EP1704270A1 - Method and system for determining the thickness of a layer of lacquer - Google Patents

Method and system for determining the thickness of a layer of lacquer

Info

Publication number
EP1704270A1
EP1704270A1 EP04803525A EP04803525A EP1704270A1 EP 1704270 A1 EP1704270 A1 EP 1704270A1 EP 04803525 A EP04803525 A EP 04803525A EP 04803525 A EP04803525 A EP 04803525A EP 1704270 A1 EP1704270 A1 EP 1704270A1
Authority
EP
European Patent Office
Prior art keywords
coating
thickness
paint
dip
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04803525A
Other languages
German (de)
French (fr)
Other versions
EP1704270B1 (en
Inventor
Zoltan-Josef Horvath
Martin Kern
Stephen Sindlinger
Jürgen SCHLECHT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisenmann Anlagenbau GmbH and Co KG
Original Assignee
Eisenmann Anlagenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisenmann Anlagenbau GmbH and Co KG filed Critical Eisenmann Anlagenbau GmbH and Co KG
Priority to PL04803525T priority Critical patent/PL1704270T3/en
Publication of EP1704270A1 publication Critical patent/EP1704270A1/en
Application granted granted Critical
Publication of EP1704270B1 publication Critical patent/EP1704270B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes

Definitions

  • the invention relates to a method for determining the thickness of a lacquer layer, which is applied by electrophoretic dip coating on an object, wherein the article for dip coating immersed in a paint liquid paint dip tank immersed and generates an electric field as an electrode with at least one counter electrode.
  • the invention further relates to a system for determining the thickness of a lacquer layer which is applied by electrophoretic dip coating on an object comprising a paint dip tank for receiving a coating liquid, in which the object can be immersed, a voltage source whose one pole with the object is connectable and the other pole is connected to at least one reaching into the paint pool counter electrode.
  • the applied paint layer In the painting of objects, it is generally important that the applied paint layer as closely as possible has the predetermined target thickness. If the actual thickness deviates too much from the nominal thickness, this usually adversely affects the quality of the lacquer, for example the resistance or the color effect. Too thick applied paint layers also lead to an unnecessarily high paint consumption, which is to be avoided in terms of cost and environmental considerations.
  • the electrophoretic painting of objects in dipping baths it is generally not possible to ensure compliance with the target thickness of the paint layers alone by accurately adhering to predetermined process conditions over a longer period of time. For example, the properties of the coating fluid may change over time. Frequently, the contacting of the object with the voltage source also leads to difficulties. A loose contact in the area of the contacting surfaces is reflected directly in a reduced layer thickness.
  • the thickness of electrophoretically applied lacquer layers has generally been determined manually after drying, for example by means of a measuring microscope or a capacitive measuring instrument, for quality control purposes. If it is ascertained that the thickness of the applied lacquer layer deviates beyond the tolerance limits beyond the setpoint thickness, the faults causative for this can be searched for and, if necessary, remedied. However, repainting is possible in the case of excessively thin lacquer coats, if necessary after removal of the dried lacquer coat. The too thin or thick painted objects increase as a committee, the production costs not insignificant.
  • the object of the invention is therefore to improve the known methods and equipment for determining the thickness of an electrophoretically applied paint layer such that is reduced with little effort of the Committee by too thick or too thin painted objects.
  • this object is achieved in that the flowing through the article during the dip coating electrical charge and the surface of the object exposed to the coating liquid determined and from the thickness of the paint layer is determined.
  • the invention is based on the finding that despite the relatively complex processes in the dipping bath during the electrophoretic dip coating, the thickness of a paint layer applied at least in a first approximation proportional to the flowing during the dip coating electrical
  • the invention allows the layer thickness to be determined practically without contact during the dip coating. This, in turn, makes it possible to repaint the article if the finish is too thin.
  • the Committee in the painting is considerably reduced in this way.
  • the final inspection during the painting can be omitted since each individual coating step can be checked directly on site to determine whether the thicknesses of the coating layers are still within the specified tolerances lie .
  • the o. G. The object in a system of the type mentioned above is achieved in that the installation comprises means for determining the electric charge flowing through the object during the dip coating and a computer which determines the thickness of the paint layer from the charge and the surface of the object exposed to the coating liquid.
  • the surface of the article can in many cases be calculated from the design data. However, if such a calculation is difficult, as may be the case, for example, in highly fissured motor vehicle bodies, the maximum inrush current flowing through the object at the beginning of the dip painting can also be used as a measure of the surface of the object , Namely, the larger the surface, the larger the inrush current flowing through the object.
  • the measurement of the inrush current at the beginning of the dip painting is advantageous because in this way the measurements for different objects can be compared well.
  • the current strength used at a later time as a measure of the surface of the object, so the problem would arise that then the objects already coated different thickness and thus would be different insulating and thus the flowing stream is no longer a clear measure of the surface of the object.
  • the installation can first be calibrated by coating several articles with different surfaces over different periods of time. The recorded measured values are then set in relation to manually determined layer thicknesses of the objects.
  • the measurement accuracy of the layer thickness measurement can be improved if, in addition to the charge and the size of the surface to be coated, further process parameters are taken into account. These process parameters are, in particular, the temperature, the pH, the electrical conductivity, the solids content and the density of the coating liquid. These parameters influence the mobility of the coating pigments in the electrically charged field and the concentration of other charged particles that contribute to the flow of current but not to the coating.
  • the voltage applied between the electrode and the at least one counterelectrode can be regulated in such a way that the inrush current density during Start the dip coating has a predetermined, preferably dependent on the paint parameters value. It has been shown that particularly good coating results can be achieved if the quantity decisive for the coating effect, namely the current density, at the beginning of the dip coating has a value which is optimally adapted to the properties of the coating liquid.
  • the method described above can be used not only for the actual determination of the layer thickness, but also in the context of controlling the electrophoretic dip coating.
  • the controller can be designed, for example, so that the Tauchlackie- tion is terminated as soon as the specific layer thickness has reached a predetermined target value. This exploits the fact that information about the layer thickness is already available during the dip coating by measuring the charge that has flowed up to a certain point in time. The growth of the layer thickness during the dip coating can be continuously monitored and interrupted in this way as soon as the desired layer thickness is reached.
  • Figure 1 is a schematic diagram of a system according to the invention for determining the layer thickness
  • FIG. 2 shows a graph in which, for several objects, the current flowing during the dip painting is plotted over time.
  • 1 shows a system for determining the thickness of a cataphoretically applied lacquer layer is shown schematically and designated 10 in total.
  • the plant 10 comprises a grounded paint dip tank 12, in which a paint liquid 14 is filled.
  • the coating liquid 14 contains binders and pigments, which constitute the actual constituents of the later lacquer layer. In the illustrated embodiment, it is assumed that both the binders and the pigments are electrically positively charged. However, there are also paint liquids 14, in which only the binder particles, but not the pigments themselves are electrically charged.
