EP1697955A1 - Electromechanical actuator - Google Patents

Electromechanical actuator

Info

Publication number
EP1697955A1
EP1697955A1 EP04804898A EP04804898A EP1697955A1 EP 1697955 A1 EP1697955 A1 EP 1697955A1 EP 04804898 A EP04804898 A EP 04804898A EP 04804898 A EP04804898 A EP 04804898A EP 1697955 A1 EP1697955 A1 EP 1697955A1
Authority
EP
European Patent Office
Prior art keywords
magnetic circuit
coil
electromechanical actuator
movable
actuator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04804898A
Other languages
German (de)
French (fr)
Other versions
EP1697955B1 (en
Inventor
Christian Bataille
Stéphane FOLLIC
Didier Vigouroux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Priority to PL04804898T priority Critical patent/PL1697955T3/en
Publication of EP1697955A1 publication Critical patent/EP1697955A1/en
Application granted granted Critical
Publication of EP1697955B1 publication Critical patent/EP1697955B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics

Definitions

  • the present invention relates to an electromechanical actuator for a switchgear, in particular of the contactor, relay or contactor-circuit breaker type, the magnetic circuit of which passes through the excitation coil of the actuator one or more times.
  • This type of actuator is particularly adapted to be realized in MEMS technology.
  • the invention also relates to a switch device provided with such an actuator.
  • the attractive force of the moving part towards the fixed part of the magnetic circuit is substantially proportional to the square of the amperes-turns (that is to say electric current of control of the coil multiplied by the number of turns of the coil) creating the magnetic flux. It is also practically inversely proportional to the square of the air gap of the magnetic circuit. In the open position, the attractive force must be sufficiently large at the start of the call phase to attract the mobile part of the magnetic circuit and overcome the mechanical stress resistant, despite a maximum gap. This therefore requires a lot of ampere-turns which are obtained by a large number of turns of the coil and / or by a large control electric current.
  • FIG. 1 represents an exemplary embodiment of an actuator according to the invention, in plan view along an axis YY, - Figures 2 and 3 show the example of Figure 1 respectively in the open position and in the closed position, in side view along an axis XX, - the FIGS. 4a, 4b schematize the path of the magnetic flux flowing in the magnetic circuit of the actuator of FIG. 1 respectively in the open and closed position;
  • FIG. 5 gives, for the actuator of FIG. 1, a simplified view of the curve representing the force as a function of the stroke of the movable pallet of the actuator
  • - Figure 6 shows another embodiment of an actuator according to the invention.
  • the fixed part 20 of the magnetic circuit comprises a first end 21, a median section 23 which is connected to the first end 21 by a first part of the magnetic circuit 41, 42, 43 passing through the internal space 15 of the coil 10, and comprises a second end 22 which is connected to the median section 23 by a second portion of the magnetic circuit 45,46,47, disjoint from the first part, also passing through the internal space 15 of the coil 10.
  • the median section 23 is therefore between the two ends 21,22 and the two ends 21,22 are positioned on either side of the coil 10.
  • the fixed part 20 comprises a first, a second and a third element, each element being substantially U-shaped with a central base surrounded by two lateral branches.
  • the cross section of these elements can be either rectangular as shown in Figures 2 and 3, or circular.
  • the first branch 41 of the first element carries the first end 21 of the fixed part 20 of the magnetic circuit.
  • the central base 42 of the first element passes through the interior space 15 of the coil 10.
  • the first branch 43 of the second element is common to the second branch of the first element.
  • the central base 44 of the second element is external to the coil 10 and carries the middle portion 23 of the fixed portion 20 of the magnetic circuit.
  • the first branch 45 of the third element is common to the second branch of the second element.
  • the central base 46 of the third element passes through the inner space 15 of the coil 10 and the second leg 47 of the third element carries the second end 22 of the fixed part 20 of the magnetic circuit.
  • the movable pallet is rotatable between the open and closed positions.
  • the first end 21, the second end 22 and the median section 23 of the magnetic circuit are oriented towards the face 31 of the mobile pallet 30 and are arranged so that, when the movable vane 30 is in the closed position, they are all substantially equidistant from the inner face 31 of the movable vane 30, corresponding to the minimum gap e2 as shown in Figure 3.
  • the dimensions of the pallet 30 are sufficient to substantially cover the ends 21,22 and the median section 23, as in FIG. 1.
  • the ends 21,22 and the median section 23 of the magnetic circuit are raised relative to the remainder of the part fixed 20 of the magnetic circuit, so that, in the closed position, the magnetic flux coming from the moving vane 30 passes exclusively through the first end 21, the second end x 22 and the middle section 23 of the magnetic circuit.
  • the distance e1 between the movable pallet 30 and each end 21,22 of the fixed portion 20 of the magnetic circuit is less than the distance e3 between the movable pallet 30 and the section median 23. In the case of the example described, this is due to the fact that the pallet 30 is rotatable about an axis which is closer to the ends 21,22 that the median section 23.
  • the dotted line corresponds to the passage of the magnetic flux B in the moving part 30. It can thus easily be seen in FIG. 4a that the path of the magnetic flux is as follows: 30, e1, 21, 41, 42, 43, 44, 45, 46, 47, 22, e1, 30.
  • the magnetic flux B must therefore cross twice the internal space of the coil 10, via the bases 42,46, to bounce off the moving pallet 30. As and when the approximation of the pallet 30 during the call phase, the distance between the distances e1 and e3 will gradually decrease to arrive at the single value e2, corresponding to the gap of the closed position of FIG. 3.
  • the flow B passes as much between the movable portion 30 and the two ends 21,22 as between the movable portion 30 and the middle portion 23, which is represented by the dashed lines of Figure 4b.
  • the two ends 21,22 and the middle section 23 are in magnetic "short-circuit" so that the path of the magnetic flux B is as follows: 30, e2, 21/23, 41 / 45, 42/46, 43/47, 22/23, e2, 30.
  • the magnetic flux B thus crosses the inner space of the coil 10 through the bases 42, 46 which must be considered as being parallel and therefore comparable to a single element passing through the coil 10.
  • FIG. 5 schematizes a diagram of the forces applied to the mobile pallet 30 as a function of its stroke, during the closing phase.
  • the symbols F and O respectively correspond to the closed and open positions of the pallet 30.
  • the vertical line 54 corresponds to the position where the movable contacts connected to the movable pallet 30 come into contact with the fixed contacts of the switch device ; the contact crushing stroke is located to the left of this line 54.
  • a first curve 50 shows the motor force curve obtained with an actuator whose flow continuously crosses the coil twice.
  • a second curve 51 shows a stress curve with an equivalent actuator whose flow continuously crosses the coil once. It is evident that the curve 50 is always above the curve 51 because the effort generated is logically always greater with an actuator permanently crossing the coil twice.
  • a third curve 52 corresponds to the actual curve of the actuator according to the invention described in the example of FIGS. 1 to 3.
  • the curve 52 is comparable to the race 50 and then moves away from it progressively. align on the curve 51 in the closed position. This spacing is progressive since, as indicated above, as the approximation of the pallet 30 during the call phase, the distance between the distances e1 and e3 will gradually decrease to arrive at the single value e2.
  • FIG. 5 also shows in dotted line the resisting force 53 of the actuator. It can be seen that in order to overcome the resistive force 53 in the open position with a conventional solution, it would have been necessary to take an actuator conforming to the curve 50, since the motor force 51 is less than the resistive force 53 in this open position.
  • this curve 50 gives a very important effort not necessary in the closed position, which can cause including significant mechanical shocks at the end of the call phase and unnecessarily high consumption in the maintenance phase of the closed position.
  • the invention therefore provides the advantage of reducing mechanical shocks during closure, as well as better control of the dropout voltage.
  • the curve 52 makes it possible to optimize the motor force necessary to overcome the resisting force 53 whatever the position of the mobile pallet, without requiring additional electrical or electronic means, but playing only on the arrangement of the magnetic circuit.
  • the actuator described in the invention can be made in conventional technology, but the MEMS (Micro Electro-Mechanical System) technology is also particularly suitable for producing such an actuator. Indeed, the realization by Deposition of successive layers in an iterative process lends itself well to the manufacture of a magnetic circuit and a coil having the form described. With this MEMS technology, the return means creating the resistant force could be obtained by elastic deformation of one of the parts. Furthermore, an electrical device could then include one or more actuators, so as to achieve the desired breaking capacity.
  • MEMS Micro Electro-Mechanical System
  • the variant shown in Figure 6 shows another example of arrangement of the fixed portion 20 'of the magnetic circuit, to create three separate passages in the inner space of the coil 10', instead of two.
  • the fixed part then comprises two median sections 23 ', 24' which, in the closed position, are arranged to be situated at the same distance from the movable pallet 30 'as the two ends 21', 22 'of the part fixed.
  • the magnetic flux then only crosses the inside space of the coil once, via three "parallel" passages.
  • the median sections 23 ', 24 "are farther from the moving pallet 30' than the two ends 21 ', 22', so that the magnetic flux passes only between the movable pallet and the two ends of the pallet.
  • fixed part which forces the magnetic flux to cross three times the inner space of the coil, as can be seen clearly in Figure 6.
  • the multiplier effect is obviously greater.

