2 der Druckstufe pD2 entspricht.This positive temperature difference of 78.7 K makes it possible for heat to be transferred from a steam compressed to a pressure level p V2 and thus superheated to a liquid cycle fluid whose temperature corresponds at most to the corresponding boiling temperature T D2 of the pressure level p D2 .

Dieser Umstand wird genutzt, um die aus der Verdichtung auf eine Druckstufe stammende Überhitzungs-Enthalpie zur Verdampfung von flüssigem Kreisprozessfluid der gleichen Druckstufe zu übertragen und somit auf dieser Druckstufe einen höheren Anteil an dampfförmigem Kreisprozessfluid zu generieren, ohne dass dieser zusätzliche dampfförmige Anteil durch die Verrichtung von mechanischer Arbeit, also der Vernichtung von Exergie, auf diese Druckstufe verdichtet werden muss.This circumstance is used to transfer the superheat enthalpy resulting from the compression at a pressure level to the evaporation of liquid cycle fluid at the same pressure level and thus to generate a higher proportion of vaporous cycle fluid at this pressure level without this additional vaporous portion having to be compressed to this pressure level by performing mechanical work, i.e. the destruction of exergy.

Dieses wird erreicht, indem das in einem Verdichter 401 auf eine zweite Druckstufe verdichtete dampfförmige Kreisprozessfluid an einem Anschluss 406 für den Eintritt von dampfförmigen Kreisprozessfluid in den Mischseparator 400 der zweiten Druckstufe eintritt und dort in direkten Kontakt gebracht wird mit flüssigem Kreisprozessfluid der zweiten Druckstufe, welches sich in dem Mischseparator 400 der zweiten Druckstufe befindet.This is achieved by the vaporous cycle fluid compressed in a compressor 401 to a second pressure stage entering the mixing separator 400 of the second pressure stage at a connection 406 for the entry of vaporous cycle fluid and being brought there into direct contact with liquid cycle fluid of the second pressure stage, which is located in the mixing separator 400 of the second pressure stage.

Innerhalb des Mischseparators 400 der zweiten Druckstufe bildet sich durch den direkten Kontakt von dampfförmigem und flüssigem Kreisprozessfluid und aufgrund von schnell ablaufenden Wärme- und Stoffübergangsvorgängen durch gleichzeitige Kondensation von dampfförmigem und Verdampfung von flüssigem Kreisprozessfluid ein quasistationäres Gleichgewicht, welches beispielsweise durch einen Zykloneffekt unterstützt wird, um dampfförmiges Kreisprozessfluid von flüssigem zu separieren und gleichzeitig an voneinander getrennten Anschlüssen 408, 409 aus dem Mischseparator 400 der zweiten Druckstufe separat austreten zu lassen, insbesondere dampfförmiges Kreisprozessfluid an zumindest dem Anschluss 408 und flüssiges Kreisprozessfluid an zumindest dem Anschluss 409.Within the mixing separator 400 of the second pressure stage, a quasi-stationary equilibrium is formed due to the direct contact of vaporous and liquid cycle fluid and due to rapidly occurring heat and mass transfer processes through simultaneous condensation of vaporous and evaporation of liquid cycle fluid, which is supported, for example, by a cyclone effect in order to separate vaporous cycle fluid from liquid and at the same time to allow it to exit separately from the mixing separator 400 of the second pressure stage at separate connections 408, 409, in particular vaporous cycle fluid at at least connection 408 and liquid cycle fluid at at least connection 409.

Dasjenige dampfförmige Kreisprozessfluid, welches an zumindest einem Anschluss 408 des Mischseparators 400 der zweiten Druckstufe austritt, wird anschließend in zumindest einem Verdichter 501 von der zweiten auf eine erste Druckstufe verdichtet, wobei dampfförmiges Kreisprozessfluid dieser ersten Druckstufe die wärmeabgebenden Seite der Wärmepumpenvorrichtung 1 durchläuft und dabei in einem Wärmeübertrager 520 indirekt Prozesswärme auf zumindest eine Wärmesenke (10, 11) überträgt und dabei kondensiert.The vaporous cycle fluid which exits at at least one connection 408 of the mixing separator 400 of the second pressure stage is then compressed in at least one compressor 501 from the second to a first pressure stage, wherein vaporous cycle fluid of this first pressure stage passes through the heat-emitting side of the heat pump device 1 and indirectly transfers process heat to at least one heat sink (10, 11) in a heat exchanger 520 and condenses in the process.

Die Übertragung von Prozesswärme der Wärmepumpenvorrichtung 1 erfolgt demnach zumindest durch Kondensation des dampfförmigen Kreisprozessfluids bei dem Kondensationsdruck der ersten Druckstufe und der damit korrespondierenden Kondensationstemperatur. Der Druck der ersten Druckstufe richtet sich nach dem erreichbaren Kompressionsverhältnis des gewählten Verdichters 501, welches beispielsweise in einem Bereich von 1,2-6,0 liegen kann.The transfer of process heat of the heat pump device 1 therefore takes place at least by condensation of the vaporous cycle fluid at the condensation pressure of the first pressure stage and the corresponding condensation temperature. The pressure of the first pressure stage depends on the achievable compression ratio of the selected compressor 501, which can be in a range of 1.2-6.0, for example.

Ausgehend von einem Druck einer zweiten Druckstufe von 450 hPa und einem Kompressionsverhältnis im Verdichter 501 von beispielsweise 4,0 liegt der Druck der zweiten Druckstufe dann bei 1.800 hPa. Für das Kreisprozessfluid Wasser liegt die mit 1.800 hPa korrespondierende Siede- und Kondensationstemperatur der zweiten Druckstufe demnach bei 116,9°C.Based on a pressure of a second pressure stage of 450 hPa and a compression ratio in the compressor 501 of, for example, 4.0, the pressure of the second pressure stage is then 1,800 hPa. For the circulating process fluid water, the boiling and condensation temperature of the second pressure stage corresponding to 1,800 hPa is therefore 116.9°C.

Bei der Übertragung von Prozesswärme auf der wärmeabgebenden Seite der Wärmepumpenvorrichtung 1 kondensiert dampfförmiges Kreisprozessfluid der ersten Druckstufe bei 116,9°C in zumindest einem Wärmeübertrager 520 der Wärmesenke (10, 11), wobei kondensiertes Kreisprozessfluid der ersten Druckstufe aus dem Wärmeübertrager 520 mit einer Temperatur, die nicht wesentlich unterhalb der korrespondierenden Kondensationstemperatur der ersten Druckstufe liegt, austritt und an zumindest einem Anschluss 407 in einen Mischseparator 400 einer zweiten Druckstufe eintritt, wobei die korrespondierende Siede- und Kondensationstemperatur der zweiten Druckstufe mit etwa 78,7°C deutlich unterhalb der korrespondierende Siede- und Kondensationstemperatur der ersten Druckstufe von etwa 116,9°C liegt.During the transfer of process heat on the heat-emitting side of the heat pump device 1, vaporous cycle fluid of the first pressure stage condenses at 116.9°C in at least one heat exchanger 520 of the heat sink (10, 11), wherein condensed cycle fluid of the first pressure stage exits the heat exchanger 520 at a temperature that is not significantly below the corresponding condensation temperature of the first pressure stage and enters a mixing separator 400 of a second pressure stage at at least one connection 407, wherein the corresponding boiling and condensation temperature of the second pressure stage at approximately 78.7°C is significantly below the corresponding boiling and condensation temperature of the first pressure stage of approximately 116.9°C.

Durch diese Temperaturdifferenz beim Eintritt des kondensierten Kreisprozessfluids der ersten Druckstufe in den Mischseparator 400 der zweiten Druckstufe, deren Druck wie beschrieben um den Kehrwert des Verdichtungsverhältnisses des Verdichters 501 niedriger liegt als der Druck der ersten Druckstufe, kann eine Spontanverdampfung eines weiteren Anteils an flüssigem Kreisprozessfluid auftreten.Due to this temperature difference when the condensed cycle fluid of the first pressure stage enters the mixing separator 400 of the second pressure stage, the pressure of which, as described, is lower than the pressure of the first pressure stage by the reciprocal of the compression ratio of the compressor 501, a spontaneous evaporation of a further portion of liquid cycle fluid can occur.

Bei solch einer Spontanverdampfung kann die überschüssige Enthalpie des mit höherer Temperatur eintretenden flüssigen Kreisprozessfluids bis zur Abkühlung auf die korrespondierende Siede- und Kondensationstemperatur der zweiten Druckstufe als Verdampfungsenthalpie genutzt werden. Bei der beschriebenen Temperaturdifferenz von 116,9°C - 78,7°C = 38,2 K und einer angenommenen spezifischen Wärmekapazität von 4,186 kJ/kg·K des flüssigen Kreisprozessfluids wird zur isobaren Verdampfung bei dem Druck der zweiten Druckstufe von 450 hPa eine spezifische Verdampfungsenthalpie von etwa 2.313 kJ/kg benötigt. Bezogen auf den Massendurchfluss des vom kondensiertem Kreisprozessfluids der ersten Druckstufe an den Anschluss 407 für den Eintritt in den Mischseparator 400 der zweiten Druckstufe eintretenden flüssigen Kreisprozessfluids ergibt sich aus dem Verhältnis der spezifischen Enthalpien ein Massenverhältnis von (4,186 kJ/kg·K·38,2 K)/(2.313 kJ/kg) = 0,069 kg/kg an zusätzlich verdampftem Kreisprozessfluid, ohne dass dieser zusätzliche dampfförmige Anteil in einer vorangegangenen Verdichtung, wie beispielsweise in einem Verdichter 401, durch Aufbringung von mechanischer Arbeit auf die zweite Druckstufe verdichtet werden musste.In such a spontaneous evaporation, the excess enthalpy of the liquid cycle fluid entering at a higher temperature can be used as evaporation enthalpy until it is cooled to the corresponding boiling and condensation temperature of the second pressure stage. With the described temperature difference of 116.9°C - 78.7°C = 38.2 K and an assumed specific heat capacity of 4.186 kJ/kg·K of the liquid cycle fluid, a specific evaporation enthalpy of about 2,313 kJ/kg is required for isobaric evaporation at the pressure of the second pressure stage of 450 hPa. Based on the mass flow of the liquid cycle fluid entering the connection 407 for entry into the mixing separator 400 of the second pressure stage from the condensed cycle fluid of the first pressure stage, the ratio of the specific enthalpies results in a mass ratio of (4.186 kJ/kg·K·38.2 K)/(2,313 kJ/kg) = 0.069 kg/kg of additionally vaporized cycle fluid, without this additional vaporous portion having to be compressed in a previous compression, such as in a compressor 401, by applying mechanical work to the second pressure stage.