  • the Lackmannmaschine 14 also contains a solvent whose ion concentration can be detected by the pH and the electrical conductivity of the coating liquid 14.
  • Coating current source 22 is connected via a line 26 to an object to be painted, which in the illustrated embodiment is a vehicle body 28.
  • the vehicle body 28 is suspended on a conveying system 30, indicated at 30, which is part of a superordinate transport system of a painting line.
  • the conveyor system 30 makes it possible to immerse the vehicle body 28 in the paint dip tank 12 and to raise it again after completion of the dip painting.
  • the anode plates 16, 18 may also be arranged inside dialysis housings.
  • the 'known as far as Appendix 10 further includes a Ammeters 32, with which the current flowing through the AnlagenkarosSerie 28 during dip coating current can be measured.
  • the ammeter 32 is disposed in the line 26 which connects the coating power source 22 to the vehicle body 28.
  • the ammeter 32 may also be located elsewhere within the circuit or within the coating power source 22.
  • the ammeter 32 is connected via a data line L1 to a computer 34, in which the measured current can be detected over time.
  • the system 10 also has a voltmeter 36, which measures the electrical voltage between the positive pole 20 and the negative pole 24. Via a data line L2 of the voltmeter 36 is also connected to the computer 34.
  • a plurality of sensors namely a temperature sensor 38, a pH sensor 40 and a conductivity sensor 42 are arranged, which detect the corresponding quantities by measurement and transmit to the computer 34 via data lines L3, L4 and L5.
  • FIG. 2 shows a graph in which, for three consecutively coated articles, the current intensity J measured by the ammeter 32 is plotted as a function of time.
  • the coating power source 22 After immersing the vehicle body 28 in the Paint liquid 14, the coating power source 22 is turned on. The coating current source 22 thereby generates a DC voltage which is of the order of a few hundred volts. The application of this voltage to the anode sheets 16, 18 and to the one
  • Cathode-forming vehicle body 28 leads to the formation of an electric field within the Lackmannmaschine 14, the strength of which in particular depends on the voltage and the distance between the anode sheets 16, 18 on the one hand and the vehicle body 28 on the other hand. Since the pigments and binder particles contained in the paint liquid are electrically positively charged, the prevailing electric field generates electrokinetic forces which lead to deposition of the pigments and the binder particles on the vehicle body 28.
  • Coating current source 22 after a period of time t_ - t n so far that only a small residual current flows, which prevents detachment of the paint layer of the object, but no longer increases the layer thickness.
  • the ' vehicle body 28 may at the end of the cycle time T raised with the help of the conveyor system 30 from the paint dip tank 12 and z. B. a subsequent rinsing station.
  • the computer 34 integrates the current intensity measured by the ammeter 32 during the time interval t. - t_ on. This integral, which is indicated in FIG. 2 as a dotted area 44, is equal to the total charge that has flowed through the vehicle body 28 during the cataphoretic coating. If the coating liquid 14 contains no further electrically charged particles in addition to the positively charged pigments and binder particles, then the total charge indicated by the surface 44 would correspond exactly to the amount of pigments and binder particles which have been deposited on the vehicle body 28. In fact, the paint liquid contains other charged particles. However, if it can be established that their concentration and mobility remain at least approximately constant during dip coating, there is nevertheless a direct correlation between the measured total charge on the one hand and the total amount of pigments and binder particles deposited on the vehicle body 28 during dip coating.
  • the thickness of the coating cataphoretically applied to the vehicle body 28 during dip coating is then given as the volume of deposited pigments and binder particles divided by the total surface area of the vehicle body 28. It will be understood, of course, that there will be no thickness variations, such as due to disturbances in the electric field distribution, comes.
  • the entire surface of the vehicle to be painted body 28 is determined in advance either on the basis of the design data and supplied to the computer 34 or the latter by means of the above-mentioned maximum inrush current I _, -_, z. B. using a so-called. "Look-Up Table" determined in which the relationship between inrush current and surface is stored.
  • the relevant variables of the temperature sensor 38, the pH sensor 40 and the conductivity sensor 42 are also transmitted to the computer 34.
  • a density sensor and a sensor for detecting the solids content may also be provided (not shown); the attachment of additional sensors is also possible. If the values detected by the sensors change significantly during the dip coating, then the layer thickness value can be corrected accordingly.
  • the correction values can also be taken from a "look-up table" created by means of a calibration or also calculated using a physical model. For this purpose, the model simulates the electrokinetic movement of all charged particles in the coating liquid 14.
  • the computer 34 determines that the thickness of the applied layer is outside the permissible tolerance range, then different measures can be taken. If the layer has been applied too thinly, for example, then the conveyor system 30 may be the vehicle body 28 left for some time in the paint dip tank 12 or re-immerse and re-coat, since the paint is not cured at this time. The thus nachbe Anlagenete vehicle body 28 is not a committee in this way.
  • the vehicle body 28 will generally have to be regarded as scrap. However, the vehicle body 28 can then be discarded early from the painting line.
  • the computer 34 can also switch off the coating current source 22 directly via a data line L6 when the desired target layer thickness has been reached.
  • a procedure is particularly useful if, for example, the contacting of the objects to be painted is difficult. In this case, it may happen that arise due to the varying electrical resistance due to the poor contact very different current curves. This is shown in FIG. 2 for three identical objects. In the second article whose current curve is drawn at 46, due to the poor contact, only an overall lower current intensity is achieved. As a result, the cataphoretic coating is slower.
  • the computer 34 now continuously detects the increase in thickness of the coating and switches the
  • the area 48 under the current curve 46 thus has at least approximately the same size as the area 44 under the first current curve already described above
  • the current curve is designated by 50, however, it is assumed that although the contact is as good as in the first described object with the S ' tromkurve 43.
  • the coating liquid 14 has since changed so in that the charged pigments and binder particles have a higher mobility, as a result of which the current intensity decreases less rapidly after the start of dip-coating.
  • the computer 34 therefore switches off the coating current source 22 earlier, so that the area 52 under the current curve 50 has approximately the same size as the areas 44 and 48.
  • the system 10 can also be provided with a control device which ensures that the vehicle body 28 is always exposed to the same current density at the beginning of the dip painting.
  • the voltage generated by the coating power source 22 is adjusted so that regardless of the surface of the vehicle body 28 everywhere the same lackspezifi- see current density results. Compliance with a specific paint-specific current density has proven to be expedient, as applied under these .Prices coatings have particularly good adhesion properties and the cycle time is independent of the size of the surface to be coated.
  • the vehicle body 28 is katpahoretisch coated.
  • the above-described method for measuring layer thickness is, of course, also applicable to installations in which an anaphoretic coating takes place. For this purpose, only the polarities must be reversed and a coating liquid used in which the pigments are not positive, but negatively charged.
  • the system 10 can not only be clocked as described above, but also operated continuously. Furthermore, it is possible to introduce a plurality of similar workpieces at the same time on suitable goods carriers in the paint dip tank 12 and to determine the thicknesses of the applied paint on the workpieces in the manner described above.