Abstract

The actuator has a magnetic circuit made of ferromagnetic material with a fixed part (20) and a vane (30) which is movable between open and closed positions due to electrical current circulating in a field coil (10) and causing circulation of magnetic flux in the circuit. The flux crosses many times through an inner space of the coil in the open position and crosses once the inner space of the coil in the closed position. An independent claim is also included for an electrical switch apparatus including an electromechanical actuator.

Description

Actionneur électromécanique La présente invention se rapporte à un actionneur électromécanique pour appareil électrique interrupteur, en particulier du type contacteur, relais ou contacteur- disjoncteur dont le circuit magnétique traverse une ou plusieurs fois la bobine d'excitation de l'actionneur. Ce type d'actionneur est particulièrement adapté pour être réalisé en technologie MEMS. L'invention concerne également un appareil interrupteur muni d'un tel actionneur. The present invention relates to an electromechanical actuator for a switchgear, in particular of the contactor, relay or contactor-circuit breaker type, the magnetic circuit of which passes through the excitation coil of the actuator one or more times. This type of actuator is particularly adapted to be realized in MEMS technology. The invention also relates to a switch device provided with such an actuator.
Un appareil électrique interrupteur possède des contacts fixes qui coopèrent avec des contacts mobiles dans le but de commuter l'alimentation d'une charge électrique raccordée en aval de l'appareil. Le mouvement des contacts mobiles est généralement effectué grâce à un actionneur électromécanique, ou électroaimant.A switchgear has fixed contacts that cooperate with movable contacts for the purpose of switching power to an electrical load connected downstream of the apparatus. The movement of the moving contacts is generally effected by means of an electromechanical actuator, or electromagnet.
Cet actionneur comporte habituellement un circuit magnétique en matériau ferromagnétique, tel que du fer, qui est composé d'une partie fixe et d'une partie mobile, lesquelles sont séparées par un entrefer. La partie mobile, appelée aussi palette mobile, est couplée aux contacts mobiles de l'appareil interrupteur et se déplace entre une position ouverte et une position fermée sous l'action d'un courant électrique de commande circulant dans une bobine de commande, appelée aussi bobine d'excitation. La position ouverte correspond à un entrefer maximum entre partie fixe et partie mobile du circuit magnétique et la position fermée correspond à un entrefer minimum. Le circuit magnétique traverse l'espace situé à l'intérieur de l'enroulement de la bobine d'excitation. Lorsqu'un courant électrique de commande circule dans la bobine, il se crée alors de façon bien connue un flux magnétique dans le circuit magnétique qui a pour effet de diminuer l'entrefer et donc d'attirer la partie mobile vers la partie fixe du circuit magnétique et de passer de la position ouverte à la position fermée. Lors de la disparition du courant électrique, le flux magnétique disparaît et la partie mobile peut revenir en position ouverte sous l'action par exemple de moyens élastiques, par exemple un ressort de rappel. L'effort fourni par un actionneur électromécanique doit évidemment être adapté au courant de puissance circulant dans la charge électrique à commander de façon à être capable d'ouvrir et de fermer son circuit d'alimentation rapidement et en toute sécurité, pour un coût optimisé. La force d'attraction de la partie mobile vers la partie fixe du circuit magnétique est sensiblement proportionnelle au carré des ampères-tours (c'est-à-dire courant électrique de commande de la bobine multiplié par le nombre de spires de la bobine) créant le flux magnétique. Elle est aussi pratiquement inversement proportionnelle au carré de l'entrefer du circuit magnétique. En position ouverte, la force d'attraction doit être suffisamment importante au départ de la phase d'appel pour attirer la partie mobile du circuit magnétique et vaincre l'effort mécanique résistant, malgré un entrefer maximum. Ceci nécessite donc beaucoup d'ampères- tours qui sont obtenus par un nombre de spires important de la bobine et/ou par un courant électrique de commande important. Par contre, à l'approche de la position fermée, la diminution de l'entrefer provoque une augmentation de la force d'attraction et il n'y a donc plus besoin d'un grand nombre d'ampères-tours. D'ordinaire, ce phénomène peut être pris en compte en appliquant un fort courant d'appel en phase d'appel pour le déplacement de la partie mobile de la position ouverte vers la position fermée, puis un courant de maintien plus faible suffisant à la phase de maintien de la partie mobile en position fermée. Une autre solution connue consiste à faire varier le nombre de spires de la bobine, par exemple en utilisant deux bobines en série pour la phase d'appel puis en shuntant une bobine pour la phase de maintien. Néanmoins, de tels dispositifs nécessitent des moyens soit électroniques, soit mécaniques et électriques (tels que contacts auxiliaires), de façon à faire varier le courant électrique de commande ou le nombre de spires, en fonction de la position de la partie mobile. Par ailleurs, if est déjà connu, (voir notamment dans la demande de brevet n° application FR02-14350) de pouvoir augmenter les ampères-tours générant le flux magnétique non pas en multipliant le nombre de spires de la bobine mais en multipliant le nombre de passages fait par le flux magnétique à l'intérieur de la bobine d'excitation. Ainsi, si le circuit magnétique traverse deux fois l'enroulement de la bobine au lieu d'une seule fois, cela équivaut à doubler le nombre de spires de la bobine elle-même. De ce fait, on obtient avantageusement une force d'attraction qui est multipliée par un facteur quatre pour une même nombre de spires de la bobine et une même intensité de courant électrique de commande, en modifiant uniquement la structure du circuit magnétique, sous réserve de ne pas arriver à saturation du circuit magnétique. Il serait donc particulièrement avantageux de pouvoir faire varier simplement le nombre d'ampères-tours du circuit magnétique suivant la position de la palette mobile, de façon à optimiser la force d'attraction nécessaire au mouvement de fermeture de l'actionneur électromécanique, sans nécessiter pour cela des moyens pour faire varier le courant de commande ou le nombre de spires de la bobine. Pour cela, l'invention décrit un actionneur électromécanique pour appareil électrique interrupteur, comportant une bobine d'excitation constituée d'un enroulement bobiné autour d'un espace intérieur, un circuit magnétique en matériau ferromagnétique comprenant une partie fixe et une palette qui est mobile entre une position ouverte et une position fermée sous l'action d'un courant électrique circulant dans la bobine et provoquant la circulation d'un flux magnétique dans le circuit magnétique. Selon l'invention, ledit flux magnétique traverse plusieurs fois l'espace intérieur de la bobine en position ouverte et traverse une fois l'espace intérieur de la bobine en position fermée.This actuator usually comprises a magnetic circuit of ferromagnetic material, such as iron, which is composed of a fixed part and a movable part, which are separated by an air