EP1699539A1 - Method for depletion of sulphur and/or compounds containing sulphur from a biochemically produced organic compound - Google Patents

Method for depletion of sulphur and/or compounds containing sulphur from a biochemically produced organic compound

Info

Publication number
EP1699539A1
EP1699539A1 EP04804187A EP04804187A EP1699539A1 EP 1699539 A1 EP1699539 A1 EP 1699539A1 EP 04804187 A EP04804187 A EP 04804187A EP 04804187 A EP04804187 A EP 04804187A EP 1699539 A1 EP1699539 A1 EP 1699539A1
Authority
EP
European Patent Office
Prior art keywords
sulfur
zeolite
ppm
weight
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04804187A
Other languages
German (de)
French (fr)
Inventor
Till Gerlach
Johann-Peter Melder
Bram Willem Hoffer
Anton Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1699539A1 publication Critical patent/EP1699539A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a process for the depletion of sulfur and / or sulfur-containing compounds from a biochemically produced organic compound, ethanol which can be prepared by this process and its use
  • Examples of these renewable resources are alcohols such as ethanol, butanol and methanol, diols such as 1,3-propanediol and 1,4-butanediol, triols such as glycerol, carboxylic acids such as lactic acid, acetic acid, propionic acid, citric acid, butyric acid, formic acid, Malonic acid and succinic acid.
  • alcohols such as ethanol, butanol and methanol
  • diols such as 1,3-propanediol and 1,4-butanediol
  • triols such as glycerol
  • carboxylic acids such as lactic acid, acetic acid, propionic acid, citric acid, butyric acid, formic acid, Malonic acid and succinic acid.
  • bioethanol instead of synthetic ethanol, which is mainly produced by hydrating ethylene, ethanol from biological sources, so-called bioethanol, can also be used for many applications.
  • 1,3-propanediol which is predominantly produced by hydrolysis of acrolein to 3-hydroxypropanal under acidic catalysis followed by metal-catalyzed hydrogenation or by hydroformylation of ethylene oxide (Industrial Organic Chemistry, Weissermel and Arpe, 2003)
  • 1,3-propanediol from biological sources, so-called bio-1,3-propanediol, can also be used (US Pat. No. 6,514,733, DE-A-3829 618).
  • lactic acid from biological sources can also be used for many applications (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 306).
  • Edible oils and animal fats can be transesterified to biodiesel.
  • a glycerin fraction is formed.
  • Applications for glycerin include those in the chemical industry, for example the production of pharmaceuticals, cosmetics, polyether isocyanates, glycerol tripolyethers (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 303 ).
  • the applications for ethanol include those in the chemical industry, such as the production of ethylamines, the production of ethyl esters from carboxylic acids (esp.
  • 1,3-propanediol include those in the chemical industry, for example the production of pharmaceuticals, polyesters, polytrimethylene terephthalates, fibers.
  • Lactic acid is used in the food industry and in the production of biodegradable polymers.
  • biochemically produced compounds such as bioethanol, bio-1, 3-propanediol or lactic acid, in particular in a particularly pure form, would be more advantageous and less expensive in many of these applications.
  • the purification or isolation of the biochemically produced compounds is often carried out by distillation in complex, multi-stage processes.
  • the advantage of the corresponding biochemically produced compound is frequently impaired by the fact that the compound contains sulfur and / or sulfur-containing compounds, in particular specific sulfur compounds, in small amounts, even after the known cleaning processes, and the sulfur or which often interferes with the sulfur-containing compounds in the respective applications.
  • the sulfur content of bioethanol when used in the amination to ethylamines, has a disruptive effect by poisoning the metal catalyst.
  • the alcohol amination is carried out on an industrial scale, in particular heterogeneous, hydrogenation / dehydrogenation catalysts by reacting the corresponding alcohol with ammonia, primary or secondary amines at elevated pressure and elevated temperature in the presence of hydrogen.
  • aliphatic Amines Production from alcohols'.
  • the catalysts usually contain transition metals, such as Group VIII and IB metals, often copper, as catalytically active components, which are often supported on an inorganic support such as aluminum oxide, silicon dioxide, titanium dioxide, carbon, zirconium oxide, zeolites, hydrotalcites and the like, known to the person skilled in the art Materials that are applied.
  • transition metals such as Group VIII and IB metals, often copper
  • an inorganic support such as aluminum oxide, silicon dioxide, titanium dioxide, carbon, zirconium oxide, zeolites, hydrotalcites and the like, known to the person skilled in the art Materials that are applied.
  • the catalytically active metal surface of the heterogeneous catalysts gradually becomes more and more covered with the sulfur or sulfur compounds introduced by the bio-alcohol. This leads to an accelerated catalyst deactivation and thus to a significant impairment of the economy of the respective process.
  • the sulfur content of bioethanol also has a negative effect due to catalyst poisoning, e.g. in steam reforming processes for the production of hydrogen and in fuel cells (fuel cells).
  • the sulfur content of chemicals from natural raw materials will have a negative impact on their implementation, for example as described by sulphurizing metallic centers and thereby deactivating them, or by occupying acidic or basic centers, by entering or catalyzing side reactions, by deposits in production facilities as well as through contamination of the products.
  • WO-A-2003020850, US-A1-2003070966, US-A1 -2003 113598 and US-B1 -6,531,052 relate to the removal of sulfur from liquid hydrocarbons (petrol).
  • Chemical Abstracts No. 102: 222463 (M.Kh. Annagiev et al., Doklady - Akademiya Nauk Azerbaidzhanskoi SSR, 1984, 40 (12), 53-6) describes the depletion of S compounds from technical grade ethanol (not bioethanol ) from 25-30 to 8-17 mg / l by contacting the ethanol at room temperature with zeolites of clinoptilolite and mordenite type, these zeolites having previously been conditioned at 380 ° C. for 6 h and in some Cases with metal salts, especially Fe 2 ⁇ 3, were treated.
  • the depleted S compounds are H 2 S and alkylthiols (R-SH).
  • the object of the present invention was to provide an improved economical process for the treatment of biochemically produced organic compounds, such as bio-alcohols, e.g. Bioethanol, through which the corresponding treated compound is obtained in high yield, space-time yield and selectivity, which when used, e.g. in chemical synthesis processes, e.g. in the production of ethylamines, especially mono-, di- and triethylamine, from bioethanol and also for other uses, e.g. in the chemical, cosmetic or pharmaceutical industry or in the food industry, has improved properties.
  • biochemically produced organic compounds such as bio-alcohols, e.g. Bioethanol
  • bio-alcohols e.g. Bioethanol
  • the use of a treated bioethanol should enable extended catalyst service lives in the synthesis of ethylamines.
  • ethanol was produced with a specific specification (see below), which can be produced by the above.
  • the method according to the invention is particularly suitable for the depletion of sulfur or a sulfur-containing compound from a compound produced by fermentation.
  • the sulfur-containing compounds are inorganic or organic compounds, especially symmetrical or unsymmetrical C 2- ⁇ 0 - dialkyl sulfides, especially C 2 -6-dialkyl sulfides, such as Diethylsulfide Di-n-propyl sulfide, di-isopropyl sulfide, very particularly dimethyl sulfide, C 2- ⁇ o-dialkyl sulfoxides, such as dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, 3-methylthio-1-propanol and / or S-containing amino acids, such as methionine and S-methyl-methionine.
  • the biochemically produced organic compound is preferably an alcohol, ether or a carboxylic acid, in particular ethanol, 1,3-propanediol, 1,4-butanediol, 1-butanol, glycerin, tetrahydrofuran, lactic acid, succinic acid, malonic acid, citric acid , Acetic acid, propionic acid, 3-hydroxypropionic acid, butyric acid, formic acid or gluconic acid.
  • a silica gel, an activated aluminum oxide, a zeolite with hydrophilic properties, an activated carbon or a carbon membrane are preferably used as adsorbers.
  • silica gels examples include silicon dioxide, boehmite, gamma, delta, theta, kappa, chi and alpha alumina for usable aluminum oxides, and charcoals made of wood, peat, coconut shells, or also synthetic carbons are used for activated carbons Carbon blacks, made from natural gas, petroleum or derived products, or polymeric organic materials that also contain heteroatoms such as Nitrogen can be used, and for usable carbon molecular sieves, molecular sieves are made of anthracite and "hard coal” by partial oxidation, and are described, for example, in the Electronic Version of Sixth Edition of Ullmann's Encyclopedia of Industrial Chemistry, 2000, Chapter Adsorption, Paragraph, Adsorbents ,
  • the adsorber is manufactured as a shaped body, for example for a fixed bed process, it can be used in any shape.
  • Typical moldings are spheres, strands, hollow strands, star strands, tablets, grit, etc. with characteristic diameters from 0.5 to 5 mm, or also monoliths and similar structured packings (see Ullmann's Encyclopedia, Sixth Edition, 2000 Electronic Release, Chapter Fixed-Bed Reactors, Par.2: Catalyst Forms for Fixed-Bed Reactors).
  • the adsorber is used in powder form. Typical particle sizes in such powders are 1 - 100 ⁇ m, but particles significantly smaller than 1 ⁇ m can also be used, for example when using soot.
  • the filtration can be carried out discontinuously in suspension processes, for example by deep filtration. Cross-flow filtration is an option in continuous processes.
  • Preferred adsorbers are zeolites, in particular zeolites from the group of natural zeolites, faujasite, X zeolite, Y zeolite, A zeolite, L zeolite, ZSM 5 zeolite, ZSM 8-zeolite, ZSM 11-zeolite, ZSM 12-zeolite, mordenite, beta-zeolite, pentasil zeolite, and mixtures thereof, which contain ion-exchangeable cations.
  • MOFs Metal Organic Frameworks
  • the cations of the zeolite are preferably completely or partially replaced by metal cations, in particular transition metal cations. (Loading of the zeolites with metal cations).
  • the metals are preferably applied to the zeolite by ion exchange since, as recognized according to the invention, they then have a particularly high dispersion and thus a particularly high sulfur adsorption capacity.
  • the cation exchange is e.g. possible starting from zeolites in the alkali metal, H or ammonium form. Such ion exchange techniques for zeolites are described in detail in Catalysis and Zeolites, J. Weitkamp and L. Puppe, Eds., Springer, Berlin (1999).
  • Preferred zeolites have a modulus (molar SiO 2 : Al 2 O 3 ratio) in the range from 2 to 1000, particularly 2 to 100.
  • adsorbers in particular zeolites, are very particularly used which contain one or more transition metals, in elemental or cationic form, from groups VIII and IB of the periodic table, such as Fe, Co, Ni, Ru, Rh, Pd, Os , Ir, Pt, Cu, Ag and / or Au, preferably Ag and / or Cu, contain.
  • the adsorber preferably contains 0.1 to 75% by weight, in particular 1 to 60% by weight, particularly 2 to 50% by weight, very particularly 5 to 30% by weight (in each case based on the total mass of the adsorber ) of the metal or metals, in particular the transition metal or the transition metals.
  • Very preferred adsorbers are: Ag-X zeolite with an Ag content of 10 to 50% by weight (based on the total mass of the adsorber) and
  • Cu-X zeolite with a Cu content of 10 to 50 wt .-% (based on the total mass of the adsorber).
  • the adsorber is generally brought into contact with the organic compound at temperatures in the range from 0 ° C. to 200 ° C., in particular from 10 ° C. to 50 ° C.
  • the contacting with the adsorber is preferably carried out at an absolute pressure in the range from 1 to 200 bar, in particular 1 to 5 bar.
  • the corresponding organic compound is in the liquid phase, i.e. in liquid form or dissolved or suspended in a solvent or diluent, brought into contact with the adsorber.
  • Particularly suitable solvents are those which are able to dissolve the compounds to be purified as completely as possible or which mix completely with them and which are inert under the process conditions.
  • suitable solvents are water, cyclic and alicyclic ethers, for example tetrahydrofuran, dioxane, methyl tert-butyl ether, dimethoxyethane, dimethoxy propane, dimethyldiethylene glycol, aliphatic alcohols such as methanol, ethanol, n- or isopropanol, n-, 2-, iso- or tert-butanol, carboxylic acid esters such as methyl acetate, ethyl acetate, propyl acetate or butyl acetate, and aliphatic ether alcohols such as methoxypropanol.
  • the concentration of compound to be purified in the liquid, solvent-containing phase can in principle be chosen freely and is frequently in the range from 20 to 95% by weight, based on the total weight of the solution / mixture.
  • a variant of the method according to the invention is that it is carried out, unpressurized or under pressure, in the presence of hydrogen.
  • the process can be carried out in the gas or liquid phase, fixed bed or suspension procedure, with or without backmixing, continuously or batchwise in accordance with the processes known to the person skilled in the art (for example described in Ullmann's Encyclopedia, sixth edition, 2000 electronic release, chapter “Adsorption ").
  • the method according to the invention enables in particular the depletion of
  • the process according to the invention enables in particular the depletion of sulfur and / or sulfur-containing compounds from the respective compound to a residual content of ⁇ 2, particularly ⁇ 1, very particularly from 0 to ⁇ 0.1 ppm by weight (calculated in each case S), e.g. determined according to Wickbold (DIN EN 41).
  • the bioethanol which is preferably used in the process according to the invention is generally produced from agricultural products such as molasses, cane sugar juice, corn starch or from products of wood saccharification and from sulfite waste liquors by fermentation.
  • Bioethanol is preferably used that was obtained by fermentation of glucose with elimination of CO 2 (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 194; Electronic Version of Sixth Edition of Ullmann's Encyclopedia of Industrial Chemistry, 2000, Chapter Ethanol, Paragraph Fermentation).
  • the ethanol is usually obtained from the distillation process Fermentation broths won: Electronic Version of Sixth Edition of Ullmann's Encyclopedia of Industrial Chemistry, 2000, Chapter Ethanol, Paragraph Recovery and Purification.
  • the ethanol produced by the process found is used advantageously
  • the present invention also relates to an ethanol which can be produced by the process according to the invention
  • the content of C 3 ⁇ -alkanols, methanol, ethyl acetate and 3-methyl-butanoI-1 is determined, for example, by means of gas chromatography (30 m DB-WAX column, inner diameter: 0.32 mm, film thickness: 0.25 ⁇ m, FID- Detector, temperature program: 35 ° C (5 min.), 10 ° C / min. Heating rate, 200 ° C (8 min.).
  • the Ag / ZSM-5 adsorber was produced by ion exchange of the Na-ZSM-5 with an aqueous AgN0 3 solution (50 g ZSM-5, 1.94 g AgNO 3 , 50 ml impregnation solution).
  • aqueous AgN0 3 solution 50 g ZSM-5, 1.94 g AgNO 3 , 50 ml impregnation solution.
  • the catalyst was then dried at 120 ° C.
  • the Ag / SiO 2 adsorber was produced by impregnating SiO 2 (BET approx. 170 m 2 / g, Na 2 O content: 0.4% by weight) with an aqueous AgNO 3 solution (40 g SiO 2 , 1.6 g AgNO 3 , 58 ml impregnation solution). The catalyst was then dried at 120 ° C and calcined at 500 ° C.
  • the Ag / Al 2 O 3 adsorber was produced by impregnating gamma-Al 2 O 3 (BET approx. 220 m 2 / g) with an aqueous AgNO 3 solution (40 g Al 2 O 3> 1.6 g AgNO 3 , 40 ml impregnation solution). The catalyst was then dried at 120 ° C and calcined at 500 ° C.
  • the ethanol / adsorber suspension was transferred to a 4-neck glass flask into which nitrogen was introduced for inerting for about 5 minutes. The flask was then closed and the suspension was stirred for 5 h at room temperature. After the experiment, the adsorber was filtered through a pleated filter. The sulfur content of the filtrate and possibly also of the adsorber was determined coulometrically:
  • the materials CuO-ZnO / AI 2 O 3 and NiO / SiO 2 / AI 2 ⁇ 3 / Zr ⁇ 2 are suitable for desulfurization, but less well than, for example, a silver-doped zeolite, even if at elevated temperature and with addition was worked by hydrogen. If palladium on carbon is used, sulfur is taken up from ethanol.
  • a continuous fixed bed system with a total volume of 192 ml was filled with 80.5 g of Ag-13X balls (15.9% by weight of Ag, 2.7 mm balls, described in Example 2).
  • About 80 ppm dimethyl sulfide (> 99%, Merck) (corresponds to about 40 ppm sulfur) were added to the feed ethanol (absolute ethanol,> 99.8%, Riedel de Haen).
  • the feed was passed over the adsorber in a swamp mode. During the sampling, the sample bottle was always cooled with an ice / salt mixture.
  • the sulfur determination in the entry and exit was carried out (in all examples) coulometrically (DIN 51400 part 7) with a detection limit of 2 ppm.
  • Example 1 The preparation of the Ag-13X is described in Example 1.
  • CBV100 and CBV720 are Zeolite-Y systems.
  • the doping with metals was carried out by cation exchange as in Example 1, using AgNO 3 or CuNO 3 solutions.
  • the Cu-CPV720 was then calcined at 450 ° C in N 2 .
  • the ethanol / adsorber suspension was transferred to a 4-neck glass flask and stirred without pressure for 24 h at room temperature. After the experiment, the adsorber was filtered through a pleated filter. The sulfur content of the filtrate and possibly also of the adsorber was determined coulometrically:
  • the table shows that both silver-doped zeolites and copper-doped zeolites are able to desulfurize ethanol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Furan Compounds (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The invention relates to a method for the depletion of sulphur and/or a compound containing sulphur from a biochemically produced organic compound, wherein the corresponding organic compound is brought into contact with an adsorber. The invention also relates to ethanol having a given specification, which is produced according to said method or similar, and to the use thereof as solvents, disinfectants, as components in pharmaceutical or cosmetic products or in food, in cleaning agents, as an additive in a steam-reforming method for the synthesis of hydrogen or in fuel cells, or as structural components in chemical synthesis.

