EP0061031A1 - Steam generating method - Google Patents

Steam generating method Download PDF

Info

Publication number
EP0061031A1
EP0061031A1 EP82101632A EP82101632A EP0061031A1 EP 0061031 A1 EP0061031 A1 EP 0061031A1 EP 82101632 A EP82101632 A EP 82101632A EP 82101632 A EP82101632 A EP 82101632A EP 0061031 A1 EP0061031 A1 EP 0061031A1
Authority
EP
European Patent Office
Prior art keywords
steam
pressure
bar
liquid heat
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82101632A
Other languages
German (de)
French (fr)
Other versions
EP0061031B1 (en
Inventor
Gerhard Dipl.-Ing. Link
Siegfried Dipl.-Ing. Jung
Reinhold Zapp
Helmut Dipl.-Ing. Bär
Herbert Ing. Grad. Mader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Ticona Polymerwerke GmbH
Original Assignee
Uhde GmbH
Ticona Polymerwerke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6127619&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0061031(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Uhde GmbH, Ticona Polymerwerke GmbH filed Critical Uhde GmbH
Priority to AT82101632T priority Critical patent/ATE8174T1/en
Publication of EP0061031A1 publication Critical patent/EP0061031A1/en
Application granted granted Critical
Publication of EP0061031B1 publication Critical patent/EP0061031B1/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
    • F22B3/045Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators the drop in pressure being achieved by compressors, e.g. with steam jet pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/16Combination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/21Acrylic acid or ester

Definitions

  • the invention relates to a process for generating steam from 3.0 to 6.0 bar and from 140 ° C to 165 ° C from liquid heat transfer media of low temperature level by evaporation and compression.
  • Heat sources such as B. product streams and auxiliary materials to be cooled or product vapor vapors to be condensed are flowed through by boiler feed water in heat exchanger tubes in parallel or in succession to produce steam. Steam of various pressure levels is used partly as drive dam p f for turbines and engines, partly as heating steam. Condensates occur at different pressures and temperatures. Because the chemical plants are not continuous are driven to the design load and thus part-load operation, if not even briefly shutdown, various pressure levels are selected in the steam network, which still ensure reliable steam supply over long distances and at a sufficient temperature, ie slightly overheated.
  • a medium pressure level of approx. 15 to 25 bar and a low pressure level of 3 to 6 bar there is usually a medium pressure level of approx. 15 to 25 bar and a low pressure level of 3 to 6 bar.
  • Steam from the medium pressure stage can be used, among other things, as heating steam for the temperature range around 200 ° C, as motive steam for steam jet compressors or as drive steam for process steam turbines.
  • Steam of the low pressure level is generally only used as heating steam. Its pressure of 3 to 6 bar and its temperature, slightly above the saturated steam temperature, still allow that. Transport and use over long distances. For some reason there is not enough low pressure steam available. Available, one is forced to reduce steam from the medium-pressure network to the pressure of the low-pressure steam network by means of throttling devices and possibly to inject condensate for steam cooling or for saturation. In this way, high-quality energy, ie steam with high thermodynamic quality, is inevitably reduced.
  • the invention is based on the object of eliminating the existing disadvantages of generating steam from 3.0 to 6.0 bar in chemical process plants and at the same time bringing resulting vapor of low thermodynamic quality to a higher energy level.
  • the advantages achieved by the invention are, in particular, that the heat content of liquid heat transfer medium in the temperature level down to 80 ° C for generating steam from 3.0 to 6.0 bar is achieved with simple and very effective means. A temperature increase of approx. 50 ° C is achieved. The use of drive energy and motive steam reaches a minimal value.
  • the combination of mechanical and thermodynamic vapor compression is particularly flexible. With the help of an intake throttle on the mechanical compressor, its final pressure can be kept constant with changing steam quantities. This means that the suction pressure of the steam jet compressors remains constant and there is no need for additional motive steam because the pressure ratio also remains constant. As a result of overheating of the steam leaving the last stage of the mechanical compressor of approximately 25 ° C., favorable conditions result for the steam jet compressors.
  • the mechanical compressor usually a multi-stage one, can have several entries, it can also be evaporated at different suction pressures, ie at different temperatures.
  • the use of a multi-stage turbocompressor enables multiple steam flows, even of different pressure and temperature levels, with simple To bring medium and energy optimally to a uniform pressure and temperature level.
  • this uniform pressure level for the combined amounts of steam enables the energetically optimal further compression of partial quantities by using several steam jets. Since the steam jets are operated with propellant steam of the same state and also work at the same final pressure, this solution is also advantageous from an operational point of view in terms of part-load behavior by switching individual steam lamps on or off.
  • a low temperature level means a temperature range from 80 to 115 ° C., preferably from 90 to 105 ° C.
  • the liquid heat transfer medium is preferably evaporated at a low temperature level and low pressure, in the case of water as heat transfer medium at a subatmospheric pressure from 0.5 bar, preferably from 0.7 bar.
  • the pressure increase by means of the steam jet compressor is preferably 1.5 to 1.8 times.
  • Mechanical compression should preferably be understood to mean compression by means of a multi-stage turbocompressor.
  • known types of compressor such. B. screw compressor can be used.
  • Thermodynamic compression means compression by means of motive steam in a steam jet compressor.
  • the steam sucked in by the multi-stage mechanical compressor is gradually cooled by condensate injection.
  • the liquid heat transfer medium is hot condensate, by means of vapors or other heat sources, such as. B. exhaust gases or vapors, heated feed water and / or a mixture of the two.
  • Liquid heat transfer media are usually water, which means that according to the invention the steam is usually water vapor.
  • the invention is not limited to water vapor, but suction steam and motive steam should be of the same basic liquid.
  • the essence of the invention is not changed if a fluid other than water is selected or can be used as the heat transfer medium.
  • Indirect heating medium for feed water can be any other substance with a sufficient temperature level.
  • expansion steam of the same or higher pressure is added to the mechanically compressed steam.
  • the flash steam is e.g. B. obtained by relaxing condensate under higher pressure. If you want to reduce the overheating of the steam from the steam jet compressors, a corresponding amount of condensate is supplied to the steam from 3.0 to 6.0 bar in a known manner.
  • feed water is evaporated at a vacuum of 0.84 bar and 94 ° C.
  • steam is generated from several condensate collection tanks, which are under pressures of up to 2.9 bar, by relaxing to 0.84 bar. A total of 12,500 kg / h of saturated steam are generated by vapor evaporation and expansion.
  • This total steam in the amount of 12,500 kg / h is compressed by a multi-stage turbo compressor up to 2.45 bar.
  • the turbocompressor is driven by a Geaer.pressure steam turbine, the exhaust steam of which is produced at 16 bar and 205 ° C.
  • the steam superheated by the respective compression in the individual stages is cooled between the stages by condensate injection. This means that the drive energy is also directly converted into steam.
  • This injection of condensate increases the amount of steam by a further 735 kg / h to a total of 13,235 kg / h. After the last compressor stage, the superheat of the compressed steam is 22 ° C.
  • the steam jet compressors deliver a total of 32 055 kg / h of slightly superheated steam at 3.8 bar and 154 ° C. Since a slight temperature reduction is still possible in the present case, an additional 500 kg / h of condensate of 95 ° C are injected into the superheated steam and thereby converted again into steam. According to the process of the invention, a total of 32,555 kg / h of heating steam of 3.8 bar and 145 ° C, i.e. slightly overheated, won.
  • the work required for the above-mentioned pressure increase of the pre-compressed steam in a total steam quantity of 14 335 kg / h is 450 kW.
  • the combination according to the invention enables an advantageous utilization of waste heat from a low temperature level in connection with the thermally advantageous use of medium pressure steam.
  • the combination of mechanical and thermodynamic steam compression for the production of superheated low-pressure steam proves better in terms of energy and investment than any other combination known to date.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The inventive combination provides for a profitable and efficient utilization of low-pressure waste heat in conjunction with medium-pressure steam. The combination of mechanical and thermodynamic compression for the generation of superheated low-pressure steam is a method that has better results regarding energy and cost than any other known configuration.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von Dampf von 3,0 bis 6,0 bar und von 140 °C bis 165 °C aus flüssigen Wärmeträgern von niedrigem Temperaturniveau durch Verdampfung und Verdichtung.The invention relates to a process for generating steam from 3.0 to 6.0 bar and from 140 ° C to 165 ° C from liquid heat transfer media of low temperature level by evaporation and compression.