Derjenige Anteil an flüssigem Kreisprozessfluid, der an einem Anschluss 407 in den Mischseparator 400 der zweiten Druckstufe eintritt und nicht zum Abbau einer Überhitzung oder durch Spontanverdampfung verdampft wird, wird als überschüssiger Anteil an flüssigem Kreisprozessfluid der zweiten Druckstufe bezeichnet und tritt an zumindest dem Anschluss 409 aus dem Mischseparator 400 aus, von wo aus eine Weiterleitung zumindest eines Anteils direkt oder indirekt in den Verdampfer 200 erfolgt.The portion of liquid cycle fluid which enters the mixing separator 400 of the second pressure stage at a connection 407 and is not evaporated to reduce overheating or by spontaneous evaporation is referred to as the excess portion of liquid cycle fluid of the second pressure stage and exits the mixing separator 400 at least at the connection 409, from where at least a portion is passed on directly or indirectly into the evaporator 200.

Im Folgenden soll die zuvor beschriebene Minimalkonfiguration einer Wärmepumpenvorrichtung 1 gemäß den 1 bis 3 mit dem Kreisprozessfluid Wasser hinsichtlich der erreichbaren Heizleistungsziffer COPh und der somit erreichbaren Energieeffizienz beschrieben werden.In the following, the previously described minimum configuration of a heat pump device 1 according to the 1 to 3 with the cycle fluid water in terms of the achievable heat performance coefficient COP h and the thus achievable energy efficiency.

Die zur ersten Druckstufe (1.800 hPa; 116,9°C) korrespondierende spezifische Kondensationsenthalpie beträgt 2.213 kJ/kg als Maß für die bei der korrespondierenden Kondensationstemperatur von 116,9°C auf der wärmeabgebenden Seite der Wärmepumpenvorrichtung 1 auf eine Wärmesenke (10, 11) übertragbare Prozesswärme. Für eine Prozesswärmeübertragung von 1 MW Leistung ist demnach ein Massenstrom an im Wärmeübertrager 520 kondensierendem Kreisprozessfluid der ersten Druckstufe von 1.628 kg/h erforderlich, welcher anschließend als flüssiges Kreisprozessfluid mit etwa 116,9°C an einem Anschluss 407 in den Mischseparator 400 der zweiten Druckstufe eintritt.The specific condensation enthalpy corresponding to the first pressure stage (1,800 hPa; 116.9°C) is 2,213 kJ/kg as a measure of the process heat that can be transferred to a heat sink (10, 11) at the corresponding condensation temperature of 116.9°C on the heat-emitting side of the heat pump device 1. For a process heat transfer of 1 MW output, a mass flow of 1,628 kg/h of circulating process fluid of the first pressure stage condensing in the heat exchanger 520 is therefore required, which then enters the mixing separator 400 of the second pressure stage as liquid circulating process fluid at about 116.9°C at a connection 407.

Zur Lieferung von 1.628 kg/h dampfförmigem Kreisprozessfluid der ersten Druckstufe ist eine Verdichtung mittels des Verdichters 501 von einer zweiten Druckstufe (450 hPa; 78,7°C) auf die erste Druckstufe (1.800 hPa; 116,9°C) erforderlich. Prinzipiell kann zwischen einer trockenen Verdichtung und einer Nassdampfverdichtung unterschieden werden. Bei der Nassdampfverdichtung gemäß 1 oder 2 entspricht der austretende Massenstrom bereits dem erforderlichen Liefermassenstrom von 1.628 kg/h dampfförmigem Kreisprozessfluids der ersten Druckstufe, da exakt so viel flüssiges Kreisprozessfluid im Eintritt des Verdichters 501 versprüht wird, dass dadurch die während der Verdichtung entstehende Überhitzung abgebaut wird. Bei einer trockenen Verdichtung müsste die Überhitzung der Verdichtung in dem anschließenden Mischseparator 500 der ersten Druckstufe gemäß 3 abgebaut werden, indem rund 138 kg/h flüssiges Kreisprozessfluid aus dem Mischseparator 400 der zweiten Druckstufe in den Mischseparator 500 der ersten Druckstufe eingesprüht und aufgrund der Überhitzung des im Verdichter 501 trocken verdichteten Dampfes verdampft werden. Diese 138 kg/h flüssiges Kreisprozessfluid brauchen also nicht im Verdichter 501 durch Aufbringung von mechanischer Arbeit auf die erste Druckstufe verdichtet zu werden. Das bedeutet, dass der Massenstrom durch den Verdichter 501 lediglich 1.628 kg/h - 138 kg/h = 1.490 kg/h betragen muss. Die elektrische Leistungsaufnahme des Verdichters 501 beträgt rund 131,6 kW.To deliver 1,628 kg/h of vaporous cycle fluid of the first pressure stage, compression by means of compressor 501 from a second pressure stage (450 hPa; 78.7°C) to the first pressure stage (1,800 hPa; 116.9°C) is required. In principle, a distinction can be made between dry compression and wet steam compression. In wet steam compression according to 1 or 2 the exiting mass flow already corresponds to the required delivery mass flow of 1,628 kg/h of vaporous cycle fluid of the first pressure stage, since exactly enough liquid cycle fluid is sprayed at the inlet of the compressor 501 to reduce the overheating that occurs during compression. In the case of dry compression, the overheating of the compression in the subsequent mixing separator 500 of the first pressure stage would have to be reduced according to 3 by spraying approximately 138 kg/h of liquid cycle fluid from the mixing separator 400 of the second pressure stage into the mixing separator 500 of the first pressure stage and, due to the overheating of the dense 501 dry compressed steam. These 138 kg/h of liquid cycle fluid therefore do not need to be compressed in compressor 501 by applying mechanical work to the first pressure stage. This means that the mass flow through compressor 501 only needs to be 1,628 kg/h - 138 kg/h = 1,490 kg/h. The electrical power consumption of compressor 501 is around 131.6 kW.

Diese im Verdichter 501 zu verdichtenden 1.490 kg/h treten aus dem Anschluss 408 des Mischseparators 400 der zweiten Druckstufe aus. Über den Anschluss 407 des Mischseparators 400 treten die im Wärmeübertrager 520 kondensierten 1.628 kg/h flüssiges Kreisprozessfluid der ersten Druckstufe ein, von denen rund 0,069 kg/kg durch Spontanverdampfung verdampfen, also werden rund 112 kg/h dampfförmiges Kreisprozessfluid der zweiten Druckstufe durch Spontanverdampfung gebildet. Von den verbleibenden rund 1.516 kg/h flüssiges Kreisprozessfluid im Mischseparator 400 werden rund 87 kg/h zum Abbau der Überhitzung aus der Verdichtung auf die zweite Druckstufe benötigt, sodass der Massenstrom dampfförmiges Kreisprozessfluid im Verdichter 401 rund 1.490 kg/h - 112 kg/h - 87 kg/h = 1.291 kg/h betragen muss. Die elektrische Leistungsaufnahme des Verdichters 401 beträgt rund 81,5 kW.These 1,490 kg/h to be compressed in the compressor 501 exit from the connection 408 of the mixing separator 400 of the second pressure stage. The 1,628 kg/h of liquid cycle fluid of the first pressure stage condensed in the heat exchanger 520 enter via the connection 407 of the mixing separator 400, of which around 0.069 kg/kg evaporate through spontaneous evaporation, so around 112 kg/h of vaporous cycle fluid of the second pressure stage are formed through spontaneous evaporation. Of the remaining approximately 1,516 kg/h of liquid cycle fluid in the mixing separator 400, around 87 kg/h are required to reduce the superheat from compression to the second pressure stage, so that the mass flow of vaporous cycle fluid in the compressor 401 must be around 1,490 kg/h - 112 kg/h - 87 kg/h = 1,291 kg/h. The electrical power consumption of the compressor 401 is around 81.5 kW.