Description

Verfahren zur Abreicherung von Schwefel und/oder schwefelhaltigen Verbindungen aus einer biochemisch hergestellten organischen VerbindungProcess for the depletion of sulfur and / or sulfur-containing compounds from a biochemically produced organic compound
Beschreibungdescription
Die vorliegende Erfindung betrifft ein Verfahren zur Abreicherung von Schwefel und/oder schwefelhaltigen Verbindungen aus einer biochemisch hergestellten organischen Verbindung, mittels diesem Verfahren herstellbares Ethanol und seine VerwendungThe present invention relates to a process for the depletion of sulfur and / or sulfur-containing compounds from a biochemically produced organic compound, ethanol which can be prepared by this process and its use
Es besteht ein wachsender Bedarf an biochemisch, z.B. fermentativ, hergestellten chemischen Verbindungen z.B. als Bausteine in der chemischen Synthese für hochwertige Chemikalien oder als „grüne" Treibstoffe.There is a growing need for biochemical, e.g. fermentative, manufactured chemical compounds e.g. as building blocks in chemical synthesis for high-quality chemicals or as "green" fuels.
(Vgl. z.B. H. van Bekkum et al., Chem. for Sustainable Development 11 , 2003, Seiten 11-21).(See e.g. H. van Bekkum et al., Chem. For Sustainable Development 11, 2003, pages 11-21).
Beispiele dieser erneuerbaren Ressourcen sind Alkohole, wie Ethanol, Butanol und Methanol, Diole, wie 1 ,3-Propandiol und 1 ,4-Butandiol, Triole, wie Glycerin, Carbonsäuren wie Milchsäure, Essigsäure, Propionsäure, Zitronensäure, Buttersäure, Amei- sensäure, Malonsäure und Bernsteinsäure.Examples of these renewable resources are alcohols such as ethanol, butanol and methanol, diols such as 1,3-propanediol and 1,4-butanediol, triols such as glycerol, carboxylic acids such as lactic acid, acetic acid, propionic acid, citric acid, butyric acid, formic acid, Malonic acid and succinic acid.
Anstelle von synthetischem Ethanol, das überwiegend durch Hydratisierung von Ethy- len hergestellt wird, kann für viele Anwendungen auch Ethanol aus biologischen Quellen, sogenanntes Bio-Ethanol, verwendet werden.Instead of synthetic ethanol, which is mainly produced by hydrating ethylene, ethanol from biological sources, so-called bioethanol, can also be used for many applications.
Anstelle von synthetischem 1 ,3-Propandiol, das überwiegend durch Hydrolyse von Acrolein zu 3-Hydroxypropanal unter saurer Katalyse gefolgt von einer metallkatalysierten Hydrierung oder durch Hydroformylierung von Ethylenoxid (Industrial Organic Chemistry, Weissermel and Arpe, 2003) hergestellt wird, kann für viele Anwendungen auch 1 ,3-Propandiol aus biologischen Quellen, sogenanntes Bio-1 ,3-Propandiol, verwendet werden (US-A-6,514,733, DE-A-3829 618).Instead of synthetic 1,3-propanediol, which is predominantly produced by hydrolysis of acrolein to 3-hydroxypropanal under acidic catalysis followed by metal-catalyzed hydrogenation or by hydroformylation of ethylene oxide (Industrial Organic Chemistry, Weissermel and Arpe, 2003), many applications can be used 1,3-propanediol from biological sources, so-called bio-1,3-propanediol, can also be used (US Pat. No. 6,514,733, DE-A-3829 618).
Anstelle von synthetischer Milchsäure, die durch Hydrolyse von Lactonitril hergestellt wird, kann für viele Anwendungen auch Milchsäure aus biologischen Quellen verwen- det werden (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 306).Instead of synthetic lactic acid, which is produced by the hydrolysis of lactonitrile, lactic acid from biological sources can also be used for many applications (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 306).
Essbare Öle und Tierfette können zu Biodiesel transesterifiziert werden. Dabei entsteht neben Biodiesel eine Glycerinfraktion. Anwendungen für Glycerin umfassen solche in der chemischen Industrie, etwa die Herstellung von Pharmazeutika, Kosmetika, Polye- therisocyanate, Glyceroltripolyether (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 303). Die Anwendungen für Ethanol umfassen solche in der chemischen Industrie, etwa die Herstellung von Ethylaminen, die Herstellung von Ethylestern aus Carbonsäuren (insb. Essigsäureethylester), die Herstellung von Butadien oder Ethylen, die Herstellung von Ethylacetat via Acetaldehyd und die Herstellung von Ethylchlorid (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003), und in der kosmetischen und pharmazeutischen Industrie oder auch in der Nahrungsmittelindustrie sowie in Reinigungsmitteln, Lösungsmitteln und Farben (N. Schmitz, Bioethanol in Deutschland, Landwirtschaftsverlag, Münster, 2003).Edible oils and animal fats can be transesterified to biodiesel. In addition to biodiesel, a glycerin fraction is formed. Applications for glycerin include those in the chemical industry, for example the production of pharmaceuticals, cosmetics, polyether isocyanates, glycerol tripolyethers (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 303 ). The applications for ethanol include those in the chemical industry, such as the production of ethylamines, the production of ethyl esters from carboxylic acids (esp. Ethyl acetate), the production of butadiene or ethylene, the production of ethyl acetate via acetaldehyde and the production of ethyl chloride (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003), and in the cosmetic and pharmaceutical industry or in the food industry as well as in cleaning agents, solvents and paints (N. Schmitz, bioethanol in Germany, Landwirtschaftsverlag, Münster, 2003).
Weitere Anwendungen sind: Einsatzstoff in Steam-Reforming-Verfahren und Wasserstoffquelle in Brennstoffzellen (S. Velu et al., Cat. Letters 82, 2002, Seiten 145-52; A.N. Fatsikostas et al., Cat. Today 75, 2002, Seiten 145-55; F. Aupretre et al., Cat. Com- mun. 3, 2002, Seiten 263-67; V. Fierro et al., Green Chem. 5, 2003, Seiten 20-24; M. Wang, J. of Power Sources 112, 2002, Seiten 307-321 ).Further applications are: starting material in steam reforming processes and hydrogen source in fuel cells (S. Velu et al., Cat. Letters 82, 2002, pages 145-52; AN Fatsikostas et al., Cat. Today 75, 2002, pages 145 -55; F. Aupretre et al., Cat. Communication. 3, 2002, pages 263-67; V. Fierro et al., Green Chem. 5, 2003, pages 20-24; M. Wang, J. of Power Sources 112, 2002, pages 307-321).
Die Anwendungen für 1 ,3-Propandiol umfassen solche in der chemischen Industrie, etwa die Herstellung von Pharmazeutika, Polyester, Polytrimethylenterephthalate, Fasern.The applications for 1,3-propanediol include those in the chemical industry, for example the production of pharmaceuticals, polyesters, polytrimethylene terephthalates, fibers.
Die Anwendungen für Milchsäure liegen in der Nahrungsmittelindustrie und in der Produktion von bioabbaubaren Polymeren.Lactic acid is used in the food industry and in the production of biodegradable polymers.
Die Verwendung von biochemisch hergestellten Verbindungen, wie Bio-Ethanol, Bio- 1 ,3-Propandiol oder Milchsäure, insbesondere in besonders reiner Form, wäre in vielen dieser Anwendungen vorteilhafter und kostengünstiger.The use of biochemically produced compounds, such as bioethanol, bio-1, 3-propanediol or lactic acid, in particular in a particularly pure form, would be more advantageous and less expensive in many of these applications.
Die Reinigung bzw. Isolierung der biochemisch hergestellten Verbindungen erfolgt häufig destillativ in aufwendigen, mehrstufigen Verfahren.The purification or isolation of the biochemically produced compounds is often carried out by distillation in complex, multi-stage processes.
Der Vorteil der entsprechenden biochemisch hergestellten Verbindung wird aber, wie erfindungsgemäß erkannt wurde, häufig dadurch beeinträchtigt, dass die Verbindung, auch nach den bekannten Reinigungsverfahren, in geringen Mengen Schwefel und/oder schwefelhaltige Verbindungen, insbesondere spezifische Schwefelverbindun- gen, enthält und der Schwefel bzw. die schwefelhaltigen Verbindungen häufig in den jeweiligen Anwendungen stört stören.However, as was recognized according to the invention, the advantage of the corresponding biochemically produced compound is frequently impaired by the fact that the compound contains sulfur and / or sulfur-containing compounds, in particular specific sulfur compounds, in small amounts, even after the known cleaning processes, and the sulfur or which often interferes with the sulfur-containing compounds in the respective applications.
So wirkt sich der Schwefelgehalt des Bio-Ethanols bei der Verwendung in der Aminie- rung zu Ethylaminen störend aus, indem der Metallkatalysator vergiftet wird. Entspre- chendes gilt für Aminierungen anderer Bio-Alkohole. Die Alkohol-Aminierung wird großtechnisch an, insbesondere heterogenen, Hydrier- /Dehydrierkatalysatoren durch Umsetzung des entsprechenden Alkohols mit Ammoniak, primären oder sekundären Aminen bei erhöhtem Druck und erhöhter Temperatur in Gegenwart von Wasserstoff durchgeführt. Vergl. z.B. Ullmann's Encyclopedia of Indus- trial Chemistry, sixth edition, 2000, ,aliphatic Amines: Production from alcohols'.The sulfur content of bioethanol, when used in the amination to ethylamines, has a disruptive effect by poisoning the metal catalyst. The same applies to aminations of other bio-alcohols. The alcohol amination is carried out on an industrial scale, in particular heterogeneous, hydrogenation / dehydrogenation catalysts by reacting the corresponding alcohol with ammonia, primary or secondary amines at elevated pressure and elevated temperature in the presence of hydrogen. Comp. e.g. Ullmann's Encyclopedia of Industrial Chemistry, sixth edition, 2000,, aliphatic Amines: Production from alcohols'.
Die Katalysatoren enthalten meist Übergangsmetalle, etwa Metalle der Gruppe VIII und IB, oft Kupfer, als katalytisch aktive Komponenten, die häufig auf einen anorganischen Träger wie Aluminiumoxid, Siliziumdioxid, Titandioxid, Kohlenstoff, Zirkoniumoxid, Zeo- lithe, Hydrotalcite und ähnliche, dem Fachmann bekannte Materialien, aufgebracht sind.The catalysts usually contain transition metals, such as Group VIII and IB metals, often copper, as catalytically active components, which are often supported on an inorganic support such as aluminum oxide, silicon dioxide, titanium dioxide, carbon, zirconium oxide, zeolites, hydrotalcites and the like, known to the person skilled in the art Materials that are applied.
Wird der entsprechende Bio-Alkohol eingesetzt, belegt sich die katalytisch aktive Me- talloberfläche der Heterogenkatalysatoren mit der Zeit mehr und mehr mit dem/den durch den Bio-Alkohol eingetragenen Schwefel bzw. Schwefelverbindungen. Dies führt zu einer beschleunigten Katalysatordesaktivierung und damit zu einer deutlichen Beeinträchtigung der Wirtschaftlichkeit des jeweiligen Prozesses.If the corresponding bio-alcohol is used, the catalytically active metal surface of the heterogeneous catalysts gradually becomes more and more covered with the sulfur or sulfur compounds introduced by the bio-alcohol. This leads to an accelerated catalyst deactivation and thus to a significant impairment of the economy of the respective process.
Der Schwefelgehalt von Bio-Ethanol wirkt sich durch Katalysatorvergiftung auch nega- tiv aus, z.B. in Steam-Reforming-Verfahren zur Produktion von Wasserstoff und in Brennstoffzellen (Fuel Cells).The sulfur content of bioethanol also has a negative effect due to catalyst poisoning, e.g. in steam reforming processes for the production of hydrogen and in fuel cells (fuel cells).
