EP1700031A2 - Turbine and hydroelectric power plant for very low drops - Google Patents

Turbine and hydroelectric power plant for very low drops

Info

Publication number
EP1700031A2
EP1700031A2 EP04805486A EP04805486A EP1700031A2 EP 1700031 A2 EP1700031 A2 EP 1700031A2 EP 04805486 A EP04805486 A EP 04805486A EP 04805486 A EP04805486 A EP 04805486A EP 1700031 A2 EP1700031 A2 EP 1700031A2
Authority
EP
European Patent Office
Prior art keywords
turbine
wheel
meters
less
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04805486A
Other languages
German (de)
French (fr)
Inventor
Jacques Fonkenell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mj2 Technologies Sas
Original Assignee
Fonkenell Jacques
Mj2 Technologies S A S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fonkenell Jacques, Mj2 Technologies S A S filed Critical Fonkenell Jacques
Publication of EP1700031A2 publication Critical patent/EP1700031A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/126Rotors for essentially axial flow, e.g. for propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/14Rotors having adjustable blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a hydraulic power station turbine for very low fall and a hydraulic power station for very low fall.
  • a hydroelectric plant potential energy stored in the water accumulated in a dam or diverted into a water intake is used to drive the wheel of a turbine. The potential energy is then transformed into mechanical energy. The turbine, in turn, drives a generator which converts mechanical energy into electrical energy.
  • Hydraulic power plants differ according to the characteristics of the sites equipped. In particular, a distinction is made between low-head power plants for which the height between the water level upstream of the hydraulic power station and the water level downstream of the hydraulic power station, or head of fall, is less than about 30 meters, and more particularly, very low head hydraulic power plants for which the head is less than about 10 meters.
  • FIG. 1 and 2 each diagrammatically represent a partial section of a conventional hydraulic power station 5 equipping a very low head. It comprises a water inlet pipe 10, the inlet of which is protected by a grid 12. A screen, not shown, is generally provided to prevent clogging of the grid 12.
  • the water inlet conduit 10 has the overall shape of a convergent which guides the water towards a wheel 13 of a turbine 14 d axis D.
  • a distributor 16 is provided in the water inlet conduit 10 upstream of the turbine 14 to properly orient the flow of water relative to the blades 17 of the wheel 13 of the turbine 14.
  • the turbine 14 of a hydraulic unit 5 for low fall or very low fall is generally a Kaplan turbine which has the shape of a propeller and which generally comprises adjustable blades 17.
  • a vacuum cleaner 18 guides the water from the outlet of the turbine 14 to a leakage channel 9.
  • the turbine 14 can be stopped by means of the closure of the distributor 16 generally equipped with movable steerers.
  • the axis D of the turbine 14 is arranged substantially vertically.
  • the turbine 14 drives an electric generator 20 disposed out of the flow.
  • one axis D of the turbine 14 is substantially horizontal.
  • the electric generator (not shown) is arranged in a bulb-shaped casing 22 placed in the flow.
  • a Kaplan type turbine generally has an optimal efficiency for a specific rotation speed of the wheel 13.
  • the purpose of the water inlet duct 10 is to accelerate the flow of water to a speed adapted to the optimum speed of rotation of the wheel 13.
  • the speed of the water leaving the wheel 13 is higher than the speed of the flow upstream of the hydraulic unit 5.
  • the purpose of the vacuum cleaner 18 is to slow down 1 flow at the outlet of the wheel 13 and thus allows to recover as much as possible of the kinetic energy remaining in the flow at the outlet of the turbine 14.
  • a characteristic K is defined for a turbine 14 of a given type of hydraulic power station corresponding to the ratio between the kinetic energy of the flow leaving the wheel 13 and the potential energy of the fall.
  • the ratio K is representative of the energy still contained in the flow in kinetic form at the outlet of the wheel 13, relative to the energy made available to the turbine and is therefore representative of the energy to be recovered by l vacuum cleaner 18.
  • Mr. Joachim Raabe in his work entitled “Hydro Power, indicates that the ratio K is worth 30%, 50% and 80% respectively for falls of 70 meters, 15 meters and 2 meters.
  • the significant kinetic energy to be recovered in turbines with very low falls at the outlet of the wheel 13 leads to the construction of large vacuum cleaners because their divergence is limited by the risks of detachment of the liquid stream.
  • the present invention aims to provide a turbine for this ntrale hydraulic adapted to very low falls with a water inlet pipe and a vacuum cleaner of small dimensions, even nonexistent.
  • the present invention provides a turbine for a hydraulic power station intended to equip a watercourse at a very low drop of less than 10 meters, and preferably from 1 to 5 meters, comprising a wheel in helical form, the ratio between the kinetic energy of the water flow at the outlet of the wheel and the potential energy of the fall being less than 20%.
  • the diameter of the wheel is greater than 3 meters.
  • the speed of rotation of the wheel is less than 50 revolutions per minute.
  • the turbine comprises a casing traversed by an opening comprising a cylindrical portion, the wheel comprising blades arranged at the level of the cylindrical portion; a hub on which the blades are mounted; a fixed box, the hub being rotatably mounted on the fixed box; and a distributor upstream of the wheel with respect to the water flow and comprising profiles connecting the fixed box to the casing.
  • the opening comprises a converging portion upstream of the cylindrical portion with respect to the water flow and a diverging portion downstream of the cylindrical portion with respect to the flow of water, the ratio between the thickness of the casing along the axis of rotation of the wheel and the diameter of the wheel being less than 0.5.
  • the distributor comprises sections distributed in a star around the fixed box, the turbine comprising a screen upstream of the distributor with respect to the water flow and comprising at least one arm mounted to rotate around the fixed box to separate bulky bodies held against the dispenser.
  • the turbine comprises means for orienting the blades so as to adapt the flow rate of the turbine to the flow rate of the waterfall and / or to close off the opening of the casing.
  • the turbine comprises a hydraulic pump driven by the wheel.
  • the present invention also provides a hydraulic power station intended to equip a watercourse at a very low drop of less than 10 meters, for example between 1 and 5 meters, comprising a turbine comprising a propeller-shaped wheel, the ratio between the kinetic energy of the water flow at the outlet of the wheel and the potential energy of the fall being less than 20%.
  • the central unit comprises a support delimiting a passage channel in which the fall is created and in which the turbine is arranged, and means for moving the turbine relative to the support between a first position where the turbine completely closes the passage and at least a second position where the turbine partially closes the passage.
  • FIGS. 1 and 2 previously described, schematically represent sections of conventional hydraulic power plants for very low falls;
  • FIG. 3 schematically represents a section of a hydraulic power station according to the present invention;
  • Figure 4 shows in more detail a section of an exemplary embodiment of a hydraulic power plant according to the present invention;
  • Figure 5 shows a top view of the hydraulic power unit of Figure 4;
  • FIG. 6 represents a more detailed section of the turbine of the hydraulic power station of FIG.
  • FIG. 3 schematically represents a section of a hydraulic power station 25 according to the present invention substantially on the same scale as the hydraulic power stations 5 of FIGS. 1 and 2.
  • the hydraulic power station 25 equips a very low drop whose drop height is substantially the same as the fall height in Figure 1 or 2, that is to say less than 10 meters and preferably 1 to 5 meters.
  • the hydraulic unit 25 according to the invention provides for the use of a turbine 30 of axis D comprising a casing 32 in which is disposed a wheel 34 having a large diameter and being adapted to operate at a speed of rotation of a few tens of revolutions per minute, for example from 10 to 50 revolutions per minute.
  • a speed of rotation is compatible with a flow speed close to the normal speed of the flow upstream of the hydraulic power station 25. This makes it possible to minimize the dimensions of the water inlet pipe and of the vacuum cleaner provided at the casing 32.
  • the casing 32 can therefore be included in a thin parallelepiped maintained by a concrete support 36 whose dimensions are reduced compared to the civil engineering works to be provided for conventional hydraulic power stations.
  • the hydraulic power station 25 makes it possible to obtain an electrical power of 280 K, for a turbine 30 whose diameter is about 5 meters and rotating at about 20 revolutions / min.
  • the ratio K is then equal to 11%.
  • Housing 32 is then substantially included in a parallelepiped whose thickness along the axis D is equal to about 1.9 meters, whose width, corresponding to the distance between the vertical walls 40, 41, is equal to about 6.4 meters, and whose height in the direction perpendicular to the axis D, is equal to approximately 6.9 meters.
  • the turbine 30 according to the invention can equip a hydraulic power station on very low falls less than 10 meters.
  • the ratio K of the turbine 30, as previously defined, is less than 20% for such falls.
  • Figures 4 and 5 respectively show a section and a top view of a more detailed embodiment of the hydraulic power station 25 according to the present invention. The direction of water flow is indicated by arrows.
  • the casing 32 of the turbine 30 is held in position relative to the flow by the support 36 comprising a base 38 and two vertical walls 40, 41.
  • the casing 32 is adapted to slide in grooves 42, 43 parallel and inclined by relative to the vertical, made in the vertical walls 40, 41.
  • the angle of inclination of the axis D of the turbine 30 relative to the vertical depends on the angle of inclination of the grooves 42, 43 relative to the vertical. This angle is chosen in particular as a function of the height of fall, the depth of the watercourse, the diameter of the wheel 34 and the thickness of the casing 32.
  • the axis of rotation of the wheel 34 is inclined by approximately 34 ° relative to the vertical.
  • Two hydraulic cylinders 44, 45 are adapted to slide the casing 32 in the grooves 42, 43.
  • the position of the casing 32 in FIGS. 4 and 5 corresponds to the normal operation of the hydraulic power station 25.
  • a gangway 46 (partially shown in FIG. 4) allows the spanning of the turbine 30, in particular for maintenance purposes.
  • the wheel 34 of the turbine 30 comprises orientable blades 48 connected to a hub 50.