Diese im Verdichter 401 zu verdichtenden 1.291 kg/h dampfförmiges Kreisprozessfluid treten aus dem Verdampfer 200 aus und werden dort zuvor auf der Druckstufe (150 hPa; 54,0°C) des Verdampfers 200 mittels indirekter Beheizung durch eine Leistung von rund 848 kW verdampft. Diese Heizleistung setzt sich zusammen aus rund 34 kW Wärmerückgewinnung aus dem am Anschluss 409 für den Austritt des aus dem Mischseparators 400 austretenden flüssigen Kreisprozessfluids sowie rund 811 kW Abwärme aus einer Wärmequelle (14, 15).These 1,291 kg/h of vaporous cycle fluid to be compressed in the compressor 401 exit from the evaporator 200 and are previously evaporated there at the pressure stage (150 hPa; 54.0°C) of the evaporator 200 by means of indirect heating with an output of around 848 kW. This heating output is made up of around 34 kW of heat recovery from the liquid cycle fluid exiting the mixing separator 400 at connection 409 and around 811 kW of waste heat from a heat source (14, 15).

In der Alternative der Wärmepumpenvorrichtung 1 in einer Minimalkonfiguration mit nur wenigen Hauptkomponenten gemäß 3 wird für die Verdichtung von dampfförmigem Kreisprozessfluid in den Verdichtern (401, 501) sowie für diverse Pumpen (201, 222, 251) für flüssiges Kreisprozessfluid zur Lieferung von 1.000 kW Prozesswärme insgesamt eine elektrische Leistungsaufnahme von rund 131,6 kW + 81,5 kW + 1,9 kW = 215 kW aufgewendet. Damit beträgt die Heizleistungsziffer COPh = 4,65 bei einem Temperaturhub von 116,9°C - 60°C = 56,9 K.In the alternative of the heat pump device 1 in a minimal configuration with only a few main components according to 3 A total electrical power consumption of around 131.6 kW + 81.5 kW + 1.9 kW = 215 kW is used for the compression of vaporous cycle fluid in the compressors (401, 501) and for various pumps (201, 222, 251) for liquid cycle fluid to deliver 1,000 kW of process heat. The heat output coefficient COP h is therefore 4.65 at a temperature difference of 116.9°C - 60°C = 56.9 K.

Eine in den 1 bis 11 gezeigte Verdichtung mittels der entsprechenden Verdichter 301, 311, 401, 501, 601 innerhalb der jeweiligen Alternative der erfindungsgemäßen Wärmepumpenvorrichtung 1 stellt verallgemeinert dar, dass eine Verdichtung mittels der entsprechenden Verdichter 301, 311, 401, 501, 601 von dampfförmigem Kreisprozessfluid durch die Verrichtung von mechanischer Arbeit entweder in einem Verdichter in der Bauweise einer Strömungsmaschine erfolgt, wie beispielsweise einem Axialgebläse, einem Radialgebläse, einem Turbokompressor oder einer Turbine, oder dass die Verdichtung von dampfförmigem Kreisprozessfluid durch die Verrichtung von mechanischer Arbeit in einem Verdichter in der Bauweise einer Verdrängermaschine erfolgt, wie beispielsweise einem Kolbenkompressor, einem Rotationskolbenkompressor oder einem Schraubenkompressor.One in the 1 to 11 The compression shown by means of the corresponding compressors 301, 311, 401, 501, 601 within the respective alternative of the heat pump device 1 according to the invention represents in general terms that a compression by means of the corresponding compressors 301, 311, 401, 501, 601 of vaporous cycle fluid takes place by performing mechanical work either in a compressor in the design of a turbomachine, such as an axial fan, a radial fan, a turbocompressor or a turbine, or that the compression of vaporous cycle fluid takes place by performing mechanical work in a compressor in the design of a positive displacement machine, such as a piston compressor, a rotary piston compressor or a screw compressor.

Eine in 4 gezeigte Alternative der Wärmepumpenvorrichtung 1 weist im Unterschied zur 3 auf, dass die Verdichtung mittels eines Verdichters 401 von dampfförmigem Kreisprozessfluid in einem thermischen Verdichter, wie beispielsweise einer Vakuumdampfstrahlpumpe, erfolgt, in welcher dampfförmiges Kreisprozessfluid einer ersten Druckstufe eingesetzt wird als Treibdampf, der durch thermische Verdichtung hohe Geschwindigkeiten erreicht und dadurch aufgrund von Venturi- oder Coanda-Effekten einen Saugdampf in Form von dampfförmigem Kreisprozessfluid mit einem Druck niedriger als der des Treibdampfes ansaugt, wobei sich Treibdampf und Saugdampf anschließend zu einem Mischdampf mischen mit dem Druck einer zweiten Druckstufe, die einen höheren Druck hat als der Saugdampf und einen niedrigeren Druck als der Treibdampf.One in 4 The alternative of the heat pump device 1 shown has, in contrast to the 3 that the compression by means of a compressor 401 of vaporous cycle fluid takes place in a thermal compressor, such as a vacuum steam jet pump, in which vaporous cycle fluid of a first pressure stage is used as motive steam, which reaches high speeds through thermal compression and thereby sucks in a suction steam in the form of vaporous cycle fluid with a pressure lower than that of the motive steam due to Venturi or Coanda effects, wherein the motive steam and suction steam then mix to form a mixed steam with the pressure of a second pressure stage, which has a higher pressure than the suction steam and a lower pressure than the motive steam.

Eine in 5 gezeigte Alternative der Wärmepumpenvorrichtung 1 weist im Unterschied zur 4 auf, dass dampfförmiges Kreisprozessfluid von einer ersten Druckstufe in einem Verdichter 601 weiter verdichtet wird und dieses verdichtete dampfförmige Kreisprozessfluid eingesetzt wird als Treibdampf, der in einer thermischen Verdichtung hohe Geschwindigkeiten erreicht und dadurch aufgrund von Venturi- oder Coanda-Effekten einen Saugdampf in Form von dampfförmigem Kreisprozessfluid mit einem Druck niedriger als der des Treibdampfes ansaugt, wobei sich Treibdampf und Saugdampf anschließend zu einem Mischdampf mischen mit dem Druck einer zweiten Druckstufe, die einen höheren Druck hat als der Saugdampf und einen niedrigeren Druck als der Treibdampf. Zusätzlich ist in 5 dargestellt, dass ein auf der zweiten Druckstufe kondensiertes Kreisprozessfluid aus dem Mischseparator 400 einer zweiten Druckstufe in dampfförmiges Kreisprozessfluid aus einer ersten Druckstufe zur Erzeugung von Kreisprozessfluid-Nassdampf eingeleitet wird, bevor dieser Nassdampf in dem Verdichter 601 auf eine Treibdampf-Druckstufe verdichtet wird. Gleichzeitig stellt eine Kondensatpumpe 260 einen ausreichenden Einspritzdruck von flüssigem Kreisprozessfluid einer zweiten Druckstufe vor der Verdichtung mittels des Verdichter 601 auf eine Treibdampf-Druckstufe bereit.One in 5 The alternative of the heat pump device 1 shown has, in contrast to the 4 that vaporous cycle fluid from a first pressure stage is further compressed in a compressor 601 and this compressed vaporous cycle fluid is used as motive steam, which reaches high speeds in a thermal compression and thereby sucks in a suction steam in the form of vaporous cycle fluid with a pressure lower than that of the motive steam due to Venturi or Coanda effects, wherein the motive steam and suction steam then mix to form a mixed steam with the pressure of a second pressure stage, which has a higher pressure than the suction steam and a lower pressure than the motive steam. In addition, in 5 shown that a cycle fluid condensed at the second pressure stage from the mixing separator 400 of a second pressure stage is introduced into vaporous cycle fluid from a first pressure stage to generate cycle fluid wet steam before this wet steam is compressed in the compressor 601 to a motive steam pressure stage. At the same time, a condensate pump 260 provides a sufficient injection pressure of liquid cycle fluid of a second pressure stage before the Compression by means of compressor 601 to a motive steam pressure stage.

Eine in 6 gezeigte Alternative der Wärmepumpenvorrichtung 1 weist im Unterschied zur 3 auf, dass eine weitere dritte Druckstufe mit den einem Mischseparator 300 und einem Verdichter 301 hinzugefügt wurde und flüssiges Kreisprozessfluid aus einem Mischseparator (400, 500) einer zweiten oder ersten Druckstufe eingeleitet wird in den weiteren Mischseparator (300, 400) einer zweiten Druckstufe, deren Druck und Temperatur niedriger sind als derjenige Druck und diejenige Temperatur des eingeleiteten flüssigen Kreisprozessfluids. Dabei fördert eine Kondensatpumpe 201 diejenige Menge kondensiertes Kreisprozessfluid, welches in diesem Fall und im Unterschied zur Darstellung in den 1 bis 5 aus dem Mischkondensator 300 der nächsthöheren Druckstufe oberhalb der Druckstufe des Verdampfers 200 austritt. Gleichzeitig kann eine Verdichtung von einer niedrigen auf eine zweite Druckstufe entweder in dem Verdichter 301 in der Bauweise einer Strömungsmaschine oder Verdrängermaschine erfolgen, oder aber analog der Darstellung in 4 oder 5 in der Bauweise eines thermischen Verdichters.One in 6 The alternative of the heat pump device 1 shown has, in contrast to the 3 that a further third pressure stage with a mixing separator 300 and a compressor 301 has been added and liquid cycle fluid from a mixing separator (400, 500) of a second or first pressure stage is introduced into the further mixing separator (300, 400) of a second pressure stage, the pressure and temperature of which are lower than the pressure and temperature of the introduced liquid cycle fluid. In this case, a condensate pump 201 conveys the amount of condensed cycle fluid which in this case and in contrast to the representation in the 1 to 5 exits the mixing condenser 300 of the next higher pressure level above the pressure level of the evaporator 200. At the same time, compression from a low to a second pressure level can take place either in the compressor 301 in the design of a turbomachine or displacement machine, or analogously to the representation in 4 or 5 in the design of a thermal compressor.