Allgemein wird sich der Schwefelgehalt von Chemikalien aus natürlichen Rohstoffen negativ auf deren Umsetzung auswirken, etwa wie beschrieben dadurch, dass metalli- sehe Zentren geschwefelt und dadurch desaktiviert werden, oder durch Belegung sauerer oder basischer Zentren, durch das Eingehen oder Katalysieren von Nebenreaktionen, durch Ablagerungen in Produktionsanlagen sowie durch Verunreinigung der Produkte.In general, the sulfur content of chemicals from natural raw materials will have a negative impact on their implementation, for example as described by sulphurizing metallic centers and thereby deactivating them, or by occupying acidic or basic centers, by entering or catalyzing side reactions, by deposits in production facilities as well as through contamination of the products.
Ein weiterer negativer Effekt von Schwefel und/oder schwefelhaltigen Verbindungen in den biochemisch hergestellten Verbindungen ist deren typischer unangenehmer Geruch, was insbesondere in kosmetischen Anwendungen, in Desinfektionsmitteln, in Nahrungsmitteln und in pharmazeutischen Produkten von Nachteil ist.Another negative effect of sulfur and / or sulfur-containing compounds in the biochemically produced compounds is their typical unpleasant smell, which is particularly disadvantageous in cosmetic applications, in disinfectants, in foods and in pharmaceutical products.
Es ist daher von großem wirtschaftlichem Interesse, den Schwefel und/oder die schwefelhaltigen Verbindungen in biochemisch hergestellten organischen Verbindungen, wie z.B. Bio-Ethanol, Bio-1 ,3-Propandiol, Bio-1,4-Butandiol, Bio-1-Butanol, (allgemein: Bio- Alkohole) durch eine ihrer Verwendung vorgelagerte Entschwefelungsstufe abzurei- chern oder praktisch ganz zu entfernen.It is therefore of great economic interest to use the sulfur and / or the sulfur-containing compounds in biochemically produced organic compounds, e.g. Bio-ethanol, bio-1, 3-propanediol, bio-1,4-butanediol, bio-1-butanol, (generally: bio-alcohols) to be depleted or practically removed entirely by a desulphurization step prior to their use.
WO-A-2003020850, US-A1-2003070966, US-A1 -2003 113598 und US-B1 -6,531 ,052 betreffen die Entfernung von Schwefel aus flüssigen Kohlenwasserstoffen (Benzinen). Chemical Abstracts Nr. 102: 222463 (M.Kh. Annagiev et al., Doklady - Akademiya Nauk Azerbaidzhanskoi SSR, 1984, 40 (12), 53-6) beschreibt die Abreicherung von S- Verbindungen aus technischem Ethanol (nicht Bio-Ethanol) von 25-30 auf 8-17 mg/l durch In-Kontakt-Bringen des Ethanols bei Raumtemperatur mit Zeolithen von Clinopti- lolit- und Mordenit-Typ, wobei diese Zeolithe zuvor bei 380 °C, 6 h konditioniert wurden und in einigen Fällen mit Metallsalzen, insbesondere Fe2θ3, behandelt wurden. Bei den abgereicherten S-Verbindungen handelt es sich um H2S und Alkylthiole (R-SH).WO-A-2003020850, US-A1-2003070966, US-A1 -2003 113598 and US-B1 -6,531,052 relate to the removal of sulfur from liquid hydrocarbons (petrol). Chemical Abstracts No. 102: 222463 (M.Kh. Annagiev et al., Doklady - Akademiya Nauk Azerbaidzhanskoi SSR, 1984, 40 (12), 53-6) describes the depletion of S compounds from technical grade ethanol (not bioethanol ) from 25-30 to 8-17 mg / l by contacting the ethanol at room temperature with zeolites of clinoptilolite and mordenite type, these zeolites having previously been conditioned at 380 ° C. for 6 h and in some Cases with metal salts, especially Fe 2 θ3, were treated. The depleted S compounds are H 2 S and alkylthiols (R-SH).
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein verbessertes wirtschaftliches Verfahren zur Behandlung von biochemisch hergestellten organischen Verbindungen, wie Bio-Alkoholen, z.B. Bio-Ethanol, aufzufinden, durch das in hoher Ausbeute, Raum-Zeit-Ausbeute und Selektivität die entsprechende behandelte Verbindung erhalten wird, die bei ihrer Verwendung, z.B. in chemischen Syntheseprozessen, wie z.B. bei der Herstellung von Ethylaminen, insbesondere Mono-, Di- und Triethylamin, aus Bio-Ethanol und auch bei anderen Verwendungen, z.B. in der chemischen, kosmetischen oder pharmazeutischen Industrie oder in der Nahrungsmittelindustrie, verbesserte Eigenschaften aufweist. Insbesondere sollte die Verwendung eines behandelten Bio-Ethanols verlängerte Kata- lysatorstandzeiten bei der Synthese von Ethylaminen ermöglichen.The object of the present invention was to provide an improved economical process for the treatment of biochemically produced organic compounds, such as bio-alcohols, e.g. Bioethanol, through which the corresponding treated compound is obtained in high yield, space-time yield and selectivity, which when used, e.g. in chemical synthesis processes, e.g. in the production of ethylamines, especially mono-, di- and triethylamine, from bioethanol and also for other uses, e.g. in the chemical, cosmetic or pharmaceutical industry or in the food industry, has improved properties. In particular, the use of a treated bioethanol should enable extended catalyst service lives in the synthesis of ethylamines.
(Raum-Zeit-Ausbeuten werden angegeben in ,Produktmenge / (Katalysatorvolumen • Zeit)' (kg/(lKat. • h)) und/oder .Produktmenge / (Reaktorvolumen • Zeit)' (kg/(lReaktor • h)).(Space-time yields are reported in amount of product / (catalyst volume • time) "(kg / (I cat. • h)) and / or product / (reactor volume • time)" (kg / (l R eaktor • H)).
Demgemäß wurde ein Verfahren zur Abreicherung von Schwefel und/oder einer schwefelhaltigen Verbindung aus einer biochemisch hergestellten organischen Verbindung gefunden, welches dadurch gekennzeichnet ist, dass man die entsprechende organische Verbindung mit einem Adsorber in Kontakt bringt.Accordingly, a process for the depletion of sulfur and / or a sulfur-containing compound from a biochemically produced organic compound has been found, which is characterized in that the corresponding organic compound is brought into contact with an adsorber.
Weiterhin wurde Ethanol mit einer bestimmten Spezifikation (siehe unten), herstellbar durch das o.g. Verfahren, und seine Verwendung als Lösungsmittel, Desinfektionsmittel, als Komponente in pharmazeutischen oder kosmetischen Produkten oder in Nahrungsmitteln oder in Reinigungsmitteln, als Einsatzstoff in Steam-Reformingverfahren zur Wasserstoffsynthese oder in Brennstoffzellen, oder als Baustein in der chemischen Synthese gefunden.Furthermore, ethanol was produced with a specific specification (see below), which can be produced by the above. Process, and its use as a solvent, disinfectant, as a component in pharmaceutical or cosmetic products or in food or in cleaning agents, as a feedstock in steam reforming processes for hydrogen synthesis or in fuel cells, or as a building block in chemical synthesis.
Das erfindungsgemäße Verfahren eignet sich besonders zur Abreicherung von Schwefel oder einer schwefelhaltigen Verbindung aus einer fermentativ hergestellten Verbin- düng. Bei den schwefelhaltigen Verbindungen handelt es sich um anorganische oder organische Verbindungen, insbesondere um symmetrische oder unsymmetrische C2-ι0- Dialkylsulfide, besonders C2-6-Dialkylsulfide, wie Diethylsulfide Di-n-propylsulfid, Di- isopropylsulfid, ganz besonders Dimethylsulfid, C2-ιo-Dialkylsulfoxide, wie Dimethylsul- foxid, Diethylsulfoxid, Dipropylsulfoxid, 3-Methylthio-1 -propanol und/oder S-haltigen Aminosäuren, wie Methionin und S-Methyl-methionin.The method according to the invention is particularly suitable for the depletion of sulfur or a sulfur-containing compound from a compound produced by fermentation. The sulfur-containing compounds are inorganic or organic compounds, especially symmetrical or unsymmetrical C 2- ι 0 - dialkyl sulfides, especially C 2 -6-dialkyl sulfides, such as Diethylsulfide Di-n-propyl sulfide, di-isopropyl sulfide, very particularly dimethyl sulfide, C 2- ιo-dialkyl sulfoxides, such as dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, 3-methylthio-1-propanol and / or S-containing amino acids, such as methionine and S-methyl-methionine.
Bei der biochemisch hergestellten organischen Verbindung handelt es sich vorzugsweise um einen Alkohol, Ether oder eine Carbonsäure, insbesondere um Ethanol, 1,3- Propandiol, 1 ,4-Butandiol, 1-Butanol, Glycerin, Tetrahydrofuran, Milchsäure, Bernsteinsäure, Malonsäure, Zitronensäure, Essigsäure, Propionsäure, 3-Hydroxy-propionsäure, Buttersäure, Ameisensäure oder Gluconsäure.The biochemically produced organic compound is preferably an alcohol, ether or a carboxylic acid, in particular ethanol, 1,3-propanediol, 1,4-butanediol, 1-butanol, glycerin, tetrahydrofuran, lactic acid, succinic acid, malonic acid, citric acid , Acetic acid, propionic acid, 3-hydroxypropionic acid, butyric acid, formic acid or gluconic acid.
Als Adsorber werden bevorzugt ein Kieselgel, ein aktiviertes Aluminiumoxid, ein Zeolith mit hydrophilen Eigenschaften, eine Aktivkohle oder ein Kohlenstoffmolsieb eingesetzt.A silica gel, an activated aluminum oxide, a zeolite with hydrophilic properties, an activated carbon or a carbon membrane are preferably used as adsorbers.
Beispiele für einsetzbare Kieselgele sind Siliciumdioxid, für einsetzbare Aluminiumoxide sind Böhmit, gamma-, delta-, theta-, kappa-, chi- und alpha-Aluminiumoxid, für einsetzbare Aktivkohlen sind Kohlen hergestellt aus Holz, Torf, Kokosnussschalen, oder auch synthetische Kohlen und Ruße, hergestellt etwa aus Erdgas, Erdöl bzw. Folgeprodukten, oder polymeren organischen Materialien, die auch Heteroatome wie z.B. Stickstoff enthalten können, und für einsetzbare Kohlenstoffmolsiebe sind Molsiebe hergestellt aus Anthrazit und „hard coal" durch partielle Oxidation, und befinden sich z.B. beschrieben in der Electronic Version of Sixth Edition of Ullmann's Encyclopedia of Industrial Chemistry, 2000, Chapter Adsorption, Paragraph ,Adsorbents'.Examples of silica gels that can be used are silicon dioxide, boehmite, gamma, delta, theta, kappa, chi and alpha alumina for usable aluminum oxides, and charcoals made of wood, peat, coconut shells, or also synthetic carbons are used for activated carbons Carbon blacks, made from natural gas, petroleum or derived products, or polymeric organic materials that also contain heteroatoms such as Nitrogen can be used, and for usable carbon molecular sieves, molecular sieves are made of anthracite and "hard coal" by partial oxidation, and are described, for example, in the Electronic Version of Sixth Edition of Ullmann's Encyclopedia of Industrial Chemistry, 2000, Chapter Adsorption, Paragraph, Adsorbents ,
Wird der Adsorber als Formkörper, etwa für ein Festbettverfahren hergestellt, kann er in jeder beliebigen Form verwendet werden. Typische Formkörper sind Kugeln, Stränge, Hohlstränge, Sternstränge, Tabletten, Splitt, etc. mit charakteristischen Durchmes- sern von 0,5 bis 5 mm, oder auch Monolithe und ähnliche strukturierte Packungen (vgl. Ullmann's Encyclopedia, Sixth Edition, 2000 Electronic Release, Chapter Fixed-Bed Reactors, Par.2: Catalyst Forms for Fixed-Bed Reactors).If the adsorber is manufactured as a shaped body, for example for a fixed bed process, it can be used in any shape. Typical moldings are spheres, strands, hollow strands, star strands, tablets, grit, etc. with characteristic diameters from 0.5 to 5 mm, or also monoliths and similar structured packings (see Ullmann's Encyclopedia, Sixth Edition, 2000 Electronic Release, Chapter Fixed-Bed Reactors, Par.2: Catalyst Forms for Fixed-Bed Reactors).
Bei der Suspensionsfahrweise wird der Adsorber in Pulverform eingesetzt. Typische Partikelgrößen in solchen Pulvern liegen bei 1 - 100 μm, es können aber auch Partikel deutlich kleiner als 1 μm verwendet werden, etwa beim Einsatz von Ruß. Die Filtration kann in Suspensionsverfahren diskontinuierlich, etwa durch Tiefenfiltration durchgeführt werden. In kontinuierlichen Verfahren bietet sich etwa die Querstromfiltration an.In the suspension procedure, the adsorber is used in powder form. Typical particle sizes in such powders are 1 - 100 μm, but particles significantly smaller than 1 μm can also be used, for example when using soot. The filtration can be carried out discontinuously in suspension processes, for example by deep filtration. Cross-flow filtration is an option in continuous processes.