  • the means 50 is rotatably mounted about the axis D relative to a fixed box 52 connected to the casing 32 by a distributor 54.
  • the distributor 54 comprises a set of fixed sections 56 which radiate from the fixed box 52 to the casing 32. The sections 56 direct the flow towards the blades 48 so that the flow reaches the blades 48 in a suitable orientation.
  • FIG. 6 represents a more detailed section of the turbine 30 of FIG. 4.
  • the casing 32 is crossed by an opening 62 which comprises a converging upstream portion 64, for example conical, playing the role of an inlet duct for water, a cylindrical central portion 66 and a divergent downstream portion 68, for example conical, playing the role of a vacuum cleaner.
  • FIGS. 7 and 8 show views of the turbine 30 of FIG. 6 in the direction F, the distributor 54 not being not shown in FIG. 8.
  • the casing 32 consists of a parallelepipedal front unit 70 comprising two studs 72, 74 for the connection of the hydraulic cylinders 44, 45.
  • the wheel 34 comprises eight orientable blades 48 which can be oriented to partially overlap as illustrated by the dotted lines.
  • the hub 50 comprises an internal cylindrical portion 78 rotatably mounted on a fixed tubular element 80 by means of a bearing device 82.
  • the internal cylindrical portion 78 is connected to an external portion 84 through front and rear annular plane walls 86, 87.
  • Each blade 48 is supported by the hub 50 via a first bearing 88 at the external portion 84 and a second bearing 90 at the internal cylindrical portion 78.
  • the bearings 88, 90 define an axis for each blade 48 pivot E.
  • the hollow tubular element 82 is fixed to the fixed box 52 by screws 91.
  • a hydraulic pump 92 is arranged in the fixed box 52.
  • the hydraulic pump 92 is driven by a rotary shaft 94 whose end is fixed to the rear wall 87 of the hub 50 by means of screws 96.
  • the hydraulic pump 92 is connected to a hydraulic motor (not shown) by lines (not shown) transporting hydraulic fluid under pressure.
  • the hydraulic pump and motor assembly constitutes a conventional hydrostatic transmission.
  • the hydraulic motor drives an electric generator (not shown).
  • the hydraulic motor and the electric generator are advantageously separated from the turbine 30.
  • the lines connecting the hydraulic pump 92 to the hydraulic motor are in particular arranged in the fixed sections 56 of the distributor 54 to connect the hydraulic pump 92 to the casing
  • FIG. 9 represents a more detailed view of the hub 50 mounted for rotation about the axis D on the hollow tubular fixed element 78. Only one blade 48 is partially shown.
  • the bearing 88 at the level of the external wall 84 of the means 50 includes grooves 98 for the installation of seals (not shown) allowing the rotation of the blade 48 associated with the bearing 88 while ensuring the sealing of the internal volume of the hub 50 relative to water flow.
  • the bearing device 82 includes bearings allowing the hub 50 to rotate around the tubular element 78 and bearings also allowing a force recovery along the axis D. In fact, the flow on the wheel 34 generates a torque motor around axis D and a force along axis D from upstream to downstream of the flow.
  • a sealing device 98 prevents the ingress of water into the space separating the internal cylindrical portion 78 from the tubular element 80.
  • the orientation mechanism of the blades 48 comprises an annular element 100, shown partially in FIG. 9, arranged in a plane perpendicular to the axis D.
  • the annular element 100 is held by support elements 102 distributed circumferentially on the rear wall 87 of the hub 50.
  • the support elements 102 authorize the rotation of the annular element 100 about the axis D. Such rotation is obtained by means of two hydraulic cylinders 104, 106, not shown in FIG. 9. L pressure oil supply to the hydraulic cylinders 104 is not shown.
  • Each cylinder 104, 106 comprises a cylinder 108 mounted on the external portion 84 of the hub 50 by a pivot link 109, and a rod 110 sliding in the cylinder 108 and connected by a pivot link 111 to the annular element 100.
  • Each blade 48 comprises a blade body 112 which is extended by a cylindrical tip 114. The free end of the cylindrical tip 114 is mounted in the bearing 90 and the end of the cylindrical tip 114 connected to the body of the blade 112 is mounted in the bearing 88.
  • Each blade 48 is rotated about its axis by a lever 116 which is fixed to the blade 48 at the level of the cylindrical end piece 114 and whose opposite end 118 has the shape of a cylindrical rod.
  • a yoke 120 is adapted to move the rod-shaped end 118 of the lever 116 and has a central bore 122 in which the rod-shaped end 118 slides.
  • a link 124 which has two arms 126 is associated with each blade 48 , 127 parallel each having a groove 128, 129 which extends in a direction substantially contained in a plane perpendicular to the axis D.
  • the yoke 120 is adapted to slide in the grooves 128, 129.
  • the yoke 120 is further mounted pivoting with respect to the link 124 along an axis perpendicular to the direction of the grooves 128, 129.
  • the link 124 is fixed to the annular element 100 by means of a ball joint 130.
  • the orientation of the blades 48 makes it possible to adapt the flow rate of the turbine 30 to the flow rate of the waterfall.
  • the orientation mechanism of the blades 48 allows the pivoting of the blades 48 to be synchronized.
  • the actuation of the hydraulic cylinders 104, 106 causes the annular element 100 to pivot about the axis D.
  • the rotation of the annular element 100 causes the displacement of the links 124, the yokes 120 and the levers 116 and finally causes the rotation of each blade 48 about its axis.
  • the profile of the blades 48 is defined so as to allow the covering of a blade on an adjacent blade along a continuous contact line.
  • each blade By arranging each blade so that it can cover the adjacent blade, the flow of water in the opening 62 of the housing 32 is obtained by closing the blades 48 and therefore stopping the turbine 30 This avoids the use of a stop valve or an adjustable distributor.
  • a floating body interferes between two blades 48.
  • the grooves 128, 129 allow one of the blades 48 to remain in a partially closed position while the other blades close completely. .
  • the floating body can be eliminated the next time the blades 48 are opened.
  • the hydraulic shape of the blades 48 is designed so as to give these blades a hydraulic torque around their axis E having a tendency to cause the blades 48 towards closing.
  • This arrangement makes it possible to obtain a shutdown of the turbine 30 by simply releasing the jacks 104 and 106.
  • the diameter of several meters of the wheel 34 is such that the average speed of the outflow from the outgoing wheel is low with regard from the fall. This makes it possible to minimize the dimensions of the downstream portion 68 of the opening 62 which forms the vacuum cleaner.
  • the low speed of crossing of the wheel 34 implies a very low speed of rotation compared to current conventional turbines equipping hydraulic power plants with low or very low falls.
  • the transmission of the torque supplied by the shaft 96 can be ensured by gear multipliers.
  • a slow electric generator adapted to be driven by a shaft having a low speed of rotation
  • a slow electric generator can be provided directly in place of the hydraulic pump 92 at the level of the fixed end box 52 or in the hub 50.
  • FIGS. 11 and 12 show two particular positions of use of the turbine 30 according to the present invention making it possible to remove the bulky bodies which accumulate against the distributor 54 during the use of the turbine 30.
  • the automatic screen tends to move the bulky bodies which accumulate on the distributor 54 at the top or the base of the distributor 54 according to the density of the bulky bodies.
  • the hydraulic cylinders 44, 45 can move the turbine 30 in a low position shown in FIG. 11.
  • the low position allows the evacuation of bulky bodies which have accumulated at the top of the distributor 54 and which are then entrained by the flow like this is indicated by the arrow 135.
  • the hydraulic cylinders 44, 45 can move the turbine 30 in a high position, represented in FIG. 12.
  • the high position allows the evacuation of the bulky bodies accumulated at the base of the distributor 54 and which are then driven by the flow as indicated by arrow 136.
  • FIG. 13 represents the hydraulic power station according to the present invention in which the turbine 30 is placed in an extreme high position where it is largely out of of the flow.
  • the hub 50 and the fixed box 52 are then accessible from the gateway 46, for example, for maintenance operations. For larger maintenance operations, the turbine 30 can be completely withdrawn from the support element 36.
  • the upstream converging portion 64, playing the role of water inlet conduit, and the divergent downstream portion 68, playing the role of a vacuum cleaner are of reduced dimensions and possibly different.
  • the converging upstream portion 64 and / or the diverging downstream portion 68 may be absent, the opening 62 can then be completely cylindrical.
  • the present invention provides many advantages. Firstly, it makes it possible to minimize or even eliminate the converging portion of the casing forming the water inlet conduit and, more particularly, the divergent portion of the casing forming the vacuum cleaner. This makes it possible to reduce the dimensions of the casing in the direction of the axis of the wheel, and the dimensions of the support on which the casing is mounted.
  • the diverging and converging portions being of reduced dimensions, they can be produced at the casing which is generally made up of mechanically welded mechanical parts.
  • the converging and diverging portions are no longer produced by large concrete constructions whose manufacturing cost is high.
  • the manufacturing cost of the hydraulic power plant according to the invention is therefore reduced.
  • the hydraulic power plant according to the invention occupying a small volume, it can very easily be installed on existing sites.
  • the low speed of the flow passing through the wheel, the large size and the low speed of rotation of the wheel make the turbine according to the present invention particularly suitable for the passage of fish both in ascent and downstream. It is then no longer necessary to provide a passage reserved for fish next to the hydraulic power station.
  • the blades of the wheel are orientable and can close over one another and then play the role of a valve by stopping the flow through the turbine. . It is therefore not necessary to provide a valve or a mobile distributor, generally arranged upstream of the turbine and dedicated to stopping the flow. This makes it possible to further reduce the dimensions of the hydraulic power station according to the invention.
  • the dispenser can play the role of the protective grid of the wheel by preventing bulky bodies from reaching the wheel. It is therefore not necessary to provide a dedicated protective grid which must generally be provided upstream of the turbine. This makes it possible to further reduce the dimensions of the hydraulic power station according to the invention.