Unter "bar" soll im folgenden immer "bar absolut" verstanden werden. Flüssige Wärmeträger erhalten in der Regel ihren Wärmeinhalt aus Wärmetönungen von chemischen Prozessen, bzw. sind anfallende Kondensate aus Dämpfen.In the following, “bar” should always be understood to mean “absolute bar”. Liquid heat transfer media usually get their heat content from the thermal effects of chemical processes, or are condensates from vapors.

Um chemische Reaktions- oder Trenn-Prozesse durchführen zu können, ist oft die Zufuhr von Heizwärme erforderlich, da bestimmte Reaktionen nur bei bestimmten Temperaturen und/oder unter Wärmezufuhr ablaufen. Die Reaktionsprodukte müssen in der Regel anschließend bis auf nahezu Umgebungstemperatur abgekühlt und kondensiert werden. Während ihre Wärmeinhalte im hohen Temperaturbereich über 150 °C wegen der noch vorhandenen hohen thermodynamischen Qualität leicht durch Wärmeaustausch übertragbar sind, sind sie im Bereich von etwa 100 °C kaum noch ausnutzbar und werden daher meist durch Wärmetausch an Luft oder Kühlwasser abgeführt.In order to be able to carry out chemical reaction or separation processes, the supply of heating heat is often necessary, since certain reactions only take place at certain temperatures and / or with the addition of heat. As a rule, the reaction products then have to be cooled to almost ambient temperature and condensed. While their heat content in the high temperature range above 150 ° C can easily be transferred by heat exchange due to the still high thermodynamic quality, they can hardly be used in the range of around 100 ° C and are therefore mostly dissipated by heat exchange in air or cooling water.

Chemische Prozeßanlagen arbeiten oft im Wärmeverbund und sind in der Regel integrierte Anlagen d. h. sie sind wärmetechnisch weitgehend gekoppelt. Wärmequellen wie z. B. abzukühlende Produktströme und Hilfsstoffe oder zu kondensierende Produktbrüdendämpfe werden von Kesselspeisewasser in Wärmetauscherrohren parallel oder nacheinander zur Dampferzeugung durchströmt. Dampf von verschiedenen Druckstufen wird teilweise als Antriebsdampf für Turbinen und Kraftmaschinen, teilweise als Heizdampf eingesetzt. Dabei fallen Kondensate unter verschiedenen Drücken und Temperaturen an. Da die chemischen Teilanlagen nicht stetig auf Auslegungslast gefahren werden und damit Teillastbetrieb, wenn nicht sogar kurzzeitig Stillsetzung stattfindet, werden verschiedene Druckstufen im Dampfnetz gewählt, die noch eine sichere Dampfversorgung über weite Entfernungen und bei ausreichender Temperatur, d.h. leicht überhitzt gewährleisten. So gibt es in der Regel eine Mitteldruckstufe von ca. 15 bis 25 bar und eine Niederdruckstufe von 3 bis 6 bar. Dampf aus der Mitteldruckstufe kann unter anderem als Heizdampf für den Temperaturbereich um 200 °C, als Treibdampf für Dampfstrahlverdichter oder als Antriebsdampf für Prozeßdampfturbinen eingesetzt werden. Dampf der Niederdruckstufe wird in der Regel nur als Heizdampf eingesetzt. Sein Druck von 3 bis 6 bar und seine Temperatur, geringfügig über der Sattdampf temperatur, erlauben noch den. Transport und Einsatz über weite Strecken. Steht aus irgendwelchen Gründen nicht genügend Niederdruckdampf zur. Verfügung, ist man gezwungen, Dampf aus dem Mitteldrucknetz mittels Drosseleinrichtungen auf den Druck des Niederdruckdampfnetzes zu reduzieren und evtl. Kondensat zur Dampfkühlung bzw. zur Absättigung einzuspritzen. Auf diese Weise wird zwangsläufig hochwertige Energie, d. h. Dampf mit hoher thermodynamischer Qualität, unwirtschaftlich reduziert.Chemical process plants often work in a heat network and are usually integrated plants, ie they are largely coupled in terms of heat technology. Heat sources such as B. product streams and auxiliary materials to be cooled or product vapor vapors to be condensed are flowed through by boiler feed water in heat exchanger tubes in parallel or in succession to produce steam. Steam of various pressure levels is used partly as drive dam p f for turbines and engines, partly as heating steam. Condensates occur at different pressures and temperatures. Because the chemical plants are not continuous are driven to the design load and thus part-load operation, if not even briefly shutdown, various pressure levels are selected in the steam network, which still ensure reliable steam supply over long distances and at a sufficient temperature, ie slightly overheated. There is usually a medium pressure level of approx. 15 to 25 bar and a low pressure level of 3 to 6 bar. Steam from the medium pressure stage can be used, among other things, as heating steam for the temperature range around 200 ° C, as motive steam for steam jet compressors or as drive steam for process steam turbines. Steam of the low pressure level is generally only used as heating steam. Its pressure of 3 to 6 bar and its temperature, slightly above the saturated steam temperature, still allow that. Transport and use over long distances. For some reason there is not enough low pressure steam available. Available, one is forced to reduce steam from the medium-pressure network to the pressure of the low-pressure steam network by means of throttling devices and possibly to inject condensate for steam cooling or for saturation. In this way, high-quality energy, ie steam with high thermodynamic quality, is inevitably reduced.