Bevorzugt werden als Adsorber Zeolithe, insbesondere Zeolithe aus der Gruppe natürliche Zeolithe, Faujasit, X-Zeolith, Y-Zeolith, A-Zeolith, L-Zeolith, ZSM 5-Zeolith, ZSM 8-Zeolith, ZSM 11-Zeolith, ZSM 12-Zeolith, Mordenit, beta-Zeolith, Pentasil-Zeolith, und Mischungen hiervon, die ionen-austauschbare Kationen aufweisen, eingesetzt.Preferred adsorbers are zeolites, in particular zeolites from the group of natural zeolites, faujasite, X zeolite, Y zeolite, A zeolite, L zeolite, ZSM 5 zeolite, ZSM 8-zeolite, ZSM 11-zeolite, ZSM 12-zeolite, mordenite, beta-zeolite, pentasil zeolite, and mixtures thereof, which contain ion-exchangeable cations.
Solche, auch kommerzielle, Zeolithe sind beschrieben in Kirk-Othmer Encyclopedia of Chemical Engineering 4th Ed. Vol 16. Wiley, NY, 1995, und auch z.B. in Catalysis and Zeolites, J. Weitkamp and L. Puppe, Eds, Springer, Berlin (1999), aufgeführt.Such, also commercial, zeolites are described in Kirk-Othmer Encyclopedia of Chemical Engineering 4th Ed. Vol 16. Wiley, NY, 1995, and also e.g. in Catalysis and Zeolites, J. Weitkamp and L. Puppe, Eds, Springer, Berlin (1999).
Es können auch sogenannte Metal Organic Frameworks (MOFs) eingesetzt werden (z.B. Li et al., Nature, 402, 1999, Seiten 276-279).So-called Metal Organic Frameworks (MOFs) can also be used (e.g. Li et al., Nature, 402, 1999, pages 276-279).
Die Kationen des Zeoliths, z.B. H+ bei einem Zeolith in der H-Form oder Na+ bei einem Zeolith in der Na-Form, werden bevorzugt ganz oder teilweise gegen Metallkationen, insbesondere Übergangsmetallkationen, ausgetauscht. (Beladen der Zeolithe mit Metallkationen).The cations of the zeolite, for example H + in the case of a zeolite in the H form or Na + in the case of a zeolite in the Na form, are preferably completely or partially replaced by metal cations, in particular transition metal cations. (Loading of the zeolites with metal cations).
Das kann z.B. durch lonenaustausch, Tränkung oder Verdampfung von lösbaren Salzen erfolgen. Bevorzugt werden die Metalle aber durch lonenaustausch auf den Zeolithen aufgebracht, da sie dann, wie erfindungsgemäß erkannt, eine besonders hohe Dispersion und damit eine besonders hohe Schwefel-Adsorptionskapazität aufweisen. Der Kationenaustausch ist z.B. möglich ausgehend von Zeolithen in der Alkalimetall-, H-, oder Ammonium-Form. In Catalysis and Zeolites, J. Weitkamp and L. Puppe, Eds., Springer, Berlin (1999), sind solche lonenaustauschtechniken für Zeolithe ausführlich beschrieben.This can e.g. by ion exchange, impregnation or evaporation of soluble salts. However, the metals are preferably applied to the zeolite by ion exchange since, as recognized according to the invention, they then have a particularly high dispersion and thus a particularly high sulfur adsorption capacity. The cation exchange is e.g. possible starting from zeolites in the alkali metal, H or ammonium form. Such ion exchange techniques for zeolites are described in detail in Catalysis and Zeolites, J. Weitkamp and L. Puppe, Eds., Springer, Berlin (1999).
Bevorzugte Zeolithe weisen ein Modul (molares SiO2 : AI2O3 - Verhältnis) im Bereich von 2 bis 1000, besonders 2 bis 100, auf.Preferred zeolites have a modulus (molar SiO 2 : Al 2 O 3 ratio) in the range from 2 to 1000, particularly 2 to 100.
Ganz besonders werden im erfindungsgemäßen Verfahren Adsorber, insbesondere Zeolithe, eingesetzt, die ein oder mehrere Übergangsmetalle, in elementarer oder kat- ionischer Form, aus den Gruppen VIII und IB des Periodensystems, wie Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag und/oder Au, bevorzugt Ag und/oder Cu, enthalten.In the process according to the invention, adsorbers, in particular zeolites, are very particularly used which contain one or more transition metals, in elemental or cationic form, from groups VIII and IB of the periodic table, such as Fe, Co, Ni, Ru, Rh, Pd, Os , Ir, Pt, Cu, Ag and / or Au, preferably Ag and / or Cu, contain.
Der Adsorber enthält bevorzugt 0,1 bis 75 Gew.-%, insbesondere 1 bis 60 Gew.-%, besonders 2 bis 50 Gew.-%, ganz besonders 5 bis 30 Gew.-%, (jeweils bezogen auf die Gesamtmasse des Adsorbers) des Metalls bzw. der Metalle, insbesondere des Übergangsmetalls bzw. der Übergangsmetalle.The adsorber preferably contains 0.1 to 75% by weight, in particular 1 to 60% by weight, particularly 2 to 50% by weight, very particularly 5 to 30% by weight (in each case based on the total mass of the adsorber ) of the metal or metals, in particular the transition metal or the transition metals.
Verfahren zur Herstellung solcher metallhaltigen Adsorber sind dem Fachmann z.B. aus Larsen et al., J. Chem. Phys. 98, 1994 Seiten 11533-11540 und J. Mol. Catalysis A, 21 (2003) Seiten 237-246, bekannt. In Catalysis and Zeolites, J. Weitkamp and L. Puppe, Eds, Springer, Berlin (1999) sind lonenaustauschtechniken für Zeolithe ausführlich beschrieben.Methods for producing such metal-containing adsorbers are known to the person skilled in the art, for example from Larsen et al., J. Chem. Phys. 98, 1994 pages 11533-11540 and J. Mol. Catalysis A, 21 (2003) pages 237-246. Ionysis techniques for zeolites are described in detail in Catalysis and Zeolites, J. Weitkamp and L. Puppe, Eds, Springer, Berlin (1999).
Beispielsweise beschreibt A.J. Hemandez-Maldonado et al. in Ind. Eng. Chem. Res. 42, 2003, Seiten 123-29, eine geeignete Methode, in der ein Ag-Y-Zeolith hergestellt wird, durch lonenaustausch von Na-Y-Zeolith mit einem Überschuss an Silbernitrat in wässriger Lösung (0,2 molar) bei Raumtemperatur in 24-48 Stunden. Nach dem lonenaustausch wird der Feststoff durch Filtration isoliert, mit großen Mengen an deionisiertem Wasser gewaschen und bei Raumtemperatur getrocknet.For example, A.J. Hemandez-Maldonado et al. in Ind. Eng. Chem. Res. 42, 2003, pages 123-29, a suitable method in which an Ag-Y zeolite is produced by ion exchange of Na-Y zeolite with an excess of silver nitrate in aqueous solution (0.2 molar) at room temperature in 24-48 hours. After the ion exchange, the solid is isolated by filtration, washed with large amounts of deionized water and dried at room temperature.
Beispielsweise ist auch in T.R. Felthouse et al., J. of Catalysis 98, Seiten 411-33 (1986), beschrieben, wie aus den H-Formen von Y-Zeolith, Mordenit und ZSM-5 jeweils die Pt-haltigen Zeolithe hergestellt werden.For example, T.R. Felthouse et al., J. of Catalysis 98, pages 411-33 (1986), described how the Pt-containing zeolites are produced from the H forms of Y zeolite, mordenite and ZSM-5.
Auch die in WO-A2-03/020850 offenbarten Methoden zur Herstellung von Cu-Y- und Ag-Y-Zeolithen durch lonenaustausch ausgehend von Na-Y-Zeolithen sind geeignet, um für das erfindungsgemäße Verfahren bevorzugte Adsorber zu erhalten.The methods disclosed in WO-A2-03 / 020850 for the production of Cu-Y and Ag-Y zeolites by ion exchange starting from Na-Y zeolites are also suitable in order to obtain preferred adsorbers for the process according to the invention.
Ganz bevorzugte Adsorber sind: Ag-X-Zeolith mit einem Ag-Gehalt von 10 bis 50 Gew.-% (bezogen auf die Gesamtmasse des Adsorbers) undVery preferred adsorbers are: Ag-X zeolite with an Ag content of 10 to 50% by weight (based on the total mass of the adsorber) and
Cu-X-Zeolith mit einem Cu-Gehalt von 10 bis 50 Gew.-% (bezogen auf die Gesamtmasse des Adsorbers).Cu-X zeolite with a Cu content of 10 to 50 wt .-% (based on the total mass of the adsorber).
Zur Durchführung des erfindungsgemäßen Verfahrens wird der Adsorber mit der organischen Verbindung im Allgemeinen bei Temperaturen im Bereich von 0 °C bis 200°C, insbesondere von 10 °C bis 50°C, in Kontakt gebracht.To carry out the process according to the invention, the adsorber is generally brought into contact with the organic compound at temperatures in the range from 0 ° C. to 200 ° C., in particular from 10 ° C. to 50 ° C.
Das In-Kontakt-Bringen mit dem Adsorber erfolgt bevorzugt bei einem Absolutdruck im Bereich von 1 bis 200 bar, insbesondere 1 bis 5 bar.The contacting with the adsorber is preferably carried out at an absolute pressure in the range from 1 to 200 bar, in particular 1 to 5 bar.
Besonders bevorzugt wird bei Raumtemperatur und drucklos (Atmosphärendruck) gearbeitet.It is particularly preferred to work at room temperature and without pressure (atmospheric pressure).
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die entsprechende organische Verbindung in flüssiger Phase, d.h. in flüssiger Form oder gelöst oder suspendiert in einem Lösungsmittel oder Verdünnungsmittel, mit dem Adsorber in Kontakt gebracht.In a preferred embodiment of the process according to the invention, the corresponding organic compound is in the liquid phase, i.e. in liquid form or dissolved or suspended in a solvent or diluent, brought into contact with the adsorber.
Als Lösungsmittel kommen insbesondere solche in Betracht, die die zu reinigenden Verbindungen möglichst vollständig zu lösen vermögen oder sich mit diesen vollständig mischen und die unter den Verfahrensbedingen inert sind. Beispiele für geeignete Lösungsmittel sind Wasser, cyclische und alicyclische Ether, z.B. Tetrahydrofuran, Dioxan, Methyl-tert.-butylether, Dimethoxyethan, Dimethoxypro- pan, Dimethyldiethylenglykol, aliphatische Alkohole wie Methanol, Ethanol, n- oder Isopropanol, n-, 2-, iso- oder tert.-Butanol, Carbonsäureester wie Essigsäuremethylester, Essigsäureethylester, Essigsäurepropylester oder Essigsäurebutylester, sowie aliphatische Etheralkohole wie Methoxypropanol.Particularly suitable solvents are those which are able to dissolve the compounds to be purified as completely as possible or which mix completely with them and which are inert under the process conditions. Examples of suitable solvents are water, cyclic and alicyclic ethers, for example tetrahydrofuran, dioxane, methyl tert-butyl ether, dimethoxyethane, dimethoxy propane, dimethyldiethylene glycol, aliphatic alcohols such as methanol, ethanol, n- or isopropanol, n-, 2-, iso- or tert-butanol, carboxylic acid esters such as methyl acetate, ethyl acetate, propyl acetate or butyl acetate, and aliphatic ether alcohols such as methoxypropanol.
Die Konzentration an zu reinigender Verbindung in der flüssigen, lösungsmittelhaltigen Phase kann grundsätzlich frei gewählt werden und liegt häufig im Bereich von 20 bis 95 Gew.-%, bezogen auf das Gesamtgewicht der Lösung/Mischung.The concentration of compound to be purified in the liquid, solvent-containing phase can in principle be chosen freely and is frequently in the range from 20 to 95% by weight, based on the total weight of the solution / mixture.
Eine Variante des erfindungsgemäßen Verfahrens besteht darin, dass es, drucklos oder unter Druck, in Gegenwart von Wasserstoff durchgeführt wird.A variant of the method according to the invention is that it is carried out, unpressurized or under pressure, in the presence of hydrogen.
Das Verfahren kann in der Gas- oder Flüssigphase, Festbett- oder Suspensionsfahrweise durchgeführt werden, mit oder ohne Rückvermischung, kontinuierlich oder diskontinuierlich entsprechend den dem Fachmann bekannten Verfahren (z.B. beschrieben in Ullmann's Encyclopedia, sixth edition, 2000 electronic release, Chapter „Adsorp- tion").The process can be carried out in the gas or liquid phase, fixed bed or suspension procedure, with or without backmixing, continuously or batchwise in accordance with the processes known to the person skilled in the art (for example described in Ullmann's Encyclopedia, sixth edition, 2000 electronic release, chapter “Adsorption ").