In einer weiteren Alternative einer Wärmepumpenvorrichtung 1 kann die Leistungsziffer vergrößert werden, indem bei gleichem Temperaturhub eine Erhöhung der Anzahl Druckstufen auf beispielsweise mindestens 4 Druckstufen gemäß 6 durchgeführt wird. Wird beispielsweise statt einer ersten Druckstufe (1.800 hPa; 116,9°C), einer zweiten Druckstufe (450 hPa; 78,7°C) und einer Druckstufe des Verdampfers 200 (150 hPa; 54,0°C) ähnlich der Darstellungen in den 1 bis 3 die Abstufung verkleinert auf beispielsweise eine erste Druckstufe (1.800 hPa; 116,9°C), eine zweite Druckstufe (450 hPa; 78,7°C), eine dritte Druckstufe (225 hPa; 62,6°C) und eine Druckstufe des Verdampfers 200 (150 hPa; 54,0°C), so ergibt sich eine Heizleistungsziffer COPh = 4,71 bei einem Temperaturhub von 116,9°C - 60°C = 56,9 K, da sich durch geringere Unterschiede zwischen den Drücken der Druckstufen insgesamt mehr Exergie aus dem kondensierten Kreisprozessfluid höherer Stufen zurückgewinnen lässt.In a further alternative of a heat pump device 1, the performance coefficient can be increased by increasing the number of pressure stages to, for example, at least 4 pressure stages according to 6 For example, if instead of a first pressure stage (1,800 hPa; 116.9°C), a second pressure stage (450 hPa; 78.7°C) and a pressure stage of the evaporator 200 (150 hPa; 54.0°C) similar to the representations in the 1 to 3 If the gradation is reduced to, for example, a first pressure stage (1,800 hPa; 116.9°C), a second pressure stage (450 hPa; 78.7°C), a third pressure stage (225 hPa; 62.6°C) and a pressure stage of the evaporator 200 (150 hPa; 54.0°C), this results in a heating performance coefficient COP h = 4.71 at a temperature difference of 116.9°C - 60°C = 56.9 K, since smaller differences between the pressures of the pressure stages mean that more exergy can be recovered from the condensed cycle fluid of higher stages.

In einer weiteren Alternative einer Wärmepumpenvorrichtung 1 kann der Temperaturhub vergrößert werden, indem bei gleichbleibender Anzahl Druckstufen wie beispielsweise gemäß 6 die Verdichtungsverhältnisse einzelner Verdichter (301, 401, 501) vergrößert werden. Wird beispielsweise eine erste Druckstufe (4.044 hPa; 144,0°C), eine zweite Druckstufe (674 hPa; 88,9°C), eine dritte Druckstufe (225 hPa; 62,6°C) und eine Druckstufe des Verdampfers 200 (150 hPa; 54,0°C) eingerichtet, so ergibt sich eine Heizleistungsziffer COPh = 3,44 bei einem Temperaturhub von 144,0°C - 60°C = 84,0 K.In a further alternative of a heat pump device 1, the temperature lift can be increased by increasing the number of pressure stages at the same time, for example according to 6 the compression ratios of individual compressors (301, 401, 501) are increased. If, for example, a first pressure stage (4,044 hPa; 144.0°C), a second pressure stage (674 hPa; 88.9°C), a third pressure stage (225 hPa; 62.6°C) and a pressure stage of the evaporator 200 (150 hPa; 54.0°C) are set up, the result is a heating performance coefficient COP h = 3.44 with a temperature difference of 144.0°C - 60°C = 84.0 K.

In einer weiteren Alternative einer Wärmepumpenvorrichtung 1 kann die Leistungsziffer vergrößert werden, indem bei gleichem Temperaturhub und gleicher Anzahl Druckstufen von beispielsweise mindestens vier Druckstufen gemäß 6 eine Aufteilung der Übertragung von Prozesswärme auf eine erste und eine zweite Wärmesenke mit unterschiedlichen Senkentemperaturen gemäß 7 durchgeführt wird. Wird sämtliche Prozesswärme auf einer einheitlichen Senkentemperatur gemäß 6 übertragen, kann beispielsweise eine Heizleistungsziffer COPh = 3,44 bei einem Temperaturhub von 84,0 K erreicht werden.In a further alternative of a heat pump device 1, the performance coefficient can be increased by using the same temperature lift and the same number of pressure stages, for example at least four pressure stages according to 6 a distribution of the transfer of process heat to a first and a second heat sink with different sink temperatures according to 7 If all process heat is kept at a uniform sink temperature according to 6 For example, a heat output coefficient COP h = 3.44 can be achieved at a temperature difference of 84.0 K.

Bei einer Aufteilung der Prozesswärme gemäß einer weiteren Alternative der Wärmepumpenvorrichtung 1 gemäß 7 derart, dass etwa die Hälfte auf einer ersten Druckstufe und die andere Hälfte auf einer zweiten Druckstufe mittels der Wärmeübertrager 420, 520 übertragen wird, kann beispielsweise eine Heizleistungsziffer von immerhin COPh = 4,35 erreicht werden, ohne dass der maximale Temperaturhub von 84,0 K verringert werden muss.When dividing the process heat according to another alternative of the heat pump device 1 according to 7 In such a way that approximately half is transferred at a first pressure stage and the other half at a second pressure stage by means of the heat exchangers 420, 520, a heating performance coefficient of at least COP h = 4.35 can be achieved, for example, without having to reduce the maximum temperature lift of 84.0 K.

Eine in 8 gezeigte Alternative der Wärmepumpenvorrichtung 1 weist im Unterschied zur Darstellung in 6 auf, dass eine weitere Druckstufe mit einem Mischseparator 310, einem Verdichter 311 und einem Kondensatabscheider 312 als dritte Druckstufe hinzugefügt wurde, wodurch die dritte Druckstufe aus 6 zu einer vierten Druckstufe wurde, und flüssiges Kreisprozessfluid aus einem Mischseparator 400 einer zweiten Druckstufe in den zur dritten Druckstufe zugeordneten Mischseparator 310 eingeleitet wird, dessen Druck und Temperatur niedriger sind als derjenige Druck und diejenige Temperatur des eingeleiteten flüssigen Kreisprozessfluids der darüberliegenden Druckstufe.One in 8th The alternative of the heat pump device 1 shown has, in contrast to the illustration in 6 that a further pressure stage with a mixing separator 310, a compressor 311 and a condensate separator 312 was added as a third pressure stage, whereby the third pressure stage consists of 6 to a fourth pressure stage, and liquid cycle fluid from a mixing separator 400 of a second pressure stage is introduced into the mixing separator 310 assigned to the third pressure stage, the pressure and temperature of which are lower than the pressure and temperature of the introduced liquid cycle fluid of the pressure stage above.

Eine in 9 gezeigte Alternative der Wärmepumpenvorrichtung weist im Unterschied zur Darstellung in 8 auf, dass eine Verdichtung von einer Druckstufe des Verdampfers 200 auf eine vierte Druckstufe in einem Verdichter 301 auch in der Bauweise eines thermischen Verdichters erfolgen kann, wie analog der Darstellung in 4 oder 5 dargestellt ist und sinngemäß auch für Verdichtungsvorgänge zwischen anderen Druckstufen gilt.One in 9 The alternative heat pump device shown in Fig. 1 has, in contrast to the illustration in 8th that a compression from one pressure stage of the evaporator 200 to a fourth pressure stage in a compressor 301 can also be carried out in the design of a thermal compressor, as analogous to the illustration in 4 or 5 and also applies analogously to compression processes between other pressure levels.

Anhand der in den 1 bis 9 gezeigten Analogien wird deutlich, dass eine erfindungsgemäße Wärmepumpenvorrichtung 1 im Hinblick auf die Anzahl der aufgebauten Druckstufen einschließlich der erforderlichen Komponenten und Vorrichtungen pro Druckstufe sowie im Hinblick auf die Auswahl der Bauweise von Verdichtern grundsätzlich variabel erfolgen kann. Beispielsweise kann auch von einer zweiten Druckstufe ausgehend eine Verdichtung mittels einer Verdichters 601 von dampfförmigem Kreisprozessfluid zu Treibdampf erfolgen, wie in 9 gezeigt, indem dampfförmiges Kreisprozessfluid aus einem Mischseparator 400 einer zweiten Druckstufe entnommen und als Treibdampf in einem Verdichter 601 verdichtet für den Betrieb einer Dampfstrahl-Vakuumpumpe genutzt wird, mit welcher dampfförmiges Kreisprozessfluid einer beliebigen tieferen Druckstufe oder, wie in 9 gezeigt, aus dem Verdampfer 200 auf eine vierte Druckstufe verdichtet wird.Based on the 1 to 9 It is clear from the analogies shown that a heat pump device 1 according to the invention with regard to the number of pressure stages built up, including the required components and devices per pressure stage, as well as with regard to the selection of the design of compressors, is fundamentally can be carried out variably. For example, starting from a second pressure stage, a compression of vaporous cycle fluid to motive steam can be carried out by means of a compressor 601, as in 9 shown by taking vaporous cycle fluid from a mixing separator 400 of a second pressure stage and compressing it as motive steam in a compressor 601 for the operation of a steam jet vacuum pump, with which vaporous cycle fluid of any lower pressure stage or, as in 9 shown, from the evaporator 200 is compressed to a fourth pressure stage.