Abstract

The invention relates to a turbine (30) for hydroelectric plants (25) on water courses with very low drops of less than 10 metres and preferably of 1 to 5 metres, comprising a wheel (34) in the form of a screw, the ratio between kinetic energy of the water flow at the outlet from the wheel and the potential energy of the drop being less than 20 %.

Description

TURBINE ET CENTRALE HYDRAULIQUE POUR TRES BASSE CHUTE TURBINE AND HYDRAULIC POWER PLANT FOR VERY LOW FALLS
La présente invention concerne une turbine de centrale hydraulique pour très basse chute et une centrale hydraulique pour très basse chute. Dans une centrale hydraulique, de l'énergie poten- tielle emmagasinée dans 1 ' eau accumulée dans un barrage ou dérivée dans une prise d'eau est utilisée pour actionner la roue d'une turbine. L'énergie potentielle se transforme alors en énergie mécanique. La turbine, à son tour, entraîne un générateur qui transforme 1 ' énergie mécanique en énergie électrique . Les centrales hydrauliques se différencient selon les caractéristiques des sites équipés. En particulier, on distingue les centrales hydrauliques de basses chutes pour lesquelles la hauteur entre le niveau de 1 ' eau en amont de la centrale hydraulique et le niveau de l'eau en aval de la centrale hydrau- lique, ou hauteur de chute, est inférieure à environ 30 mètres, et plus particulièrement, les centrales hydrauliques de très basses chutes pour lesquelles la hauteur de chute est inférieure à environ 10 mètres. Les figures 1 et 2 représentent chacune schémati- quement une coupe partielle d'une centrale hydraulique 5 classique équipant une très basse chute. Elle comprend un conduit d'entrée d'eau 10 dont l'entrée est protégée par une grille 12. Un dégrilleur, non représenté, est généralement prévu pour éviter le colmatage de la grille 12. Le conduit d' entrée d' eau 10 a globalement la forme d'un convergent qui guide l'eau vers une roue 13 d'une turbine 14 d'axe D. Un distributeur 16 est prévu dans le conduit d'entrée d'eau 10 en amont de la turbine 14 pour orienter convenablement 1 ' écoulement d' eau par rapport aux pales 17 de la roue 13 de la turbine 14. La turbine 14 d'une centrale hydraulique 5 pour basse chute ou très basse chute est généralement une turbine Kaplan qui a la forme d'une hélice et qui comprend généralement des pales 17 orientables. Un aspirateur 18 guide l'eau depuis la sortie de la turbine 14 vers un canal de fuite 9. La turbine 14 peut être arrêtée au moyen de la fermeture du distributeur 16 généralement équipé de directrices mobiles . En figure 1, l'axe D de la turbine 14 est disposé sensiblement verticalement. La turbine 14 entraîne un générateur électrique 20 disposé hors de l'écoulement. En figure 2, 1 'axe D de la turbine 14 est sensiblement horizontal. Le générateur électrique (non représenté) est disposé dans un carter 22 en forme de bulbe placé dans l'écoulement. Une turbine de type Kaplan a généralement un rendement optimal pour une vitesse de rotation spécifique de la roue 13. Le conduit d'entrée d'eau 10 a pour but d'accélérer l'écoulement d'eau jusqu'à une vitesse adaptée à la vitesse de rotation de rendement optimal de la roue 13. La vitesse de l'eau en sortie de la roue 13 est plus élevée que la vitesse de l'écoulement en amont de la centrale hydraulique 5. L'aspirateur 18 a pour but de ralentir 1 'écoulement en sortie de la roue 13 et permet ainsi de récupérer la plus grande partie possible de l'énergie cinétique subsistant dans l'écoulement à la sortie de la turbine 14. De façon générale, on définit un rapport K caractéristique d'une turbine 14 d'un type de centrale hydraulique donné correspondant au rapport entre l'énergie cinétique de l'écoulement en sortie de la roue 13 et l'énergie potentielle de la chute. Le rapport K, exprimé en %, est donné par la relation suivante : K = 100*V2/2gH où V est la vitesse moyenne de l'écoulement en sortie de roue 13, g la constante de gravitation et H la hauteur de chute. Le rapport K est représentatif de l'énergie encore contenue dans l'écoulement sous forme cinétique à la sortie de la roue 13, rapportée à l'énergie mise à la disposition de la turbine et est donc représentatif de l'énergie à récupérer par l'aspirateur 18. Plus le rapport K est élevé, plus le ralentissement à réaliser par l'aspirateur 18 est important. Pour des turbines Kaplan classiques de basses chutes, M. Joachim Raabe, dans son ouvrage intitulé "Hydro Power , indique que le rapport K vaut respectivement 30%, 50% et 80% pour des chutes de 70 mètres, 15 mètres et 2 mètres. L'importante énergie cinétique à récupérer dans les turbines de très basses chutes en sortie de la roue 13 amène à construire des aspirateurs de grandes dimensions car leur divergence est limitée par les risques de décollement de la veine liquide. La réalisation du conduit d'entrée d'eau 10 et de l'aspirateur 18 de la centrale hydraulique 5 requiert donc la réalisation de constructions de génie civil importantes. Le coût très élevé de telles constructions alourdit considérablement le coût total de la centrale et a fortement limité la construction de centrales hydrauliques sur des basses chutes et très basses chutes pour lesquelles le coefficient K est particulièrement élevé . La présente invention vise à proposer une turbine pour centrale hydraulique adaptée aux très basses chutes ayant un conduit d'entrée d'eau et un aspirateur de faibles dimensions, voire inexistants . Pour atteindre cet objet, la présente invention prévoit une turbine pour centrale hydraulique destinée à équiper un cours d'eau au niveau d'une très basse chute inférieure à 10 mètres, et de préférence de 1 à 5 mètres, comprenant une roue en forme d'hélice, le rapport entre l'énergie cinétique de l'écoulement d'eau en sortie de la roue et l'énergie potentielle de la chute étant inférieur à 20 %. Selon un mode de réalisation de l'invention, le diamètre de la roue est supérieur à 3 mètres. Selon un mode de réalisation de 1 ' invention, la vitesse de rotation de la roue est inférieure à 50 tours par minute. Selon un mode de réalisation de 1 ' invention, la turbine comporte un carter traversé par une ouverture comprenant une portion cylindrique, la roue comprenant des pales disposées au niveau de la portion cylindrique ; un moyeu sur lequel sont montées les pales ; un caisson fixe, le moyeu étant monté en rotation sur le caisson fixe ; et un distributeur en amont de la roue par rapport à l'écoulement d'eau et comportant des profilés reliant le caisson fixe au carter. Selon un mode de réalisation de l'invention, l'ouverture comprend une portion convergente en amont de la portion cylindrique par rapport à l'écoulement d'eau et une portion divergente en aval de la portion cylindrique par rapport à l'écoulement d'eau, le rapport entre l'épaisseur du carter selon l'axe de rotation de la roue et le diamètre de la roue étant inférieur à 0.5. Selon un mode de réalisation de 1 ' invention, le distributeur comprend des profilés répartis en étoile autour du caisson fixe, la turbine comprenant un dégrilleur en amont du distributeur par rapport à l'écoulement d'eau et comprenant au moins un bras monté à rotation autour du caisson fixe pour écarter des corps encombrants maintenus contre le distributeur. Selon un mode de réalisation de l'invention, la turbine comprend un moyen pour orienter les pales de façon à adapter le débit de la turbine à débit de la chute d'eau et/ou pour obturer 1 ' ouverture du carter. Selon un mode de réalisation de 1 ' invention, la turbine comprend une pompe hydraulique entraînée par la roue. La présente invention prévoit également une centrale hydraulique destinée à équiper un cours d'eau au niveau d'une très basse chute inférieure à 10 mètres, par exemple comprise entre 1 et 5 mètres, comprenant une turbine comportant une roue en forme d'hélice, le rapport entre l'énergie cinétique de l'écoulement d'eau en sortie de la roue et l'énergie potentielle de la chute étant inférieur à 20 %. Selon un mode de réalisation de l'invention, la centrale comprend un support délimitant un canal de passage dans lequel se crée la chute et dans lequel est disposée la turbine, et des moyens pour déplacer la turbine par rapport au support entre une première position où la turbine obture complètement le passage et au moins une seconde position où la turbine obture partiellement le passage. Cet objet, ces caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : les figures 1 et 2, précédemment décrites, représentent schématiquement des coupes de centrales hydrauliques classiques pour très basses chutes ; la figure 3 représente schématiquement une coupe d'une centrale hydraulique selon la présente invention ; la figure 4 représente de façon plus détaillée une coupe d'un exemple de réalisation d'une centrale hydraulique selon la présente invention ; la figure 5 représente une vue de dessus de la centrale hydraulique de la figure 4 ; la figure 6 représente une coupe plus détaillée de la turbine de la centrale hydraulique de la figure 4 selon un plan contenant l'axe de la turbine ; la figure 7 représente une vue de la turbine de la figure 6 selon la direction F ; la figure 8 représente une vue de la turbine de la figure 6 selon la direction F en l'absence du distributeur ; la figure 9 représente une coupe d'une partie de la turbine de la figure 6 ; la figure 10 représente une coupe de la figure 9 selon un plan perpendiculaire à l'axe de la turbine ; et les figures 11 à 13 représentent différentes positions d'utilisation de la centrale hydraulique selon la présente invention. La figure 3 représente schématiquement une coupe d'une centrale hydraulique 25 selon la présente invention sensiblement à la même échelle que les centrales hydrauliques 5 des figures 1 et 2. La centrale hydraulique 25 équipe une très basse chute dont la hauteur de chute est sensiblement la même que la hauteur de chute en figure 1 ou 2, c'est-à-dire inférieure à 10 mètres et de préférence de 1 à 5 mètres. La centrale hydraulique 25 selon 1 ' invention prévoit l'utilisation d'une turbine 30 d'axe D comprenant un carter 32 dans lequel est disposée une roue 34 ayant un grand diamètre et étant adapté à fonctionner à une vitesse de rotation de quelques dizaines de tours par minute, par exemple de 10 à 50 tours par minute. Une telle vitesse de rotation est compatible avec une vitesse d'écoulement voisine de la vitesse normale de l'écoulement en amont de la centrale hydraulique 25. Ceci permet de réduire au minimum les dimensions du conduit d'entrée d'eau et de l'aspirateur prévus au niveau du carter 32. Le carter 32 peut donc être compris dans un parallélépipède de faible épaisseur maintenu par un support en béton 36 dont les dimensions sont réduites par rapport aux ouvrages de génie civil à prévoir pour des centrales hydrauliques classiques. A titre d'exemple, pour une chute d'environ 1,5 mètres de chute et un débit de 30 τc?/s , la centrale hydraulique 25 selon la présente invention permet d'obtenir une puissance électrique de 280 K , pour une turbine 30 dont le diamètre est d'environ 5 mètres et tournant à environ 20 tours/min. Le rapport K est alors égal à 11%. Le carter 32 est alors sensiblement compris dans un parallélépipède dont 1 ' épaisseur selon 1 ' axe D est égale à environ 1.9 mètres , dont la largeur, correspondant à la distance entre les parois verticales 40, 41, est égale à environ 6.4 mètres, et dont la hauteur selon la direction perpendiculaire à l'axe D, est égale à environ 6.9 mètres. De façon plus générale, la turbine 30 selon l'invention peut équiper une centrale hydraulique sur de très basses chutes inférieures à 10 mètres. Le rapport K de la turbine 30, tel que précédemment défini, est inférieur à 20 % pour de telles chutes. Les figures 4 et 5 représentent respectivement une coupe et une vue de dessus d'un exemple de réalisation plus détaillé de la centrale hydraulique 25 selon la présente invention. Le sens de l'écoulement d'eau est indiqué par des flèches. Le carter 32 de la turbine 30 est maintenu en position par rapport à l'écoulement par le support 36 comportant une base 38 et deux parois verticales 40, 41. Le carter 32 est adapté à coulisser dans des rainures 42, 43 parallèles et inclinées par rapport à la verticale, réalisées dans les parois verticales 40, 41. L'angle d'inclinaison de l'axe D de la turbine 30 par rapport à la verticale dépend de l'angle d'inclinaison des rainures 42, 43 par rapport à la verticale. Cet angle est choisi notamment en fonction de la hauteur de chute, de la profondeur du cours d'eau, du diamètre de la roue 34 et de l'épaisseur du carter 32. Dans l'exemple précédemment décrit, l'axe de rotation de la roue 34 est incliné d'environ 34° par rapport à la verticale. Deux vérins hydrauliques 44, 45 sont adaptés à faire coulisser le carter 32 dans les rainures 42, 43. La position du carter 32 sur les figures 4 et 5 correspond au fonctionnement normal de