Um einen möglichst hohen Abreicherungsgrad der Schwefelverbindung zu erhalten, bieten sich insbesondere Verfahren mit einem geringen Grad an Rückvermischung an.In order to obtain the highest possible degree of depletion of the sulfur compound, methods with a low degree of backmixing are particularly suitable.
Das erfindungsgemäße Verfahren ermöglicht insbesondere die Abreicherung vonThe method according to the invention enables in particular the depletion of
Schwefel und/oder schwefelhaltigen Verbindungen aus der jeweiligen Verbindung um ≥ 90, besonders ≥ 95, ganz besonders ≥ 98 Gew.-% (jeweils berechnet S).Sulfur and / or sulfur-containing compounds from the respective compound by ≥ 90, particularly ≥ 95, very particularly ≥ 98% by weight (calculated in each case S).
Das erfindungsgemäße Verfahren ermöglicht insbesondere die Abreicherung von Schwefel und/oder schwefelhaltigen Verbindungen aus der jeweiligen Verbindung auf einen Restgehalt von < 2, besonders < 1 , ganz besonders von 0 bis < 0,1 Gew.-ppm (jeweils berechnet S), z.B. bestimmt nach Wickbold (DIN EN 41).The process according to the invention enables in particular the depletion of sulfur and / or sulfur-containing compounds from the respective compound to a residual content of <2, particularly <1, very particularly from 0 to <0.1 ppm by weight (calculated in each case S), e.g. determined according to Wickbold (DIN EN 41).
Das im erfindungsgemäßen Verfahren bevorzugt eingesetzte Bio-Ethanol wird im AII- gemeinen aus Agrarprodukten wie Melasse, Rohrzuckersaft, Maisstärke oder aus Produkten der Holzverzuckerung und aus Sulfitablaugen durch Fermentation erzeugt.The bioethanol which is preferably used in the process according to the invention is generally produced from agricultural products such as molasses, cane sugar juice, corn starch or from products of wood saccharification and from sulfite waste liquors by fermentation.
Bevorzugt wird Bio-Ethanol eingesetzt, dass durch Fermentation von Glukose unter CO2-Abspaltung erhalten wurde (K. Weissermel und H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 194; Electronic Version of Sixth Edition of Ullmann's Encyclopedia of Industrial Chemistry, 2000, Chapter Ethanol, Paragraph Fermentation). Das Ethanol wird in der Regel durch Destillationsverfahren aus den Fermentationsbrühen gewonnen: Electronic Version of Sixth Edition of Ullmann's Encyclopedia of Industrial Chemistry, 2000, Chapter Ethanol, Paragraph Recovery and Purification.Bioethanol is preferably used that was obtained by fermentation of glucose with elimination of CO 2 (K. Weissermel and H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 194; Electronic Version of Sixth Edition of Ullmann's Encyclopedia of Industrial Chemistry, 2000, Chapter Ethanol, Paragraph Fermentation). The ethanol is usually obtained from the distillation process Fermentation broths won: Electronic Version of Sixth Edition of Ullmann's Encyclopedia of Industrial Chemistry, 2000, Chapter Ethanol, Paragraph Recovery and Purification.
Erfindungsgemäß findet das mit dem gefundenen Verfahren hergestellte Ethanol vorteilhaft VerwendungAccording to the invention, the ethanol produced by the process found is used advantageously
als Baustein in der chemischen Synthese, z.B.as a building block in chemical synthesis, e.g.
in (dem Fachmann bekannten) Verfahren zur Herstellung eines primären, sekundären oder tertiären Ethylamins, eines Mono- oder Diethylamins, insbesondere von Mono-, Di- und/oder Triethylamin, durch Umsetzung des Ethanols mit NH3, einem primären Amin bzw. einem sekundären Amin in Gegenwart von Wasserstoff bei erhöhten Temperaturen und Drucken in Gegenwart eines Heterogenkatalysators enthaltend ein Me- tall der Gruppe VIII und/oder IB des Periodensystems,in (known to those skilled in the art) processes for the preparation of a primary, secondary or tertiary ethylamine, a mono- or diethylamine, in particular mono-, di- and / or triethylamine, by reacting the ethanol with NH 3 , a primary amine or a secondary Amine in the presence of hydrogen at elevated temperatures and pressures in the presence of a heterogeneous catalyst containing a metal of Group VIII and / or IB of the periodic table,
in (dem Fachmann bekannten) Verfahren zur Herstellung eines Ethylesters, insbesondere durch Veresterung von Ethanol mit einer Carbonsäure oder Umesterung eines Carbonsäureesters mit Ethanol,in processes (known to the person skilled in the art) for producing an ethyl ester, in particular by esterifying ethanol with a carboxylic acid or transesterifying a carboxylic acid ester with ethanol,
in (dem Fachmann bekannten) Verfahren zur Herstellung von Ethylen durch Dehydrati- sierung,in (known to those skilled in the art) processes for the production of ethylene by dehydration,
als Lösungsmittel, Desinfektionsmittel, undas a solvent, disinfectant, and
als Komponente in pharmazeutischen oder kosmetischen Produkten oder in Nahrungsmitteln oder in Reinigungsmitteln, als Einsatzstoff in Steam-Reformingverfahren zur Wasserstoffsynthese oder in Brennstoffzellen.as a component in pharmaceutical or cosmetic products or in food or in cleaning agents, as an ingredient in steam reforming processes for hydrogen synthesis or in fuel cells.
Gegenstand vorliegender Erfindung ist auch ein mit dem erfindungsgemäßen Verfahren herstellbares Ethanol, dasThe present invention also relates to an ethanol which can be produced by the process according to the invention
einen Gehalt an Schwefel und/oder schwefelhaltigen organischen Verbindungen im Bereich von 0 bis 2 Gew.-ppm, besonders 0 bis 1 ppm, ganz besonders 0 bis 0,1 ppm, (jeweils berechnet S), z.B. bestimmt nach Wickbold (DIN EN 41 ),a content of sulfur and / or sulfur-containing organic compounds in the range from 0 to 2 ppm by weight, in particular 0 to 1 ppm, very particularly 0 to 0.1 ppm (calculated in each case S), e.g. determined according to Wickbold (DIN EN 41),
einen Gehalt an C3-4-Alkanolen im Bereich von 1 bis 5000 Gew.-ppm, besonders 5 bis 3000 Gew.-ppm, ganz besonders 10 bis 2000 Gew.-ppm,a content of C 3-4 alkanols in the range from 1 to 5000 ppm by weight, particularly 5 to 3000 ppm by weight, very particularly 10 to 2000 ppm by weight,
einen Gehalt an Methanol im Bereich von 1 bis 5000 Gew.-ppm, besonders 5 bis 3000 Gew.-ppm, ganz besonders 10 bis 2000 Gew.-ppm, einen Gehalt an Ethylacetat im Bereich von 1 bis 5000 Gew.-ppm, besonders 5 bis 3000 Gew.-ppm, ganz besonders 10 bis 2000 Gew.-ppm, unda methanol content in the range from 1 to 5000 ppm by weight, particularly 5 to 3000 ppm by weight, very particularly 10 to 2000 ppm by weight, a content of ethyl acetate in the range from 1 to 5000 ppm by weight, particularly 5 to 3000 ppm by weight, very particularly 10 to 2000 ppm by weight, and
einen Gehalt an 3-Methyl-butanol-1 im Bereich von 1 bis 5000 Gew.-ppm, besonders 5 bis 3000 Gew.-ppm, ganz besonders 10 bis 2000 Gew.-ppm,a content of 3-methyl-butanol-1 in the range from 1 to 5000 ppm by weight, particularly 5 to 3000 ppm by weight, very particularly 10 to 2000 ppm by weight,
aufweist.having.
Der Gehalt an C3^-Alkanolen, Methanol, Ethylacetat und 3-Methyl-butanoI-1 wird z.B. bestimmt mittels Gaschromatographie (30 m DB-WAX-Säule, Innendurchmesser: 0,32 mm, Filmdicke: 0,25 μm, FID-Detektor, Temperaturprogramm: 35°C (5 Min.), 10°C/Min. Aufheizrate, 200°C (8 Min.).The content of C 3 ^ -alkanols, methanol, ethyl acetate and 3-methyl-butanoI-1 is determined, for example, by means of gas chromatography (30 m DB-WAX column, inner diameter: 0.32 mm, film thickness: 0.25 μm, FID- Detector, temperature program: 35 ° C (5 min.), 10 ° C / min. Heating rate, 200 ° C (8 min.).
BeispieleExamples
Herstellung von Ag-ZeolithenProduction of Ag zeolites
Beispiel 1 : Pulver-Ag-ZeolithExample 1: Powder Ag Zeolite
Eine AgNO3-Lösung (7,71 g AgNO3 in Wasser, 200 ml gesamt) wurde in einem Becherglas vorgelegt, der Zeolith (ZSM-5, 200 g, molares SiO2/AI2O3- Verhältnis = 40-48, Na-Form) unter Rühren langsam dazu gegeben und bei Raumtemperatur 2 h gerührt. Dann wurde der Adsorber über einen Faltenfilter filtriert. Danach wurde der Adsorber 16 h bei 120°C im dunklen Trockenschrank getrocknet. Der Adsorber enthielt 2,1 Gew.-% Ag (bezogen auf die Gesamtmasse der Adsorbers).An AgNO 3 solution (7.71 g AgNO 3 in water, 200 ml total) was placed in a beaker, the zeolite (ZSM-5, 200 g, molar SiO 2 / Al 2 O 3 ratio = 40-48, Na form) slowly added with stirring and stirred at room temperature for 2 h. Then the adsorber was filtered through a pleated filter. The adsorber was then dried in a dark drying cabinet at 120 ° C. for 16 h. The adsorber contained 2.1% by weight of Ag (based on the total mass of the adsorbers).
Beispiel 2: Formkörper-Ag-ZeolithExample 2: Shaped Ag Ag Zeolite
Eine AgNO3-Lösung (22,4 g in Wasser, 100 ml gesamt) wurde in einem Becherglas vorgelegt. Der Zeolith (65 g Molsieb 13X in Form von Kugeln mit 2,7 mm Durchmesser, molares SiO2/AI2O3-Verhältnis = 2, Na-Form) wurde in der Apparatur vorgelegt. Nun wurden 400 ml Wasser eingefüllt und bei Raumtemperatur in einer kontinuierlichen Anlage im Kreislauf gepumpt. Die Ag-Nitrat-Lösung wurde in 1 h zugetropft. Nun wurde über Nacht (23 h) im Kreislauf gepumpt. Danach wurde der Adsorber mit 12 Liter vollentsalztem Wasser Nitrat-frei abgewaschen und anschließend bei 120°C über Nacht im dunklen Trockenschrank getrocknet. Der Adsorber enthielt 15,9 Gew.-% Ag (bezogen auf die Gesamtmasse der Adsorbers). Beispiele AAn AgNO 3 solution (22.4 g in water, 100 ml total) was placed in a beaker. The zeolite (65 g molecular sieve 13X in the form of balls with a diameter of 2.7 mm, molar SiO 2 / Al 2 O 3 ratio = 2, Na form) was placed in the apparatus. 400 ml of water were then poured in and pumped at room temperature in a continuous system in a circuit. The Ag nitrate solution was added dropwise in 1 h. Now the system was pumped overnight (23 h). The adsorber was then washed free of nitrate with 12 liters of deionized water and then dried at 120 ° C. overnight in a dark drying cabinet. The adsorber contained 15.9% by weight of Ag (based on the total mass of the adsorbers). Examples A
Alle ppm-Angaben in diesem Dokument beziehen sich auf das Gewicht.All ppm figures in this document are based on weight.
Zur Testung der Entschwefelung wurde jeweils 10 g des Adsorbers (vgl. die folgende Tabelle) in einem Trockenschrank bei 150°C über Nacht zur Entfernung adsorbierten Wassers ausgeheizt. Nach dem Erkalten des Feststoffs wurde er aus dem Trockenschrank entnommen und mit 300 ml Ethanol (Ethanol absolut, > 99,8 %, Quelle: Riedel de Haen) übergössen. Dem Ethanol waren ca. 17 ppm Dimethylsulfid (entspricht ca. 9 ppm Schwefel) zugegeben, da in Vorversuchen gefunden wurde, dass Dimethylsulfid eine für die in Bio-Ethanol enthaltenen organischen Schwefelverbindungen repräsentative Schwefelverbindung ist.To test the desulfurization, 10 g of the adsorber (see the following table) was heated in a drying cabinet at 150 ° C. overnight to remove adsorbed water. After the solid had cooled, it was removed from the drying cabinet and poured over with 300 ml of ethanol (absolute ethanol,> 99.8%, source: Riedel de Haen). About 17 ppm of dimethyl sulfide (corresponds to about 9 ppm of sulfur) was added to the ethanol, since preliminary tests found that dimethyl sulfide is a sulfur compound representative of the organic sulfur compounds contained in bioethanol.