Abstract

The invention relates to electrophoretic immersion lacquering of objects, e.g. the bodies of automotive vehicles, wherein the object which is to be lacquered is immersed into lacquer immersion basin containing a lacquer fluid. An electric field is produced by the object in its capacity as an electrode with at least one counter electrode. In order to determine the thickness of the lacquer layer applied in said manner, the electric charge flowing through the object during the immersion lacquering process and the surface of the object exposed to the lacquer fluid are determined in order to determine the thickness of the lacquer layer therefrom. The thickness of the lacquer coating can thus be determined during the immersion lacquering process, resulting in fewer rejects.

Description

Verfahren und Anlage zur Bestimmung der Dicke einer Lackschicht Method and system for determining the thickness of a lacquer layer
Die Erfindung betrifft ein Verfahren zur Bestimmung der Dicke einer Lackschicht, die durch elektrophoretische Tauchlackierung auf einen Gegenstand aufgebracht wird, wobei der Gegenstand zur Tauchlackierung in ein Lackflüssigkeit enthaltendes Lacktauchbecken eingetaucht und als Elektrode mit mindestens einer Gegenelektrode ein elektrisches Feld erzeugt. Die Erfindung betrifft ferner eine Anlage zur Bestimmung der Dicke einer Lack- Schicht, die durch elektrophoretische Tauchlackierung auf einen Gegenstand aufgebracht ist, umfassend ein Lacktauchbecken zur Aufnahme einer Lackflüssigkeit, in die der Gegenstand eingetaucht werden kann, eine Spannungsquelle, deren einer Pol mit dem Gegenstand verbindbar ist und deren anderer Pol mit mindestens einer in das Lackbecken reichenden Gegenelektrode verbunden ist.The invention relates to a method for determining the thickness of a lacquer layer, which is applied by electrophoretic dip coating on an object, wherein the article for dip coating immersed in a paint liquid paint dip tank immersed and generates an electric field as an electrode with at least one counter electrode. The invention further relates to a system for determining the thickness of a lacquer layer which is applied by electrophoretic dip coating on an object comprising a paint dip tank for receiving a coating liquid, in which the object can be immersed, a voltage source whose one pole with the object is connectable and the other pole is connected to at least one reaching into the paint pool counter electrode.
Ein Verfahren sowie eine Anlage der genannten Art sind allgemein im Stand der Technik bekannt.A method and a system of the type mentioned are generally known in the art.
Bei der Lackierung von Gegenständen ist es im allgemeinen wichtig, daß die aufgebrachte Lackschicht möglichst genau die vorgegebene Solldicke aufweist . Weicht die tatsächliche Dicke zu sehr von der Solldicke ab, so beeinträchtigt dies üblicherweise die Qualität der Lak- kierung, beispielsweise die Beständigkeit oder die Farbwirkung. Zu dick aufgetragene Lackschichten führen darüber hinaus zu einem unnötig hohen Lackverbrauch, was unter Kosten- und Umweltgesichtspunkten zu vermeiden ist . Bei der elektrophoretischen Lackierung von Gegenständen in Tauchbädern ist es im allgemeinen nicht möglich, allein durch genaue Einhaltung vorgegebener Prozeßbedingungen über einen längeren Zeitraum hinweg eine Einhaltung der Solldicke der Lackschichten zu gewährleisten. So können sich beispielweise die Eigenschaften der Lackflüssigkeit im Laufe der Zeit verändern. Zu Schwierigkeiten führt häufig auch die Kontaktierung des Gegenstandes mit der Spannungsquelle. Ein Wackelkontakt im Bereich der Kontaktierungsflächen schlägt sich unmittelbar in einer verringerten Schichtdicke nieder.In the painting of objects, it is generally important that the applied paint layer as closely as possible has the predetermined target thickness. If the actual thickness deviates too much from the nominal thickness, this usually adversely affects the quality of the lacquer, for example the resistance or the color effect. Too thick applied paint layers also lead to an unnecessarily high paint consumption, which is to be avoided in terms of cost and environmental considerations. In the electrophoretic painting of objects in dipping baths, it is generally not possible to ensure compliance with the target thickness of the paint layers alone by accurately adhering to predetermined process conditions over a longer period of time. For example, the properties of the coating fluid may change over time. Frequently, the contacting of the object with the voltage source also leads to difficulties. A loose contact in the area of the contacting surfaces is reflected directly in a reduced layer thickness.
Bislang wird zur Qualitätskontrolle die Dicke elektropho- retisch aufgebrachter Lackschichten im allgemeinen nach der Austrocknung manuell, beispielsweise mit Hilfe eines Meßmikroskops oder eines kapazitiven Meßgeräts bestimmt . Wird dabei festgestellt, daß die Dicke der aufgetragenen Lackschicht über die Toleranzgrenzen hinaus von der Solldicke abweicht, können die hierfür ursächlichen Fehler gesucht und ggf. behoben werden. Eine Nachlackierung ist jedoch im Falle zu dünner Lackschichten allenfalls nach Entfernung der getrockneten Lackschicht möglich. Die zu dünn oder dick lackierten Gegenstände erhöhen als Ausschuß die Produktionskosten nicht unerheblich.Until now, the thickness of electrophoretically applied lacquer layers has generally been determined manually after drying, for example by means of a measuring microscope or a capacitive measuring instrument, for quality control purposes. If it is ascertained that the thickness of the applied lacquer layer deviates beyond the tolerance limits beyond the setpoint thickness, the faults causative for this can be searched for and, if necessary, remedied. However, repainting is possible in the case of excessively thin lacquer coats, if necessary after removal of the dried lacquer coat. The too thin or thick painted objects increase as a committee, the production costs not insignificant.
Deswegen ist bereits vorgeschlagen worden, die Dicke der Lackschicht nicht erst nach der Trocknung, sondern unmittelbar nach dem Auftauchen aus dem Lacktauchbecken zu bestimmen. Da der Lack zu diesem Zeitpunkt noch nicht ausgehärtet ist, ist ggf. noch eine Nachlackierung durch erneutes Eintauchen in das Lacktauchbecken möglich. Die hierfür erforderlichen Meßeinrichtungen sind allerdings sehr teuer und führen zu einem Zeitverlust und u. U. auch zu einem Qualitätsverlust, falls die Naßlackierung beschädigt wird. Aufgabe der Erfindung ist es deswegen, die bekannten Verfahren und Anlagen zur Bestimmung der Dicke einer elektrophoretisch aufgebrachten Lackschicht derart zu verbessern, daß mit geringem Aufwand der Ausschuß durch zu dick oder zu dünn lackierte Gegenstände verringert wird.Therefore, it has already been proposed to determine the thickness of the paint layer not only after drying, but immediately after emergence from the paint dip tank. Since the paint is not yet cured at this time, it may be possible to repaint by re-immersion in the paint dip tank. However, the required measuring devices are very expensive and lead to a loss of time and u. U. also to a loss of quality, if the wet paint is damaged. The object of the invention is therefore to improve the known methods and equipment for determining the thickness of an electrophoretically applied paint layer such that is reduced with little effort of the Committee by too thick or too thin painted objects.
Bei einem Verfahren der eingangs genannten Art wird diese Aufgabe dadurch gelöst, daß die durch den Gegenstand während der Tauchlackierung fließende elektrische Ladung sowie die der Lackflüssigkeit ausgesetzte Oberfläche des Gegenstands ermittelt und daraus die Dicke der Lackschicht bestimmt wird.In a method of the type mentioned, this object is achieved in that the flowing through the article during the dip coating electrical charge and the surface of the object exposed to the coating liquid determined and from the thickness of the paint layer is determined.
Die Erfindung beruht auf der Erkenntnis, daß trotz der relativ komplexen Vorgänge im Tauchbad während der elektrophoretischen Tauchlackierung die Dicke einer aufgetragenen Lackschicht zumindest in erster Näherung proportional zur während der Tauchlackierung fließenden elektrischenThe invention is based on the finding that despite the relatively complex processes in the dipping bath during the electrophoretic dip coating, the thickness of a paint layer applied at least in a first approximation proportional to the flowing during the dip coating electrical
Ladung und annähernd umgekehrt proportional zur Größe der Gesamtoberfläche des zu lackierenden Gegenstandes ist. Beide Größen, d. h. die insgesamt fließende elektrische Ladung und die Größe der Oberfläche des zu beschichtenden Gegenstandes, lassen sich auf einfache Weise ermitteln. Damit erlaubt es die Erfindung, die Schichtdicke berührungsfrei praktisch noch während der Tauchlackierung zu bestimmen. Dies wiederum ermöglicht es, bei zu dünner Lackierung den Gegenstand noch nachzulackieren. Der Ausschuß bei der Lackierung wird auf diese Weise beträchtlich verringert. Darüber hinaus kann auch die Endkontrolle bei der Lackierung entfallen, da jeder einzelne Lackierungsschritt direkt vor Ort daraufhin überprüft werden kann, ob die Dicken der Lack- schichten noch innerhalb der vorgegebenen Toleranzen liegen .Charge and approximately inversely proportional to the size of the total surface of the object to be painted. Both sizes, ie the total electrical charge flowing and the size of the surface of the article to be coated, can be determined in a simple manner. Thus, the invention allows the layer thickness to be determined practically without contact during the dip coating. This, in turn, makes it possible to repaint the article if the finish is too thin. The Committee in the painting is considerably reduced in this way. In addition, the final inspection during the painting can be omitted since each individual coating step can be checked directly on site to determine whether the thicknesses of the coating layers are still within the specified tolerances lie .
Bezüglich der Anlage wird die o. g. Aufgabe bei einer Anlage der eingangs genannten Art dadurch gelöst, daß die Anlage Mittel zur Bestimmung der durch den Gegenstand während der Tauchlackierung fließenden elektrischen Ladung sowie einen Rechner umfaßt, der aus der Ladung und der der Lackflüssigkeit ausgesetzten Oberfläche des Gegenstands die Dicke der Lackschicht be- stimmt.Regarding the system, the o. G. The object in a system of the type mentioned above is achieved in that the installation comprises means for determining the electric charge flowing through the object during the dip coating and a computer which determines the thickness of the paint layer from the charge and the surface of the object exposed to the coating liquid. Right.