Eine weitere Sonderheit in chemischen Prozeßanlagen ist, daß heiße Kondensate anfallen bei unterschiedlichen Drücken und ihren entsprechenden Kondensationstemperaturen. Handelt es sich um Dampfkondensate, werden sie bei gleichzeitiger Nachverdampfung entspannt und der Kesselspeisewasseraufbereitung zugeführt. Sind die Kondensate auf niedrigem Druck- und Temperaturniveau nicht mehr verwendbar, kann die Ableitung in das Abwassersystem nur unter Atmosphärendruck und annähernder Umgebungstemperatur erfolgen, d. h. sie sind zum einen zu entspannen und zum anderen zu kühlen mittels Luft oder Kühlwasser. Ihr Wärmeinhalt geht dadurch vollständig verloren.Another peculiarity in chemical process plants is that hot condensates occur at different pressures and their corresponding condensation temperatures. If steam condensates are involved, they are expanded with simultaneous post-evaporation and fed to the boiler feed water treatment system. If the condensates can no longer be used at low pressure and temperature levels, they can only be discharged into the sewage system under atmospheric pressure and approximate ambient temperature. H. on the one hand, they are to be relaxed and, on the other hand, they are cooled by means of air or cooling water. Your heat content is completely lost.

Es ist bekannt, den Wärmeinhalt von flüssigen Wärmeträgern mit Temperaturen von ca. 100 °C dadurch auszunutzen, daß man diese Wärmeträger, in der Regel Wasser, bei einem Druck von unterhalb Atmosphärendruck, d. h. weniger als 1,0 bar ausdampfen läßt. Die entstehenden Brüden werden mittels eines Dampfstrahlverdichters unter Einsatz von Treibdampf laufend abgesaugt, d. h. der Unterdruck im System wird aufrechterhalten. Im Diffusor des Dampfstrahlverdichters wird das Gemisch bis auf überatmosphärischen Druck von z. B. 2,0 bar verdichtet. Auf diese Weise kann unter wirtschaftlichem Einsatz von Treibdampf höheren Druckes, in der Regel 16 bar und mehr, eine Teilmenge an Wärme niedrigeren Temperaturniveaus um ca. 25 °C angehoben werden.It is known to take advantage of the heat content of liquid heat transfer media at temperatures of about 100 ° C in that these heat transfer media, usually water, at a pressure below atmospheric pressure, ie. H. evaporate less than 1.0 bar. The resulting vapors are continuously extracted by means of a steam jet compressor using propellant steam. H. the negative pressure in the system is maintained. In the diffuser of the steam jet compressor, the mixture is up to superatmospheric pressure of z. B. compressed 2.0 bar. In this way, a partial amount of heat at lower temperature levels can be raised by approx.

Wenn der Dampf bei Unterdruck anfällt, reicht diese Temperaturerhöhung in der Regel nicht aus, da das Temperaturniveau auf nur bis ca. 110 bis 115 °C angehoben wird. Es ist dann nur eine Verwendung in allernächster Nähe der Dampferzeugung möglich, da der so produzierte Dampf kaum über weite Entfernungen geführt und wirklich als Heizdampf verwendet werden kann. Durch Druck- und Temperaturverlust steht nur noch heißes Kondensat zur Verfügung. Außerdem ist das so erreichte Temperaturniveau meist nicht ausreichend hoch. Darüberhinaus müssen bei gleichzeitigem Vorhandensein von flüssigen Wärmeträgern unterschiedlichen Druckes mehrere unterschiedliche Dampfstrahlverdichter eingeplant werden, da Dampfstrahlverdichter nur für ein spezielles Druckverhältnis ausgelegt werden können. Ändert sich darüberhinaus das Druckverhältnis durch Absinken oder Ansteigen des Saugdruckes wird der Dampfstrahlverdichter instabil und unwirtschaftlich.If the steam is generated at negative pressure, this temperature increase is usually not sufficient, since the temperature level is only raised to approx. 110 to 115 ° C. It is then only possible to use it in the immediate vicinity of the steam generator, since the steam produced in this way can hardly be carried over long distances and can really be used as heating steam. Due to pressure and temperature loss, only hot condensate is available. In addition, the temperature level reached in this way is usually not sufficiently high. In addition, if there are liquid heat carriers of different pressures at the same time, several different steam jet compressors must be planned in, since steam jet compressors can only be designed for a special pressure ratio. If the pressure ratio also changes due to a decrease or rise in the suction pressure, the steam jet compressor becomes unstable and uneconomical.

Der Einsatz von Dampfstrahlverdichtern spezieller Bauweise zur Druckerhöhung bis auf über 2 bar hat sich als unwirtschaftlich erwiesen, da die erforderliche Treibdampfmenge ein vielfaches der Saugstrommenge wird, so daß letzten Endes ein Überangebot an Niederdruckheizdampf eintritt.The use of steam jet compressors of a special design to increase the pressure to more than 2 bar has proven to be uneconomical, since the amount of motive steam required is a multiple of the suction flow, so that ultimately there is an oversupply of low-pressure heating steam.