gap. The mobile part, also called mobile pallet, is coupled to the moving contacts of the switch device and moves between an open position and a closed position under the action of an electric control current flowing in a control coil, also called excitation coil. The open position corresponds to a maximum air gap between the fixed part and the moving part of the magnetic circuit and the closed position corresponds to a minimum air gap. The magnetic circuit passes through the space inside the winding of the excitation coil. When an electric control current circulates in the coil, a magnetic flux is created in a well-known manner in the magnetic circuit, which has the effect of reducing the gap and thus of attracting the mobile part towards the fixed part of the circuit. magnetic and move from the open position to the closed position. When the electric current disappears, the magnetic flux disappears and the moving part can return to the open position under the action of, for example, elastic means, for example a return spring. The effort provided by an electromechanical actuator must of course be adapted to the power current flowing in the electrical load to be controlled so as to be able to open and close its supply circuit quickly and safely for an optimized cost. The attractive force of the moving part towards the fixed part of the magnetic circuit is substantially proportional to the square of the amperes-turns (that is to say electric current of control of the coil multiplied by the number of turns of the coil) creating the magnetic flux. It is also practically inversely proportional to the square of the air gap of the magnetic circuit. In the open position, the attractive force must be sufficiently large at the start of the call phase to attract the mobile part of the magnetic circuit and overcome the mechanical stress resistant, despite a maximum gap. This therefore requires a lot of ampere-turns which are obtained by a large number of turns of the coil and / or by a large control electric current. By cons, approaching the closed position, the decrease in the gap causes an increase in the force of attraction and there is therefore no longer need a large number of ampere-turns. This phenomenon can usually be taken into account by applying a high inrush current in the calling phase for moving the moving part from the open position to the closed position, then a lower holding current sufficient for the phase of holding the moving part in the closed position. Another known solution is to vary the number of turns of the coil, for example by using two coils in series for the calling phase and then shunting a coil for the holding phase. However, such devices require means either electronic, mechanical and electrical (such as auxiliary contacts), so as to vary the control electric current or the number of turns, depending on the position of the movable part. Moreover, if is already known, (see in particular in the patent application No. application FR02-14350) to be able to increase the amperes-turns generating the magnetic flux not by multiplying the number of turns of the coil but by multiplying the number of passages made by the magnetic flux inside the excitation coil. Thus, if the magnetic circuit crosses twice the winding of the coil instead of once, this is equivalent to doubling the number of turns of the coil itself. As a result, an attractive force is advantageously obtained which is multiplied by a factor of four for the same number of turns of the coil and the same intensity of the control electric current, by modifying only the structure of the magnetic circuit, subject to do not arrive at saturation of the magnetic circuit. It would therefore be particularly advantageous to be able to simply vary the number of ampere-turns of the magnetic circuit according to the position of the movable pallet, so as to optimize the force of attraction necessary for the closing movement of the electromechanical actuator, without requiring for this, means for varying the control current or the number of turns of the coil. For this purpose, the invention describes an electromechanical actuator for a switch electrical apparatus, comprising an excitation coil consisting of a coil wound around an interior space, a magnetic circuit made of ferromagnetic material comprising a fixed part and a pallet which is movable. between an open position and a closed position under the action of an electric current flowing in the coil and causing the circulation of a magnetic flux in the magnetic circuit. According to the invention, said magnetic flux crosses several times the internal space of the coil in the open position and passes once inside the space of the coil in the closed position.
D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels : - la figure 1 représente un exemple de réalisation d'un actionneur électromécanique conforme à l'invention, en vue de dessus selon un axe YY, - les figures 2 et 3 montrent l'exemple de la figure 1 respectivement en position ouverte et en position fermée, en vue de côté selon un axe XX, - les figures 4a, 4b schématisent le parcours du flux magnétique circulant dans le circuit magnétique de l'actionneur de la figure 1 respectivement en position ouverte et fermée, - la figure 5 donne, pour l'actionneur de la figure 1 , une vue simplifiée de la courbe représentant l'effort en fonction de la course de la palette mobile de l'actionneur, - la figure 6 montre un autre exemple de réalisation d'un actionneur conforme à l'invention.Other features and advantages will appear in the detailed description which follows with reference to an embodiment given by way of example and represented by the appended drawings in which: FIG. 1 represents an exemplary embodiment of an actuator according to the invention, in plan view along an axis YY, - Figures 2 and 3 show the example of Figure 1 respectively in the open position and in the closed position, in side view along an axis XX, - the FIGS. 4a, 4b schematize the path of the magnetic flux flowing in the magnetic circuit of the actuator of FIG. 1 respectively in the open and closed position; FIG. 5 gives, for the actuator of FIG. 1, a simplified view of the curve representing the force as a function of the stroke of the movable pallet of the actuator, - Figure 6 shows another embodiment of an actuator according to the invention.