la centrale hydraulique 25. Une passerelle 46 (partiellement représentée en figure 4) permet l'enjambement de la turbine 30, notamment à des fins de maintenance. La roue 34 de la turbine 30 comprend des pales orientables 48 reliées à un moyeu 50. Le moyen 50 est monté rotatif autour de l'axe D par rapport à un caisson fixe 52 relié au carter 32 par un distributeur 54. Le distributeur 54 comprend un ensemble de profilés fixes 56 qui rayonnent depuis le caisson fixe 52 jusqu'au carter 32. Les profilés 56 dirigent l'écoulement vers les pales 48 de façon que l'écoulement atteigne les pales 48 selon une orientation convenable. En outre, le nombre de profilés 56 et l'espacement entre les profilés 56 permettent aux profilés 56 de jouer le rôle de grille de protection de la roue 34 de la turbine 30 en empêchant que des corps encombrants n'atteignent la roue 34. Le nettoyage du distributeur 54 est assuré par un dégrilleur de type rotatif comportant trois bras mobiles 60 montés rotatifs autour du caisson fixe 52. Le dispositif d'entraînement en rotation du dégrilleur n'est pas représenté . La figure 6 représente une coupe plus détaillée de la turbine 30 de la figure 4. Le carter 32 est traversé par une ouverture 62 qui comprend une portion amont convergente 64, par exemple conique, jouant le rôle d'un conduit d'entrée d'eau, une portion centrale cylindrique 66 et une portion aval divergente 68, par exemple conique, jouant le rôle d'un aspirateur. Les pales 48 de la roue 34 sont placées sensiblement au niveau de la portion cylindrique 66 de l'ouverture 62. Les figures 7 et 8 représentent des vues de la turbine 30 de la figure 6 selon la direction F, le distributeur 54 n'étant pas représenté en figure 8. Le carter 32 est constitué d'un bloc avant 70 parallélépipédique comportant deux plots 72, 74 pour la connexion des vérins hydrauliques 44, 45. La roue 34 comprend huit pales orientables 48 qui peuvent être orientées pour se chevaucher partiellement comme cela est illustré par les traits pointillés. Comme cela est représenté en figure 6, le moyeu 50 comprend une portion cylindrique interne 78 montée à rotation sur un élément tûbulaire fixe 80 par l'intermédiaire d'un dispositif à roulements 82. La portion cylindrique interne 78 est reliée à une portion externe 84 par l'intermédiaire de parois planes annulaires avant et arrière 86, 87. Chaque pale 48 est supportée par le moyeu 50 par l'intermédiaire d'un premier palier 88 au niveau de la portion externe 84 et d'un second palier 90 au niveau de la portion cylindrique interne 78. Les paliers 88, 90 définissent pour chaque pale 48 un axe de pivotement E. L'élément tubulaire creux 82 est fixé au caisson fixe 52 par des vis 91. Une pompe hydraulique 92 est disposée dans le caisson fixe 52. La pompe hydraulique 92 est entraînée par un arbre rotatif 94 dont l'extrémité est fixée à la paroi arrière 87 du moyeu 50 par l'intermédiaire de vis 96. La pompe hydraulique 92 est reliée à un moteur hydraulique (non représenté) par des conduites (non représentées) transportant du fluide hydraulique sous pression. L'ensemble pompe et moteur hydrauliques constitue une transmission hydrostatique classique. Le moteur hydraulique entraîne un générateur électrique (non représenté) . Le moteur hydraulique et le générateur électrique sont avantageusement séparés de la turbine 30. A titre d'exemple, les conduites reliant la pompe hydraulique 92 au moteur hydraulique sont notamment disposées dans les profilés fixes 56 du distributeur 54 pour relier la pompe hydraulique 92 au carterThe present invention relates to a hydraulic power station turbine for very low fall and a hydraulic power station for very low fall. In a hydroelectric plant, potential energy stored in the water accumulated in a dam or diverted into a water intake is used to drive the wheel of a turbine. The potential energy is then transformed into mechanical energy. The turbine, in turn, drives a generator which converts mechanical energy into electrical energy. Hydraulic power plants differ according to the characteristics of the sites equipped. In particular, a distinction is made between low-head power plants for which the height between the water level upstream of the hydraulic power station and the water level downstream of the hydraulic power station, or head of fall, is less than about 30 meters, and more particularly, very low head hydraulic power plants for which the head is less than about 10 meters. FIGS. 1 and 2 each diagrammatically represent a partial section of a conventional hydraulic power station 5 equipping a very low head. It comprises a water inlet pipe 10, the inlet of which is protected by a grid 12. A screen, not shown, is generally provided to prevent clogging of the grid 12. The water inlet conduit 10 has the overall shape of a convergent which guides the water towards a wheel 13 of a turbine 14 d axis D. A distributor 16 is provided in the water inlet conduit 10 upstream of the turbine 14 to properly orient the flow of water relative to the blades 17 of the wheel 13 of the turbine 14. The turbine 14 of a hydraulic unit 5 for low fall or very low fall is generally a Kaplan turbine which has the shape of a propeller and which generally comprises adjustable blades 17. A vacuum cleaner 18 guides the water from the outlet of the turbine 14 to a leakage channel 9. The turbine 14 can be stopped by means of the closure of the distributor 16 generally equipped with movable steerers. In Figure 1, the axis D of the turbine 14 is arranged substantially vertically. The turbine 14 drives an electric generator 20 disposed out of the flow. In Figure 2, one axis D of the turbine 14 is substantially horizontal. The electric generator (not shown) is arranged in a bulb-shaped casing 22 placed in the flow. A Kaplan type turbine generally has an optimal efficiency for a specific rotation speed of the wheel 13. The purpose of the water inlet duct 10 is to accelerate the flow of water to a speed adapted to the optimum speed of rotation of the wheel 13. The speed of the water leaving the wheel 13 is higher than the speed of the flow upstream of the hydraulic unit 5. The purpose of the vacuum cleaner 18 is to slow down 1 flow at the outlet of the wheel 13 and thus allows to recover as much as possible of the kinetic energy remaining in the flow at the outlet of the turbine 14. In general, a characteristic K is defined for a turbine 14 of a given type of hydraulic power station corresponding to the ratio between the kinetic energy of the flow leaving the wheel 13 and the potential energy of the fall. The ratio K, expressed in%, is given by the following relationship: K = 100 * V 2 / 2gH where V is the average speed of the flow at the outlet of the wheel 13, g the gravitational constant and H the height of fall . The ratio K is representative of the energy still contained in the flow in kinetic form at the outlet of the wheel 13, relative to the energy made available to the turbine and is therefore representative of the energy to be recovered by l vacuum cleaner 18. The higher the ratio K, the greater the slowdown to be achieved by the vacuum cleaner 18. For classic Kaplan turbines of low falls, Mr. Joachim Raabe, in his work entitled "Hydro Power, indicates that the ratio K is worth 30%, 50% and 80% respectively for falls of 70 meters, 15 meters and 2 meters. The significant kinetic energy to be recovered in turbines with very low falls at the outlet of the wheel 13 leads to the construction of large vacuum cleaners because their divergence is limited by the risks of detachment of the liquid stream. of water 10 and of the vacuum cleaner 18 of the hydraulic power station 5 therefore requires major civil engineering constructions. The very high cost of such constructions considerably increases the total cost of the power plant and has greatly limited the construction of hydraulic power plants on low falls and very low falls for which the coefficient K is particularly high. The present invention aims to provide a turbine for this ntrale hydraulic adapted to very low falls with a water inlet pipe and a vacuum cleaner of small dimensions, even nonexistent. To achieve this object, the present invention provides a turbine for a hydraulic power station intended to equip a watercourse at a very low drop of less than 10 meters, and preferably from 1 to 5 meters, comprising a wheel in helical form, the ratio between the kinetic energy of the water flow at the outlet of the wheel and the potential energy of the fall being less than 20%. According to one embodiment of the invention, the diameter of the wheel is greater than 3 meters. According to an embodiment of the invention, the speed of rotation of the wheel is less than 50 revolutions per minute. According to an embodiment of the invention, the turbine comprises a casing traversed by an opening comprising a cylindrical portion, the wheel comprising blades arranged at the level of the cylindrical portion; a hub on which the blades are mounted; a fixed box, the hub being rotatably mounted on the fixed box; and a distributor upstream of the wheel with respect to the water flow and comprising profiles connecting the fixed box to the casing. According to one embodiment of the invention, the opening comprises a converging portion upstream of the cylindrical portion with respect to the water flow and a diverging portion downstream of the cylindrical portion with respect to the flow of water, the ratio between the thickness of the casing along the axis of rotation of the wheel and the diameter of the wheel being less than 0.5. According to one embodiment of the invention, the distributor comprises sections distributed in a star around the fixed box, the turbine comprising a screen upstream of the distributor with respect to the water flow and comprising at least one arm mounted to rotate around the fixed box to separate bulky bodies held against the dispenser. According to one embodiment of the invention, the turbine comprises means for orienting the blades so as to adapt the flow rate of the turbine to the flow rate of the waterfall and / or to close off the opening of the casing. According to an embodiment of the invention, the turbine comprises a hydraulic pump driven by the wheel. The present invention also provides a hydraulic power station intended to equip a watercourse at a very low drop of less than 10 meters, for example between 1 and 5 meters, comprising a turbine comprising a propeller-shaped wheel, the ratio between the kinetic energy of the water flow at the outlet of the wheel and the potential energy of the fall being less than 20%. According to one embodiment of the invention, the central unit comprises a support delimiting a passage channel in which the fall is created and in which the turbine is arranged, and means for moving the turbine relative to the support between a first position where the turbine completely closes the passage and at least a second position where the turbine partially closes the passage. This object, these characteristics and advantages, as well as others of the present invention will be explained in detail in the following description of particular embodiments given without limitation in relation to the attached figures, among which: FIGS. 1 and 2 , previously described, schematically represent sections of conventional hydraulic power plants for very low falls; FIG. 3 schematically represents a section of a hydraulic power station according to the present invention; Figure 4 shows in more detail a section of an exemplary embodiment of a hydraulic power plant according to the present invention; Figure 5 shows a top view of the hydraulic power unit of Figure 4; FIG. 6 represents a more detailed section of the turbine of the hydraulic power station of FIG. 4 along a plane containing the axis of the turbine; 7 shows a view of the turbine of Figure 6 in the direction F; 8 shows a view of the turbine of Figure 6 in the direction F in the absence of the distributor; Figure 9 shows a section through part of the turbine of Figure 6; Figure 10 shows a section of Figure 9 along a plane perpendicular to the axis of the turbine; and Figures 11 to 13 show different positions of use of the hydraulic power plant according to the present invention. FIG. 3 schematically represents a section of a hydraulic power station 25 according to the present invention substantially on the same scale as the hydraulic power stations 5 of FIGS. 1 and 2. The hydraulic power station 25 equips a very low drop whose drop height is substantially the same as the fall height in Figure 1 or 2, that is to say less than 10 meters and preferably 1 to 5 meters. The hydraulic unit 25 according to the invention provides for the use of a turbine 30 of axis D comprising a casing 32 in which is disposed a wheel 34 having a large diameter and being adapted to operate at a speed of rotation of a