Der Erfindung liegt die Aufgabe zugrunde, die bestehenden Nachteile der Erzeugung von Dampf von 3,0 bis 6,0 bar in chemischen Prozeßanlagen zu beseitigen und gleichzeitig anfallenden Brüdendampf von niedriger thermodynamischer Qualität auf ein höheres Energieniveau zu bringen.The invention is based on the object of eliminating the existing disadvantages of generating steam from 3.0 to 6.0 bar in chemical process plants and at the same time bringing resulting vapor of low thermodynamic quality to a higher energy level.

Die gestellte Aufgabe wird überraschenderweise durch die im Kennzeichen des Hauptanspruchs beschriebenen Verfahrensmaßnahmen und durch die Ausgestaltung gemäß den Unteransprüchen gelöst.The stated object is surprisingly achieved by the procedural measures described in the characterizing part of the main claim and by the configuration according to the subclaims.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß der Wärmeinhalt flüssiger Wärmeträger im Temperaturniveau bis herunter zu 80 °C zur Erzeugung von Dampf von 3,0 bis 6,0 bar mit einfachen und sehr wirkungsvollen Mitteln erreicht wird. Dabei wird eine Temperaturerhöhung um ca. 50 °C erreicht. Der Einsatz von Antriebsenergie und Treibdampf erreicht einen minimalen Wert. Darüber hinaus ist die Kombination von mechanischer und thermodynamischer Dampfverdichtung besonders flexibel. Mit Hilfe einer Ansaugdrossel am mechanischen Verdichter kann sein Enddruck bei wechselnden Dampfmengen konstant gehalten werden. Damit bleibt auch der Saugdruck der Dampfstrahlverdichter konstant und ein Mehrbedarf an Treibdampf wird nicht erforderlich, weil das Druckverhältnis ebenfalls konstant bleibt. Infolge einer Überhitzung von ca. 25 °C des, die letzte Stufe des mechanischen Verdichters verlassenden Dampfes, ergeben sich für die Dampfstrahlverdichter günstige Bedingungen.The advantages achieved by the invention are, in particular, that the heat content of liquid heat transfer medium in the temperature level down to 80 ° C for generating steam from 3.0 to 6.0 bar is achieved with simple and very effective means. A temperature increase of approx. 50 ° C is achieved. The use of drive energy and motive steam reaches a minimal value. In addition, the combination of mechanical and thermodynamic vapor compression is particularly flexible. With the help of an intake throttle on the mechanical compressor, its final pressure can be kept constant with changing steam quantities. This means that the suction pressure of the steam jet compressors remains constant and there is no need for additional motive steam because the pressure ratio also remains constant. As a result of overheating of the steam leaving the last stage of the mechanical compressor of approximately 25 ° C., favorable conditions result for the steam jet compressors.

Da der mechanische Verdichter, in der Regel ein mehrstufiger, mehrere Einführungen haben kann, läßt sich auch bei unterschiedlichen Saugdrücken, d.h. bei unterschiedlichen Temperaturen, verdampfen. Der Einsatz eines mehrstufigen Turboverdichters ermöglicht es, mehrere Dampfströme, selbst von unterschiedlichem Druck- und Temperaturniveau, mit einfachen Mitteln und energetisch optimal auf ein einheitliches Druck- und Temperaturniveau zu bringen.Since the mechanical compressor, usually a multi-stage one, can have several entries, it can also be evaporated at different suction pressures, ie at different temperatures. The use of a multi-stage turbocompressor enables multiple steam flows, even of different pressure and temperature levels, with simple To bring medium and energy optimally to a uniform pressure and temperature level.

Dieses einheitliche Druckniveau für die zusammengeführten Dampfmengen ermöglicht erfindungsgemäß die energetisch optimale Weiterverdichtung von Teilmengen durch Einsatz von mehreren Dampfstrahlern. Da die Dampfstrahler mit Treibdampf gleichen Zustandes betrieben werden und auch auf gleichen Enddruck arbeiten, ist diese Lösung auch betriebstechnisch vorteilhaft in bezug auf Teillastverhalten durch Zu- oder Abschalten von einzelnen Damnfstrahlern.According to the invention, this uniform pressure level for the combined amounts of steam enables the energetically optimal further compression of partial quantities by using several steam jets. Since the steam jets are operated with propellant steam of the same state and also work at the same final pressure, this solution is also advantageous from an operational point of view in terms of part-load behavior by switching individual steam lamps on or off.

Unter niedrigem Temperaturniveau ist ein Temperturbereich von 80 bis 115 °C, vorzugsweise von 90 bis 105 °C zu verstehen. Die Verdampfung der flüssigen Wärmeträger erfolgt vorzugsweise bei niedrigem Temperaturniveau und niedrigem Druck, im Falle von Wasser als Wärmeträger bei einem unteratmosphärischen Druck ab 0,5 bar, vorzugsweise ab 0,7 bar. Vorzugsweise beträgt die Druckerhöhung mittels der Dampfstrahlverdichter das 1,5 bis l,8fache.A low temperature level means a temperature range from 80 to 115 ° C., preferably from 90 to 105 ° C. The liquid heat transfer medium is preferably evaporated at a low temperature level and low pressure, in the case of water as heat transfer medium at a subatmospheric pressure from 0.5 bar, preferably from 0.7 bar. The pressure increase by means of the steam jet compressor is preferably 1.5 to 1.8 times.

Unter mechanischer Verdichtung ist bevorzugt diejenige durch Verdichtung mittels eines mehrstufigen Turboverdichters zu verstehen. Daneben können auch noch bekannte Verdichterbauarten, wie z. B. Schraubenverdichter, verwendet werden.Mechanical compression should preferably be understood to mean compression by means of a multi-stage turbocompressor. In addition, known types of compressor, such. B. screw compressor can be used.

Unter thermodynamischer Verdichtung ist Verdichtung mittels Treibdampf in einem Dampfstrahlverdichter zu verstehen.Thermodynamic compression means compression by means of motive steam in a steam jet compressor.