En référence aux figures 1 à 3, un actionneur électromécanique d'un appareil interrupteur comporte une bobine d'excitation 10 classique, formée par un enroulement de spires bobinées autour d'un espace intérieur 15. L'actionneur comporte également un circuit magnétique en matériau ferromagnétique comprenant une partie fixe 20 et une palette mobile 30 qui peut se déplacer entre une position ouverte et une position fermée. La position ouverte correspond à un entrefer e1 maximum entre la partie fixe 20 et la palette mobile 30 et la position fermée correspond à un entrefer e2 minimum entre la partie fixe 20 et la palette mobile 30. Cet entrefer minimum e2 est conservé soit par des moyens mécaniques qui empêchent la partie mobile 30 de se plaquer complètement contre la partie fixe 20, soit par un matériau non ferromagnétique d'épaisseur e2 qui recouvre une des surfaces placées en vis-à-vis dans le circuit magnétique. Malgré le sens des flèches de l'axe YY pour la figure 1, la palette mobile 30 est néanmoins représentée en pointillé dans la figure 1. Lorsqu'un courant électrique de commande circule dans la bobine 10, il se crée un flux magnétique dans le circuit magnétique provoquant une force ayant tendance à diminuer l'entrefer, c'est-à-dire à rapprocher la palette mobile 30 de la partie fixe 20 du circuit magnétique. Lors de la disparition du courant électrique, le mouvement inverse peut être obtenu par divers moyens de rappel tels qu'un ressort de rappel. La partie fixe 20 du circuit magnétique comprend une première extrémité 21, un tronçon médian 23 qui est relié à la première extrémité 21 par une première partie du circuit magnétique 41,42,43 traversant l'espace intérieur 15 de la bobine 10, et comprend une seconde extrémité 22 qui est reliée au tronçon médian 23 par une seconde partie du circuit magnétique 45,46,47, disjointe de la première partie, traversant elle aussi l'espace intérieur 15 de la bobine 10. Le tronçon médian 23 se situe donc entre les deux extrémités 21,22 et les deux extrémités 21,22 sont positionnées de part et d'autre de la bobine 10. Selon un mode de réalisation présentée en figure 1, la partie fixe 20 comporte un premier, un second et un troisième élément, chaque élément étant sensiblement en forme de U avec une embase centrale entourée de deux branches latérales. La section transversale de ces éléments peut être soit rectangulaire comme indiqué dans les figures 2 et 3, soit circulaire. La première branche 41 du premier élément porte la première extrémité 21 de la partie fixe 20 du circuit magnétique. L'embase centrale 42 du premier élément traverse l'espace intérieur 15 de la bobine 10. La première branche 43 du second élément est commune à la seconde branche du premier élément. L'embase centrale 44 du second élément est extérieure à la bobine 10 et porte le tronçon médian 23 de la partie fixe 20 du circuit magnétique. La première branche 45 du troisième élément est commune à la seconde branche du second élément. L'embase centrale 46 du troisième élément traverse l'espace intérieur 15 de la bobine 10 et la seconde branche 47 du troisième élément porte la seconde extrémité 22 de la partie fixe 20 du circuit magnétique. La palette mobile est mobile en rotation entre les positions ouverte et fermée. Elle est par exemple de forme parallélépipédique avec une face plane 31 orientée vers la partie fixe 20. La première extrémité 21, la deuxième extrémité 22 et le tronçon médian 23 du circuit magnétique sont orientés vers la face 31 de la palette mobile 30 et sont agencés pour que, lorsque la palette mobile 30 est en position fermée, ils se trouvent tous sensiblement à égale distance de la face intérieure 31 de la palette mobile 30, correspondant à l'entrefer minimum e2 comme le montre la figure 3. Les dimensions de la palette 30 sont suffisantes pour couvrir en grande partie les extrémités 21,22 et le tronçon médian 23, comme sur la figure 1. Préférentiellement, les extrémités 21,22 et le tronçon médian 23 du circuit magnétique sont surélevés par rapport au reste de la partie fixe 20 du circuit magnétique, de sorte que, en position fermée, le flux magnétique provenant de la palette mobile 30 passe exclusivement par la première extrémité 21, la deuxième extrémité 22 et le tronçon médian 23 du circuit magnétique. Par contre, dans la position ouverte représentée en figure 2, la distance e1 existant entre la palette mobile 30 et chaque extrémité 21,22 de la partie fixe 20 du circuit magnétique est inférieure à la distance e3 existant entre la palette mobile 30 et le tronçon médian 23. Dans le cas de l'exemple décrit, cela est dû au fait que la palette 30 est mobile en rotation autour d'un axe qui est plus proche des extrémités 21,22 que du tronçon médian 23. D'autres solutions mécaniques seraient évidemment envisageables pour obtenir cet écart de distance entre e1 et e3. Il s'ensuit que, en position ouverte, le flux magnétique, qui d'une façon générale emprunte toujours le plus court chemin, passe de palette mobile 30 vers la partie fixe 20 uniquement par l'entrefer créé entre la palette mobile 30 et les deux extrémités 21,22.With reference to FIGS. 1 to 3, an electromechanical actuator of a switch device comprises a conventional excitation coil 10 formed by a The actuator also comprises a magnetic circuit made of ferromagnetic material comprising a fixed part 20 and a movable pallet 30 which can move between an open position and a closed position. The open position corresponds to a gap e1 maximum between the fixed portion 20 and the movable pallet 30 and the closed position corresponds to a gap e2 minimum between the fixed portion 20 and the movable pallet 30. This minimum gap e2 is retained either by means mechanical devices that prevent the movable portion 30 from being pressed completely against the fixed portion 20, or by a non-ferromagnetic material of thickness e2 which covers one of the surfaces placed facing each other in the magnetic circuit. Despite the direction of the arrows of the axis YY in FIG. 1, the moving pallet 30 is nevertheless represented in dashed lines in FIG. 1. When an electric control current flows in the coil 10, a magnetic flux is created in the magnetic circuit causing a force tending to decrease the gap, that is to say to bring the movable blade 30 of the fixed portion 20 of the magnetic circuit. When the electric current disappears, the reverse movement can be obtained by various return means such as a return spring. The fixed part 20 of the magnetic circuit comprises a first end 21, a median section 23 which is connected to the first end 21 by a first part of the magnetic circuit 41, 42, 43 passing through the internal space 15 of the coil 10, and comprises a second end 22 which is connected to the median section 23 by a second portion of the magnetic circuit 45,46,47, disjoint from the first part, also passing through the internal space 15 of the coil 10. The median section 23 is therefore between the two ends 21,22 and the two ends 21,22 are positioned on either side of the coil 10. According to an embodiment shown in Figure 1, the fixed part 20 comprises a first, a second and a third element, each element being substantially U-shaped with a central base surrounded by two lateral branches. The cross section of these elements can be either rectangular as shown in Figures 2 and 3, or circular. The first branch 41 of the first element carries the first end 21 of the fixed part 20 of the magnetic circuit. The central base 42 of the first element passes through the interior space 15 of the coil 10. The first branch 43 of the second element is common to the second branch of the first element. The central base 44 of the second element is external to the coil 10 and carries the middle portion 23 of the fixed portion 20 of the magnetic circuit. The first branch 45 of the third element is common to the second branch of the second element. The central base 46 of the third element passes through the inner space 15 of the coil 10 and the second leg 47 of the third element carries the second end 22 of the fixed part 20 of the magnetic circuit. The movable pallet is rotatable between the open and closed positions. It is for example of parallelepipedal shape with a plane face 31 oriented towards the fixed part 20. The first end 21, the second end 22 and the median section 23 of the magnetic circuit are oriented towards the face 31 of the mobile pallet 30 and are arranged so that, when the movable vane 30 is in the closed position, they are all substantially equidistant