few tens of revolutions per minute, for example from 10 to 50 revolutions per minute. Such a speed of rotation is compatible with a flow speed close to the normal speed of the flow upstream of the hydraulic power station 25. This makes it possible to minimize the dimensions of the water inlet pipe and of the vacuum cleaner provided at the casing 32. The casing 32 can therefore be included in a thin parallelepiped maintained by a concrete support 36 whose dimensions are reduced compared to the civil engineering works to be provided for conventional hydraulic power stations. By way of example, for a drop of about 1.5 meters of drop and a flow rate of 30 τc? / S, the hydraulic power station 25 according to the present invention makes it possible to obtain an electrical power of 280 K, for a turbine 30 whose diameter is about 5 meters and rotating at about 20 revolutions / min. The ratio K is then equal to 11%. Housing 32 is then substantially included in a parallelepiped whose thickness along the axis D is equal to about 1.9 meters, whose width, corresponding to the distance between the vertical walls 40, 41, is equal to about 6.4 meters, and whose height in the direction perpendicular to the axis D, is equal to approximately 6.9 meters. More generally, the turbine 30 according to the invention can equip a hydraulic power station on very low falls less than 10 meters. The ratio K of the turbine 30, as previously defined, is less than 20% for such falls. Figures 4 and 5 respectively show a section and a top view of a more detailed embodiment of the hydraulic power station 25 according to the present invention. The direction of water flow is indicated by arrows. The casing 32 of the turbine 30 is held in position relative to the flow by the support 36 comprising a base 38 and two vertical walls 40, 41. The casing 32 is adapted to slide in grooves 42, 43 parallel and inclined by relative to the vertical, made in the vertical walls 40, 41. The angle of inclination of the axis D of the turbine 30 relative to the vertical depends on the angle of inclination of the grooves 42, 43 relative to the vertical. This angle is chosen in particular as a function of the height of fall, the depth of the watercourse, the diameter of the wheel 34 and the thickness of the casing 32. In the example described above, the axis of rotation of the wheel 34 is inclined by approximately 34 ° relative to the vertical. Two hydraulic cylinders 44, 45 are adapted to slide the casing 32 in the grooves 42, 43. The position of the casing 32 in FIGS. 4 and 5 corresponds to the normal operation of the hydraulic power station 25. A gangway 46 (partially shown in FIG. 4) allows the spanning of the turbine 30, in particular for maintenance purposes. The wheel 34 of the turbine 30 comprises orientable blades 48 connected to a hub 50. The means 50 is rotatably mounted about the axis D relative to a fixed box 52 connected to the casing 32 by a distributor 54. The distributor 54 comprises a set of fixed sections 56 which radiate from the fixed box 52 to the casing 32. The sections 56 direct the flow towards the blades 48 so that the flow reaches the blades 48 in a suitable orientation. In addition, the number of profiles 56 and the spacing between the profiles 56 allow the profiles 56 to play the role of protective grid for the wheel 34 of the turbine 30 by preventing bulky bodies from reaching the wheel 34. cleaning of the distributor 54 is ensured by a screen of the rotary type comprising three movable arms 60 rotatably mounted around the fixed box 52. The device for driving the screen in rotation is not shown. FIG. 6 represents a more detailed section of the turbine 30 of FIG. 4. The casing 32 is crossed by an opening 62 which comprises a converging upstream portion 64, for example conical, playing the role of an inlet duct for water, a cylindrical central portion 66 and a divergent downstream portion 68, for example conical, playing the role of a vacuum cleaner. The blades 48 of the wheel 34 are placed substantially at the level of the cylindrical portion 66 of the opening 62. FIGS. 7 and 8 show views of the turbine 30 of FIG. 6 in the direction F, the distributor 54 not being not shown in FIG. 8. The casing 32 consists of a parallelepipedal front unit 70 comprising two studs 72, 74 for the connection of the hydraulic cylinders 44, 45. The wheel 34 comprises eight orientable blades 48 which can be oriented to partially overlap as illustrated by the dotted lines. As shown in FIG. 6, the hub 50 comprises an internal cylindrical portion 78 rotatably mounted on a fixed tubular element 80 by means of a bearing device 82. The internal cylindrical portion 78 is connected to an external portion 84 through front and rear annular plane walls 86, 87. Each blade 48 is supported by the hub 50 via a first bearing 88 at the external portion 84 and a second bearing 90 at the internal cylindrical portion 78. The bearings 88, 90 define an axis for each blade 48 pivot E. The hollow tubular element 82 is fixed to the fixed box 52 by screws 91. A hydraulic pump 92 is arranged in the fixed box 52. The hydraulic pump 92 is driven by a rotary shaft 94 whose end is fixed to the rear wall 87 of the hub 50 by means of screws 96. The hydraulic pump 92 is connected to a hydraulic motor (not shown) by lines (not shown) transporting hydraulic fluid under pressure. The hydraulic pump and motor assembly constitutes a conventional hydrostatic transmission. The hydraulic motor drives an electric generator (not shown). The hydraulic motor and the electric generator are advantageously separated from the turbine 30. By way of example, the lines connecting the hydraulic pump 92 to the hydraulic motor are in particular arranged in the fixed sections 56 of the distributor 54 to connect the hydraulic pump 92 to the casing
32. En fonctionnement normal, lorsqu'un écoulement d'eau suffisant traverse l'ouverture 62 du carter 32, les pales 48 de la roue 34 sont mises en rotation autour de l'axe D. Le moyeu 50 est alors mis en rotation et entraîne l'arbre 94 de la pompe hydraulique 92. La pompe hydraulique 92 actionne alors le moteur hydraulique qui, à son tour, actionne le générateur électrique. La figure 9 représente une vue plus détaillée du moyeu 50 monté à rotation autour de l'axe D sur l'élément fixe tubulaire creux 78. Seule une pale 48 est partiellement représentée. Pour chaque pale 48, le palier 88 au niveau de la paroi externe 84 du moyen 50 comprend des rainures 98 pour la mise en place de joints d'étanchéité (non représentés) permettant la rotation de la pale 48 associée au palier 88 tout en assurant l'étanchéité du volume interne du moyeu 50 par rapport à l'écoulement d'eau. Le dispositif à roulements 82 comprend des roulements permettant la rotation de moyeu 50 autour de l'élément tubulaire 78 et des roulements permettant également une reprise d'effort selon l'axe D. En effet, l'écoulement sur la roue 34 génère un couple moteur autour de l'axe D et un effort selon l'axe D de l'amont vers l'aval de l'écoulement. Un dispositif d'étanchéité 98 évite la pénétration d'eau dans l'espace séparant la portion cylindrique interne 78 de l'élément tubulaire 80. La figure 10, avec la figure 9, représentent de façon plus détaillée le mécanisme d'orientation des pales 48 de la roue 34. En figure 10, seuls les paliers 88, 90 associés à deux pales 48 sont représentés, une pale 48 étant représentée en totalité, l'autre pale 48 étant représentée partiellement. Le mécanisme d'orientation des pales 48 comprend un élément annulaire 100, représenté partiellement en figure 9, disposé dans un plan perpendiculaire à l'axe D. L'élément annulaire 100 est maintenu par des éléments de support 102 répartis circonfé- rentiellement sur la paroi arrière 87 du moyeu 50. Les éléments de support 102 autorisent la rotation de l'élément annulaire 100 autour de l'axe D. Une telle rotation est obtenue au moyen de deux vérins hydrauliques 104, 106, non représentés en figure 9. L'alimentation en huile sous pression des vérins hydrauliques 104 n'est pas représentée. Chaque vérin 104, 106 comprend un cylindre 108 monté sur la portion externe 84 du moyeu 50 par une liaison à pivot 109, et une tige 110 coulissant dans le cylindre 108 et relié par une liaison à pivot 111 à l'élément annulaire 100. Chaque pale 48 comprend un corps de pale 112 qui se prolonge par un embout cylindrique 114. L'extrémité libre de l'embout cylindrique 114 est montée dans le palier 90 et l'extrémité de l'embout cylindrique 114 reliée au corps de la pale 112 est montée dans le palier 88. Chaque pale 48 est entraînée en rotation autour de son axe par un levier 116 qui est fixé à la pale 48 au niveau de l'embout cylindrique 114 et dont l'extrémité opposée 118 a la forme d'une tige cylindrique. Une chape 120 est adaptée à déplacer l'extrémité 118 en forme de tige du levier 116 et comporte un alésage central 122 dans lequel coulisse l'extrémité en forme de tige 118. A chaque pale 48 est associée une liaison 124 qui comporte deux bras 126, 127 parallèles ayant chacun une rainure 128, 129 qui s'étend selon une direction sensiblement contenue dans un plan perpendiculaire à l'axe D. La chape 120 est adaptée à coulisser dans les rainures 128, 129. La chape 120 est en outre montée pivotante par rapport à la liaison 124 selon un axe perpendiculaire à la direction des rainures 128, 129. La liaison 124 est fixée à l'élément annulaire 100 par l'intermédiaire d'une rotule 130. L'orientation des pales 48 permet d'adapter le débit de la turbine 30 au débit de la chute d'eau. Le mécanisme d'orientation des pales 48 permet la synchronisation du pivotement des pales 48. L'actionnement des vérins hydrauliques 104, 106 fait pivoter l'élément annulaire 100 autour de l'axe D. La rotation de l'élément annulaire 100 entraîne le déplacement des liaisons 124, des chapes 120 et des leviers 116 et entraîne finalement la rotation de chaque pale 48 autour de son axe. Le profil des pales 48 est défini de façon à permettre le recouvrement d'une pale sur une pale adjacente selon une ligne de contact continue. En disposant chaque pale de façon qu'elle puisse recouvrir la pale adjacente, on obtient l'arrêt de l'écoulement d'eau dans l'ouverture 62 du carter 32 par la fermeture des pales 48 et donc l'arrêt de la turbine 30. Ceci permet d'éviter l'utilisation d'une vanne d'arrêt ou d'un distributeur réglable. Lors d'une fermeture des pales, il peut arriver qu'un corps flottant s'immisce entre deux pales 48. Les rainures 128, 129 permettent qu'une des pales 48 reste dans une position partiellement fermée pendant que les autres pales se ferment totalement. Le corps flottant pourra être éliminé à la prochaine ouverture des pales 48. La forme hydraulique des pales 48 est conçue de façon à donner à ces pales un couple hydraulique autour de leur axe E ayant une tendance à entraîner les pales 48 vers la fermeture. Cette disposition permet d'obtenir un arrêt de la turbine 30 par simple relâchement des vérins 104 et 106. Le diamètre de plusieurs mètres de la roue 34 est tel que la vitesse moyenne de l'écoulement en sortie de la roue sortie est faible au regard de la chute. Ceci permet de réduire au minimum les dimensions de la portion aval 68 de l'ouverture 62 qui forme l'aspirateur. La faible vitesse de traversée de la roue 34 implique une vitesse de rotation très faible par rapport aux turbines classiques actuelles équipant les centrales hydrauliques de basses chutes ou très basses chutes . Selon une variante de l'invention, la transmission du couple fourni par l'arbre 96 peut être assurée par des multiplicateurs à engrenage. Selon une autre variante de l'invention, un générateur électrique lent, adapté à être entraîné par un arbre ayant une faible vitesse de rotation, peut être prévu directement à la place de la pompe hydraulique 92 au niveau du caisson d'extrémité fixe 52 ou dans le moyeu 50. Les figures 11 et 12 représentent deux positions particulières d'utilisation de la turbine 30 selon la présente invention permettant de retirer les corps encombrants qui s'accumulent contre le distributeur 54 au cours de l'utilisation de la turbine 30. En effet, le dégrilleur automatique tend à déplacer les corps encombrants qui s'accumulent sur le distributeur 54 au niveau du sommet ou de la base du distributeur 54 selon la densité des corps encombrants. Les vérins hydrauliques 44, 45 peuvent déplacer la turbine 30 dans une position basse représentée en figure 11. La position basse permet l'évacuation des corps encombrants qui se sont accumulés au sommet du distributeur 54 et qui sont alors entraînés par l'écoulement comme cela est indiqué par la flèche 135. Les vérins hydrauliques 44, 45 peuvent déplacer la turbine 30 dans une position haute, représentée en figure 12. La position haute permet l'évacuation des corps encombrants accumulés à la base du distributeur 54 et qui sont alors entraînés par