Die Vorteile der erfindungsgemäßen Anlagen stimmen sinngemäß mit den oben geschilderten- Vorteilen des erfindungsgemäßen Verfahrens überein.The advantages of the systems according to the invention coincide mutatis mutandis with the above-described advantages of the method according to the invention.
Um die elektrische Ladung, die während der Tauchlackierung durch den Gegenstand fließt, zu bestimmen, ist es am einfachsten, den während der Tauchlackierung durch den Gegenstand fließenden elektrischen Strom zu messen. Die Ladung ergibt sich dann durch Integration der elektrischen Stromstärke über die Zeit.In order to determine the electrical charge that flows through the article during dip coating, it is easiest to measure the electrical current flowing through the article during dip coating. The charge is then obtained by integration of the electric current over time.
Die Oberfläche des Gegenstands läßt sich in vielen Fällen aus den Konstruktionsdaten berechnen. Falls eine derartige Berechnung jedoch schwierig ist, wie dies beispielsweise bei stark zerklüfteten Kraftfahrzeug-Karosserien der Fall sein kann, so kann auch der maximale Einschaltstrom, der zu Beginn der Tauchlackierung durch den Gegenstand fließt, als Maß für die Oberfläche des Gegenstands an- gesetzt werden. Je größer nämlich diese Oberfläche ist, desto größer ist auch der Einschaltstrom, der durch den Gegenstand fließt. Die Messung des Einschaltstroms zu Beginn der Tauchlackierung ist deswegen vorteilhaft, weil sich auf diese Weise die Messungen für unterschiedliche Gegenstände gut vergleichen lassen. Würde die Stromstärke zu einem späteren Zeitpunkt als Maß für die Oberfläche des Gegenstandes herangezogen, so ergäbe sich das Problem, daß dann die Gegenstände bereits unterschiedlich dick beschichtet und somit unterschiedlich isolierend wären und der fließende Strom somit kein eindeutiges Maß mehr für die Oberfläche des Gegenstandes darstellt.The surface of the article can in many cases be calculated from the design data. However, if such a calculation is difficult, as may be the case, for example, in highly fissured motor vehicle bodies, the maximum inrush current flowing through the object at the beginning of the dip painting can also be used as a measure of the surface of the object , Namely, the larger the surface, the larger the inrush current flowing through the object. The measurement of the inrush current at the beginning of the dip painting is advantageous because in this way the measurements for different objects can be compared well. Would the current strength used at a later time as a measure of the surface of the object, so the problem would arise that then the objects already coated different thickness and thus would be different insulating and thus the flowing stream is no longer a clear measure of the surface of the object.
Um zwischen der gemessenen Ladung und der Oberfläche des Gegenstands einerseits und der zu ermittelnden Schicht- dicke andererseits einen quantitativen Zusammenhang herzustellen, kann die Anlage zunächst kalibriert werden, indem mehrere Gegenstände mit unterschiedlichen Oberflächen über unterschiedliche Zeitdauern hinweg beschichtet werden. Die dabei aufgenommenen Meßwerte werden dann in Relation zu manuell bestimmten Schichtdicken der Gegenstände gesetzt.In order to establish a quantitative relationship between the measured charge and the surface of the object on the one hand and the layer thickness to be determined on the other hand, the installation can first be calibrated by coating several articles with different surfaces over different periods of time. The recorded measured values are then set in relation to manually determined layer thicknesses of the objects.
Es ist jedoch auch möglich, ein quantitatives Modell zur Berechnung der Schichtdicken aufzustellen. Wie Untersuchungen gezeigt haben, kann die Meßgenauigkeit der Schichtdickenmessung verbessert werden, wenn neben der Ladung und der Größe der zu beschichtenden Oberfläche noch weitere Prozeßparameter berücksichtigt werden. Bei diesen Prozeßparamtern handelt es sich insbesondere um die Temperatur, den pH-Wert, die elektrische Leit- fähigkeit, den Festkörpergehalt sowie die Dichte der Lackflüssigkeit. Diese Parameter beeinflussen die Beweglichkeit der Lackpigmente im elektrisch geladenen Feld und die Konzentration anderer geladener Teilchen, die zum Stromfluß, nicht aber zur Beschichtung beitra- gen.However, it is also possible to establish a quantitative model for the calculation of layer thicknesses. As investigations have shown, the measurement accuracy of the layer thickness measurement can be improved if, in addition to the charge and the size of the surface to be coated, further process parameters are taken into account. These process parameters are, in particular, the temperature, the pH, the electrical conductivity, the solids content and the density of the coating liquid. These parameters influence the mobility of the coating pigments in the electrically charged field and the concentration of other charged particles that contribute to the flow of current but not to the coating.
Falls die Oberfläche des Gegenstandes bereits bekannt ist, so kann die zwischen der Elektrode und der mindestens einen Gegenelektrode anliegende Spannung derart geregelt werden, daß die Einschaltstromdichte bei Be- ginn der Tauchlackierung einen vorgegebenen, vorzugsweise von den Lackparametern abhängenden Wert hat . Es hat sich nämlich gezeigt, daß sich besonders gute Be- schichtungsergebnisse erzielen lassen, wenn die für die Beschichtungswirkung maßgebliche Größe, nämlich die Stromdichte, zu Beginn der Tauchlackierung einen Wert hat, der optimal an die Eingenschaften der Lackflüssigkeit angepasst ist.If the surface of the article is already known, the voltage applied between the electrode and the at least one counterelectrode can be regulated in such a way that the inrush current density during Start the dip coating has a predetermined, preferably dependent on the paint parameters value. It has been shown that particularly good coating results can be achieved if the quantity decisive for the coating effect, namely the current density, at the beginning of the dip coating has a value which is optimally adapted to the properties of the coating liquid.
Das vorstehend beschriebene Verfahren kann nicht nur zur eigentlichen Bestimmung der Schichtdicke, sondern auch im Rahmen einer Steuerung der elektrophoretischen Tauchlackierung eingesetzt werden. Die Steuerung kann beispielsweise so ausgelegt sein, daß die Tauchlackie- rung beendet wird, sobald die bestimmte Schichtdicke einen vorgebbaren Sollwert erreicht hat . Hierbei wird die Tatsache ausgenutzt, daß bereits während der Tauchlackierung Informationen zur Schichtdicke durch die Messung der bis zu einem bestimmten Zeitpunkt geflossenen Ladung zur Verfügung stehen. Das Anwachsen der Schicht- dicke während der Tauchlackierung kann auf diese Weise kontinuierlich verfolgt und unterbrochen werden, sobald die gewünschte Schichtdicke erreicht ist.The method described above can be used not only for the actual determination of the layer thickness, but also in the context of controlling the electrophoretic dip coating. The controller can be designed, for example, so that the Tauchlackie- tion is terminated as soon as the specific layer thickness has reached a predetermined target value. This exploits the fact that information about the layer thickness is already available during the dip coating by measuring the charge that has flowed up to a certain point in time. The growth of the layer thickness during the dip coating can be continuously monitored and interrupted in this way as soon as the desired layer thickness is reached.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnung. Darin zeigen:Further features and advantages of the invention will become apparent from the following description of an embodiment with reference to the drawing. Show:
Figur 1 eine Prinzipskizze einer erfindungsgemäßen Anlage zur Bestimmung der Schichtdicke;Figure 1 is a schematic diagram of a system according to the invention for determining the layer thickness;
Figur 2 einen Graphen, ,in dem für mehrere Gegenstände der während der Tauchlackierung fließende Strom über der Zeit aufgetragen ist. In der Figur 1 ist eine Anlage zur Bestimmung der Dicke einer kataphoretisch aufgebrachten Lackschicht schematisch dargestellt und insgesamt mit 10 bezeichnet. Die Anlage 10 umfaßt ein geerdetes Lacktauchbecken 12, in das eine Lackflüssigkeit 14 eingefüllt ist. Die Lackflüssigkeit 14 enthält Bindemittel und Pigmente, welche die eigentlichen Bestandteile der späteren Lackschicht darstellen. Bei dem dargestellten Ausführungsbeispiel ist angenommen, daß sowohl die Bindemittel als auch die Pig- mente elektrisch positiv geladen sind. Es gibt jedoch auch Lackflüssigkeiten 14, bei denen nur die Bindemittelteilchen, nicht aber die Pigmente selbst elektrisch geladen sind. Die Lackflussigkeit 14 enthält außerdem ein Lösungsmittel, dessen Ionenkonzentration über den pH-Wert und die elektrische Leitfähigkeit der Lackflüssigkeit 14 erfaßt werden kann.FIG. 2 shows a graph in which, for several objects, the current flowing during the dip painting is plotted over time. 1 shows a system for determining the thickness of a cataphoretically applied lacquer layer is shown schematically and designated 10 in total. The plant 10 comprises a grounded paint dip tank 12, in which a paint liquid 14 is filled. The coating liquid 14 contains binders and pigments, which constitute the actual constituents of the later lacquer layer. In the illustrated embodiment, it is assumed that both the binders and the pigments are electrically positively charged. However, there are also paint liquids 14, in which only the binder particles, but not the pigments themselves are electrically charged. The Lackflussigkeit 14 also contains a solvent whose ion concentration can be detected by the pH and the electrical conductivity of the coating liquid 14.
In dem Lacktauchbecken 12 sind zwei Anodenbleche 16, 18 angeordnet, die mit dem Pluspol 20 einer Beschich- tungsstromquelle 22 verbunden sind. Ein Minuspol 24 derIn the paint dip tank 12, two anode sheets 16, 18 are arranged, which are connected to the positive pole 20 of a coating current source 22. A minus 24 of the