Eine in 10 gezeigte Alternative der Wärmepumpenvorrichtung 1 weist im Unterschied zur Darstellung in 8 auf, dass dampfförmiges Kreisprozessfluid einer zweiten Druckstufe in zumindest einem Wärmeübertrager 420 einer Wärmesenke mit zumindest einem Zulauf 12 und zumindest einem Ablauf 13 kondensiert und indirekt Wärme an diese überträgt, wobei ein auf einer zweiten Druckstufe im Wärmeübertrager 420 der Wärmesenke kondensiertes Kreisprozessfluid in einen Mischseparator 310 einer dritten Druckstufe mit einem Druck unterhalb des desjenigen Drucks des im Wärmeübertrager 420 kondensierenden Kreisprozessfluids über zumindest einen Anschluss 317 eintritt.One in 10 The alternative of the heat pump device 1 shown has, in contrast to the illustration in 8th that vaporous cycle fluid of a second pressure stage condenses in at least one heat exchanger 420 of a heat sink with at least one inlet 12 and at least one outlet 13 and indirectly transfers heat to these, wherein a cycle fluid condensed at a second pressure stage in the heat exchanger 420 of the heat sink enters a mixing separator 310 of a third pressure stage with a pressure below the pressure of the cycle fluid condensing in the heat exchanger 420 via at least one connection 317.

Eine in 11 gezeigte Alternative der Wärmepumpenvorrichtung 1 weist im Unterschied zur Darstellung in 10 auf, dass dampfförmiges Kreisprozessfluid einer dritten Druckstufe in zumindest einem Wärmeübertrager 420 einer Wärmesenke mit zumindest einem Zulauf 12 und zumindest einem Ablauf 13 kondensiert und indirekt Wärme an diese überträgt, wobei ein auf einer dritten Druckstufe im Wärmeübertrager einer Wärmesenke kondensiertes Kreisprozessfluid in einen Mischseparator 300 einer vierten Druckstufe mit einem Druck unterhalb des desjenigen Drucks des im Wärmeübertrager 420 kondensierenden Kreisprozessfluids über zumindest einen Anschluss 307 eintritt.One in 11 The alternative of the heat pump device 1 shown has, in contrast to the illustration in 10 that vaporous cycle fluid of a third pressure stage condenses in at least one heat exchanger 420 of a heat sink with at least one inlet 12 and at least one outlet 13 and indirectly transfers heat to these, wherein a cycle fluid condensed at a third pressure stage in the heat exchanger of a heat sink enters a mixing separator 300 of a fourth pressure stage with a pressure below the pressure of the cycle fluid condensing in the heat exchanger 420 via at least one connection 307.

Anhand der Darstellungen in den 10 und 11 wird gezeigt, dass zumindest ein zweites Temperaturniveau für eine weitere Prozesswärme-Übertragung auf zumindest eine weitere Wärmesenke in Höhe der Kondensationstemperatur einer zweiten oder dritten Druckstufe in zumindest einem Wärmeübertrager 420 einer Wärmesenke mit mindestens einem Zulauf 12 und mindestens einem Ablauf 13 bereitgestellt wird. Hierdurch wird erreicht, dass eine Prozesswärme-Übertragung auf zumindest einem zweiten Temperaturniveau bereits eine Prozesswärme-Versorgung bis zu einer Temperatur nahe der Kondensationstemperatur jener zweiten oder dritten Druckstufe ermöglicht, wobei bis dahin auch nur diejenige mechanische Arbeit für die Verdichtung bis zu jener zweiten oder dritten Druckstufe aufzuwenden ist.Based on the illustrations in the 10 and 11 it is shown that at least a second temperature level is provided for a further process heat transfer to at least one further heat sink at the level of the condensation temperature of a second or third pressure stage in at least one heat exchanger 420 of a heat sink with at least one inlet 12 and at least one outlet 13. This ensures that a process heat transfer at at least a second temperature level already enables a process heat supply up to a temperature close to the condensation temperature of that second or third pressure stage, whereby up to that point only the mechanical work for the compression up to that second or third pressure stage needs to be expended.

Für eine verbleibende Prozesswärme-Übertragung bis zu einer Temperatur nahe der Kondensationstemperatur einer ersten Druckstufe wäre dann nur noch diejenige Differenz an mechanischer Arbeit für die Verdichtung von der schon erreichten zweiten oder dritten Druckstufe bis zu jener ersten Druckstufe aufzuwenden, jedoch mit deutlich geringerem spezifischen Prozesswärmebedarf und geringerer spezifischer mechanischer Arbeit für die Verdichtung. Durch solch eine Stufung in der Bereitstellung von Prozesswärme kann die spezifische Exergievernichtung bezogen auf die insgesamt übertragene Prozesswärme zusätzlich vorteilhaft verringert werden, was die gesamte Heizleistungsziffer nochmals erhöht.For a remaining process heat transfer up to a temperature close to the condensation temperature of a first pressure stage, only the difference in mechanical work for compression from the second or third pressure stage already reached to that first pressure stage would then have to be expended, but with a significantly lower specific process heat requirement and lower specific mechanical work for compression. By grading the provision of process heat in this way, the specific exergy destruction in relation to the total process heat transferred can be advantageously reduced, which further increases the overall heating performance factor.

In einer nicht gezeigten Alternative einer Wärmepumpenvorrichtung 1 mit einer weiteren Unterteilung auf mindestens 7 Druckstufen, also einer ersten Druckstufe (15.550 hPa; 200,0°C), einer zweiten (3.390 hPa; 142,6°C), einer dritten (1.300 hPa; 107,0°C), einer vierten (441 hPa; 78,2°C), einer fünften (260 hPa; 65,8°C), einer sechsten (180 hPa; 57,7°C) sowie einer Druckstufe des Verdampfers 200 (150 hPa; 54,0°C) ist über einen Temperaturhub von bereits 200,0°C - 60°C = 140,0 K immerhin eine Heizleistungsziffer COPh = 2,48 erreichbar. Auch hierbei kann die Leistungsziffer vergrößert werden, indem bei gleichem Temperaturhub und gleicher Anzahl Druckstufen eine Aufteilung der Übertragung von Prozesswärme durchgeführt wird. Erfolgt die Aufteilung derart, dass etwa die Hälfte der Prozesswärme auf der ersten Druckstufe (15.550 hPa; 200,0°C) und die andere Hälfte auf der dritten Druckstufe (1.300 hPa; 107,0°C) bereitgestellt wird, so erhöht sich dadurch die Heizleistungsziffer um rund +40% auf über COPh = 3,40.In an alternative (not shown) of a heat pump device 1 with a further subdivision into at least 7 pressure stages, i.e. a first pressure stage (15,550 hPa; 200.0°C), a second (3,390 hPa; 142.6°C), a third (1,300 hPa; 107.0°C), a fourth (441 hPa; 78.2°C), a fifth (260 hPa; 65.8°C), a sixth (180 hPa; 57.7°C) and a pressure stage of the evaporator 200 (150 hPa; 54.0°C), a heating performance coefficient COP h = 2.48 can be achieved over a temperature rise of just 200.0°C - 60°C = 140.0 K. Here, too, the performance coefficient can be increased by dividing up the transfer of process heat with the same temperature rise and the same number of pressure stages. If the distribution is such that about half of the process heat is provided at the first pressure stage (15,550 hPa; 200.0°C) and the other half at the third pressure stage (1,300 hPa; 107.0°C), the heating performance factor increases by around +40% to over COP h = 3.40.

Zur Bereitstellung von Prozesswärme ist definitionsgemäß eine elektrische Leistungsaufnahme in Höhe des Produkts aus Prozesswärme und dem Kehrwert der Heizleistungsziffer vonnöten. Das bedeutet, dass mit einer Wärmepumpenvorrichtung 1 für eine Bereitstellung von Prozesswärme auf einem Temperaturniveau von beispielsweise 200°C lediglich eine elektrische Leistungsaufnahme von weniger als 0,3 kWel/kW Prozesswärme erforderlich ist, welches einer Einsparung von über 70% Primärenergieeinsatz und 100% Reduzierung fossiler Prozesswärmeerzeugung mittels der Wärmepumpenvorrichtung 1 gleichkommt.By definition, an electrical power consumption equal to the product of process heat and the reciprocal of the heating performance coefficient is required to provide process heat. This means that with a heat pump device 1, an electrical power consumption of less than 0.3 kWel/kW of process heat is required to provide process heat at a temperature level of, for example, 200°C, which equates to a saving of over 70% in primary energy consumption and a 100% reduction in fossil process heat generation using the heat pump device 1.

Die Wärmepumpenvorrichtungen 1 weisen eine hohe Energieeffizienz auf und sind flexibel, modular erweiterbar und an unterschiedlichste Anforderungen bezüglich erforderlicher Senkentemperaturen und/oder anderer Parameter anpassbar.The heat pump devices 1 have a high energy efficiency and are flexible, modularly expandable and adaptable to a wide variety of requirements regarding required sink temperatures and/or other parameters.