l'écoulement comme cela est indiqué par la flèche 136. La figure 13 représente la centrale hydraulique selon la présente invention dans laquelle la turbine 30 est placée dans une position extrême haute où elle est en grande partie hors de l'écoulement. Le moyeu 50 et le caisson fixe 52 sont alors accessibles depuis la passerelle 46, par exemple, pour des opérations de maintenance. Pour des opérations de maintenance plus importantes, la turbine 30 peut être complètement retirée de l'élément de support 36. Selon une variante de la présente invention, la portion amont convergente 64, jouant le rôle de conduit d'entrée d'eau, et la portion aval divergente 68, jouant le rôle d'un aspirateur, sont de dimensions réduites et éventuellement dif- férentes. La portion amont convergente 64 et/ou la portion aval divergente 68 peuvent être absentes, l'ouverture 62 pouvant alors être complètement cylindrique. La présente invention procure de nombreux avantages. Premièrement, elle permet de réduire au minimum, voire de supprimer, la portion convergente du carter formant le conduit d'entrée d'eau et, plus particulièrement, la portion divergente du carter formant l'aspirateur. Ceci permet de réduire les dimensions du carter dans la direction de l'axe de la roue, et les dimensions du support sur lequel le carter est monté. En outre, les portions divergente et convergente étant de dimensions réduites, elles peuvent être réalisées au niveau du carter qui est généralement constitué de parties mécaniques mécano-soudées. Les portions convergente et divergente ne sont plus réalisées par des constructions en béton de grandes dimensions dont le coût de fabrication est élevé. Le coût de fabrication de la centrale hydraulique selon l'invention est donc réduit. En outre, la centrale hydraulique selon l'invention occupant un faible volume, elle peut très facilement être installée sur des sites existants. Deuxièmement, la faible vitesse de l'écoulement traversant la roue, la grande taille et la faible vitesse de rotation de la roue font que la turbine selon la présente invention est particulièrement adaptée au passage de poissons tant en remontée qu'en dévalaison. Il n'est alors plus nécessaire de prévoir un passage réservé aux poissons à côté de la centrale hydraulique. Troisièmement, selon un mode de réalisation particulier de l'invention, les pales de la roue sont orien- tables et peuvent se refermer les unes sur les autres et jouer alors le rôle d'une vanne en arrêtant l'écoulement au travers de la turbine. Il n'est donc pas nécessaire de prévoir une vanne ou un distributeur mobile, généralement disposés en amont de la turbine et dédiés à l'arrêt de l'écoulement. Ceci permet de réduire encore davantage les dimensions de la centrale hydraulique selon l'invention. Quatrièmement, selon un mode de réalisation particulier de l'invention, le distributeur peut jouer le rôle de la grille de protection de la roue en évitant que des corps encombrants n'atteignent la roue. Il n'est donc pas nécessaire de prévoir une grille de protection dédiée qui doit généralement être prévue en amont de la turbine. Ceci permet de réduire encore davantage les dimensions de la centrale hydraulique selon l'invention. 32. In normal operation, when a sufficient flow of water passes through the opening 62 of the casing 32, the blades 48 of the wheel 34 are rotated about the axis D. The hub 50 is then rotated and drives the shaft 94 of the hydraulic pump 92. The hydraulic pump 92 then actuates the hydraulic motor which, in turn, actuates the electric generator. FIG. 9 represents a more detailed view of the hub 50 mounted for rotation about the axis D on the hollow tubular fixed element 78. Only one blade 48 is partially shown. For each blade 48, the bearing 88 at the level of the external wall 84 of the means 50 includes grooves 98 for the installation of seals (not shown) allowing the rotation of the blade 48 associated with the bearing 88 while ensuring the sealing of the internal volume of the hub 50 relative to water flow. The bearing device 82 includes bearings allowing the hub 50 to rotate around the tubular element 78 and bearings also allowing a force recovery along the axis D. In fact, the flow on the wheel 34 generates a torque motor around axis D and a force along axis D from upstream to downstream of the flow. A sealing device 98 prevents the ingress of water into the space separating the internal cylindrical portion 78 from the tubular element 80. FIG. 10, with FIG. 9, show in more detail the mechanism for orienting the blades 48 of the wheel 34. In FIG. 10, only the bearings 88, 90 associated with two blades 48 are shown, one blade 48 being shown in full, the other blade 48 being shown partially. The orientation mechanism of the blades 48 comprises an annular element 100, shown partially in FIG. 9, arranged in a plane perpendicular to the axis D. The annular element 100 is held by support elements 102 distributed circumferentially on the rear wall 87 of the hub 50. The support elements 102 authorize the rotation of the annular element 100 about the axis D. Such rotation is obtained by means of two hydraulic cylinders 104, 106, not shown in FIG. 9. L pressure oil supply to the hydraulic cylinders 104 is not shown. Each cylinder 104, 106 comprises a cylinder 108 mounted on the external portion 84 of the hub 50 by a pivot link 109, and a rod 110 sliding in the cylinder 108 and connected by a pivot link 111 to the annular element 100. Each blade 48 comprises a blade body 112 which is extended by a cylindrical tip 114. The free end of the cylindrical tip 114 is mounted in the bearing 90 and the end of the cylindrical tip 114 connected to the body of the blade 112 is mounted in the bearing 88. Each blade 48 is rotated about its axis by a lever 116 which is fixed to the blade 48 at the level of the cylindrical end piece 114 and whose opposite end 118 has the shape of a cylindrical rod. A yoke 120 is adapted to move the rod-shaped end 118 of the lever 116 and has a central bore 122 in which the rod-shaped end 118 slides. A link 124 which has two arms 126 is associated with each blade 48 , 127 parallel each having a groove 128, 129 which extends in a direction substantially contained in a plane perpendicular to the axis D. The yoke 120 is adapted to slide in the grooves 128, 129. The yoke 120 is further mounted pivoting with respect to the link 124 along an axis perpendicular to the direction of the grooves 128, 129. The link 124 is fixed to the annular element 100 by means of a ball joint 130. The orientation of the blades 48 makes it possible to adapt the flow rate of the turbine 30 to the flow rate of the waterfall. The orientation mechanism of the blades 48 allows the pivoting of the blades 48 to be synchronized. The actuation of the hydraulic cylinders 104, 106 causes the annular element 100 to pivot about the axis D. The rotation of the annular element 100 causes the displacement of the links 124, the yokes 120 and the levers 116 and finally causes the rotation of each blade 48 about its axis. The profile of the blades 48 is defined so as to allow the covering of a blade on an adjacent blade along a continuous contact line. By arranging each blade so that it can cover the adjacent blade, the flow of water in the opening 62 of the housing 32 is obtained by closing the blades 48 and therefore stopping the turbine 30 This avoids the use of a stop valve or an adjustable distributor. When the blades are closed, it can happen that a floating body interferes between two blades 48. The grooves 128, 129 allow one of the blades 48 to remain in a partially closed position while the other blades close completely. . The floating body can be eliminated the next time the blades 48 are opened. The hydraulic shape of the blades 48 is designed so as to give these blades a hydraulic torque around their axis E having a tendency to cause the blades 48 towards closing. This arrangement makes it possible to obtain a shutdown of the turbine 30 by simply releasing the jacks 104 and 106. The diameter of several meters of the wheel 34 is such that the average speed of the outflow from the outgoing wheel is low with regard from the fall. This makes it possible to minimize the dimensions of the downstream portion 68 of the opening 62 which forms the vacuum cleaner. The low speed of crossing of the wheel 34 implies a very low speed of rotation compared to current conventional turbines equipping hydraulic power plants with low or very low falls. According to a variant of the invention, the transmission of the torque supplied by the shaft 96 can be ensured by gear multipliers. According to another variant of the invention, a slow electric generator, adapted to be driven by a shaft having a low speed of rotation, can be provided directly in place of the hydraulic pump 92 at the level of the fixed end box 52 or in the hub 50. FIGS. 11 and 12 show two particular positions of use of the turbine 30 according to the present invention making it possible to remove the bulky bodies which accumulate against the distributor 54 during the use of the turbine 30. Indeed, the automatic screen tends to move the bulky bodies which accumulate on the distributor 54 at the top or the base of the distributor 54 according to the density of the bulky bodies. The hydraulic cylinders 44, 45 can move the turbine 30 in a low position shown in FIG. 11. The low position allows the evacuation of bulky bodies which have accumulated at the top of the distributor 54 and which are then entrained by the flow like this is indicated by the arrow 135. The hydraulic cylinders 44, 45 can move the turbine 30 in a high position, represented in FIG. 12. The high position allows the evacuation of the bulky bodies accumulated at the base of the distributor 54 and which are then driven by the flow as indicated by arrow 136. FIG. 13 represents the hydraulic power station according to the present invention in which the turbine 30 is placed in an extreme high position where it is largely out of of the flow. The hub 50 and the fixed box 52 are then accessible from the gateway 46, for example, for maintenance operations. For larger maintenance operations, the turbine 30 can be completely withdrawn from the support element 36. According to a variant of the present invention, the upstream converging portion 64, playing the role of water inlet conduit, and the divergent downstream portion 68, playing the role of a vacuum cleaner, are of reduced dimensions and possibly different. The converging upstream portion 64 and / or the diverging downstream portion 68 may be absent, the opening 62 can then be completely cylindrical. The present invention provides many advantages. Firstly, it makes it possible to minimize or even eliminate the converging portion of the casing forming the water inlet conduit and, more particularly, the divergent portion of the casing forming the vacuum cleaner. This makes it possible to reduce the dimensions of the casing in the direction of the axis of the wheel, and the dimensions of the support on which the casing is mounted. In addition, the diverging and converging portions being of reduced dimensions, they can be produced at the casing which is generally made up of mechanically welded mechanical parts. The converging and diverging portions are no longer produced by large concrete constructions whose manufacturing cost is high. The manufacturing cost of the hydraulic power plant according to the invention is therefore reduced. In addition, the hydraulic power plant according to the invention occupying a small volume, it can very easily be installed on existing sites. Secondly, the low speed of the flow passing through the wheel, the large size and the low speed of rotation of the wheel make the turbine according to the present invention particularly suitable for the passage of fish both in ascent and downstream. It is then no longer necessary to provide a passage reserved for fish next to the hydraulic power station. Thirdly, according to a particular embodiment of the invention, the blades of the wheel are orientable and can close over one another and then play the role of a valve by stopping the flow through the turbine. . It is therefore not necessary to provide a valve or a mobile distributor, generally arranged upstream of the turbine and dedicated to stopping the flow. This makes it possible to further reduce the dimensions of the hydraulic power station according to the invention. Fourth, according to a particular embodiment of the invention, the dispenser can play the role of the protective grid of the wheel by preventing bulky bodies from reaching the wheel. It is therefore not necessary to provide a dedicated protective grid which must generally be provided upstream of the turbine. This makes it possible to further reduce the dimensions of the hydraulic power station according to the invention.