Der Ag/ZSM-5-Adsorber wurde hergestellt durch lonenaustausch des Na-ZSM-5 mit einer wässrigen AgN03-Lösung (50 g ZSM-5, 1 ,94 g AgNO3, 50 ml Tränklösung). Dabei wurde ein kommerziell verfügbarer ZSM-5 (molares SiO2/AI2O3 Verhältnis = 40-48, Na-Form, ALSI-PENTA®) verwendet. Der Katalysator wurde anschließend bei 120°C getrocknet.The Ag / ZSM-5 adsorber was produced by ion exchange of the Na-ZSM-5 with an aqueous AgN0 3 solution (50 g ZSM-5, 1.94 g AgNO 3 , 50 ml impregnation solution). A commercially available ZSM-5 (molar SiO 2 / Al 2 O 3 ratio = 40-48, Na form, ALSI-PENTA®) was used. The catalyst was then dried at 120 ° C.
Der Ag/SiO2-Adsorber wurde hergestellt durch Tränkung von Si02 (BET ca. 170 m2/g, Na2O-Gehalt: 0,4 Gew.-%) mit einer wässrigen AgNO3-Lösung (40 g SiO2, 1 ,6 g AgNO3, 58 ml Tränklösung). Der Katalysator wurde anschließend bei 120°C getrocknet und bei 500 °C calciniert.The Ag / SiO 2 adsorber was produced by impregnating SiO 2 (BET approx. 170 m 2 / g, Na 2 O content: 0.4% by weight) with an aqueous AgNO 3 solution (40 g SiO 2 , 1.6 g AgNO 3 , 58 ml impregnation solution). The catalyst was then dried at 120 ° C and calcined at 500 ° C.
Der Ag/AI2O3-Adsorber wurde hergestellt durch Tränkung von gamma-AI2O3 (BET ca. 220 m2/g) mit einer wässrigen AgNO3-Lösung (40 g AI2O3> 1 ,6 g AgNO3, 40 ml Tränklösung). Der Katalysator wurde anschließend bei 120°C getrocknet und bei 500°C calciniert.The Ag / Al 2 O 3 adsorber was produced by impregnating gamma-Al 2 O 3 (BET approx. 220 m 2 / g) with an aqueous AgNO 3 solution (40 g Al 2 O 3> 1.6 g AgNO 3 , 40 ml impregnation solution). The catalyst was then dried at 120 ° C and calcined at 500 ° C.
Die Ethanol/Adsorber-Suspension wurde in einen 4-Hals-Glaskolben überführt, in den für ca. 5 Min. Stickstoff zur Inertisierung eingeleitet wurde. Anschließend wurde der Kolben verschlossen und die Suspension für 5 h bei Raumtemperatur gerührt. Nach dem Versuch wurde der Adsorber über einen Faltenfilter filtriert. Vom Filtrat und ggf. auch vom Adsorber wurde der Schwefelgehalt coulometrisch bestimmt:The ethanol / adsorber suspension was transferred to a 4-neck glass flask into which nitrogen was introduced for inerting for about 5 minutes. The flask was then closed and the suspension was stirred for 5 h at room temperature. After the experiment, the adsorber was filtered through a pleated filter. The sulfur content of the filtrate and possibly also of the adsorber was determined coulometrically:
(n.b. = nicht bestimmt) Die Tabelle zeigt, dass insbesondere der Silber-beladene Zeolith in der Lage war, den Schwefelgehalt auf Werte unterhalb der Nachweisgrenze (= 2 ppm) abzusenken.(nb = not determined) The table shows that the silver-laden zeolite in particular was able to reduce the sulfur content to values below the detection limit (= 2 ppm).
Auch nach dreimaligem Einsatz derselben Ag/ZSM-5-Probe wurde nach Versuchsdurchführung < 2 ppm Schwefel im Ethanol detektiert.Even after using the same Ag / ZSM-5 sample three times, <2 ppm sulfur was detected in the ethanol after the test was carried out.
Auch bei den Adsorbern, bei denen Silber auf andere Träger wie AI2O3 oder SiO2 aufgebracht wurde, konnte eine Entschwefelung festgestellt werden. Auch der undotierte Zeolith führte zu einer gewissen Schwefelabreicherung aus dem Ethanol. Das beste Resultat wurde am silberdotierten Zeolithen erhalten.Desulfurization was also found in the adsorbers, in which silver was applied to other supports such as Al 2 O 3 or SiO 2 . The undoped zeolite also led to a certain sulfur depletion from the ethanol. The best result was obtained on the silver-doped zeolite.
Auch sonstige Materialien, wie Cu/ZnO/AI2O3-Katalysatoren oder Ni-Katalysatoren, waren für die S-Entfernung aus Bio-Ethanol geeignet, aber weniger gut als der Silber- dotierte Zeolith, selbst dann, wenn bei erhöhter Temperatur und unter Zugabe von Wasserstoff gearbeitet wurde.Other materials, such as Cu / ZnO / Al 2 O 3 catalysts or Ni catalysts, were also suitable for S removal from bioethanol, but less well than the silver-doped zeolite, even if at elevated temperature and was worked with the addition of hydrogen.
Beispiele BExamples B
Beispiel B1Example B1
Zur Testung der Entschwefelung wurde 20 g des pulverförmigen Adsorbers Ag-ZSM5, 2,1 Gew.-% Ag verwendet (siehe Beispiel 1) und mit 300 ml Ethanol (Ethanol absolut, > 99,8 %, Quelle: Riedel de Haen) Übergossen. Dem Ethanol waren ca. 175 ppm Di- methylsulfid (> 99 %, Merck) (entspricht ca. 90 ppm Schwefel) zugegeben, da in Vorversuchen gefunden wurde, dass Dimethylsulfid eine für die in Bio-Ethanol enthaltenen organischen Schwefelverbindungen repräsentative Schwefelverbindung ist. Die Ethanol/Adsorber-Suspension wurde in einen geschlossenen 4-Hals- Glaskolben überführt. Die Suspension wurde bei Raumtemperatur und Normaldruck gerührt. Nach dem Versuch wurde der Adsorber über einen Faltenfilter filtriert. Vom Eintrag, Filtrat und ggf. auch vom Adsorber wurde der Schwefelgehalt coulometrisch bestimmt. Dieselbe Ag-ZSM5-Probe wurde noch dreimal eingesetzt:To test the desulfurization, 20 g of the powdery adsorber Ag-ZSM5, 2.1% by weight of Ag were used (see Example 1) and poured over with 300 ml of ethanol (absolute ethanol,> 99.8%, source: Riedel de Haen) , Approx. 175 ppm dimethyl sulfide (> 99%, Merck) (corresponds to approx. 90 ppm sulfur) was added to the ethanol, since preliminary tests found that dimethyl sulfide is a sulfur compound representative of the organic sulfur compounds contained in bioethanol. The ethanol / adsorber suspension was transferred to a closed 4-neck glass flask. The suspension was stirred at room temperature and normal pressure. After the experiment, the adsorber was filtered through a pleated filter. The sulfur content of the entry, filtrate and possibly also of the adsorber was determined coulometrically. The same Ag-ZSM5 sample was used three more times:
Beispiel B2 Example B2
Zur Testung der Entschwefelung wurde pulverförmige Entschwefelungsmaterialien mit 300 ml Ethanol (Ethanol absolut, > 99,8 %, Riedel de Haen) Übergossen. Dem Ethanol waren ca. 175 ppm Dimethylsulfid (> 99 %, Merck) (entspricht ca. 90 ppm Schwefel) zugegeben. Die Ethanol/Adsorber-Suspension wurde in einen geschlossenen 4-Hals- Glaskolben überführt. Die Suspension wurde bei Raumtemperatur und Normaldruck für 24 Stunden gerührt. Nach dem Versuch wurde der Adsorber über einen Faltenfilter filtriert. Vom Eintrag, Filtrat und ggf. auch vom Adsorber wurde der Schwefelgehalt coulometrisch bestimmt.To test the desulfurization, powdered desulfurization materials were poured over with 300 ml of ethanol (absolute ethanol,> 99.8%, Riedel de Haen). About 175 ppm of dimethyl sulfide (> 99%, Merck) (corresponds to about 90 ppm of sulfur) were added to the ethanol. The ethanol / adsorber suspension was transferred to a closed 4-neck glass flask. The suspension was stirred at room temperature and normal pressure for 24 hours. After the experiment, the adsorber was filtered through a pleated filter. The sulfur content of the entry, filtrate and possibly also of the adsorber was determined coulometrically.
Die Materialien CuO-ZnO/AI2O3 und NiO/SiO2/AI2θ3/Zrθ2 sind für die Entschwefelung geeignet, aber weniger gut als z.B. ein Silber-dotierter Zeolith, selbst dann, wenn bei erhöhter Temperatur und unter Zugabe von Wasserstoff gearbeitet wurde. Wird Palladium auf Kohle eingesetzt, wird Schwefel aus Ethanol aufgenommen.The materials CuO-ZnO / AI 2 O 3 and NiO / SiO 2 / AI 2 θ 3 / Zrθ 2 are suitable for desulfurization, but less well than, for example, a silver-doped zeolite, even if at elevated temperature and with addition was worked by hydrogen. If palladium on carbon is used, sulfur is taken up from ethanol.
Beispiel B3Example B3
Zur Testung des Adsorbers wurde eine kontinuierliche Festbettanlage mit einem Gesamtvolumen von 192 ml mit 80,5 g Ag-13X Kugeln (15,9 Gew.-% Ag, 2,7 mm Kugeln, beschrieben in Beispiel 2) gefüllt. Dem Feed Ethanol (Ethanol absolut, > 99,8 %, Riedel de Haen) waren ca. 80 ppm Dimethylsulfid, (> 99 %, Merck) (entspricht ca. 40 ppm Schwefel) zugegeben. Das Feed wurde in Sumpffahrweise über den Adsorber gefah- ren. Während der Probennahme wurde immer die Probeflasche mit einer Eis/Salz- Mischung gekühlt.To test the adsorber, a continuous fixed bed system with a total volume of 192 ml was filled with 80.5 g of Ag-13X balls (15.9% by weight of Ag, 2.7 mm balls, described in Example 2). About 80 ppm dimethyl sulfide (> 99%, Merck) (corresponds to about 40 ppm sulfur) were added to the feed ethanol (absolute ethanol,> 99.8%, Riedel de Haen). The feed was passed over the adsorber in a swamp mode. During the sampling, the sample bottle was always cooled with an ice / salt mixture.
Die Schwefelbestimmung im Ein- und Austrag erfolgte (in allen Beispielen) coulo- metrisch (DIN 51400 Teil 7) mit einer Nachweisgrenze von 2 ppm. The sulfur determination in the entry and exit was carried out (in all examples) coulometrically (DIN 51400 part 7) with a detection limit of 2 ppm.
Beispiel B4Example B4
Zur Testung der Entschwefelung wurde jeweils 4 g des Adsorbers (vgl. die folgende Tabelle) mit 500 ml Ethanol (Ethanol absolut, > 99,8 %, Riedel de Haen) übergössen. Dem Ethanol waren ca. 390 ppm Dimethylsulfid, (> 99 %, Merck) (entspricht ca. 200 ppm Schwefel) zugegeben.To test the desulfurization, 4 g of the adsorber (see the following table) was poured over 500 ml of ethanol (absolute ethanol,> 99.8%, Riedel de Haen). About 390 ppm of dimethyl sulfide (> 99%, Merck) (corresponds to about 200 ppm of sulfur) were added to the ethanol.
Die Herstellung des Ag-13X ist beschrieben in Beispiel 1. CBV100 und CBV720 sind Zeolith-Y Systeme. Die Dotierung mit Metallen wurde durch Kationenaustausch analog Beispiel 1 durchgeführt, hierbei wurden AgNO3- bzw. CuNO3-Lösungen eingesetzt. Der Cu-CPV720 wurde anschließend bei 450 °C in N2 calciniert.The preparation of the Ag-13X is described in Example 1. CBV100 and CBV720 are Zeolite-Y systems. The doping with metals was carried out by cation exchange as in Example 1, using AgNO 3 or CuNO 3 solutions. The Cu-CPV720 was then calcined at 450 ° C in N 2 .
Die Ethanol/Adsorber-Suspension wurde in einen 4-Hals-Glaskolben überführt und für 24 h bei Raumtemperatur drucklos gerührt. Nach dem Versuch wurde der Adsorber über einen Faltenfilter filtriert. Vom Filtrat und ggf. auch vom Adsorber wurde der Schwefelgehalt coulometrisch bestimmt:The ethanol / adsorber suspension was transferred to a 4-neck glass flask and stirred without pressure for 24 h at room temperature. After the experiment, the adsorber was filtered through a pleated filter. The sulfur content of the filtrate and possibly also of the adsorber was determined coulometrically:
(n.b. = nicht bestimmt)(n.b. = not determined)
Die Tabelle zeigt, dass sowohl Silber-dotierte Zeolithe als auch Kupfer-dotierte Zeolithe in der Lage sind, Ethanol zu entschwefeln. The table shows that both silver-doped zeolites and copper-doped zeolites are able to desulfurize ethanol.
Beispielexample
Verschiedene kommerzielle Bio-Ethanol Qualitäten wurden untersucht auf ihren Schwefelgehalt.Various commercial bio-ethanol grades have been tested for their sulfur content.
Bio- Bio- Bio- Bio- Bio- Bio- Bio-Bio bio bio bio bio bio bio
EtOH 1 EtOH 2 EtOH 3 EtOH 4 EtOH 5 EtOH 6 EtOH 7 Ges.-S Öß i Öß 8 2. 49 2EtOH 1 EtOH 2 EtOH 3 EtOH 4 EtOH 5 EtOH 6 EtOH 7 Ges.-S Öß i Öß 8 2. 49 2
(Gew.-ppm)(Ppm)
Sulfat-S 0,33 0,43 0,2 n.b. 0,9 6 2Sulfate-S 0.33 0.43 0.2 n.b. 0.9 6 2
(Gew.-ppm)(Ppm)
Ges.-S = Gesamt-Schwefel, coulometrisch bestimmt nach DIN 51400 Teil 7 Gesamt-Schwefel-G ehalte < 2 ppm wurden bestimmt nach Wickbold (DIN EN 41) Sulfat-S = Sulfat-Schwefel, ionenchromatographisch bestimmt analog EN ISO 10304-2 Ges.-S = total sulfur, determined coulometrically according to DIN 51400 Part 7 Total sulfur contents <2 ppm were determined according to Wickbold (DIN EN 41) Sulfate-S = sulfate sulfur, determined by ion chromatography according to EN ISO 10304-2