Um die Dampftemperatur im mechanischen Verdichter auf das zulässige Maß zu begrenzen, wird nach einer weiteren Ausgestaltung der Erfindung der vom mehrstufigen mechanischen Verdichter angesaugte Dampf stufenweise durch Kondensateinspritzung gekühlt. Hierdurch wird die Verdichtungsarbeit sofort in Dampf verwandelt und kann nutzbringend umgesetzt werden. Nach weiteren Ausgestaltungen der Erfindung sind die flüssigen Wärmeträger heißes Kondensat, mittels Brüden oder anderer Wärmequellen, wie z. B. Abgase oder Dämpfe, aufgeheiztes Speisewasser und/oder eine Mischung von beiden. Diese Ausgestaltungen ermöglichen den gleichzeitigen Einsatz von heißen Kondensaten aus verschiedenen Kondensatordruckbereichen und/oder von indirekten Heizmitteln verschiedener Art wie z. B. Kopfbrüden von Rektifizie_kolonnen zur Verdampfung von Speisewasser.In order to limit the steam temperature in the mechanical compressor to the permissible level, according to a further embodiment of the invention, the steam sucked in by the multi-stage mechanical compressor is gradually cooled by condensate injection. This will make the compaction work instantly transformed into steam and can be put to good use. According to further embodiments of the invention, the liquid heat transfer medium is hot condensate, by means of vapors or other heat sources, such as. B. exhaust gases or vapors, heated feed water and / or a mixture of the two. These designs enable the simultaneous use of hot condensates from different condenser pressure ranges and / or of indirect heating means of different types such as. B. head vapors of rectification _ columns for the evaporation of feed water.

Flüssige Wärmeträger sind in der Regel Wasser, womit gemäß der Erfindung der Dampf in der Regel Wasserdampf ist. Die Erfindung ist jedoch nicht auf Wasserdampf beschränkt, allerdings sollten Saugdampf und Treibdampf von gleicher Basis-Flüssigkeit sein. Das Wesen der Erfindung wird nicht abgeändert, wenn als Wärmeträger ein anderes Fluid als Wasser gewählt wird bzw. eingesetzt werden kann. Indirektes Heizmittel für Speisewasser kann jeder andere Stoff mit ausreichendem Temperaturniveau sein.Liquid heat transfer media are usually water, which means that according to the invention the steam is usually water vapor. However, the invention is not limited to water vapor, but suction steam and motive steam should be of the same basic liquid. The essence of the invention is not changed if a fluid other than water is selected or can be used as the heat transfer medium. Indirect heating medium for feed water can be any other substance with a sufficient temperature level.

Nach einer weiteren Ausgestaltung der Erfindung wird dem mechanisch verdichteten Dampf Entspannungsdampf gleichen oder höheren Druckes beigemischt. Der Entspannungsdampf wird z. B. durch Entspannung von unter höherem Druck stehendem Kondensat gewonnen. Will man die Überhitzung des Dampfes aus den Dampfstrahlverdichtern vermindern, wird in bekannter Weise dem Dampf von 3,0 bis 6,0 bar eine entsprechende Menge Kondensat zugeführt.According to a further embodiment of the invention, expansion steam of the same or higher pressure is added to the mechanically compressed steam. The flash steam is e.g. B. obtained by relaxing condensate under higher pressure. If you want to reduce the overheating of the steam from the steam jet compressors, a corresponding amount of condensate is supplied to the steam from 3.0 to 6.0 bar in a known manner.

Die folgenden Ausführungsbeispiele zeigen einmal den überraschendn technischen Effekt und erläutern den Erfindungsgegenstand näher.The following exemplary embodiments show the surprising technical effect and explain the subject of the invention in more detail.

Vergleichs-Beispiel 1:Comparative example 1:

12.500 kg Sattdampf/h von 0,86 bar sollen mittels eines Dampfstrahlverdichters von dem Saugdruck von 0,86 bar auf einen Gegendruck von 3,8 bar absolut verdichtet werden. Für diese Verdichterarbeit sind dem Dampfstrahlverdichter als Treibdampf 85.650 kg/h mit einem Druck von 16 bar und 205 °C zuzuführen. Hieraus errechnet sich ein Treibdampf zu Saugdampf-Verhältnis von 6,85. Die gesamte erhaltene Dampfmenge beträgt dabei 98.150 kg/h.12,500 kg of saturated steam / h of 0.86 bar are to be compressed by a steam jet compressor from the suction pressure of 0.86 bar to a back pressure of 3.8 bar absolute. For this compressor work 85,650 kg / h with a pressure of 16 bar and 205 ° C are to be fed to the steam jet compressor as motive steam. From this, a motive steam to suction steam ratio of 6.85 is calculated. The total amount of steam obtained is 98,150 kg / h.

Da dieses Verhältnis und die erforderliche Treibdampfmenge viel zu groß sind, wird solch eine Lösung aus wirtschaftlichen Gründen abgelehnt.Since this ratio and the required amount of motive steam are much too large, such a solution is rejected for economic reasons.

Beispiel 2:Example 2:

Mit Brüden von 103 °C aus einer Rektifizierkolonne wird Speisewasser bei einem Unterdruck von 0,84 bar und 94 °C verdampft. Zusätzlich wird Dampf aus mehreren Kondensatsammelbehältern, die unter Drücken bis zu 2,9 bar stehen, durch Entspannen auf 0,84 bar erzeugt. Insgesamt fallen durch die Brüdenverdampfung und die Entspannung 12.500 kg/h Sattdampf an.With vapors of 103 ° C from a rectification column, feed water is evaporated at a vacuum of 0.84 bar and 94 ° C. In addition, steam is generated from several condensate collection tanks, which are under pressures of up to 2.9 bar, by relaxing to 0.84 bar. A total of 12,500 kg / h of saturated steam are generated by vapor evaporation and expansion.