Claims

REVENDICATIONS
1. Turbine (30) pour centrale hydraulique (25) destinée à équiper un cours d'eau au niveau d'une très basse chute inférieure à 10 mètres, et de préférence de 1 à 5 mètres, comprenant une roue (34) en forme d'hélice, le rapport entre l'énergie cinétique de l'écoulement d'eau en sortie de la roue et l'énergie potentielle de la chute étant inférieur à 20 %. 1. Turbine (30) for a hydraulic power station (25) intended to equip a watercourse at a very low drop of less than 10 meters, and preferably from 1 to 5 meters, comprising a shaped wheel (34) propeller, the ratio between the kinetic energy of the water flow at the outlet of the wheel and the potential energy of the fall being less than 20%.
2. Turbine selon la revendication 1, dans laquelle le diamètre de la roue (34) est supérieur à 3 mètres. 2. Turbine according to claim 1, in which the diameter of the wheel (34) is greater than 3 meters.
3. Turbine selon la revendication 1, dans laquelle la vitesse de rotation de la roue (34) est inférieure à 50 tours par minute. 3. Turbine according to claim 1, in which the speed of rotation of the wheel (34) is less than 50 revolutions per minute.
4. Turbine selon la revendication 1, comprenant : un carter (32) traversé par une ouverture (62) comprenant une portion cylindrique (66) , la roue (34) comprenant des pales (48) disposées au niveau de la portion cylindrique ; un moyeu (50) sur lequel sont montées les pales (48) ; un caisson fixe (52) , le moyeu étant monté en rotation sur le caisson fixe ; et un distributeur (54) en amont de la roue par rapport à l'écoulement d'eau et comportant des profilés (56) reliant le caisson fixe au carter. 4. A turbine according to claim 1, comprising: a casing (32) traversed by an opening (62) comprising a cylindrical portion (66), the impeller (34) comprising blades (48) disposed at the level of the cylindrical portion; a hub (50) on which the blades (48) are mounted; a fixed box (52), the hub being rotatably mounted on the fixed box; and a distributor (54) upstream of the wheel with respect to the water flow and comprising profiles (56) connecting the fixed box to the casing.
5. Turbine selon la revendication 4, dans laquelle l'ouverture (62) comprend une portion convergente (64) en amont de la portion cylindrique (66) par rapport à l'écoulement d'eau et une portion divergente (68) en aval de la portion cylindrique par rapport à l'écoulement d'eau, le rapport entre l'épaisseur du carter selon 1 ' axe de rotation (D) de la roue et le diamètre de la roue étant inférieur à 0.5. 5. A turbine according to claim 4, in which the opening (62) comprises a converging portion (64) upstream of the cylindrical portion (66) relative to the water flow and a diverging portion (68) downstream of the cylindrical portion with respect to the water flow, the ratio between the thickness of the casing along the axis of rotation (D) of the wheel and the diameter of the wheel being less than 0.5.
6. Turbine selon la revendication 4, dans lequel le distributeur comprend des profilés (56) répartis en étoile autour du caisson fixe (52) , la turbine comprenant un dégrilleur en amont du distributeur (54) par rapport à l'écoulement d'eau et comprenant au moins un bras (66) monté à rotation autour du caisson fixe (32) pour écarter des corps encombrants maintenus contre le distributeur. 6. Turbine according to claim 4, in which the distributor comprises profiles (56) distributed in a star around the fixed box (52), the turbine comprising a screen upstream of the distributor (54) with respect to the water flow and comprising at least one arm (66) rotatably mounted around the fixed box (32) to separate bulky bodies held against the dispenser.
7. Turbine selon la revendication 4, comprenant un moyen (100, 104, 106, 116, 120, 124) pour orienter les pales (48) de façon à adapter le débit de la turbine à débit de la chute d'eau et/ou pour obturer l'ouverture (62) du carter (32) . 7. Turbine according to claim 4, comprising means (100, 104, 106, 116, 120, 124) for orienting the blades (48) so as to adapt the flow rate of the turbine to the flow rate of the waterfall and / or to close the opening (62) of the casing (32).
8. Turbine selon la revendication 1, comprenant une pompe hydraulique (92) entraînée par la roue (34) . 8. A turbine according to claim 1, comprising a hydraulic pump (92) driven by the wheel (34).
9. Centrale hydraulique (25) destinée à équiper un cours d'eau au niveau d'une très basse chute inférieure à 10 mètres, par exemple comprise entre 1 et 5 mètres, comprenant une turbine (30) comportant une roue (34) en forme d'hélice, le rapport entre l'énergie cinétique de l'écoulement d'eau en sortie de la roue et l'énergie potentielle de la chute étant inférieur à 20 %. 9. Hydraulic power station (25) intended to equip a watercourse at a very low drop less than 10 meters, for example between 1 and 5 meters, comprising a turbine (30) comprising a wheel (34) in helical form, the ratio between the kinetic energy of the water flow at the outlet of the wheel and the potential energy of the fall being less than 20%.
10. Centrale hydraulique selon la revendication 9, comprenant un support (36) délimitant un canal de passage dans lequel se crée la chute et dans lequel est disposée la turbine (30), et comprenant des moyens (42, 43, 44, 45) pour déplacer la turbine (30) par rapport au support (36) entre une première position où la turbine obture complètement le passage et au moins une seconde position où la turbine obture partiellement le passage . 10. Hydraulic power plant according to claim 9, comprising a support (36) delimiting a passage channel in which the chute is created and in which the turbine (30) is arranged, and comprising means (42, 43, 44, 45) for moving the turbine (30) relative to the support (36) between a first position where the turbine completely closes the passage and at least a second position where the turbine partially closes the passage.
EP04805486A 2003-11-20 2004-11-18 Turbine and hydroelectric power plant for very low drops Withdrawn EP1700031A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350862A FR2862723B1 (en) 2003-11-20 2003-11-20 TURBINE AND HYDRAULIC POWER PLANT FOR VERY LOW FALL
PCT/FR2004/002949 WO2005054667A2 (en) 2003-11-20 2004-11-18 Turbine and hydroelectric power plant for very low drops