Claims

Patentansprüche claims
1. Verfahren zur Abreicherung von Schwefel und/oder einer schwefelhaltigen Verbindung aus einer biochemisch hergestellten organischen Verbindung, dadurch gekennzeichnet, dass man die entsprechende organische Verbindung mit einem1. A process for the depletion of sulfur and / or a sulfur-containing compound from a biochemically produced organic compound, characterized in that the corresponding organic compound with a
Adsorber in Kontakt bringt.Brings adsorber into contact.
2. Verfahren nach Anspruch 1 zur Abreicherung von Schwefel und/oder einer schwefelhaltigen Verbindung aus einer fermentativ hergestellten Verbindung.2. The method according to claim 1 for the depletion of sulfur and / or a sulfur-containing compound from a fermentatively produced compound.
3. Verfahren nach den Ansprüchen 1 oder 2 zur Abreicherung von C2-10-Dialkyl- sulfiden, C2-10-Dialkylsulfoxiden, 3-Methylthio-1 -propanol und/oder S-haltigen Aminosäuren.3. The method according to claims 1 or 2 for the depletion of C 2-10 dialkyl sulfides, C 2-10 dialkyl sulfoxides, 3-methylthio-1-propanol and / or S-containing amino acids.
4. Verfahren nach den Ansprüchen 1 oder 2 zur Abreicherung von Dimethylsulfid.4. The method according to claims 1 or 2 for the depletion of dimethyl sulfide.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei es sich bei der biochemisch hergestellten organischen Verbindung um einen Alkohol, Ether oder eine Carbonsäure handelt.5. The method according to any one of the preceding claims, wherein the biochemically produced organic compound is an alcohol, ether or a carboxylic acid.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei es sich bei der biochemisch hergestellten organischen Verbindung um Ethanol, 1 ,3-Propandiol, 1 ,4-Butandiol, 1-Butanol, Glycerin, Tetrahydrofuran, Milchsäure, Bernsteinsäure, Malonsäure, Zitronensäure, Essigsäure, Propionsäure, 3-Hydroxy-propionsäure, Buttersäure, Ameisensäure oder Gluconsäure handelt.6. The method according to any one of claims 1 to 5, wherein the biochemically produced organic compound is ethanol, 1, 3-propanediol, 1, 4-butanediol, 1-butanol, glycerin, tetrahydrofuran, lactic acid, succinic acid, malonic acid, citric acid , Acetic acid, propionic acid, 3-hydroxypropionic acid, butyric acid, formic acid or gluconic acid.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Adsorber um ein Kieselgel, ein Aluminiumoxid, einen Zeolith, eine Aktivkohle oder ein Kohlenstoffmolsieb handelt.7. The method according to any one of the preceding claims, characterized in that the adsorber is a silica gel, an aluminum oxide, a zeolite, an activated carbon or a carbon membrane.
8. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass es sich bei dem Zeolith um einen Zeolith aus der Gruppe natürliche Zeolithe, Faujasit, X-Zeolith, Y-Zeolith, A-Zeolith, L-Zeolith, ZSM 5-Zeolith, ZSM 8-Zeolith, ZSM 11 -Zeolith, ZSM 12-Zeolith, Mordenit, beta-Zeolith, Pentasil-Zeolith, Metal Organic Frameworks (MOF) und Mischungen hiervon, die ionen-austauschbare8. The method according to the preceding claim, characterized in that the zeolite is a zeolite from the group of natural zeolites, faujasite, X zeolite, Y zeolite, A zeolite, L zeolite, ZSM 5 zeolite, ZSM 8 zeolite, ZSM 11 zeolite, ZSM 12 zeolite, mordenite, beta zeolite, pentasil zeolite, Metal Organic Frameworks (MOF) and mixtures thereof, the ion-exchangeable
Kationen aufweisen, handelt.Have cations.
9. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zeolith ein molares SiO2/AI2O3- Verhältnis im Bereich von 2 bis 100 aufweist. 9. The method according to any one of the two preceding claims, characterized in that the zeolite has a molar SiO 2 / Al 2 O 3 ratio in the range from 2 to 100.
10. Verfahren nach einem der drei vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Kationen des Zeoliths ganz oder teilweise gegen Metallkationen ausgetauscht sind.10. The method according to any one of the three preceding claims, characterized in that cations of the zeolite are exchanged in whole or in part for metal cations.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Adsorber ein oder mehrere Übergangsmetalle, in elementarer oder kationischer Form, aus den Gruppen VIII und/oder IB des Periodensystems enthält.11. The method according to any one of the preceding claims, characterized in that the adsorber contains one or more transition metals, in elemental or cationic form, from groups VIII and / or IB of the periodic table.
12. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Adsorber Silber und/oder Kupfer enthält.12. The method according to the preceding claim, characterized in that the adsorber contains silver and / or copper.
13. Verfahren nach einem der drei vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Adsorber 0,1 bis 75 Gew.-% des Metalls bzw. der Metalle enthält.13. The method according to any one of the three preceding claims, characterized in that the adsorber contains 0.1 to 75 wt .-% of the metal or metals.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das In-Kontakt-Bringen der biochemisch hergestellten organischen Verbindung mit dem Adsorber bei einer Temperatur im Bereicrfvon 10 bis 200°C erfolgt.14. The method according to any one of the preceding claims, characterized in that the bringing the biochemically produced organic compound into contact with the adsorber takes place at a temperature in the range from 10 to 200 ° C.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass In-Kontakt-Bringen der biochemisch hergestellten organischen Verbindung mit dem Adsorber bei einem Absolutdruck im Bereich von 1 bis 200 bar erfolgt.15. The method according to any one of the preceding claims, characterized in that bringing the biochemically produced organic compound into contact with the adsorber takes place at an absolute pressure in the range from 1 to 200 bar.
16. Verfahren nach einem der vorhergehenden Ansprüche zur Abreicherung von16. The method according to any one of the preceding claims for the depletion of
Schwefel und/oder schwefelhaltigen Verbindungen um ≥ 90 Gew.-% (berechnet S).Sulfur and / or sulfur-containing compounds by ≥ 90 wt .-% (calculated S).
17. Verfahren nach einem der Ansprüche 1 bis 15 zur Abreicherung von Schwefel und/oder schwefelhaltigen Verbindungen um ≥ 95 Gew.-% (berechnet S).17. The method according to any one of claims 1 to 15 for the depletion of sulfur and / or sulfur-containing compounds by ≥ 95 wt .-% (calculated S).
18. Verfahren nach einem der Ansprüche 1 bis 15 zur Abreicherung von Schwefel und/oder schwefelhaltigen Verbindungen um ≥ 98 Gew.-% (berechnet S).18. The method according to any one of claims 1 to 15 for the depletion of sulfur and / or sulfur-containing compounds by ≥ 98 wt .-% (calculated S).
19. Verfahren nach einem der vorhergehenden Ansprüche zur Abreicherung von19. The method according to any one of the preceding claims for the depletion of
Schwefel und/oder schwefelhaltigen Verbindungen auf < 2 Gew.-ppm (berechnet S).Sulfur and / or sulfur-containing compounds to <2 ppm by weight (calculated S).
20. Verfahren nach einem der Ansprüche 1 bis 18 zur Abreicherung von Schwefel und/oder schwefelhaltigen Verbindungen auf < 1 Gew.-ppm (berechnet S). 20. The method according to any one of claims 1 to 18 for the depletion of sulfur and / or sulfur-containing compounds to <1 ppm by weight (calculated S).
21. Verfahren nach einem der Ansprüche 1 bis 18 zur Abreicherung von Schwefel und/oder schwefelhaltigen Verbindungen auf < 0,1 Gew.-ppm (berechnet S).21. The method according to any one of claims 1 to 18 for the depletion of sulfur and / or sulfur-containing compounds to <0.1 ppm by weight (calculated S).
22. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren in Abwesenheit von Wasserstoff durchgeführt wird.22. The method according to any one of the preceding claims, characterized in that the method is carried out in the absence of hydrogen.
23. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die entsprechende organische Verbindung in flüssiger Phase dem Adsorber in Kontakt bringt.23. The method according to any one of the preceding claims, characterized in that the corresponding organic compound is brought into contact with the adsorber in the liquid phase.
24. Verwendung von Ethanol, das durch ein Verfahren gemäß einem der vorhergehenden Ansprüche erhalten wurde, als Lösungsmittel, Desinfektionsmittel, als Komponente in pharmazeutischen oder kosmetischen Produkten oder in Nahrungsmitteln oder in Reinigungsmitteln, als Einsatzstoff in Steam-Reforming- verfahren zur Wasserstoffsynthese oder in Brennstoffzellen, oder als Baustein in der chemischen Synthese.24. Use of ethanol, which was obtained by a process according to any one of the preceding claims, as a solvent, disinfectant, as a component in pharmaceutical or cosmetic products or in foods or in cleaning agents, as a feedstock in steam reforming processes for hydrogen synthesis or in fuel cells , or as a building block in chemical synthesis.
25. Ethanol, herstellbar durch ein Verfahren gemäß einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass es einen Gehalt an Schwefel und/oder schwefelhaltigen organischen Verbindungen im Bereich von 0 bis 2 Gew.-ppm (berechnet S), einen Gehalt an C3.4-Alkanolen im Bereich von 1 bis 5000 Gew.-ppm, einen Gehalt an Methanol im Bereich von 1 bis 5000 Gew.-ppm, einen Gehalt an Ethylacetat im Bereich von 1 bis 5000 Gew.-ppm und einen Gehalt an 3-Methyl-butanol-1 im Bereich von 1 bis 5000 Gew.-ppm aufweist.25. Ethanol that can be produced by a process according to one of claims 1 to 23, characterized in that it has a sulfur and / or sulfur-containing organic compound content in the range from 0 to 2 ppm by weight (calculated S), a content of C 3rd 4 -alkanols in the range from 1 to 5000 ppm by weight, a content of methanol in the range from 1 to 5000 ppm by weight, a content of ethyl acetate in the range from 1 to 5000 ppm by weight and a content of 3-methyl -butanol-1 in the range of 1 to 5000 ppm by weight.
26. Ethanol nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass es einen Gehalt an Schwefel und/oder schwefelhaltigen organischen Verbindungen im Bereich von 0 bis 1 Gew.-ppm (berechnet S) aufweist.26. Ethanol according to the preceding claim, characterized in that it has a content of sulfur and / or sulfur-containing organic compounds in the range from 0 to 1 ppm by weight (calculated S).
27. Ethanol nach Anspruch 25, dadurch gekennzeichnet, dass es einen Gehalt an Schwefel und/oder schwefelhaltigen organischen Verbindungen im Bereich von 0 bis 0,1 Gew.-ppm (berechnet S) aufweist.27. Ethanol according to claim 25, characterized in that it has a content of sulfur and / or sulfur-containing organic compounds in the range from 0 to 0.1 ppm by weight (calculated S).
28. Ethanol nach einem der drei vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen Gehalt an C3. -Alkanolen im Bereich von 5 bis 3000 Gew.-ppm aufweist.28. Ethanol according to one of the three preceding claims, characterized in that it contains C 3 . -Alkanols in the range of 5 to 3000 ppm by weight.
29. Ethanol nach einem der vier vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen Gehalt an Methanol im Bereich von 5 bis 3000 Gew.-ppm aufweist. 29. Ethanol according to one of the four preceding claims, characterized in that it has a methanol content in the range of 5 to 3000 ppm by weight.
30. Ethanol nach einem der fünf vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen Gehalt an Ethylacetat im Bereich von 5 bis 3000 Gew.-ppm aufweist.30. Ethanol according to one of the five preceding claims, characterized in that it has an ethyl acetate content in the range of 5 to 3000 ppm by weight.
31. Ethanol nach einem der sechs vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es einen Gehalt an 3-Methyl-butanol-1 im Bereich von 5 bis 3000 Gew.-ppm aufweist. 31. Ethanol according to one of the six preceding claims, characterized in that it has a content of 3-methyl-butanol-1 in the range of 5 to 3000 ppm by weight.
EP04804187A 2003-12-23 2004-12-22 Method for depletion of sulphur and/or compounds containing sulphur from a biochemically produced organic compound Withdrawn EP1699539A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10361508A DE10361508A1 (en) 2003-12-23 2003-12-23 Process for depleting sulfur and / or sulfur-containing compounds from a biochemically produced organic compound
PCT/EP2004/014591 WO2005063354A1 (en) 2003-12-23 2004-12-22 Method for depletion of sulphur and/or compounds containing sulphur from a biochemically produced organic compound