from the inner face 31 of the movable vane 30, corresponding to the minimum gap e2 as shown in Figure 3. The dimensions of the pallet 30 are sufficient to substantially cover the ends 21,22 and the median section 23, as in FIG. 1. Preferably, the ends 21,22 and the median section 23 of the magnetic circuit are raised relative to the remainder of the part fixed 20 of the magnetic circuit, so that, in the closed position, the magnetic flux coming from the moving vane 30 passes exclusively through the first end 21, the second end x 22 and the middle section 23 of the magnetic circuit. By cons, in the open position shown in Figure 2, the distance e1 between the movable pallet 30 and each end 21,22 of the fixed portion 20 of the magnetic circuit is less than the distance e3 between the movable pallet 30 and the section median 23. In the case of the example described, this is due to the fact that the pallet 30 is rotatable about an axis which is closer to the ends 21,22 that the median section 23. Other mechanical solutions would obviously be possible to obtain this difference in distance between e1 and e3. It follows that, in the open position, the magnetic flux, which in general always borrows the shortest path, passes from moving paddle 30 to the fixed part 20 only by the gap created between the movable paddle 30 and the two ends 21,22.
Le fonctionnement de l'actionneur va maintenant être décrit. En partant de la position ouverte représentée en figure 2, on fait passer un courant électrique de commande dans la bobine 10 provoquant ainsi le démarrage de la phase d'appel. Le flux magnétique créé emprunte le plus court chemin entre la partie fixe 20 et la palette mobile 30 du circuit magnétique, qui correspond à la distance e1 entre la palette mobile 30 et les deux extrémités 21,22. En conséquence, au début de la phase d'appel, aucun flux magnétique ne va passer entre la palette mobile 30 et le tronçon médian 23 de la partie fixe 20, vu l'écart existant entre les distances e1 et e3. Le chemin emprunté par le flux magnétique B est ainsi schématisé à la figure 4a, dans laquelle le sens choisi pour les flèches B est arbitraire et ne dépend que du sens du courant de la bobine. La ligne pointillée correspond au passage du flux magnétique B dans la partie mobile 30. On constate ainsi aisément sur la figure 4a que le chemin du flux magnétique est le suivant : 30, e1, 21, 41, 42, 43, 44, 45, 46, 47, 22, e1, 30. Le flux magnétique B doit donc bien traverser deux fois l'espace intérieur de la bobine 10, via les embases 42,46, pour se reboucler sur la palette mobile 30. Au fur et à mesure du rapprochement de la palette 30 durant la phase d'appel, l'écart entre les distances e1 et e3 va diminuer progressivement pour arriver à la valeur unique e2, correspondant à l'entrefer de la position fermée de la figure 3. Dans cette position, le flux B passe autant entre la partie mobile 30 et les deux extrémités 21,22 qu'entre la partie mobile 30 et le tronçon médian 23, ce qui est représenté par les lignes pointillées de la figure 4b. Dans cette disposition, on peut considérer que les deux extrémités 21,22 et le tronçon médian 23 sont en "court-circuit" magnétique de sorte que le chemin du flux magnétique B est le suivant : 30, e2, 21/23, 41/45, 42/46, 43/47, 22/23, e2, 30. Le flux magnétique B traverse donc bien une seule fois l'espace intérieur de la bobine 10 à travers les embases 42,46 qui doivent être considérées comme étant en parallèle et donc assimilables à un seul élément traversant la bobine 10.The operation of the actuator will now be described. Starting from the open position shown in FIG. 2, an electric current of control in the coil 10 thus causing the start of the call phase. The magnetic flux created borrows the shortest path between the fixed portion 20 and the movable vane 30 of the magnetic circuit, which corresponds to the distance e1 between the movable vane 30 and the two ends 21,22. Consequently, at the beginning of the call phase, no magnetic flux will pass between the mobile pallet 30 and the median section 23 of the fixed part 20, given the gap existing between the distances e1 and e3. The path taken by the magnetic flux B is thus schematized in FIG. 4a, in which the direction chosen for the arrows B is arbitrary and depends only on the direction of the current of the coil. The dotted line corresponds to the passage of the magnetic flux B in the moving part 30. It can thus easily be seen in FIG. 4a that the path of the magnetic flux is as follows: 30, e1, 21, 41, 42, 43, 44, 45, 46, 47, 22, e1, 30. The magnetic flux B must therefore cross twice the internal space of the coil 10, via the bases 42,46, to bounce off the moving pallet 30. As and when the approximation of the pallet 30 during the call phase, the distance between the distances e1 and e3 will gradually decrease to arrive at the single value e2, corresponding to the gap of the closed position of FIG. 3. In this position , the flow B passes as much between the movable portion 30 and the two ends 21,22 as between the movable portion 30 and the middle portion 23, which is represented by the dashed lines of Figure 4b. In this arrangement, it can be considered that the two ends 21,22 and the middle section 23 are in magnetic "short-circuit" so that the path of the magnetic flux B is as follows: 30, e2, 21/23, 41 / 45, 42/46, 43/47, 22/23, e2, 30. The magnetic flux B thus crosses the inner space of the coil 10 through the bases 42, 46 which must be considered as being parallel and therefore comparable to a single element passing through the coil 10.
La figure 5 schématise un diagramme des efforts appliqués à la palette mobile 30 en fonction de sa course, durant la phase de fermeture. En abscisse, les symboles F et O correspondent respectivement aux positions fermée et ouverte de la palette 30. La ligne verticale 54 correspond à la position où les contacts mobiles liés à la palette mobile 30 entrent en contact avec les contacts fixes de l'appareil interrupteur; la course d'écrasement des contacts se situant donc à gauche de cette ligne 54. Une première courbe 50 montre la courbe d'effort moteur obtenue avec un actionneur dont le flux traverse en permanence deux fois la bobine. Une seconde courbe 51 montre une courbe d'effort avec un actionneur équivalent dont le flux traverse en permanence une seule fois la bobine. On constate évidemment que la courbe 50 est toujours au-dessus de la courbe 51 car l'effort généré est logiquement toujours plus important avec un actionneur traversant en permanence deux fois la bobine. Une troisième courbe 52 correspond à la courbe réelle de l'actionneur selon l'invention décrit dans l'exemple des figures 1 à 3. En position ouverte, la courbe 52 est assimilable à la course 50 puis s'en écarte progressivement pour s'aligner sur la courbe 51 en position fermée. Cet ecartement est progressif étant donné que, comme indiqué précédemment, au fur et à mesure du rapprochement de la palette 30 durant la phase d'appel, l'écart entre les distances e1 et e3 va diminuer progressivement pour arriver à la valeur unique e2. La figure 5 montre également en trait pointillé l'effort résistant 53 de l'actionneur. On constate que pour vaincre l'effort résistant 53 en position ouverte avec une solution classique, il aurait fallu prendre un actionneur conforme à la courbe 50, puisque l'effort moteur 51 est inférieur à l'effort résistant 53 dans cette position ouverte. Inversement, cette