Publications (1)

Publication Number Publication Date
EP1700031A2 true EP1700031A2 (en) 2006-09-13

Family

ID=34531368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805486A Withdrawn EP1700031A2 (en) 2003-11-20 2004-11-18 Turbine and hydroelectric power plant for very low drops

Country Status (6)

Country Link
US (1) US7972108B2 (en)
EP (1) EP1700031A2 (en)
CN (1) CN1898469B (en)
CA (1) CA2546508C (en)
FR (1) FR2862723B1 (en)
WO (1) WO2005054667A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933878B1 (en) * 2008-07-18 2010-12-10 Alstom Hydro France DEVICE FOR SEPARATING SOLID PARTICLES AND HYDRAULIC INSTALLATION COMPRISING SUCH A DEVICE
EP2469257B1 (en) * 2010-12-23 2014-02-26 Openhydro IP Limited A hydroelectric turbine testing method
WO2012146768A1 (en) 2011-04-27 2012-11-01 Jouni Jokela Hydraulic turbine and hydroelectric power plant
FR2975444B1 (en) * 2011-05-17 2016-12-23 Mj2 Tech HYDRAULIC POWER PLANT COMPRISING AN INTAKE GRID ASSEMBLY IN THE TURBINE AGENCY FOR EVACUATING FLOATING DEBRIS ARRANGED BY THE GRID.
US8823195B2 (en) 2012-04-03 2014-09-02 Mark Robert John LEGACY Hydro electric energy generation and storage structure
US9328713B2 (en) 2012-04-13 2016-05-03 Steven D. Beaston Turbine apparatus and methods
CN102997402A (en) * 2012-10-17 2013-03-27 陈敏途 Electromagnetic type water heater using kinetic energy of tap water
US20150204301A1 (en) * 2014-01-22 2015-07-23 Dayton Hydro Electric Ltd. Systems and methods for hydroelectric systems
CN104404921B (en) * 2014-11-19 2016-01-27 黄河勘测规划设计有限公司 Long apart from standard section gravity flow canal increasing water delivery flow apparatus
CN106593748B (en) * 2017-01-25 2018-10-23 河海大学 A kind of horizontal axis tidal current energy hydraulic turbine experimental provision and its experimental method
CN108979940A (en) * 2018-07-20 2018-12-11 苗逢春 A kind of streams power generator
CN109340027A (en) * 2018-11-04 2019-02-15 山西省工业设备安装集团有限公司 Water flow dynamic energy power generator in a kind of water pipe
DK201870747A1 (en) * 2018-11-14 2020-06-23 Bollfilter Nordic Aps Filter candle and method for operating such filter candle
US11614065B2 (en) 2019-03-13 2023-03-28 Natel Energy, Inc. Hydraulic turbine
USD926133S1 (en) 2020-03-13 2021-07-27 Natel Energy, Inc. Turbine runner
CH717747A2 (en) 2020-07-21 2022-01-31 Rv Lizenz Ag Floating power plant unit for generating electrical energy from a directed flow of water on the surface of a body of water.

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2054142A (en) * 1936-09-15 Scalable adjustable blade hydraulic
FR518877A (en) * 1918-12-20 1921-06-01 Franz Lawaczeck Method and devices for the use of low falls
US2015332A (en) * 1933-01-10 1935-09-24 Voith Gmbh J M Hydraulic machine
US2897375A (en) * 1955-11-30 1959-07-28 Creusot Forges Ateliers Low-head vertical-shaft hydro-electric set
US3785474A (en) * 1972-01-11 1974-01-15 T Nakamoto Apparatus for sorting and distributing clothing
US3785747A (en) * 1972-11-10 1974-01-15 Allis Chalmers Axial flow hydraulic turbine generator installation
CH606801A5 (en) * 1975-12-02 1978-11-15 Escher Wyss Ag
US4258271A (en) * 1977-05-19 1981-03-24 Chappell Walter L Power converter and method
US4468153A (en) * 1982-05-12 1984-08-28 Gutierrez Atencio Francisco J Symmetric tidal station
US4441029A (en) * 1982-06-25 1984-04-03 The University Of Kentucky Research Foundation Hydropower turbine system
US4629904A (en) * 1984-03-21 1986-12-16 Rojo Jr Agustin Micro-hydroelectric power plant
US4648244A (en) * 1984-11-29 1987-03-10 Voith Hydro, Inc. Inclined reaction turbine with vortex suppression
FR2582736B1 (en) * 1985-06-03 1987-08-21 Neyrpic WATER SUPPLY CHANNEL OF A KAPLAN TURBINE WITH VERTICAL AXIS
WO1991009193A1 (en) * 1989-12-20 1991-06-27 John Barry Moriarty Floating debris collector
WO2003083291A1 (en) 2002-03-28 2003-10-09 Va Tech Hydro Gmbh & Co. Dam system provided with a turbine generator module which can be lifted and lowered

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2862723A1 (en) 2005-05-27
US7972108B2 (en) 2011-07-05
US20070286715A1 (en) 2007-12-13
WO2005054667A3 (en) 2006-01-05
FR2862723B1 (en) 2006-04-28
CN1898469B (en) 2012-08-29
CN1898469A (en) 2007-01-17
CA2546508A1 (en) 2005-06-16
WO2005054667A2 (en) 2005-06-16
CA2546508C (en) 2014-01-07

Similar Documents

Publication Publication Date Title
EP1700031A2 (en) Turbine and hydroelectric power plant for very low drops
CA2836350C (en) Hydro-electric power plant comprising a grating assembly for taking water into the turbine, which is designed to discharge floating debris stopped by the grating
FR2461831A1 (en) WIND TURBINE
EP1567767A1 (en) Hydraulic wheel
EP0012668B1 (en) Hydroelectric plant
FR2997135A1 (en) FLOATING HYDROLIENNE
EP2681443B1 (en) Fin and installation for converting hydraulic energy comprising such a fin
EP3030780A1 (en) River turbine
WO2015055962A1 (en) Compact floating hydroelectric plant
EP3645863A1 (en) Power turbine device involving a fall of water brought about by the use of a venturi tube, and hydraulic energy production facility employing such a power turbine device
FR3023592A1 (en) DEVICE FOR HYDROELECTRIC PRODUCTION
FR2891286A1 (en) Water barrage sluice gate has hinge at lower end and contains turbine to generate electricity from overflow
EP0215990A1 (en) Hydraulic turbine for domestic use
CA3056705A1 (en) Device for producing hydro-electric power
WO2013098494A1 (en) Hydraulic turbine intended, in particular, for a tidal power plant
EP0201705A1 (en) Water-circulating device, especially in a tunnel for hydrodynamic tests
EP3209881B1 (en) Water turbine, sliding lock gate including the same and process to convert hydraulic energy into electricity using them.
WO2001061185A1 (en) Kaplan turbine wheel with adjustable blades and energy converting installation
WO2008101805A2 (en) Modular hydraulic machine
FR3069031B1 (en) TURBINE
EP2428675B1 (en) Hydroelectric facility and removable turbine assembly for the same
WO2019002750A1 (en) Power turbine device involving a fall of water brought about by the use of a venturi tube, and hydraulic energy production facility employing such a power turbine device
WO2007093416A1 (en) Very low-head hydroelectric plant
EP0057176A1 (en) Improvements to systems for generating power with bladings driven by the water speed
FR2954268A1 (en) Barge i.e. fuel oil tank, for producing wind energy and water, has wind energy concentrator device whose outlet is communicated with inlet of condensation element comprising venturi throats mounted in parallel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060614

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150925

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MJ2 TECHNOLOGIES S.A.S.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MJ2 TECHNOLOGIES S.A.S.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181027

18RA Request filed for re-establishment of rights before grant

Effective date: 20190524

R18D Application deemed to be withdrawn (corrected)

Effective date: 20181027