Publications (1)

Publication Number Publication Date
EP1699539A1 true EP1699539A1 (en) 2006-09-13

Family

ID=34706647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804187A Withdrawn EP1699539A1 (en) 2003-12-23 2004-12-22 Method for depletion of sulphur and/or compounds containing sulphur from a biochemically produced organic compound

Country Status (7)

Country Link
US (1) US20070167530A1 (en)
EP (1) EP1699539A1 (en)
JP (1) JP2007515448A (en)
DE (1) DE10361508A1 (en)
IN (1) IN2006CH02676A (en)
WO (1) WO2005063354A1 (en)
ZA (1) ZA200606041B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005012209A1 (en) 2005-03-15 2006-09-28 Basf Ag Process for the preparation of an ethylamine
US7749376B2 (en) * 2005-08-15 2010-07-06 Sud-Chemie Inc. Process for sulfur adsorption using copper-containing catalyst
DE102005043440A1 (en) * 2005-09-13 2007-03-15 Basf Ag Process for the preparation of ethylamine from denatured ethanol
CN101304963A (en) * 2005-11-14 2008-11-12 三井化学株式会社 Method of producing propylene containing biomass-origin carbon
DE102006036332A1 (en) * 2006-08-03 2008-02-07 Süd-Chemie AG Process for the production of biodiesel fuel
WO2008021194A2 (en) * 2006-08-10 2008-02-21 The University Of Houston System Adsorbent composition for desulfuring a fluid, method and apparatus for its use
JP2009143853A (en) * 2007-12-14 2009-07-02 Jgc Corp Method for producing alcohols, method for producing hydrogen or synthesis gas using the same method for producing alcohols, and alcohols
CN101481627B (en) * 2008-01-09 2012-11-14 中国石油化工股份有限公司 Hydrocarbon oil desulphurization adsorbing agent and use method thereof
EP2303991A2 (en) * 2008-07-08 2011-04-06 Basf Se Method for removing compounds containing sulfur from fuels
JP2010070512A (en) * 2008-09-19 2010-04-02 Jgc Corp Method for producing alcohols, method for producing hydrogen or synthesis gas using the method for producing alcohols, and alcohols
DE102009029567A1 (en) 2008-10-02 2010-04-08 Basf Se Process for depleting sulfur and / or sulfur-containing compounds from a biochemically produced organic compound
KR101430798B1 (en) * 2008-11-28 2014-08-18 토탈 리서치 앤드 테크놀로지 펠루이 Purification of alcohols prior to their use in the presence of an acid catalyst
US8974675B2 (en) * 2009-02-09 2015-03-10 Allan J. Jacobson Porous solids, selective separations, removal of sulfur compounds, adsorption
CN102617281A (en) * 2011-01-28 2012-08-01 株式会社大赛璐 Method for removing sulfur compound from alcohol
CN104587962B (en) * 2013-10-31 2017-04-05 上海工程技术大学 Polyolefin purification decolorizing adsorbent and preparation method thereof
WO2015098733A1 (en) * 2013-12-25 2015-07-02 出光興産株式会社 Metal-carrying zeolite for alcoholic beverages and alcoholic beverage manufacturing method
TWI669389B (en) * 2013-12-25 2019-08-21 The Nikka Whisky Distilling Co., Ltd. Method and device for removing unnecessary components contained in beverage
JP6335813B2 (en) * 2015-02-16 2018-05-30 出光興産株式会社 Method for producing metal-supported zeolite for liquor, metal-supported zeolite for liquor, and method for producing liquor
JP6673563B2 (en) * 2015-06-18 2020-03-25 出光興産株式会社 Method for producing distilled liquor, and processing member including metal-supported ion exchange resin
JP6733093B1 (en) * 2019-05-09 2020-07-29 株式会社三井E&Sマシナリー Method for treating fluid to be treated for zeolite membrane

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT395983B (en) * 1986-03-10 1993-04-26 Vogelbusch Gmbh METHOD FOR PRODUCING AETHANOL FROM SUGAR-CONTAINING RAW MATERIALS, AND SYSTEM FOR IMPLEMENTING THE METHOD
US6136577A (en) * 1992-10-30 2000-10-24 Bioengineering Resources, Inc. Biological production of ethanol from waste gases with Clostridium ljungdahlii
DE10045939B4 (en) * 2000-09-16 2016-05-04 Caterpillar Inc. Sensor for determining the concentration of sulfur compounds in a liquid
US6531052B1 (en) * 2000-10-05 2003-03-11 Alcoa Inc. Regenerable adsorbent for removing sulfur species from hydrocarbon fluids
EP1283072A1 (en) * 2001-08-08 2003-02-12 The Procter & Gamble Company Doped adsorbent materials with enhanced activity
DE10149060A1 (en) * 2001-10-05 2003-04-30 Daimler Chrysler Ag Process for reforming liquid hydrocarbon mixtures
US20030113598A1 (en) * 2001-12-19 2003-06-19 Ballard Power Systems Inc. Method and apparatus for removing sulfur from a hydrocarbon fuel
JP2003277779A (en) * 2002-03-27 2003-10-02 Mitsubishi Heavy Ind Ltd Equipment for desulfurization of biogas
JP4101696B2 (en) * 2003-05-16 2008-06-18 三菱重工業株式会社 Gas purification equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005063354A1 *

Also Published As

Publication number Publication date
ZA200606041B (en) 2008-02-27
WO2005063354A1 (en) 2005-07-14
JP2007515448A (en) 2007-06-14
IN2006CH02676A (en) 2007-06-08
DE10361508A1 (en) 2005-07-28
US20070167530A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
WO2005063354A1 (en) Method for depletion of sulphur and/or compounds containing sulphur from a biochemically produced organic compound
DE69606583T2 (en) Process for the preparation of sorbent compositions
DE69713622T2 (en) METHOD FOR REMOVING CYAN HYDROGEN FROM SYNTHESIS GAS
DE2656803C2 (en) Process for removing mercury from a gas or liquid
WO2004022223A2 (en) Adsorption mass and method for removing carbon monoxide from flows of material
EP0983794A1 (en) Catalyst and process for purifying material flows
WO2008015135A2 (en) Process for regenerating ruthenium catalysts for the ring hydrogenation of phthalates
EP0505863B1 (en) Catalyst for the production of hardened fatty acids and process for producing the same
DE102009029567A1 (en) Process for depleting sulfur and / or sulfur-containing compounds from a biochemically produced organic compound
EP1699751B1 (en) Method for producing a ethylamine
DE69911644T2 (en) PROCESS FOR DRAINING ORGANIC LIQUIDS
EP2049255A2 (en) Process for regenerating ruthenium catalysts for the hydrogenation of benzene
DE19638052B4 (en) Adsorbent, process for producing and using the adsorbent
DE102016219809A1 (en) Process for the production of aromatic hydrocarbon, p-xylene and terephthalic acid
EP3260525B1 (en) Method for producing metal-supported zeolite for alcoholic beverages, and method for producing alcoholic beverages
DE102005010328A1 (en) Process for the depletion of sulfur and / or a sulfur-containing compound from a sugar, a sugar alcohol and / or a sugar acid
US6737380B2 (en) Solid acid catalyst, production method thereof, and method for hydrodesulfurizing and isomerizing light hydrocarbon oil using the same
DE10258089A1 (en) Continuous process for the production of sugar alcohols by catalytic hydrogenation of an aqueous saccharide solution in the presence of a ruthenium catalyst prepared by treatment of an amorphous silicon dioxide support material
DE60014342T2 (en) PROCESS FOR THE PREPARATION OF SERINOL
EP2260001B1 (en) Method for removing halogen from liquid ammonia
DE19718116A1 (en) Continuous preparation of d,l-menthol by hydrogenation
DE2106612C2 (en) Process for the preparation of calcined rhenium-platinum-metal-alumina supported catalysts
DE3612443A1 (en) Process for preparing tetraisobutylene from diisobutylene
AT522938B1 (en) catalyst
EP1110607B1 (en) Modification process of a ion exchangable material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070816

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080219