courbe 50 donne un effort très important non nécessaire en position fermée, qui peut engendrer notamment des chocs mécaniques importants en fin de phase d'appel ainsi qu'une consommation inutilement importante en phase de maintien de la position fermée. L'invention apporte donc l'avantage de diminuer les chocs mécaniques lors de la fermeture, ainsi qu'une meilleure maîtrise de la tension de retombée. Par contre, grâce à l'invention, la courbe 52 permet d'optimiser l'effort moteur nécessaire pour vaincre l'effort résistant 53 quelle que soit la position de la palette mobile, sans nécessiter de moyens électriques ou électroniques supplémentaires, mais en jouant uniquement sur l'agencement du circuit magnétique. En intervenant sur les divers paramètres du circuit magnétique, à savoir entre autres la valeur des distances e1, e2, e3, la forme et les dimensions des différents éléments du circuit magnétique, on peut affiner évidemment la courbe 52 idéale souhaitée pour l'actionneur en fonction de son application. L'actionneur décrit dans l'invention peut être réalisé en technologie classique, mais la technologie MEMS (Micro Electro-Mechanical System) est également particulièrement adaptée pour produire un tel actionneur. En effet, la réalisation par dépôt de couches successives dans un processus itératif se prête bien à la fabrication d'un circuit magnétique et d'une bobine ayant la forme décrite. Avec cette technologie MEMS, les moyens de rappel créant l'effort résistant pourraient être obtenus par déformation élastique d'une des pièces. Par ailleurs, un appareil électrique pourrait alors comporter un ou plusieurs actionneurs, de façon à atteindre le pouvoir de coupure souhaité.FIG. 5 schematizes a diagram of the forces applied to the mobile pallet 30 as a function of its stroke, during the closing phase. On the abscissa, the symbols F and O respectively correspond to the closed and open positions of the pallet 30. The vertical line 54 corresponds to the position where the movable contacts connected to the movable pallet 30 come into contact with the fixed contacts of the switch device ; the contact crushing stroke is located to the left of this line 54. A first curve 50 shows the motor force curve obtained with an actuator whose flow continuously crosses the coil twice. A second curve 51 shows a stress curve with an equivalent actuator whose flow continuously crosses the coil once. It is evident that the curve 50 is always above the curve 51 because the effort generated is logically always greater with an actuator permanently crossing the coil twice. A third curve 52 corresponds to the actual curve of the actuator according to the invention described in the example of FIGS. 1 to 3. In the open position, the curve 52 is comparable to the race 50 and then moves away from it progressively. align on the curve 51 in the closed position. This spacing is progressive since, as indicated above, as the approximation of the pallet 30 during the call phase, the distance between the distances e1 and e3 will gradually decrease to arrive at the single value e2. FIG. 5 also shows in dotted line the resisting force 53 of the actuator. It can be seen that in order to overcome the resistive force 53 in the open position with a conventional solution, it would have been necessary to take an actuator conforming to the curve 50, since the motor force 51 is less than the resistive force 53 in this open position. Conversely, this curve 50 gives a very important effort not necessary in the closed position, which can cause including significant mechanical shocks at the end of the call phase and unnecessarily high consumption in the maintenance phase of the closed position. The invention therefore provides the advantage of reducing mechanical shocks during closure, as well as better control of the dropout voltage. On the other hand, thanks to the invention, the curve 52 makes it possible to optimize the motor force necessary to overcome the resisting force 53 whatever the position of the mobile pallet, without requiring additional electrical or electronic means, but playing only on the arrangement of the magnetic circuit. By intervening on the various parameters of the magnetic circuit, namely among others the value of the distances e1, e2, e3, the shape and the dimensions of the various elements of the magnetic circuit, it is possible to refine the desired ideal curve 52 for the actuator. according to its application. The actuator described in the invention can be made in conventional technology, but the MEMS (Micro Electro-Mechanical System) technology is also particularly suitable for producing such an actuator. Indeed, the realization by Deposition of successive layers in an iterative process lends itself well to the manufacture of a magnetic circuit and a coil having the form described. With this MEMS technology, the return means creating the resistant force could be obtained by elastic deformation of one of the parts. Furthermore, an electrical device could then include one or more actuators, so as to achieve the desired breaking capacity.
La variante représentée en figure 6 montre un autre exemple d'agencement de la partie fixe 20' du circuit magnétique, permettant de créer trois passages distincts dans l'espace intérieur de la bobine 10', au lieu de deux. Dans ce cas, la partie fixe comprend alors deux tronçons médians 23',24' qui, en position fermée, sont agencés pour se situer à la même distance de la palette mobile 30' que les deux extrémités 21 ',22' de la partie fixe. Comme expliqué précédemment, Le flux magnétique ne traverse alors qu'une seule fois l'espace intérieur de la bobine, via trois passages "en parallèle". Par contre, en position ouverte, les tronçons médians 23',24" sont plus éloignés de la palette mobile 30' que les deux extrémités 21',22'. Le flux magnétique passe donc uniquement entre la palette mobile et les deux extrémités de la partie fixe, ce qui oblige le flux magnétique à traverser trois fois l'espace intérieur de la bobine, ainsi qu'on peut le voir clairement sur la figure 6. L'effet multiplicateur est alors évidemment plus grand.The variant shown in Figure 6 shows another example of arrangement of the fixed portion 20 'of the magnetic circuit, to create three separate passages in the inner space of the coil 10', instead of two. In this case, the fixed part then comprises two median sections 23 ', 24' which, in the closed position, are arranged to be situated at the same distance from the movable pallet 30 'as the two ends 21', 22 'of the part fixed. As explained above, the magnetic flux then only crosses the inside space of the coil once, via three "parallel" passages. On the other hand, in the open position, the median sections 23 ', 24 "are farther from the moving pallet 30' than the two ends 21 ', 22', so that the magnetic flux passes only between the movable pallet and the two ends of the pallet. fixed part, which forces the magnetic flux to cross three times the inner space of the coil, as can be seen clearly in Figure 6. The multiplier effect is obviously greater.
Il est bien entendu que l'on peut, sans sortir du cadre de l'invention, imaginer d'autres variantes et perfectionnements de détail et de même envisager l'emploi de moyens équivalents. It is understood that one can, without departing from the scope of the invention, imagine other variants and refinements of detail and even consider the use of equivalent means.