BezugszeichenlisteList of reference symbols

11
WärmepumpenvorrichtungHeat pump device
22
Steuerungs- und RegeleinheitControl and regulation unit
55
TrocknervorrichtungDrying device
1010
Zulauf einer ersten WärmesenkeInlet of a first heat sink
1111
Ablauf einer ersten WärmesenkeProcess of a first heat sink
1212
Zulauf einer zweiten WärmesenkeInlet of a second heat sink
1313
Ablauf einer zweiten WärmesenkeProcess of a second heat sink
1414
Zulauf einer WärmequelleSupply of a heat source
1515
Ablauf einer WärmequelleProcess of a heat source
200200
VerdampferEvaporator
201201
KondensatpumpeCondensate pump
202202
RegelventilControl valve
220220
Wärmeübertrager einer WärmequelleHeat exchanger of a heat source
222222
UmlaufpumpeCirculation pump
250250
Kondensatpumpe zum Einsprühen vor einem VerdichterCondensate pump for spraying in front of a compressor
251251
Kondensatpumpe zum Einsprühen in einen MischseparatorCondensate pump for spraying into a mixing separator
252252
RegelventilControl valve
260260
Kondensatpumpe zum Einsprühen vor einem TreibdampfverdichterCondensate pump for spraying in front of a motive steam compressor
300300
Mischseparator einer dritten DruckstufeMixing separator of a third pressure stage
301301
Verdichter auf den Druck einer dritten DruckstufeCompressor to the pressure of a third pressure stage
306306
Anschluss für den Eintritt von dampfförmigem KreisprozessfluidConnection for the inlet of vaporous cycle fluid
307307
Anschluss für den Eintritt von kondensiertem KreisprozessfluidConnection for the inlet of condensed cycle fluid
308308
Anschluss für den Austritt von dampfförmigem KreisprozessfluidConnection for the outlet of vaporous cycle fluid
309309
Anschluss für den Austritt von kondensiertem KreisprozessfluidConnection for the outlet of condensed cycle fluid
310310
Mischseparator einer weiteren DruckstufeMixing separator of a further pressure stage
311311
Verdichter auf den Druck einer weiteren DruckstufeCompressor to the pressure of another pressure stage
312312
Kondensatabscheider einer weiteren DruckstufeCondensate separator of another pressure stage
316316
Anschluss für den Eintritt von dampfförmigem KreisprozessfluidConnection for the inlet of vaporous cycle fluid
317317
Anschluss für den Eintritt von kondensiertem KreisprozessfluidConnection for the inlet of condensed cycle fluid
318318
Anschluss für den Austritt von dampfförmigem KreisprozessfluidConnection for the outlet of vaporous cycle fluid
319319
Anschluss für den Austritt von kondensiertem KreisprozessfluidConnection for the outlet of condensed cycle fluid
320320
Wärmeübertrager einer Wärmesenke einer dritten DruckstufeHeat exchanger of a heat sink of a third pressure stage
322322
Kondensatabscheider eines Wärmeübertragers einer dritten DruckstufeCondensate separator of a third pressure stage heat exchanger
400400
Mischseparator einer zweiten DruckstufeMixing separator of a second pressure stage
401401
Verdichter auf den Druck einer zweiten DruckstufeCompressor to the pressure of a second pressure stage
402402
Kondensatabscheider einer zweiten DruckstufeCondensate separator of a second pressure stage
406406
Anschluss für den Eintritt von dampfförmigem KreisprozessfluidConnection for the inlet of vaporous cycle fluid
407407
Anschluss für den Eintritt von kondensiertem KreisprozessfluidConnection for the inlet of condensed cycle fluid
408408
Anschluss für den Austritt von dampfförmigem KreisprozessfluidConnection for the outlet of vaporous cycle fluid
409409
Anschluss für den Austritt von kondensiertem KreisprozessfluidConnection for the outlet of condensed cycle fluid
420420
Wärmeübertrager einer Wärmesenke einer zweiten DruckstufeHeat exchanger of a heat sink of a second pressure stage
422422
Kondensatabscheider eines Wärmeübertragers einer zweiten DruckstufeCondensate separator of a heat exchanger of a second pressure stage
500500
Mischseparator einer ersten DruckstufeMixing separator of a first pressure stage
501501
Verdichter auf den Druck einer ersten DruckstufeCompressor to the pressure of a first pressure stage
502502
Kondensatabscheider einer ersten DruckstufeCondensate separator of a first pressure stage
506506
Anschluss für den Eintritt von dampfförmigem KreisprozessfluidConnection for the inlet of vaporous cycle fluid
507507
Anschluss für den Eintritt von kondensiertem KreisprozessfluidConnection for the inlet of condensed cycle fluid
508508
Anschluss für den Austritt von dampfförmigem KreisprozessfluidConnection for the outlet of vaporous cycle fluid
509509
Anschluss für den Austritt von kondensiertem KreisprozessfluidConnection for the outlet of condensed cycle fluid
520520
Wärmeübertrager einer Wärmesenke einer ersten DruckstufeHeat exchanger of a heat sink of a first pressure stage
522522
Kondensatabscheider eines Wärmeübertragers einer ersten DruckstufeCondensate separator of a heat exchanger of a first pressure stage
601601
Verdichter zur Erzeugung von TreibdampfCompressor for generating motive steam

ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDED IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of documents listed by the applicant was generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA accepts no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • EP 2321589 B1 [0010]EP 2321589 B1 [0010]

Claims (18)