Dieser Gesamt-Dampf in der Menge von 12.500 kg/h wird von einem mehrstufigen Turboverdichter bis auf 2,45 bar verdichtet. Der Antrieb des Turboverdichters erfolgt dabei durch eine Geaer.druckdampfturbine deren Abdampf bei 16 bar und 205 °C anfällt. Um eine annähernd isotherme Verdichtung zu erreichen, wird der durch die jeweilige Verdichtung in den einzelnen Stufen überhitzte Dampf zwischen den Stufen durch Kondensateinspritzung gekühlt. So erfolgt eine direkte Umsetzung der Antriebsenergie zusätzlich in Dampf. Durch diese Kondensateinspritzung erhöht sich die Dampfmenge um weitere 735 kg/h auf insgesamt 13.235 kg/h. Nach der letzten Verdichterstufe beträgt die Überhitzung des komprimierten Dampfes 22 °C. Aus einem vorhandenen Kondensatsammelbehälter, der unter einem Betriebsdruck von 7,4 bar steht werden durch Entspannen auf 2,55 bar zusätzlich 1100 kg/h Sattdampf gewonnen und dem überhitzten, komprimierten Dampf zugeführt. Die Gesamtdampfmenge hat sich auf 14.335 kg/h erhöht. Diese Dampfmenge wird einer Dampfstrahlverdichteranlage mit mehreren Einheiten zugeführt, wo sie mittels 17.720 kg/h Treibdampf aus einem Mitteldruckdampfnetz von 16 bar und 205 °C weiter verdichtet wird.This total steam in the amount of 12,500 kg / h is compressed by a multi-stage turbo compressor up to 2.45 bar. The turbocompressor is driven by a Geaer.pressure steam turbine, the exhaust steam of which is produced at 16 bar and 205 ° C. In order to achieve an almost isothermal compression, the steam superheated by the respective compression in the individual stages is cooled between the stages by condensate injection. This means that the drive energy is also directly converted into steam. This injection of condensate increases the amount of steam by a further 735 kg / h to a total of 13,235 kg / h. After the last compressor stage, the superheat of the compressed steam is 22 ° C. From an existing condensate collection tank, which is under an operating pressure of 7.4 bar, 1100 kg / h of saturated steam are obtained by relaxing to 2.55 bar and fed to the superheated, compressed steam. The total amount of steam has increased to 14,335 kg / h. This amount of steam is fed to a steam jet compressor system with several units, where it is compressed further using 17,720 kg / h of driving steam from a medium-pressure steam network of 16 bar and 205 ° C.

Die Dampfstrahlverdichter liefern insgesamt 32 055 kg/h leicht überhitzten Dampf von 3,8 bar und 154 °C. Da im vorliegenden Fall eine geringe Temperaturreduzierung noch möglich ist, werden zusätzlich 500 kg/h Kondensat von 95 °C in den überhitzten Dampf eingespritzt und dadurch nochmals in Dampf umgewandelt. Nach dem erfindungsgemäßen Verfahren werden insgesamt 32.555 kg/h Heizdampf von 3,8 bar und 145 °C, d.h. leicht überhitzt, gewonnen. Die Temperaturanhebung beträgt im vorliegenden Beispiel 145 °C - 94 °C = 51 °C. Druck und Überhitzungstemperatur liegen so günstig, daß dieser Dampf vielerorts als Heizdampf eingesetzt werden kann.The steam jet compressors deliver a total of 32 055 kg / h of slightly superheated steam at 3.8 bar and 154 ° C. Since a slight temperature reduction is still possible in the present case, an additional 500 kg / h of condensate of 95 ° C are injected into the superheated steam and thereby converted again into steam. According to the process of the invention, a total of 32,555 kg / h of heating steam of 3.8 bar and 145 ° C, i.e. slightly overheated, won. The temperature increase in the present example is 145 ° C - 94 ° C = 51 ° C. Pressure and superheating temperature are so favorable that this steam can be used as heating steam in many places.

Vergleichsbeispiel 3:Comparative Example 3:

Eine weitere Vergleichsrechnung zeigt überraschend, daß Dampf von 16 bar und ca. 205 °C aus dem Mitteldruckdampfnetz energetisch vorteilhafter in einem Dampfstrahlverdichter nach einem Turboverdichter eingesetzt werden kann, als daß er als Antriebsdampf in einer Turbine für einen weiteren Turboverdichter zur Erhöhung des Heizdampfdruckes von 2,3 auf 3,8 bar dienen kann. Wird er als Antriebsdampf für eine Turbine bis in das Naßdampfgebiet entspannt, ist er als Heizdampf nur teilweise verwendbar, da der kondensierende Wasseranteil abgezogen werden muß. Eine Entspannung auf 3,8 bar und ca. 142 °C, d.h. noch kein Sattdampf, ergibt nur eine umsetzbare Energiedifferenz von ca. 63 KJ/kg.Another comparison calculation surprisingly shows that steam of 16 bar and approx. 205 ° C from the medium-pressure steam network can be used more energetically advantageously in a steam jet compressor after a turbocompressor than that it is used as drive steam in a turbine for a further turbocompressor to increase the heating steam pressure of 2 , 3 can serve at 3.8 bar. If it is expanded as drive steam for a turbine down to the wet steam area, it can only be used partially as heating steam, since the condensing water portion is drawn off got to. Relaxation to 3.8 bar and approx. 142 ° C, ie no saturated steam yet, only results in an implementable energy difference of approx. 63 KJ / kg.

Diese umsetzbare Energiedifferenz von 63 KJ/kg Dampf reicht bei einer Dampfmenge von 17 720 kg/h jedoch nicht aus, um die 14 335 kg/h an vorverdichtetem Dampf von 2,3 bar auf 3,8 bar zu verdichten.However, this convertible energy difference of 63 KJ / kg steam is not sufficient with a steam volume of 17 720 kg / h to compress the 14 335 kg / h of pre-compressed steam from 2.3 bar to 3.8 bar.

Mit 17 720 kg/h Mitteldruckdampf können nur 310 kW erzielt werden, da bei vorgegebenem Endzustand des Dampfes aus dem Mitteldruckdampfnetz, d.h. noch verwendbar als Heizdampf, das Leistungsvermögen einer Turbine ungünstiger ist, als das eines Dampfstrahlers. Der Gesamtwirkungsgrad einer Turbine niedriger Leistung sinkt bei vorgegebenen Randbedingungen unter den Wirkungsgrad eines Dampfstrahlers.With 17 720 kg / h medium-pressure steam, only 310 kW can be achieved, because with the given final state of the steam from the medium-pressure steam network, i.e. still usable as heating steam, the performance of a turbine is less favorable than that of a steam jet. The overall efficiency of a low-power turbine drops under the efficiency of a steam jet under given boundary conditions.