Beschichtungsstromquelle 22 ist über eine Leitung 26 mit einem zu lackierenden Gegenstand verbunden, bei dem es sich in dem dargestellten Ausführungsbeispiel um eine Fahrzeugkarosserie 28 handelt. Die Fahrzeug- karosserie 28 ist an einem mit 30 angedeuteten Fördersystem 30 aufgehängt, das Teil eines übergeordneten Transportsystems einer Lackierstraße ist. Das Fördersystem 30 ermöglicht es, die Fahrzeugkarosserie 28 in das Lacktauchbecken 12 einzutauchen und nach Beendigung der Tauchlackierung wieder daraus anzuheben.Coating current source 22 is connected via a line 26 to an object to be painted, which in the illustrated embodiment is a vehicle body 28. The vehicle body 28 is suspended on a conveying system 30, indicated at 30, which is part of a superordinate transport system of a painting line. The conveyor system 30 makes it possible to immerse the vehicle body 28 in the paint dip tank 12 and to raise it again after completion of the dip painting.
In Abwandlung können die Anodenbleche 16, 18 auch im Inneren von Dialysegehäusen angeordnet sein.Alternatively, the anode plates 16, 18 may also be arranged inside dialysis housings.
Die' insoweit bekannte Anlage 10 umfaßt ferner einen Strommesser 32, mit dem der durch die FahrzeugkarosSerie 28 während der Tauchlackierung fließende Strom gemessen werden kann. In dem dargestellten Ausführungsbeispiel ist der Strommesser 32 in der Leitung 26 an- geordnet, welche die Beschichtungsstromquelle 22 mit der Fahrzeugkarosserie 28 verbindet. Der Strommesser 32 kann natürlich ebenso auch an anderer Stelle innerhalb des Stromkreises oder innerhalb der Beschichtungsstromquelle 22 angeordnet sein. Der Strommesser 32 ist über eine Datenleitung Ll mit einem Rechner 34 verbunden, in dem die gemessene Stromstärke über der Zeit erfaßt werden kann.The 'known as far as Appendix 10 further includes a Ammeters 32, with which the current flowing through the FahrzeugkarosSerie 28 during dip coating current can be measured. In the illustrated embodiment, the ammeter 32 is disposed in the line 26 which connects the coating power source 22 to the vehicle body 28. Of course, the ammeter 32 may also be located elsewhere within the circuit or within the coating power source 22. The ammeter 32 is connected via a data line L1 to a computer 34, in which the measured current can be detected over time.
Die Anlage 10 weist außerdem einen Spannungsmesser 36 auf, der die elektrische Spannung zwischen dem Pluspol 20 und dem Minuspol 24 mißt. Über eine Datenleitung L2 ist der Spannungsmesser 36 ebenfalls mit dem Rechner 34 verbunden.The system 10 also has a voltmeter 36, which measures the electrical voltage between the positive pole 20 and the negative pole 24. Via a data line L2 of the voltmeter 36 is also connected to the computer 34.
In dem Lacktauchbecken 12 sind außerdem mehrere Sensoren, nämlich ein Temperatursensor 38, ein pH-Wert-Sensor 40 sowie ein Leitfähigkeitssensor 42 angeordnet, welche die entsprechenden Größen meßtechnisch erfassen und über Datenleitungen L3 , L4 bzw. L5 an den Rechner 34 übermitteln.In the paint dip tank 12, a plurality of sensors, namely a temperature sensor 38, a pH sensor 40 and a conductivity sensor 42 are arranged, which detect the corresponding quantities by measurement and transmit to the computer 34 via data lines L3, L4 and L5.
Die Funktion der Anlage 10 wird im folgenden mit Bezug auf die Figur 2 erläutert.The function of the system 10 will be explained below with reference to FIG.
Die Figur 2 zeigt einen Graphen, in dem für drei nacheinander beschichtete Gegenstände die von dem Strommesser 32 gemessene Stromstärke J in Abhängigkeit von der Zeit aufgetragen ist.FIG. 2 shows a graph in which, for three consecutively coated articles, the current intensity J measured by the ammeter 32 is plotted as a function of time.
Nach dem Eintauchen der Fahrzeugkarosserie 28 in die Lackflüssigkeit 14 wird die Beschichtungsstromquelle 22 eingeschaltet. Die Beschichtungsstromquelle 22 erzeugt dabei eine Gleichspannung, die in der Größenordnung von einigen Hundert Volt liegt. Das Anlegen dieser Spannung an die Anodenbleche 16, 18 und an die eineAfter immersing the vehicle body 28 in the Paint liquid 14, the coating power source 22 is turned on. The coating current source 22 thereby generates a DC voltage which is of the order of a few hundred volts. The application of this voltage to the anode sheets 16, 18 and to the one
Kathode bildende Fahrzeugkarosserie 28 führt zur Ausbildung eines elektrischen Feldes innerhalb der Lackflussigkeit 14, dessen Stärke insbesondere Von der Spannung und dem Abstand zwischen den Anodenblechen 16, 18 einer- seits und der Fahrzeugkarosserie 28 andererseits abhängt. Da die in der Lackflüssigkeit enthaltenen Pigmente und Bindemittelteilchen elektrisch positiv geladen sind, erzeugt das herrschende elektrische Feld elektrokinetische Kräfte, die zu einer Ablagerung der Pigmente und der Bindemittelteilchen auf der Fahrzeugkarosserie 28 führen.Cathode-forming vehicle body 28 leads to the formation of an electric field within the Lackflussigkeit 14, the strength of which in particular depends on the voltage and the distance between the anode sheets 16, 18 on the one hand and the vehicle body 28 on the other hand. Since the pigments and binder particles contained in the paint liquid are electrically positively charged, the prevailing electric field generates electrokinetic forces which lead to deposition of the pigments and the binder particles on the vehicle body 28.
Da beim Einschalten der Beschichtungsstromquelle 22 zum Zeitpunkt t~ die Fahrzeugkarosserie 28 noch unbeschichtet ist, fließt zunächst ein hoher Einschaltström, dessen Maximalwert Jmax ein Maß für die g3esamte zu lackierende Fläche der Fahrzeugkarosserie 28 ist. Der quantitative Zusammenhang zwischen dem maximalen Einschaltstrom Jmax und der Fläche der Fahrzeug^karosserieSince the vehicle body 28 is still uncoated when the coating current source 22 is switched on at the time t ~ , a high starting current first flows whose maximum value Jmax is a measure of the g 3 of the vehicle body 28 to be painted. The quantitative relationship between the maximum inrush current Jmax and the area of the vehicle body
28 wird dabei vorzugsweise durch Kalibrierung bestimmt. Durch die kataphoretische Beschichtung der Fahrzeugkarosserie 28 mit den Pigmenten und den Bindemittelteilchen wird die Fahrzeugkarosserie 28 zunehmend elektrisch isoliert, wodurch die von dem Strommesser 32 gemessene Stromstärke bald rasch wieder abfällt (vgl. Stromkurve 43 in Figur 2) . Eine übergeordnete Steuerung schaltet die28 is preferably determined by calibration. The cataphoretic coating of the vehicle body 28 with the pigments and binder particles progressively electrically isolates the vehicle body 28, causing the current measured by the ammeter 32 to drop rapidly again (compare current curve 43 in Figure 2). A higher-level control switches the
Beschichtungsstromquelle 22 nach einer Zeitspanne t_ - tn soweit ab, daß nur noch ein geringer Reststrom fließt, der ein Ablösen der Lackschicht von dem Gegenstand verhindert, die Schichtdicke aber nicht mehr erhöht. Die' Fahrzeugkarosserie 28 kann am Ende der Taktzeit T mit Hilfe des Fördersystems 30 aus dem Lacktauchbecken 12 angehoben und z. B. einer nachfolgenden Spülstation zugeführt werden.Coating current source 22 after a period of time t_ - t n so far that only a small residual current flows, which prevents detachment of the paint layer of the object, but no longer increases the layer thickness. The ' vehicle body 28 may at the end of the cycle time T raised with the help of the conveyor system 30 from the paint dip tank 12 and z. B. a subsequent rinsing station.
Zur Ermittlung der Dicke der während der Tauchlackierung aufgebrachten Beschichtung integriert der Rechner 34 die von dem Strommesser 32 gemessene Stromstärke während des Zeitintervalls t. - t_ auf. Dieses Integral, welches in der Figur 2 als gepunktete Fläche 44 angedeutet ist, ist gleich der gesamten Ladung, die während der kataphore- tischen Beschichtung durch die Fahrzeugkarosserie 28 geflossen ist. Enthielte die Lackflüssigkeit 14 neben den positiv geladenen Pigmenten und Bindemittelteilchen keine weiteren elektrisch geladenen Teilchen, so entspräche die durch die Fläche 44 angedeutete Gesamtladung exakt der Menge an Pigmenten und Bindemittelteilchen, die sich auf der Fahrzeugkarosserie 28 niedergeschlagen haben. Tatsächlich enthält die Lackflüssigkeit allerdings auch noch andere geladene Teilchen. Wenn jedoch sichgergestellt werden kann, daß deren Konzentration und Beweglichkeit während der Tauchlackierung zumindest annähernd konstant bleibt, so besteht dennoch ein unmittelbarer Zusammenhang zwischen der gemessenen Gesamtladung einerseits und der Gesamtmenge der Pigmente und Bindemittelteilchen, die sich auf der Fahrzeugkarosserie 28 während der Tauchlackierung niedergeschlagen hat .To determine the thickness of the coating applied during the dip coating, the computer 34 integrates the current intensity measured by the ammeter 32 during the time interval t. - t_ on. This integral, which is indicated in FIG. 2 as a dotted area 44, is equal to the total charge that has flowed through the vehicle body 28 during the cataphoretic coating. If the coating liquid 14 contains no further electrically charged particles in addition to the positively charged pigments and binder particles, then the total charge indicated by the surface 44 would correspond exactly to the amount of pigments and binder particles which have been deposited on the vehicle body 28. In fact, the paint liquid contains other charged particles. However, if it can be established that their concentration and mobility remain at least approximately constant during dip coating, there is nevertheless a direct correlation between the measured total charge on the one hand and the total amount of pigments and binder particles deposited on the vehicle body 28 during dip coating.
Die Dicke der Beschichtung, die während der Tauchlackierung kataphoretisch auf die Fahrzeugkarosserie 28 aufge- bracht wurde, ergibt sich dann als das Volumen der abgeschiedenen Pigmente und Bindemittelteilchen geteilt durch die Gesamtoberfläche der Fahrzeugkarosserie 28. Angenommen ist dabei natürlich, daß es nicht zu Dickenschwankungen, etwa infolge von Störungen der elektrischen Feldverteilung, kommt. Die gesamte zu lackierende Fläche der Fahrzeug- karosserie 28 wird vorab entweder auf der Grundlage der Konstruktionsdaten ermittelt und dem Rechner 34 zugeführt oder aber von letzterem mit Hilfe des oben erwähnten maximalen Einschaltstroms I _,-_, z. B. unter Verwendung einer sog. "Look-Up-Tabelle" ermittelt, in der der Zusammenhang zwischen Einschaltstrom und Oberfläche abgelegt ist.The thickness of the coating cataphoretically applied to the vehicle body 28 during dip coating is then given as the volume of deposited pigments and binder particles divided by the total surface area of the vehicle body 28. It will be understood, of course, that there will be no thickness variations, such as due to disturbances in the electric field distribution, comes. The entire surface of the vehicle to be painted body 28 is determined in advance either on the basis of the design data and supplied to the computer 34 or the latter by means of the above-mentioned maximum inrush current I _, -_, z. B. using a so-called. "Look-Up Table" determined in which the relationship between inrush current and surface is stored.