Wärmepumpenvorrichtung (1) zum energieeffizienten Erzeugen einer Prozesswärme, wobei die Wärmepumpenvorrichtung (1) eine wärmeaufnehmende Seite, eine wärmeabgebende Seite, ein Kreisprozessfluid und einen Verdampfer (200) auf der wärmeaufnehmenden Seite aufweist, und der Wärmepumpenvorrichtung (1) auf der wärmeabgebenden Seite mindestens ein Wärmeübertrager (520) und mindestens eine Wärmesenke (10, 11) und auf der wärmeaufnehmenden Seite mindestens eine Wärmequelle (14, 15) zuordenbar sind, wobei mittels des Verdampfers (200) flüssiges Kreisprozessfluid durch Wärmezufuhr von der zuordenbaren Wärmequelle (14, 15) indirekt beheizbar und auf einer Druckstufe des Verdampfers (200) verdampfbar ist, und die Wärmepumpenvorrichtung (1) mindestens einen dem Verdampfer (200) nachgeschalteten ersten Verdichter (401) aufweist, wobei mittels des mindestens ersten Verdichters (401) dampfförmiges Kreisprozessfluid von der Druckstufe des Verdampfers (200) auf eine zweite Druckstufe verdichtbar ist, dadurch gekennzeichnet, dass die Wärmepumpenvorrichtung (1) mindestens einen ersten Mischseparator (400) in der zweiten Druckstufe aufweist, wobei der mindestens erste Mischseparator (400) einen ersten Anschluss (406) zum Eintritt von dampfförmigen Kreisprozessfluid, einen zweiten Anschluss (407) zum Eintritt von kondensiertem Kreisprozessfluid, einen dritten Anschluss (408) zum Austritt von dampfförmigen Kreisprozessfluid und optional einen vierten Anschluss (409) zum Austritt von kondensiertem Kreisprozessfluid aufweist und dem Mischseparator (400) mindestens ein zweiter Verdichter (501) nachgeschaltet ist, sodass aus dem dritten Anschluss (408) austretendes dampfförmiges Kreisprozessfluid in dem mindestens zweiten Verdichter (501) von der zweiten Druckstufe auf eine erste Druckstufe verdichtbar ist und mittels des mindestens einen zugeordneten Wärmeübertragers (520) von dem dampfförmigen Kreisprozessfluid der ersten Druckstufe indirekt Prozesswärme auf die mindestens eine zuordenbare Wärmesenke (10, 11) übertragbar ist und jenes in dem mindestens einen Wärmeübertrager (520) kondensierte Kreisprozessfluid über den zweiten Anschluss (407) in den mindestens ersten Mischseparator (400) der zweiten Druckstufe zurückführbar ist, wobei gleichzeitig dampfförmiges Kreisprozessfluid aus dem mindestens ersten Verdichter (401) über den ersten Anschluss (406) in den Mischseparator (400) einleitbar ist.Heat pump device (1) for energy-efficient generation of process heat, wherein the heat pump device (1) has a heat-absorbing side, a heat-emitting side, a cycle fluid and an evaporator (200) on the heat-absorbing side, and at least one heat exchanger (520) and at least one heat sink (10, 11) can be assigned to the heat pump device (1) on the heat-emitting side and at least one heat source (14, 15) on the heat-absorbing side, wherein liquid cycle fluid can be indirectly heated by means of the evaporator (200) by supplying heat from the assignable heat source (14, 15) and can be evaporated at a pressure stage of the evaporator (200), and the heat pump device (1) has at least one first compressor (401) downstream of the evaporator (200), wherein vaporous cycle fluid from the pressure stage of the evaporator (200) can be compressed to a second pressure stage, characterized in that the heat pump device (1) has at least one first mixing separator (400) in the second pressure stage, wherein the at least first mixing separator (400) has a first connection (406) for the inlet of vaporous cycle fluid, a second connection (407) for the inlet of condensed cycle fluid, a third connection (408) for the outlet of vaporous cycle fluid and optionally a fourth connection (409) for the outlet of condensed cycle fluid and at least one second compressor (501) is connected downstream of the mixing separator (400), so that vaporous cycle fluid emerging from the third connection (408) can be compressed in the at least second compressor (501) from the second pressure stage to a first pressure stage and by means of the at least one associated heat exchanger (520) can be indirectly separated from the vaporous cycle fluid of the first pressure stage Process heat can be transferred to the at least one assignable heat sink (10, 11) and the cycle fluid condensed in the at least one heat exchanger (520) can be returned via the second connection (407) to the at least first mixing separator (400) of the second pressure stage, wherein at the same time vaporous cycle fluid from the at least first compressor (401) can be introduced into the mixing separator (400) via the first connection (406). Wärmepumpenvorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens erste Mischseparator (400) den vierten Anschluss (409) zum Austritt von kondensierten Kreisprozessfluid aufweist, sodass das austretende kondensierte Kreisprozessfluid direkt oder indirekt in den Verdampfer (200) zurückführbar und/oder dem mindestens zweiten Verdichter (501) zuführbar ist.Heat pump device (1) according to Claim 1 , characterized in that the at least first mixing separator (400) has the fourth connection (409) for the outlet of condensed cycle fluid, so that the escaping condensed cycle fluid can be returned directly or indirectly to the evaporator (200) and/or fed to the at least second compressor (501). Wärmepumpenvorrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wärmepumpenvorrichtung (1) den mindestens einen der ersten Druckstufe zugeordneten Wärmeübertrager (520) und/oder einen der zweiten Druckstufe zugeordneten Wärmeübertrager (420) und/oder einen einer unterhalb der zweiten Druckstufe zugeordneten Wärmeübertrager (320) auf der wärmeabgebenden Seite aufweist.Heat pump device (1) according to Claim 1 or 2 , characterized in that the heat pump device (1) has at least one heat exchanger (520) assigned to the first pressure stage and/or one heat exchanger (420) assigned to the second pressure stage and/or one heat exchanger (320) assigned below the second pressure stage on the heat-emitting side. Wärmepumpenvorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Wärmepumpenvorrichtung (1) die mindestens eine Wärmequelle (14, 15) und/oder die mindestens eine Wärmesenke (10, 11) aufweist.Heat pump device (1) according to one of the preceding claims, characterized in that the heat pump device (1) has at least one heat source (14, 15) and/or at least one heat sink (10, 11). Wärmepumpenvorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Wärmepumpenvorrichtung (1) einen zweiten Mischseparator, einen dritten Mischseparator, einen vierten Mischseparator und/oder optional weitere Mischseparatoren (300, 310) aufweist, wobei dem jeweiligen Mischseparator (300, 310) jeweils ein weiterer Verdichter (301, 311) vorgeschaltet ist.Heat pump device (1) according to one of the preceding claims, characterized in that the heat pump device (1) has a second mixing separator, a third mixing separator, a fourth mixing separator and/or optionally further mixing separators (300, 310), wherein a further compressor (301, 311) is connected upstream of the respective mixing separator (300, 310). Wärmepumpenvorrichtung (1) nach Anspruch 5, dadurch gekennzeichnet, dass ein Mischseparator oder zwei oder mehrere Mischseparatoren (300, 310) dem ersten Mischseparator (400) vorgeschaltet ist oder sind, wobei das dampfförmige Kreisprozessfluid des jeweils vorgeschalteten Mischseparators (300, 310) über einen jeweiligen nachgeschalteten Verdichter (311, 401) dem nachfolgenden Mischseparator (310, 400) zuführbar ist und/oder das flüssige Kreisprozessfluid aus dem jeweils nachgeschalteten Mischseparator (310, 400) mit einem höheren Druck und/oder einer höheren Temperatur als in dem vorgeschalteten Mischseparator (300, 310) in den vorgeschalteten Mischseparator (300, 310) zurückführbar ist.Heat pump device (1) according to Claim 5 , characterized in that a mixing separator or two or more mixing separators (300, 310) is or are connected upstream of the first mixing separator (400), wherein the vaporous cycle fluid of the respective upstream mixing separator (300, 310) can be fed to the subsequent mixing separator (310, 400) via a respective downstream compressor (311, 401) and/or the liquid cycle fluid from the respective downstream mixing separator (310, 400) can be returned to the upstream mixing separator (300, 310) at a higher pressure and/or a higher temperature than in the upstream mixing separator (300, 310). Wärmepumpenvorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass dem mindestens einen Wärmeübertrager (520) jeweils ein Kondensatabscheider (522) und/oder dem zweiten Wärmeübertrager (420) jeweils ein Kondensatabscheider (422) und/oder weiteren Wärmeübertrager (320) jeweils ein Kondensatabscheider (322) zum Rückführen von kondensiertem Kreisprozessfluid aus der ersten Druckstufe in den ersten Mischseparator (400) und/oder von kondensiertem Kreisprozessfluid aus der zweiten oder einer dritten Druckstufe in einen vorgeschalteten Mischkondensator (300, 310) nachgeschaltet ist.Heat pump device (1) according to one of the preceding claims, characterized in that the at least one heat exchanger (520) is followed by a condensate separator (522) and/or the second heat exchanger (420) is followed by a condensate separator (422) and/or the further heat exchanger (320) is followed by a condensate separator (322) for returning condensed cycle fluid from the first pressure stage to the first mixing separator (400) and/or condensed cycle fluid from the second or a third pressure stage to an upstream mixing condenser (300, 310). Wärmepumpenvorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass nach dem vierten Anschluss (409) zum Austritt von kondensiertem Kreisprozessfluid des ersten Mischseparators, eines vorgeschalteten Mischseparators und/oder des jeweiligen Mischseparators (300, 310, 400, 500) ein Kondensatabscheider (312, 402, 502) zum Zurückführen des kondensierten Kreisprozessfluids in den jeweils vorgeschalteten Mischseparator (300, 310, 400) oder in den Verdampfer (200) angeordnet ist oder sind.Heat pump device (1) according to one of the preceding claims, characterized in that that a condensate separator (312, 402, 502) for returning the condensed cycle fluid to the respective upstream mixing separator (300, 310, 400) or to the evaporator (200) is or are arranged downstream of the fourth connection (409) for the outlet of condensed cycle fluid from the first mixing separator, an upstream mixing separator and/or the respective mixing separator (300, 310, 400, 500). Wärmepumpenvorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der erste Verdichter (301, 401) als thermischer Verdichter ausgebildet ist, sodass mittels des thermischen Verdichters das dampfförmige Kreisprozessfluid der ersten Druckstufe als Treibdampf mit dem dampfförmigen Kreisprozessfluid aus dem Verdampfer (200) als Saugdampf mischbar und als verdichteter Mischdampf dem ersten Mischseparator (400) oder dem ersten vorgeschalteten Mischseparator (300) zuführbar ist.Heat pump device (1) according to one of the preceding claims, characterized in that the first compressor (301, 401) is designed as a thermal compressor, so that by means of the thermal compressor the vaporous cycle fluid of the first pressure stage can be mixed as motive steam with the vaporous cycle fluid from the evaporator (200) as suction steam and can be fed as compressed mixed steam to the first mixing separator (400) or the first upstream mixing separator (300). Wärmepumpenvorrichtung (1) nach Anspruch 9, dadurch gekennzeichnet, dass vor dem thermischen Verdichter ein weiterer Verdichter (601) in der ersten oder der zweiten Druckstufe oder einer weiteren Druckstufe angeordnet ist, sodass das verdichtete, dampfförmige Kreisprozessfluid als Treibdampf verwendbar ist.Heat pump device (1) according to Claim 9 , characterized in that a further compressor (601) in the first or second pressure stage or a further pressure stage is arranged upstream of the thermal compressor, so that the compressed, vaporous cycle fluid can be used as motive steam. Wärmepumpenvorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein weiterer Mischseparator (500) dem ersten Mischseparator (400) in der zweiten Druckstufe nachgeschaltet ist, wobei der weitere Mischseparator (500) in der ersten Druckstufe angeordnet.Heat pump device (1) according to one of the preceding claims, characterized in that a further mixing separator (500) is connected downstream of the first mixing separator (400) in the second pressure stage, wherein the further mixing separator (500) is arranged in the first pressure stage. Wärmepumpenvorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Wärmepumpenvorrichtung (1) eine Steuer- und/oder Regeleinrichtung (2) zum Steuern und/oder Regeln von Komponenten der Wärmepumpenvorrichtung (1) und optional der mindestens einen Wärmequelle (14, 15) und/oder der mindestens einen Wärmesenke (10, 11) aufweist.Heat pump device (1) according to one of the preceding claims, characterized in that the heat pump device (1) has a control and/or regulating device (2) for controlling and/or regulating components of the heat pump device (1) and optionally the at least one heat source (14, 15) and/or the at least one heat sink (10, 11). Wärmepumpenvorrichtung (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der zweite Anschluss (407) zum Eintritt von kondensiertem Kreisprozessfluid eine Versprüheinrichtung zum Versprühen des in den ersten Mischseparator oder den jeweiligen Mischseparator eintretenden, flüssigen Kreisprozessfluids aufweist.Heat pump device (1) according to one of the preceding claims, characterized in that the second connection (407) for the entry of condensed cycle fluid has a spraying device for spraying the liquid cycle fluid entering the first mixing separator or the respective mixing separator. Trocknervorrichtung zum Trocknen eines zu trocknenden Gutes mittels eines erhitzten Prozessgasstroms, wobei die Trocknervorrichtung eine Wärmepumpenvorrichtung (1) nach einem der Ansprüche 1 bis 13 aufweist, sodass auf der wärmeabgebenden Seite der Wärmepumpenvorrichtung (1) der Prozessgasstrom als Wärmesenke (10, 11) erhitzbar ist.Drying device for drying a material to be dried by means of a heated process gas stream, wherein the drying device comprises a heat pump device (1) according to one of the Claims 1 until 13 so that on the heat-emitting side of the heat pump device (1) the process gas stream can be heated as a heat sink (10, 11). Verfahren zum Betreiben einer Wärmepumpenvorrichtung (1) zum energieeffizienten Erzeugen einer Prozesswärme, insbesondere in einem Temperaturbereich zwischen 100°C und 250°C, mittels einer Wärmepumpenvorrichtung (1) nach einem der Ansprüche 1 bis 13, mit folgenden Schritten: - Beheizen eines flüssigen Kreisprozessfluids durch indirekte Wärmezufuhr von einer Wärmequelle (14, 15) und Verdampfen des flüssigen Kreisprozessfluid in einem Verdampfer (200) auf einer Druckstufe des Verdampfers (200), - Verdichten des dampfförmigen Kreisprozessfluids mittels eines ersten Verdichters (301, 401) auf eine zweite Druckstufe, - Zuführen des verdichteten dampfförmigen Kreisprozessfluids in mindestens einem Mischseparator (400) einer zweiten Druckstufe, - Zuführen des aus dem mindestens einem Mischseparator (400) austretenden dampfförmigen Kreisprozessfluids in mindestens einem zweiten Verdichter (501) und Verdichten des dampfförmigen Kreisprozessfluid von der zweiten Druckstufe auf eine erste Druckstufe, - Übertragen einer Prozesswärme von dem verdichteten, dampfförmigen Kreisprozessfluid der ersten Druckstufe auf mindestens eine zuordenbare Wärmesenke (10, 11), - und optional Rückführen des kondensierten Kreisprozessfluids der ersten Druckstufe in den mindestens einen Mischseparator (400).Method for operating a heat pump device (1) for energy-efficient generation of process heat, in particular in a temperature range between 100°C and 250°C, by means of a heat pump device (1) according to one of the Claims 1 until 13 , with the following steps: - heating a liquid cycle fluid by indirect heat supply from a heat source (14, 15) and evaporating the liquid cycle fluid in an evaporator (200) at a pressure level of the evaporator (200), - compressing the vaporous cycle fluid by means of a first compressor (301, 401) to a second pressure level, - feeding the compressed vaporous cycle fluid in at least one mixing separator (400) to a second pressure level, - feeding the vaporous cycle fluid emerging from the at least one mixing separator (400) in at least one second compressor (501) and compressing the vaporous cycle fluid from the second pressure level to a first pressure level, - transferring process heat from the compressed, vaporous cycle fluid of the first pressure level to at least one assignable heat sink (10, 11), - and optionally returning the condensed cycle fluid of the first pressure stage into the at least one mixing separator (400). Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass als Kreisprozessfluid Wasser, ein Alkohol und/oder eine wasserlösliche organische Substanz verwendet wird oder werden.Procedure according to Claim 15 , characterized in that water, an alcohol and/or a water-soluble organic substance is or are used as the circulating process fluid. Verfahren nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass in einem aus dem Mischseparator (300, 400) austretenden Strom des kondensierten Kreisprozessfluids mittels einer Kondensatpumpe (201) eine Druckerhöhung durchgeführt wird, anschließend dieser Strom mit einem Strom flüssigen Kreisprozessfluids, welches zuvor in einem Wärmeübertrager (220) einer Wärmequelle (14, 15) indirekt erwärmt wurde, gemischt wird und die gemischten Ströme zur indirekten Beheizung des Verdampfers (200) verwendet werden.Method according to one of the Claims 15 or 16 , characterized in that a pressure increase is carried out in a stream of the condensed cycle fluid emerging from the mixing separator (300, 400) by means of a condensate pump (201), then this stream is mixed with a stream of liquid cycle fluid which was previously indirectly heated in a heat exchanger (220) of a heat source (14, 15), and the mixed streams are used for indirectly heating the evaporator (200). Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in einem aus dem mindestens einen Mischseparator (300, 400) austretenden Strom des kondensierten Kreisprozessfluids mittels zumindest einer Kondensatpumpe (201) eine Druckerhöhung durchgeführt wird, anschließend dieser Strom in dampfförmiges Kreisprozessfluid aus dem mindestens einem Mischseparator (400) zur Erzeugung von Kreisprozessfluid-Nassdampf eingeleitet wird, bevor der Kreisprozessfluid-Nassdampf in dem nachgeschalteten Verdichter (501) auf die erste Druckstufe verdichtet wird.Method according to one of the preceding claims, characterized in that a pressure increase is carried out in a stream of the condensed cycle process fluid emerging from the at least one mixing separator (300, 400) by means of at least one condensate pump (201), then this stream is converted into vaporous cycle process fluid from the at least one Mixing separator (400) for generating cycle fluid wet steam before the cycle fluid wet steam is compressed to the first pressure stage in the downstream compressor (501).
DE102022127011.4A 2022-10-14 2022-10-14 Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device Pending DE102022127011A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102022127011.4A DE102022127011A1 (en) 2022-10-14 2022-10-14 Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device
PCT/DE2023/200208 WO2024078669A1 (en) 2022-10-14 2023-10-06 Heat pump device for energy-efficient generation of a process heat, dryer device for drying material to be dried, and method for operating a heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022127011.4A DE102022127011A1 (en) 2022-10-14 2022-10-14 Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device