Die erforderliche Arbeitsleistung für die obengenannte Druckerhöhung des vorkomprimierten Dampfes in einer Gesamtdampfmenge von 14 335 kg/h beträgt 450 kW.The work required for the above-mentioned pressure increase of the pre-compressed steam in a total steam quantity of 14 335 kg / h is 450 kW.

Es zeigt sich, daß die 17 720 kg/h Dampf aus dem Mitteldruckdampfnetz mit den vorgegebenen Randbedingungen für den Endzustand des entspannten Dampfes nicht für die Druckerhöhung des vorkomprimierten Niederdruckdampfes ausreichen.It turns out that the 17 720 kg / h steam from the medium-pressure steam network with the specified boundary conditions for the final state of the relaxed steam are not sufficient for the pressure increase of the pre-compressed low-pressure steam.

Die erfindungsgemäße Kombination ermöglicht eine vorteilhafte Ausnutzung von Abfallwärme von niedrigem Temperaturniveau in Verbindung mit wärmetechnisch vorteilhaftem Einsatz von Mitteldruckdampf. Die Kombination von mechanischer und thermodynamischer Dampfverdichtung für die Gewinnung von überhitztem Niederdruckdampf erweist sich dabei energetisch und investitionsmäßig besser als jede bisher bekannte andere Kombination.The combination according to the invention enables an advantageous utilization of waste heat from a low temperature level in connection with the thermally advantageous use of medium pressure steam. The combination of mechanical and thermodynamic steam compression for the production of superheated low-pressure steam proves better in terms of energy and investment than any other combination known to date.

Claims (10)

1. Verfahren zur Erzeugung von Dampf von 3,0 bis 6,0 bar, vorzugsweise 3,5 bis 4,5 bar und 140 bis 165 °C aus flüssigen Wärmeträgern von niedrigem Temperaturniveau durch Verdampfung und Verdichtung, a) dadurch gekennzeichnet, daß flüssige Wärmeträger bei niedrigem Temperaturniveau verdampft werden, b) die erzeugten Dampfströme mechanisch auf einen um das 2,0 bis 3,5fach höheren Zwischendruck verdichtet werden, c) der nach b) verdichtete Dampf mittels Dampf höheren Drucks thermodynamisch eine mindestens l,4fache Druckerhöhung erfährt. 1. Process for generating steam from 3.0 to 6.0 bar, preferably 3.5 to 4.5 bar and 140 to 165 ° C. from liquid heat transfer media of low temperature level by evaporation and compression, a) characterized in that liquid heat carriers are evaporated at a low temperature level, b) the generated steam flows are mechanically compressed to an intermediate pressure that is 2.0 to 3.5 times higher, c) the steam compressed according to b) undergoes thermodynamically at least a 1.4-fold pressure increase by means of steam of higher pressure. 2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß flüssige Wärmeträger vorzugsweise unteratmosphärisch verdampft werden.
2. The method according to claim 1,
characterized in that liquid heat carriers are preferably evaporated subatmospheric.
3. Verfahren nach Anspruch 1 und 2,
dadurch gekennzeichnet, daß die erzeugten Dampfströme vorzugsweise auf einen um das 2,0 bis 3,Ofach höheren Zwischendruck verdichtet werden.
3. The method according to claim 1 and 2,
characterized in that the steam streams generated are preferably compressed to an intermediate pressure which is 2.0 to 3 times higher.
4. Verfahren nach Anspruch 1 bis 3,
dadurch gekennzeichnet, daß der nach Verfahrensschritt b) verdichtete Dampfstrom in mehrere Teilströme aufgeteilt und diese einzeln thermodynamisch eine Druckerhöhung erfahren.
4. The method according to claim 1 to 3,
characterized in that the vapor stream compressed according to method step b) is divided into several partial streams and these individually undergo an increase in pressure thermodynamically.
5. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die mechanisch verdichteten Dämpfe stufenweise durch Kondensatspritzung gekühlt werden.
5. The method according to claim 1,
characterized in that the mechanically compressed vapors are gradually cooled by condensate spraying.
6. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die flüssigen Wärmeträger Kondensat sind.
6. The method according to claim 1,
characterized in that the liquid heat transfer medium is condensate.
7. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die flüssigen Wärmeträger beheiztes Speisewasser sind.
7. The method according to claim 1,
characterized in that the liquid heat carriers are heated feed water.
8. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die flüssigen Wärmeträger teilweise Kondensat und teilweise beheiztes Speisewasser sind.
8. The method according to claim 1,
characterized in that the liquid heat transfer medium is partly condensate and partly heated feed water.
9. Verfahren nach Anspruch 1 bis 3,
dadurch gekennzeichnet, daß dem mechanisch verdichteten Dampf Entspannungsdampf gleichen oder höheren Druckes beigemischt wird.
9. The method according to claim 1 to 3,
characterized in that the mechanically compressed steam is mixed with expansion steam of the same or higher pressure.
10. Verfahren nach Anspruch 1 bis 10,
dadurch gekennzeichnet, daß der Dampf von 3,0 bis 6,0 bar abschließend durch Kondensatzugabe eine Reduzierung seiner Überhitzung erfährt.
10. The method according to claim 1 to 10,
characterized in that the steam finally experiences a reduction in its overheating from 3.0 to 6.0 bar by adding condensate.
EP82101632A 1981-03-18 1982-03-03 Steam generating method Expired EP0061031B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82101632T ATE8174T1 (en) 1981-03-18 1982-03-03 METHOD OF GENERATING STEAM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813110520 DE3110520A1 (en) 1981-03-18 1981-03-18 METHOD FOR PRODUCING STEAM
DE3110520 1981-03-18

Publications (2)

Publication Number Publication Date
EP0061031A1 true EP0061031A1 (en) 1982-09-29
EP0061031B1 EP0061031B1 (en) 1984-06-27

Family

ID=6127619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82101632A Expired EP0061031B1 (en) 1981-03-18 1982-03-03 Steam generating method

Country Status (6)

Country Link
US (1) US4438730A (en)
EP (1) EP0061031B1 (en)
JP (1) JPS57172102A (en)
AT (1) ATE8174T1 (en)
DE (2) DE3110520A1 (en)
ES (1) ES510518A0 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3514827A1 (en) * 1984-04-24 1985-11-21 CKD Praha O.P., Prag/Praha Device and method for converting hot water into heating and working steam