Da, wie oben bereits erwähnt, der Zusammenhang zwischen der gesamten durch die Fahrzeugkarosserie 28 fließenden Ladung einerseits und der Menge der sich niederschlagenden Pigmente und Bindemittelteilchen andererseits nur dann gilt, wenn die anderen geladenen Teilchen in der Lackflüssigkeit hinsichtlich der Konzentration oder Beweglichkeit keinen größeren Veränderungen unterliegen, werden die hierzu relevanten Größen von dem Temperatursensor 38, dem pH-Wert-Sensor 40 und dem Leitfähigkeitssensor 42 ebenfalls dem Rechner 34 übermittelt. Zusätzlich kann auch noch ein Dichtesensor und ein Sensor zur Erfassung des Festkörpergehalts vorgesehen sein (nicht darge- stellt) ; die Anbringung weiterer Sensoren ist ebenso möglich. Verändern sich die von den Sensoren erfaßten Werte signifikant während der Tauchlackierung, so kann man den Schichtdickenwert entsprechend korrigieren. Die Korrekturwerte können dabei ebenfalls einer im Wege einer Kalibrierung erstellten "Look-Up-Tabelle" entnommen oder auch unter Verwendung eines physikalischen Modells berechnet werden. In dem Modell ist hierzu die elektrokinetische Bewegung sämtlicher geladener Teilchen in der Lackflüssigkeit 14 zu simulieren.Since, as already mentioned above, the relationship between the total charge flowing through the vehicle body 28 on the one hand and the amount of precipitating pigments and binder particles on the other hand applies only if the other charged particles in the paint fluid are not subject to any major changes in concentration or mobility , the relevant variables of the temperature sensor 38, the pH sensor 40 and the conductivity sensor 42 are also transmitted to the computer 34. In addition, a density sensor and a sensor for detecting the solids content may also be provided (not shown); the attachment of additional sensors is also possible. If the values detected by the sensors change significantly during the dip coating, then the layer thickness value can be corrected accordingly. The correction values can also be taken from a "look-up table" created by means of a calibration or also calculated using a physical model. For this purpose, the model simulates the electrokinetic movement of all charged particles in the coating liquid 14.
Stellt der Rechner 34 fest, daß die Dicke der aufgebrachten Schicht außerhalb des zulässigen Toleranzbereichs liegt, so können unterschiedliche Maßnahmen ergriffen werden. Ist die Schicht beispielsweise zu dünn aufgetragen wor- den, so kann das Fördersystem 30 die Fahrzeugkarosserie 28 noch einige Zeit in dem Lacktauchbecken 12 belassen oder erneut eintauchen und nachbeschichten, da die Lackierung zu diesem Zeitpunkt noch nicht ausgehärtet ist. Die so nachbeschichtete Fahrzeugkarosserie 28 stellt auf diese Weise keinen Ausschuß dar.If the computer 34 determines that the thickness of the applied layer is outside the permissible tolerance range, then different measures can be taken. If the layer has been applied too thinly, for example, then the conveyor system 30 may be the vehicle body 28 left for some time in the paint dip tank 12 or re-immerse and re-coat, since the paint is not cured at this time. The thus nachbeschichtete vehicle body 28 is not a committee in this way.
Ist die gemessene Schichtdicke hingegen trotz verlängerter Beschichtung zu dünn, so wird die Fahrzeugkarosserie 28 im allgemeinen als Ausschuß anzusehen sein. Die Fahrzeug- karosserie 28 kann aber dann frühzeitig aus der Lackierstraße ausgesondert werden.On the other hand, if the measured layer thickness is too thin despite the prolonged coating, the vehicle body 28 will generally have to be regarded as scrap. However, the vehicle body 28 can then be discarded early from the painting line.
In beiden Fällen können außerdem sehr frühzeitig Maßnahmen ergriffen werden, um mögliche Ursachen für die Abweichun- gen von der Solldicke zu ermitteln, diese zu eliminieren und dadurch Material, Energie und Nacharbeiten zu ersparen.In both cases, measures can also be taken very early on in order to determine possible causes for the deviations from the target thickness, to eliminate them and thus save material, energy and reworking.
Der Rechner 34 kann aber auch unmittelbar über eine Datenleitung L6 die Beschichtungsstromquelle 22 abschalten, wenn die gewünschte Soll-Schichtdicke erreicht ist. Ein solches Vorgehen ist insbesondere dann zweckmäßig, wenn beispielsweise die Kontaktierung der zu lackierenden Gegenstände schwierig ist. In diesem Fall kann es vorkommen, daß sich aufgrund des variierenden elektrischen Widerstandes infolge der schlechten Kontaktierung ganz unterschiedliche Stromkurven ergeben. Dies ist in der Figur 2 für drei an sich gleiche Gegenstände gezeigt. Bei dem zweiten Gegenstand, dessen Stromkurve mit 46 gezeichnet ist, wird infolge der schlechten Kontaktierung nur eine insgesamt geringere Stromstärke erreicht. Dadurch verläuft auch die kataphoretische Beschichtung langsamer. Der Rechner 34 erfaßt nun laufend die Dickenzunahme der Beschichtung und schaltet dieHowever, the computer 34 can also switch off the coating current source 22 directly via a data line L6 when the desired target layer thickness has been reached. Such a procedure is particularly useful if, for example, the contacting of the objects to be painted is difficult. In this case, it may happen that arise due to the varying electrical resistance due to the poor contact very different current curves. This is shown in FIG. 2 for three identical objects. In the second article whose current curve is drawn at 46, due to the poor contact, only an overall lower current intensity is achieved. As a result, the cataphoretic coating is slower. The computer 34 now continuously detects the increase in thickness of the coating and switches the
Beschichtungsstromquelle 22 zu einem Zeitpunkt t_ kurz vor dem Ende der Taktzeit T ab, bei dem die inzwischen aufgebrachte Lackschicht die gewünschte Dicke erreicht hat. Die Fläche 48 unter der Stromkurve 46 hat somit zumindest annähernd die gleiche Größe wie die Fläche 44 unter der oben bereits beschriebenen ersten StromkurveCoating current source 22 at a time t_ short before the end of the cycle time T from where the now applied lacquer layer has reached the desired thickness. The area 48 under the current curve 46 thus has at least approximately the same size as the area 44 under the first current curve already described above
43. Bei noch schlechterer Kontaktierung ist die Taktzeit T zu kurz, so daß der Gegenstand ausgesondert und zu einem späteren Zeitpunkt nachbearbeitet werden muß.43. In even worse contact the cycle time T is too short, so that the item must be discarded and reworked at a later date.
Bei dem dritten Gegenstand, dessen Stromkurve mit 50 bezeichnet ist, ist hingegen angenommen, daß zwar die Kontaktierung genauso gut ist wie bei dem zuerst beschriebenen Gegenstand mit der S'tromkurve 43. Hier ist aber angenommen, daß sich die Lackflüssigkeit 14 inzwischen so verändert hat, daß die geladenen Pigmente und Bindemittelteilchen eine höhere Beweglichkeit haben, wodurch die Stromstärke nach dem Beginn der Tauchlackierung weniger schnell abnimmt. Der Rechner 34 schaltet deswegen die Beschichtungsstromquelle 22 früher ab, damit die Fläche 52 unter der Stromkurve 50 annähernd die gleiche Größe hat wie die Flächen 44 und 48.In the third object, the current curve is designated by 50, however, it is assumed that although the contact is as good as in the first described object with the S ' tromkurve 43. Here, however, it is assumed that the coating liquid 14 has since changed so in that the charged pigments and binder particles have a higher mobility, as a result of which the current intensity decreases less rapidly after the start of dip-coating. The computer 34 therefore switches off the coating current source 22 earlier, so that the area 52 under the current curve 50 has approximately the same size as the areas 44 and 48.
Die Anlage 10 kann auch mit einer Regelungseinrichtung versehen sein, die sicherstellt, daß die Fahrzeugkarosse- rie 28 zu Beginn der Tauchlackierung stets der gleichen Stromdichte ausgesetzt wird. Im einzelnen wird dabei die von der Beschichtungsstromquelle 22 erzeugte Spannung so eingestellt, daß sich unabhängig von der Fläche der Fahrzeugkarosserie 28 überall die gleiche lackspezifi- sehe Stromdichte ergibt. Die Einhaltung einer bestimmten lackspezifischen Stromdichte hat sich als zweckmäßig erwiesen, da unter diesen .Voraussetzungen aufgebrachte Lacke besonders gute Hafteigenschaften aufweisen und die Taktzeit unabhängig von der Größe der zu beschichtenden Fläche ist. Bei der vorstehend beschriebenen Anlage 10 wird die Fahrzeugkarosserie 28 katpahoretisch beschichtet. Das vorstehend beschriebene Verfahren zur Schichtdicken- messung ist selbstverständlich auch bei solchen Anlagen anwendbar, bei denen eine anaphoretische Beschichtung stattfindet. Hierzu sind lediglich die Polaritäten zu vertauschen und eine Lackflüssigkeit zu verwenden, bei der die Pigmente nicht positiv, sondern negativ geladen sind.The system 10 can also be provided with a control device which ensures that the vehicle body 28 is always exposed to the same current density at the beginning of the dip painting. In detail, the voltage generated by the coating power source 22 is adjusted so that regardless of the surface of the vehicle body 28 everywhere the same lackspezifi- see current density results. Compliance with a specific paint-specific current density has proven to be expedient, as applied under these .Prices coatings have particularly good adhesion properties and the cycle time is independent of the size of the surface to be coated. In the above-described Appendix 10, the vehicle body 28 is katpahoretisch coated. The above-described method for measuring layer thickness is, of course, also applicable to installations in which an anaphoretic coating takes place. For this purpose, only the polarities must be reversed and a coating liquid used in which the pigments are not positive, but negatively charged.
Die Anlage 10 kann nicht nur wie vorstehend beschrieben getaktet, sondern auch durchlaufend betrieben werden. Ferner ist es möglich, mehrere gleichartige Werkstücke gleichzeitig auf geeigneten Warenträgern in das Lacktauchbecken 12 einzuführen und die Dicken der auf den Werkstücken aufgebrachten Lackschicht in der vorstehend beschriebenen Weise zu bestimmen. The system 10 can not only be clocked as described above, but also operated continuously. Furthermore, it is possible to introduce a plurality of similar workpieces at the same time on suitable goods carriers in the paint dip tank 12 and to determine the thicknesses of the applied paint on the workpieces in the manner described above.