Publications (1)

Publication Number Publication Date
DE102022127011A1 true DE102022127011A1 (en) 2024-04-25

Family

ID=88793166

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102022127011.4A Pending DE102022127011A1 (en) 2022-10-14 2022-10-14 Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device

Country Status (2)

Country Link
DE (1) DE102022127011A1 (en)
WO (1) WO2024078669A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317251A1 (en) 2008-08-27 2011-05-04 Mayekawa Mfg. Co., Ltd. Two-stage compressor heat pump cycling apparatus
US20120116594A1 (en) 2009-07-13 2012-05-10 Zine Aidoun Jet pump system for heat and cold management, apparatus, arrangement and methods of use
DE102013008080A1 (en) 2013-05-10 2014-11-13 Gea Refrigeration Germany Gmbh Arrangement for a cooling-heat coupling
EP2321589B1 (en) 2008-09-10 2015-08-26 Thermea. Energiesysteme GmbH High temperature heat pump and method for the control thereof
CN113251698A (en) 2021-04-29 2021-08-13 太原理工大学 Large-temperature-difference multistage compression mixed working medium heat pump system suitable for recovering waste heat of power plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100695A (en) * 2017-12-04 2019-06-24 パナソニックIpマネジメント株式会社 Refrigeration cycle device and method for driving refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317251A1 (en) 2008-08-27 2011-05-04 Mayekawa Mfg. Co., Ltd. Two-stage compressor heat pump cycling apparatus
EP2321589B1 (en) 2008-09-10 2015-08-26 Thermea. Energiesysteme GmbH High temperature heat pump and method for the control thereof
US20120116594A1 (en) 2009-07-13 2012-05-10 Zine Aidoun Jet pump system for heat and cold management, apparatus, arrangement and methods of use
DE102013008080A1 (en) 2013-05-10 2014-11-13 Gea Refrigeration Germany Gmbh Arrangement for a cooling-heat coupling
CN113251698A (en) 2021-04-29 2021-08-13 太原理工大学 Large-temperature-difference multistage compression mixed working medium heat pump system suitable for recovering waste heat of power plant

Also Published As

Publication number Publication date
WO2024078669A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
EP2021634B1 (en) Device and associated method for the conversion of heat energy into mechanical, electrical and/or thermal energy
EP1706599B1 (en) Method and system for converting heat energy into mechanical energy
DE102010004187B4 (en) Heat pump for high flow and return temperatures
EP2884060B1 (en) Device and method for operating volumetric expansion machines
AT510809A1 (en) DEVICE FOR WASTE USE
DE102011012644A1 (en) Cooling system for cooling and freezing of foods in warehouses or supermarkets, has refrigerant circuit, which is provided for circulation of refrigerant, particularly carbon dioxide, in operating flow direction
DE102022127011A1 (en) Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device
EP2199671A1 (en) Method and device for producing water vapour
DE10214331A1 (en) Pump device, method for operating a pump device and its use in a steam turbine system
EP0470532B1 (en) Process for gasifying liquid natural gas
EP3293475A1 (en) Method and system for storing and regaining energy
DE102010056586A1 (en) Arrangement for vaporizing liquefied natural gas (LNG) for feeding vaporized natural gas in pipeline, has condenser that removes heat of condensation from working fluid at ambient temperature and LNG temperature, to LNG
DE102012100645B4 (en) ORC - Organic Rankine cycle
EP3728800B1 (en) Power plant
EP0061031A1 (en) Steam generating method
WO2014117924A2 (en) Method for operating a low-temperature power plant, and low-temperature power plant itself
WO2013060447A1 (en) Waste heat recovery device
EP3563098A1 (en) Method for operating a heat pump installation, heat pump installation and power plant having a heat pump installation
DE102010040765A1 (en) Device for the provision of heating heat or for the production of air conditioning refrigeration and device for the provision of electric energy, and method for the provision of heating energy, method for the production of cold energy and method for generating kinetic energy and / or electric energy
AT521050B1 (en) Process for increasing energy efficiency in Clausius-Rankine cycle processes
EP2577002B1 (en) Method and device for storing and releasing energy
DE102022105047A1 (en) System and method for generating steam and/or heat
DE102023106382A1 (en) METHOD AND STEAM GENERATING DEVICE FOR GENERATING PROCESS STEAM
DE102021123631A1 (en) Drying device for providing a process gas for a dryer system
CH460815A (en) Process and device for utilizing heat from industrial plants and application of the process

Legal Events

Date Code Title Description
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: F25B0030000000

Ipc: F25B0030020000

R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: LUEBBERS FTS GMBH, DE

Free format text: FORMER OWNER: LUEBBERS ANLAGEN- UND UMWELTTECHNIK GMBH, 99947 BAD LANGENSALZA, DE