Claims

REVENDICATIONS
1. Actionneur électromécanique pour appareil électrique interrupteur, comportant une bobine d'excitation (10) constituée d'un enroulement bobiné autour d'un espace intérieur (15), un circuit magnétique en matériau ferromagnétique comprenant une partie fixe (20) et une palette (30) qui est mobile entre une position ouverte et une position fermée sous l'action d'un courant électrique circulant dans la bobine (10) et provoquant la circulation d'un flux magnétique dans le circuit magnétique, caractérisé en ce que ledit flux magnétique traverse plusieurs fois l'espace intérieur (15) de la bobine (10) en position ouverte et traverse une fois l'espace intérieur (15) de la bobine (10) en position fermée.1. Electromechanical actuator for electrical switch apparatus, comprising an excitation coil (10) consisting of a winding wound around an interior space (15), a magnetic circuit made of ferromagnetic material comprising a fixed part (20) and a pallet (30) which is movable between an open position and a closed position under the action of an electric current flowing in the coil (10) and causing the circulation of a magnetic flux in the magnetic circuit, characterized in that said flow The magnet passes through the internal space (15) of the coil (10) several times in the open position and passes once inside the space (15) of the coil (10) in the closed position.
2. Actionneur électromécanique selon la revendication 1, caractérisé en ce que l'actionneur est réalisé en technologie MEMS.2. Electromechanical actuator according to claim 1, characterized in that the actuator is made of MEMS technology.
3. Actionneur électromécanique selon la revendication 1 ou 2, caractérisé en ce que le flux magnétique circulant dans le circuit magnétique traverse deux fois l'espace intérieur (15) de la bobine (10) en position ouverte.3. Electromechanical actuator according to claim 1 or 2, characterized in that the magnetic flux flowing in the magnetic circuit passes twice through the internal space (15) of the coil (10) in the open position.
4. Actionneur électromécanique selon la revendication 3, caractérisé en ce que la partie fixe (20) du circuit magnétique comprend une première extrémité (21), un tronçon médian (23) relié à la première extrémité (21) par une première partie traversant l'espace intérieur (15) de la bobine (10), et une seconde extrémité (22) reliée au tronçon médian (23) par une seconde partie traversant l'espace intérieur (15) de la bobine (10).4. Electromechanical actuator according to claim 3, characterized in that the fixed portion (20) of the magnetic circuit comprises a first end (21), a median section (23) connected to the first end (21) by a first portion passing through the internal space (15) of the coil (10), and a second end (22) connected to the median section (23) by a second portion passing through the interior space (15) of the coil (10).
5. Actionneur électromécanique selon la revendication 4, caractérisé en ce que, en position ouverte, les distances (e1) entre la palette mobile (30) et respectivement la première extrémité (21) et la seconde extrémité (22) du circuit magnétique sont inférieures à la distance (e3) entre la palette mobile (30) et le ou les tronçons médians (23) du circuit magnétique.5. electromechanical actuator according to claim 4, characterized in that, in the open position, the distances (e1) between the movable pallet (30) and the first end (21) and the second end (22) of the magnetic circuit are respectively at the distance (e3) between the moving vane (30) and the middle section (s) (23) of the magnetic circuit.
6. Actionneur électromécanique selon la revendication 5, caractérisé en ce que, en position fermée, la palette mobile (30) est située à une distance (e2) sensiblement égale de la première extrémité (21), de la seconde extrémité (22) et du ou des tronçons médians (23) du circuit magnétique. 6. Electromechanical actuator according to claim 5, characterized in that, in the closed position, the movable vane (30) is located at a distance (e2) substantially equal to the first end (21), the second end (22) and of the middle section or sections (23) of the magnetic circuit.
7. Actionneur électromécanique selon la revendication 6, caractérisé en ce que la palette (30) est mobile en rotation.7. Electromechanical actuator according to claim 6, characterized in that the pallet (30) is movable in rotation.
8. Actionneur électromécanique selon la revendication 7, caractérisé en ce que la partie fixe (20) du circuit magnétique comporte un premier, un second et un troisième élément, chaque élément étant sensiblement en forme de U avec une embase centrale entourée de deux branches latérales : - la première branche (41) du premier élément portant la première extrémité (21) de la partie fixe (20) du circuit magnétique et l'embase centrale (42) du premier élément traversant l'espace intérieur (15) de la bobine (10), - la première branche (43) du second élément étant commune à la seconde branche du premier élément, l'embase centrale (44) du second élément étant extérieure à la bobine (10) et portant le tronçon médian (23) de la partie fixe (20) du circuit magnétique, - la première branche (45) du troisième élément étant commune à la seconde branche du second élément, l'embase centrale (46) du troisième élément traversant l'espace intérieur (15) de la bobine (10) et la seconde branche (47) du troisième élément portant la seconde extrémité (22) de la partie fixe (20) du circuit magnétique.8. Electromechanical actuator according to claim 7, characterized in that the fixed part (20) of the magnetic circuit comprises a first, a second and a third element, each element being substantially U-shaped with a central base surrounded by two lateral branches. the first limb (41) of the first element carrying the first end (21) of the fixed part (20) of the magnetic circuit and the central base (42) of the first element passing through the internal space (15) of the coil; (10), the first limb (43) of the second element being common to the second limb of the first element, the central base (44) of the second element being external to the coil (10) and carrying the median section (23). of the fixed part (20) of the magnetic circuit, - the first leg (45) of the third element being common to the second branch of the second element, the central base (46) of the third element passing through the internal space (15) d e the coil (10) and the second leg (47) of the third element carrying the second end (22) of the fixed part (20) of the magnetic circuit.
9. Actionneur électromécanique selon la revendication 8, caractérisé en ce que la première extrémité (21), la deuxième extrémité (22) et le tronçon médian (23) du circuit magnétique sont surélevés par rapport au reste de la partie fixe (20) du circuit magnétique.9. Electromechanical actuator according to claim 8, characterized in that the first end (21), the second end (22) and the middle section (23) of the magnetic circuit are raised relative to the rest of the fixed part (20) of the magnetic circuit.
10. Appareil électrique interrupteur comportant des contacts fixes coopérant avec des contacts mobiles, caractérisé en ce qu'il comporte au moins un actionneur électromécanique selon l'une des revendications précédentes, dont la palette mobile est solidaire desdits contacts mobiles. 10. Electrical switch apparatus having fixed contacts cooperating with movable contacts, characterized in that it comprises at least one electromechanical actuator according to one of the preceding claims, wherein the movable pallet is integral with said movable contacts.
EP04804898A 2003-12-19 2004-12-16 Electromechanical actuator Not-in-force EP1697955B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04804898T PL1697955T3 (en) 2003-12-19 2004-12-16 Electromechanical actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0314978A FR2864329B1 (en) 2003-12-19 2003-12-19 ELECTROMECHANICAL ACTUATOR
PCT/EP2004/053552 WO2005066989A1 (en) 2003-12-19 2004-12-16 Electromechanical actuator