Claims

Patentansprüche claims
1. Verfahren zur Bestimmung der Dicke einer Lackschicht, die durch elektrophoretische Tauchlackierung auf einen Gegenstand (28) aufgebracht wird, wobei der Gegenstand (28) zur Tauchlackierung in ein Lackflüssigkeit (4) enthaltendes Lacktauchbecken (12) eingetaucht und als Elektrode mit mindestens einer Gegenelektrode (16, 18) ein elektrisches Feld erzeugt,1. A method for determining the thickness of a lacquer layer, which is applied by electrophoretic dip coating on an object (28), wherein the article (28) for dip coating in a coating liquid (4) containing paint dip tank (12) immersed and as an electrode with at least one counter electrode (16, 18) generates an electric field,
dadurch gekennzeichnet, daßcharacterized in that
die durch den Gegenstand (28) während der Tauchlackierung fließende elektrische Ladung sowie die der Lackflüssigkeit (14) ausgesetzte Oberfläche des Gegenstands (28) ermittelt und daraus die Dicke der Lackschicht bestimmt wird.the surface of the object (28) exposed by the article (28) during dip-coating and the surface of the article (28) exposed to the coating liquid (14) are determined and the thickness of the coating layer determined therefrom.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Bestimmung der Ladung der während der Tauchlackierung durch den Gegenstand (28) fließende elek- trische Strom gemessen wird.2. The method according to claim 1, characterized in that for the determination of the charge during the dip coating by the article (28) flowing electrical current is measured.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß die Oberfläche des Gegenstands (28) anhand des maximalen Einschaltstroms (Jma ) bestimmt wird, der zu Beginn der Tauchlackierung durch den Gegenstand (28) fließt.3. The method according to claim 1 or 2, characterized in that the surface of the article (28) based on the maximum inrush current (Jma) is determined, which flows at the beginning of the dip painting through the article (28).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der Lack- schicht unter Berücksichtigung der Temperatur der Lackflüssigkeit (14) ermittelt wird.4. The method according to any one of the preceding claims, characterized in that the thickness of the paint layer taking into account the temperature of the Paint liquid (14) is determined.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der Lack- schicht unter Berücksichtigung des pH-Wertes der Lackflüssigkeit (14) ermittelt wird.5. The method according to any one of the preceding claims, characterized in that the thickness of the paint layer is determined taking into account the pH of the coating liquid (14).
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der Lack- schicht unter Berücksichtigung der elektrischen Leitfähigkeit der Lackflüssigkeit (14) ermittelt wird.6. The method according to any one of the preceding claims, characterized in that the thickness of the coating layer is determined taking into account the electrical conductivity of the coating liquid (14).
7. Verfahren nach einem der vorhergehenden Ansprücke, dadurch gekennzeichnet, daß die Dicke der Lack- schicht unter Berücksichtigung des Festkörpergehalts der Lackflüssigkeit (14) ermittelt wird.7. The method according to any one of the preceding Ansprücke, characterized in that the thickness of the coating layer is determined taking into account the solids content of the coating liquid (14).
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der Lack- schicht unter Berücksichtigung der Dichte der Lackflüssigkeit (14) ermittelt wird.8. The method according to any one of the preceding claims, characterized in that the thickness of the paint layer is determined taking into account the density of the coating liquid (14).
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der Lack- schicht unter Berücksichtigung des Abstandes zwischen dem Gegenstand (28) und der mindestens einen Gegen- elektrode (16, 18) ermittelt wird.9. The method according to any one of the preceding claims, characterized in that the thickness of the coating layer is determined taking into account the distance between the object (28) and the at least one counter electrode (16, 18).
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zwischen der Elektrode (28) und der mindestens einen Gegenelektrode (16, 18) anliegende Spannung .derart geregelt wird, daß die Einschaltstromdichte bei Beginn der Tauchlackierung zumindest annähernd mit einem vorgegebenen Wert über- einstimmt. 10. The method according to any one of the preceding claims, characterized in that between the electrode (28) and the at least one counter electrode (16, 18) voltage is .derart regulated so that the inrush current at the beginning of the dip coating at least approximately with a predetermined value coincide.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der vorgegebene Wert von Parametern des11. The method according to claim 10, characterized in that the predetermined value of parameters of
Lacks abhängt .Lacks depends.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Tauchlackierung beendet wird, sobald die bestimmte Schichtdicke einen vorgebbaren Sollwert erreicht hat.12. The method according to any one of the preceding claims, characterized in that the dip coating is terminated as soon as the determined layer thickness has reached a predetermined target value.
13. Anlage zur Bestimmung der Dicke einer Lackschicht, die durch elektrophoretische Tauchlackierung auf einen Gegenstand (28) aufgebracht wird, umfassend ein Lacktauchbecken (12) zur Aufnahme einer Lackflüssigkeit (14) , in die der Gegenstand (28) eingetaucht werden kann, eine Spannungsquelle (22) , deren einer Pol (24) mit dem Gegenstand (28) verbindbar ist und deren anderer Pol (20) mit mindestens einer in das Lacktauchbecken reichenden Gegenelektrode (16, 18) verbunden ist,13. A system for determining the thickness of a lacquer layer, which is applied by electrophoretic dip coating on an article (28), comprising a paint dip tank (12) for receiving a coating liquid (14) into which the article (28) can be immersed, a voltage source (22) whose one pole (24) is connectable to the object (28) and whose other pole (20) is connected to at least one counterelectrode (16, 18) extending into the paint immersion basin,
dadurch gekennzeichnet, daßcharacterized in that
die Anlage Mittel (32) zur Bestimmung der durch den Gegenstand (28) während der Tauchlackierung fließenden elektrischen Ladung sowie einen Rechner (34) umfasst, der aus der Ladung und der der Lackflüssigkeit (14) ausgesetzten Oberfläche des Gegenstands (28) die Dicke der Lackschicht stimmt.the installation comprises means (32) for determining the electric charge flowing through the object (28) during the dip coating, and a computer (34), the surface of the object (28) exposed to the charge and the surface of the paint (14) exposed to the paint Coating layer is right.
14. Anlage nach Anspruch 13, dadurch gekennzeichnet, daß die Mittel zur Bestimmung der Ladung einen Strommesser (32) umfassen.14. Plant according to claim 13, characterized in that the means for determining the charge comprise an ammeter (32).
15. Anlage nach Anspruch 13 oder 14, dadurch gekenn- ' zeichnet, daß in dem Rechner (34) der maximale Ein- schaltstrom (J ) speicherbar ist, der zu Beginn der Tauchlackierung durch den Gegenstand (28) fließt.15. Plant according to claim 13 or 14, characterized marked 'characterized in that in the computer (34) of the maximum switching current (J) can be stored, which flows at the beginning of the dip painting through the object (28).
16. Anlage nach Anspruch 15, dadurch gekennzeichnet, daß der Rechner (34) aus dem maximalen Einschaltstrom (Jma ) die der Lackflüssig3keit (14) ausg3esetzte16. Plant according to claim 15, characterized in that the computer (34) from the maximum inrush current (Jma) of the paint liquid 3 speed (14) set off 3
Oberfläche des Gegenstands (28) ermittelt.Surface of the object (28).
17. Anlage nach einem der Ansprüche 13 bis 16, gekenn- zeichnet durch einen mit dem Rechner (34) verbundenen Temperatursensor (38) zur Bestimmung der Temperatur der Lackflüssigkeit (14) .17. Installation according to one of claims 13 to 16, characterized by a marked with the computer (34) temperature sensor (38) for determining the temperature of the coating liquid (14).
18. Anlage nach einem der Ansprüche 13 bis 17, gekenn- zeichnet durch einen mit dem Rechner (34) verbundenen pH-Wert-Sensor (40) zur Messung des pH-Werts der Lackflüssigkeit (14) .18. Installation according to one of claims 13 to 17, characterized by a marked with the computer (34) pH sensor (40) for measuring the pH of the coating liquid (14).
19. Anlage nach einem der Ansprüche 13 bis 18, gekenn- zeichnet durch einen mit dem Rechner (34) verbundenen Leitfähigkeitssensor (42) zur Messung der Leitfähigkeit der Lackflüssigkeit (14) .19. Plant according to one of claims 13 to 18, characterized by a connected to the computer (34) conductivity sensor (42) for measuring the conductivity of the coating liquid (14).
20". Anlage nach einem der Ansprüche 13 bis 19, gekenn- zeichnet durh eine mit dem Rechner (34) verbundenen Sensor zur Bestimmung des Festkörpergehalts der Lackflüssigkeit (14) .20 ". Plant, marked in accordance with any one of claims 13 to 19 characterized durh a connected to the computer (34) sensor for determining the solids content of the coating liquid (14).
21. Anlage nach einem der Ansprüche 13 bis 20, gekenn- zeichnet durch einen mit dem Rechner (34) verbundenen Dichtesensor zur Messung der Dichte der Lackflüssigkeit (14) .21. Installation according to one of claims 13 to 20, characterized by a marked with the computer (34) density sensor for measuring the density of the coating liquid (14).
22. Anlage nach einem der Ansprüche 13 bis 21, dadurch ' gekennzeichnet, daß die Anlage eine Regelungsein- richtung umfaßt, welche die zwischen der Elektrode (28) und der mindestens einen Gegenelektrode (16, 18) anliegende Spannung derart regelt, daß die Einschaltstromdichte bei Beginn der Tauchlackierung einen vorgegebe- nen Wert hat.22. Installation according to one of claims 13 to 21, characterized 'in that the system is a Regelsein- Direction comprises, which regulates the between the electrode (28) and the at least one counter electrode (16, 18) applied voltage such that the inrush current density at the beginning of the dip painting has a predetermined value.
23. Anlage nach einem der Ansprüche 13 bis 22, dadurch gekennzeichnet, daß die Anlage eine Steuerung umfaßt, welche die Tauchlackierung beendet, sobald die bestimmte Schichtdicke einen vorgebbaren Sollwert erreicht hat . 23. Plant according to one of claims 13 to 22, characterized in that the system comprises a control which terminates the dip coating as soon as the determined layer thickness has reached a predetermined desired value.
EP04803525A 2004-01-22 2004-12-04 Method and system for determining the thickness of a layer of lacquer Not-in-force EP1704270B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04803525T PL1704270T3 (en) 2004-01-22 2004-12-04 Method and system for determining the thickness of a layer of lacquer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004003456A DE102004003456B4 (en) 2004-01-22 2004-01-22 Method and system for determining the thickness of a lacquer layer
PCT/EP2004/013813 WO2005073436A1 (en) 2004-01-22 2004-12-04 Method and system for determining the thickness of a layer of lacquer