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221601A (en) * 1984-04-18 1985-11-06 三井造船株式会社 Manufacture of steam
JPS60221602A (en) * 1984-04-18 1985-11-06 三井造船株式会社 Manufacture of steam
US4690733A (en) * 1985-03-20 1987-09-01 Union Carbide Corporation Process for the separation of hydrocarbons from a mixed feedstock
US5102504A (en) * 1989-10-23 1992-04-07 Tetsuya Saito Device for solvent recovery in an ultrasonic cleaning device
US5587054A (en) * 1994-10-11 1996-12-24 Grano Environmental Corporation Vapor compression distillation system
EP1871633A2 (en) * 2005-03-23 2008-01-02 David M. Baker Utility scale method and apparatus to convert low temperature thermal energy to electricity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE529464C (en) * 1927-02-26 1931-07-13 Philipp Mueller G M B H Process for obtaining steam, heat and distillate from boiler sludge water
EP0005825A1 (en) * 1978-05-30 1979-12-12 Dan Egosi Energy conversion method and system
FR2448377A1 (en) * 1979-02-08 1980-09-05 Laguilharre Pierre Energy saving evaporating concn. of solns. like skimmed milk - using mechanical compressor to boost steam returned to heat first effect
DE3015736A1 (en) * 1979-04-25 1980-11-06 Gen Electric Heat extraction circuit for waste process water - uses heat pump with cooling stages between steam compressors to reduce corrosion
EP0019297A2 (en) * 1979-05-22 1980-11-26 Linde Aktiengesellschaft Method and device for steam generation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962873A (en) * 1974-05-20 1976-06-15 Thermo Electron Corporation Solar steam generator
JPS52124504A (en) * 1976-04-12 1977-10-19 Sasakura Eng Co Ltd Steam compression system vaporing method
US4239603A (en) * 1978-02-22 1980-12-16 Dan Egosi Fuel-efficient generation of ejecting steam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE529464C (en) * 1927-02-26 1931-07-13 Philipp Mueller G M B H Process for obtaining steam, heat and distillate from boiler sludge water
EP0005825A1 (en) * 1978-05-30 1979-12-12 Dan Egosi Energy conversion method and system
FR2448377A1 (en) * 1979-02-08 1980-09-05 Laguilharre Pierre Energy saving evaporating concn. of solns. like skimmed milk - using mechanical compressor to boost steam returned to heat first effect
DE3015736A1 (en) * 1979-04-25 1980-11-06 Gen Electric Heat extraction circuit for waste process water - uses heat pump with cooling stages between steam compressors to reduce corrosion
EP0019297A2 (en) * 1979-05-22 1980-11-26 Linde Aktiengesellschaft Method and device for steam generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3514827A1 (en) * 1984-04-24 1985-11-21 CKD Praha O.P., Prag/Praha Device and method for converting hot water into heating and working steam

Also Published As

Publication number Publication date
ATE8174T1 (en) 1984-07-15
DE3260287D1 (en) 1984-08-02
EP0061031B1 (en) 1984-06-27
JPS57172102A (en) 1982-10-22
ES8303656A1 (en) 1983-02-01
DE3110520A1 (en) 1982-10-07
ES510518A0 (en) 1983-02-01
US4438730A (en) 1984-03-27

Similar Documents

Publication Publication Date Title
EP2347102B1 (en) Method for operating a thermodynamic cycle, and thermodynamic cycle
DE69302590T2 (en) Process for removing carbon dioxide from combustion gases
DE2611890C3 (en) Arrangement for converting heat contained in a gaseous primary fluid into another type of energy
DE1112997B (en) Process and device for gas separation by rectification at low temperature
DE3419216A1 (en) CHEMICAL PROCESSOR WITH CLOSED CIRCUIT
EP3317497B1 (en) Steam power plant
DE69231982T2 (en) Adding steam to a gas turbine
DE10330859A1 (en) Operating emission-free gas turbine power plant involves feeding some compressed circulated gas directly to combustion chamber, cooling/humidifying some gas before feeding to combustion chamber
DE1956956A1 (en) Method and device for fresh water production from sea water
EP2423465A2 (en) Method for operating a steam turbine power plant and device for generating steam
CH675749A5 (en)
EP0061031B1 (en) Steam generating method
DE2951557C2 (en) Method for operating a thermal material separation process with integrated heat recovery and device for carrying out the method
DE69621655T2 (en) METHOD AND DEVICE FOR DELIVERING MECHANICAL WORK AND, IF DESIRED, HEAT IN A GAS EVAPORATION TURBINE PROCESS
DE2632910A1 (en) Concentrating radioactive effluent by multistage evaporation - with liq. inlet at late stage and condensate recycling to earlier stages
DE3213415A1 (en) Method for using cold water as heat-emitting medium for a heat-pump system, and system for implementing this method
DE102008004107A1 (en) Salt water desalination process and plant using MSF desalination units with a steam recycle system
EP1917422B1 (en) Condensation method
DE2648576C2 (en) Gas-steam turbine plant
EP3995673B1 (en) Method and device for recovering energy from heat-conducting media
WO2024078669A1 (en) Heat pump device for energy-efficient generation of a process heat, dryer device for drying material to be dried, and method for operating a heat pump device
WO2024188815A1 (en) Method for generating steam and steam generation device
EP4435238A2 (en) Method and steam generating device for producing process steam
DE696175C (en) Process for the improved utilization of waste heat in the production of benzene from washing oil
DE369516C (en) Process for generating water vapor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19830303

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UHDE GMBH

Owner name: TICONA POLYMERWERKE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 8174

Country of ref document: AT

Date of ref document: 19840715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3260287

Country of ref document: DE

Date of ref document: 19840802

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT, WIESBADEN

Effective date: 19850327

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19870407

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891218

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891229

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900115

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900328

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900331

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910303

Ref country code: GB

Effective date: 19910303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910331

Ref country code: LI

Effective date: 19910331

Ref country code: BE

Effective date: 19910331

BERE Be: lapsed

Owner name: UHDE G.M.B.H.

Effective date: 19910331

Owner name: TICONO POLYMERWERKE G.M.B.H.

Effective date: 19910331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961227

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201