Publications (2)

Publication Number Publication Date
EP1697955A1 true EP1697955A1 (en) 2006-09-06
EP1697955B1 EP1697955B1 (en) 2007-03-07

Family

ID=34630332

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804898A Not-in-force EP1697955B1 (en) 2003-12-19 2004-12-16 Electromechanical actuator

Country Status (7)

Country Link
EP (1) EP1697955B1 (en)
AT (1) ATE356419T1 (en)
DE (1) DE602004005243T2 (en)
ES (1) ES2281847T3 (en)
FR (1) FR2864329B1 (en)
PL (1) PL1697955T3 (en)
WO (1) WO2005066989A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747167C1 (en) * 1997-10-24 1999-04-29 Siemens Ag Electromagnetic relay e.g. for high-load currents
FR2847071B1 (en) * 2002-11-13 2004-12-24 Schneider Electric Ind Sas ELECTROMAGNETIC ACTUATOR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005066989A1 *

Also Published As

Publication number Publication date
WO2005066989A1 (en) 2005-07-21
ES2281847T3 (en) 2007-10-01
DE602004005243T2 (en) 2007-12-20
FR2864329B1 (en) 2006-01-27
ATE356419T1 (en) 2007-03-15
FR2864329A1 (en) 2005-06-24
PL1697955T3 (en) 2007-07-31
DE602004005243D1 (en) 2007-04-19
EP1697955B1 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
EP2037476B1 (en) Electromagnetic actuator and switching device equipped with such an electromagnetic actuator
EP0170562B1 (en) Direct-current electromagnet, in particular for an electric commutator device
FR2815465A1 (en) Switching apparatus has movable coils arranged between fixed coils, for moving shaft axially
FR2761518A1 (en) MAGNETIC PLANAR MOTOR AND MAGNETIC MICRO-ACTUATOR COMPRISING SUCH A MOTOR
FR2928501A1 (en) DEVICE FOR GENERATING ENERGY WITH TWO MOVING PARTS
EP2126951B1 (en) Hybrid electromagnetic actuator
FR2793944A1 (en) Circuit breaker opening/closing command mechanism having permanent magnet/winding and rotating armature stop positions moving.
EP1655755B1 (en) Electromagnetic actuator with movable coil
FR2953660A1 (en) ELECTRIC POWER GENERATING DEVICE AND REMOTE CONTROL COMPRISING SUCH A DEVICE
WO2020109744A2 (en) Adjustable force device
EP2395625B1 (en) Remote control device including a power accumulating device
EP0172080A1 (en) Polarised electromagnet with three positions and control circuit
EP1697955B1 (en) Electromechanical actuator
EP0143029B1 (en) Stepping motor of the hybrid multiphase-type and its control device
WO2010018030A1 (en) Hybrid electromagnetic actuator with fixed coil
EP1792326B1 (en) Bistable electromagnetic actuator with integrated lock
EP1450013A2 (en) Electromagnetic valve actuator for internal combustion engine and engine comprising such an actuator
EP2328132B1 (en) Remote control device
EP1420427B1 (en) Electromagnetic actuator
FR2807871A1 (en) Low voltage electromagnetic switching mechanism having fixed body/central hub and outer coil continuous current fed and switched from parallel/series using command from palette contact carriers.
EP3279907B1 (en) Electromagnetic actuator for an electric contactor
FR2793597A1 (en) ELECTROMAGNETIC TYPE POSITION CONTROL DEVICE
WO2005001868A1 (en) Switching electrical device having a number of actuators
FR3084772A1 (en) ELECTROMAGNETIC ACTUATOR AND ELECTRIC SWITCHING APPARATUS INCLUDING THIS ACTUATOR
EP1473749B1 (en) Control device with hysteresis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VIGOUROUX, DIDIER

Inventor name: FOLLIC, STEPHANE

Inventor name: BATAILLE, CHRISTIAN,RESIDENCE "LA ROSERAIE*

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VIGOUROUX, DIDIER

Inventor name: FOLLIC, STEPHANE

Inventor name: BATAILLE, CHRISTIAN,RESIDENCE "LA ROSERAIE*

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070321

REF Corresponds to:

Ref document number: 602004005243

Country of ref document: DE

Date of ref document: 20070419

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070707

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2281847

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

26N No opposition filed

Effective date: 20071210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070608

BERE Be: lapsed

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070607

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070908

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20121126

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121122

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141215

Year of fee payment: 11

Ref country code: GB

Payment date: 20141218

Year of fee payment: 11

Ref country code: DE

Payment date: 20141103

Year of fee payment: 11

Ref country code: ES

Payment date: 20141224

Year of fee payment: 11

Ref country code: FR

Payment date: 20141112

Year of fee payment: 11

Ref country code: SE

Payment date: 20141230

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141222

Year of fee payment: 11

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004005243

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151217

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151217