Publications (2)

Publication Number Publication Date
EP1704270A1 true EP1704270A1 (en) 2006-09-27
EP1704270B1 EP1704270B1 (en) 2010-06-23

Family

ID=34800942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04803525A Not-in-force EP1704270B1 (en) 2004-01-22 2004-12-04 Method and system for determining the thickness of a layer of lacquer

Country Status (9)

Country Link
US (1) US7825671B2 (en)
EP (1) EP1704270B1 (en)
AT (1) ATE471999T1 (en)
DE (2) DE102004003456B4 (en)
PL (1) PL1704270T3 (en)
RU (1) RU2368708C2 (en)
UA (1) UA90466C2 (en)
WO (1) WO2005073436A1 (en)
ZA (1) ZA200606571B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006044050A1 (en) 2006-09-20 2008-04-03 Eisenmann Anlagenbau Gmbh & Co. Kg Process for the electrophoretic coating of workpieces and coating equipment
FR2974174B1 (en) * 2011-04-18 2013-04-26 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING THE ANTI-CORROSION PROTECTION LAYER DEPOSITED INSIDE THE HOLLOW BODIES OF THE BODY OF A MOTOR VEHICLE
DE102011106702A1 (en) 2011-07-06 2013-01-10 Bejotec Gmbh Analyzing a process for coating an object, by coating an object using an electrophoretic dip coating, and determining a current density and a layer thickness of the coating process, where the current density is measured using electrodes
CN104237611A (en) * 2013-06-06 2014-12-24 北汽福田汽车股份有限公司 Electrophoresis abnormity detector and method
CN103453866B (en) * 2013-07-29 2016-01-27 浙江吉利汽车有限公司 A kind of electrophoresis inner chamber film thickness measuring method and measurement mechanism
CN104655074B (en) * 2015-03-11 2017-09-19 北京汽车研究总院有限公司 A kind of vehicle body inner chamber electrophoretic coating detecting tool
CN104962976A (en) * 2015-07-14 2015-10-07 安徽财富重工机械有限公司 Automobile part cathode electrophoresis paint surface quality processing technique

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB293343A (en) * 1927-04-06 1928-07-06 Dunlop Rubber Co Method and means for determining optimum current strength in the electro deposition of rubber and other substances
DE1577934C3 (en) * 1966-03-17 1973-11-08 Siemens Ag, 1000 Berlin U. 8000 Muenchen Device for supplying power to workpieces when passing through electrophoretic paint baths
US3492213A (en) * 1967-06-02 1970-01-27 Ford Motor Co Method for electrodeposition coating including a preimmersion deposition step
US3627661A (en) * 1969-02-13 1971-12-14 Ransburg Electro Coating Corp Electronic apparatus and method
US3658676A (en) * 1970-05-13 1972-04-25 Sherwin Williams Co Monitoring apparatus and process for controlling composition of aqueous electrodeposition paint baths
GB2085922B (en) * 1980-10-15 1984-01-25 Metal Box Co Ltd Electrocoating apparatus
JPS63310996A (en) * 1987-06-10 1988-12-19 Honda Motor Co Ltd Coating method by electrodeposition
CA1322737C (en) * 1987-08-12 1993-10-05 Akito Inoue Electrodeposition coating system
JPH01272795A (en) * 1988-04-25 1989-10-31 Mitsubishi Motors Corp Electrodeposition coating method
JP2768969B2 (en) * 1989-03-30 1998-06-25 トリニティ工業 株式会社 Electrodeposition method in mixed production line
JP2732148B2 (en) 1990-10-25 1998-03-25 トリニティ工業株式会社 Electrocoating equipment
US5914022A (en) * 1996-01-05 1999-06-22 Lowry; Patrick Ross Method and apparatus for monitoring and controlling electrodeposition of paint
US5759371A (en) * 1996-07-09 1998-06-02 Ufs Corporation Electrocoat painting overload protection circuit and method
JPH10237695A (en) * 1997-02-20 1998-09-08 Toyota Motor Corp Electrodeposition coating method
JP3877442B2 (en) * 1998-08-24 2007-02-07 デュポン神東・オートモティブ・システムズ株式会社 Electrodeposition coating method and continuous electrodeposition apparatus
JP4384825B2 (en) * 2001-04-26 2009-12-16 上村工業株式会社 Method for calculating film thickness of electrodeposition coating
JP4641672B2 (en) * 2001-07-02 2011-03-02 関西ペイント株式会社 Coating equipment management system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005073436A1 *

Also Published As

Publication number Publication date
RU2006130008A (en) 2008-02-27
UA90466C2 (en) 2010-05-11
DE102004003456A1 (en) 2005-08-25
US7825671B2 (en) 2010-11-02
ATE471999T1 (en) 2010-07-15
RU2368708C2 (en) 2009-09-27
PL1704270T3 (en) 2010-11-30
US20080169829A1 (en) 2008-07-17
DE102004003456B4 (en) 2006-02-02
DE502004011320D1 (en) 2010-08-05
EP1704270B1 (en) 2010-06-23
ZA200606571B (en) 2008-01-08
WO2005073436A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
EP0376222B1 (en) Process and apparatus for electrophoretically painting small bulk objects
DE2006086A1 (en) Method and system for adjusting the concentration of coating materials contained in a coating solution, which are deposited electrically on an electrically conductive object while the object is immersed in the solution
DE102013107505A1 (en) Process for applying an aqueous treatment solution to the surface of a moving steel belt
EP1704270B1 (en) Method and system for determining the thickness of a layer of lacquer
DE19643082C2 (en) Process for the interior and exterior coating of a body with cavities
EP0722515B1 (en) Process for the galvanic application of a surface coating
DE1546929A1 (en) Method and device for the electrical coating of electrically conductive objects with a coating material in a liquid bath
DE4116643C2 (en) Process for anodic or cathodic electro-painting of strip or profile material
DE1623042A1 (en) Device and method for measuring and regulating the concentration of non-volatile substances in a liquid
DE1546926B2 (en) Process for the electrophoretic coating of motor vehicle bodies having cavities
DE4127740C2 (en)
DE1546919B1 (en) Process for the electrophoretic coating of a metallic object
DE102006033721A1 (en) Method and device for predicting the paint layer thickness
EP0998596A2 (en) Electric dip coating
DE10326605A1 (en) Operating method for a cathodic paint dipping plant, especially for coating auto bodies, wherein the current between the cathode car body and distributed anodes is temporally controlled during the process to ensure even coating
DE102013224748B4 (en) Method for determining the maximum deposition voltage or deposition current in an electrocoating process
DE102012023844A1 (en) Method for determining time-dependant coating parameter during electrical dipping coating, involves scanning current and voltage sensors with predetermined sampling rate by switching ON direct current power source
DE102007006335A1 (en) Motor vehicle`s component e.g. metal structure, corrodibility predicting method, involves providing data that characterizes geometries of component of motor vehicle and reservoir, respectively
DE19940233C2 (en) Process for electrocoating automotive bodies
DE2545276A1 (en) MEASURING ARRANGEMENT AND PROCEDURE FOR DETERMINING HANDLING PARAMETERS IN ELECTRIC DIP PAINTING
DE102013003377A1 (en) Method for electrophoretic coating of workpiece e.g. electrical conductive substrate with electrical dipping varnish, involves performing electrophoretic coating of workpiece according to mode change of separation voltage
DE2534918C3 (en) Device for electrocoating
DE1621915B2 (en) DEVICE FOR CONTINUOUS ELECTRICAL COATING OF ELECTRICALLY CONDUCTIVE OBJECTS
DE1646168C (en) Process for the electrophoretic coating of conductive materials with lacquer
DE102021111415A1 (en) METHOD OF OPERATING A TREATMENT PLANT AND TREATMENT PLANT AND COMPUTER PROGRAM PRODUCT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060913

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EISENMANN ANLAGENBAU GMBH & CO. KG

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004011320

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7855

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110324

BERE Be: lapsed

Owner name: EISENMANN ANLAGENBAU G.M.B.H. & CO. KG

Effective date: 20101231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004011320

Country of ref document: DE

Effective date: 20110323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011320

Country of ref document: DE

Owner name: EISENMANN AG, DE

Free format text: FORMER OWNER: EISENMANN ANLAGENBAU GMBH & CO. KG, 71032 BOEBLINGEN, DE

Effective date: 20110513

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011320

Country of ref document: DE

Owner name: EISENMANN SE, DE

Free format text: FORMER OWNER: EISENMANN ANLAGENBAU GMBH & CO. KG, 71032 BOEBLINGEN, DE

Effective date: 20110513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101204

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 471999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101224

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101204

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20141120

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011320

Country of ref document: DE

Representative=s name: OSTERTAG & PARTNER, PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011320

Country of ref document: DE

Owner name: EISENMANN SE, DE

Free format text: FORMER OWNER: EISENMANN AG, 71032 BOEBLINGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20151203

Year of fee payment: 12

Ref country code: PL

Payment date: 20151120

Year of fee payment: 12

Ref country code: CZ

Payment date: 20151202

Year of fee payment: 12

Ref country code: FR

Payment date: 20151221

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161204

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7855

Country of ref document: SK

Effective date: 20161204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191230

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191219

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004011320

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161204