EP1688671B1 - Méthode de protection et système de contrôle pour turbine à gaz - Google Patents

Méthode de protection et système de contrôle pour turbine à gaz Download PDF

Info

Publication number
EP1688671B1
EP1688671B1 EP06101128.4A EP06101128A EP1688671B1 EP 1688671 B1 EP1688671 B1 EP 1688671B1 EP 06101128 A EP06101128 A EP 06101128A EP 1688671 B1 EP1688671 B1 EP 1688671B1
Authority
EP
European Patent Office
Prior art keywords
pulse
level
pulsation
counter
tripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06101128.4A
Other languages
German (de)
English (en)
Other versions
EP1688671B2 (fr
EP1688671A1 (fr
Inventor
Heinz Bollhalder
Hanspeter Zinn
Michael Habermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34974592&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1688671(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1688671A1 publication Critical patent/EP1688671A1/fr
Application granted granted Critical
Publication of EP1688671B1 publication Critical patent/EP1688671B1/fr
Publication of EP1688671B2 publication Critical patent/EP1688671B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/16Systems for controlling combustion using noise-sensitive detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means

Definitions

  • the present invention relates to a method for protecting a gas turbine from damage by pressure pulsations.
  • the invention also relates to a control system for carrying out such a protection method.
  • pressure pulsations may occur, in particular in a combustion chamber of the gas turbine, due to the combustion process.
  • Such phenomena can occur in frequency ranges from 2 Hz to several kHz and are accordingly also referred to as humming, scraping or more generally also as flame instabilities.
  • humming scraping or more generally also as flame instabilities.
  • pulsations can signal malfunctions of the combustion reaction, which can be caused for example by fluctuations in the fuel and / or fresh air supply or by abrupt load changes. In individual cases, the Pulsations also quench the combustion reaction or its flame, resulting in the formation of an explosive gas mixture.
  • Modern gas turbines are therefore equipped with a pulsation protection system, which detects on the one hand occurring during operation of the gas turbine pressure pulsations, on the other when defined trigger conditions, such as the sudden occurrence of pulsations with very high amplitudes or the occurrence of pulsations of medium amplitude during a longer period of time, appropriate protective actions causes, such as the shutdown of the gas turbine.
  • the measurement of the pressure pulsations can take place, for example, with the aid of a corresponding pressure sensor with the aid of which a pulsation-time signal can be generated which correlates with the pulsations occurring.
  • a "pulsation time signal” is understood to mean a signal which represents the amplitudes of the pulsations (ordinate values) as a function of time (abscissa values).
  • the pulsation time signal thus determined can now be divided into specific monitoring frequency bands using electronic or digital methods according to Tchebychev or the like, which can be individually analyzed and evaluated. It may be appropriate to perform averaging within the respective monitoring frequency band.
  • a pressure sensor detects the pressure pulsations in the combustion chamber and generates a corresponding pressure signal. For the purpose of determining at least two relative signal components in selected frequency ranges, this pressure signal is fed as input signal to at least two bandpass filters. In accordance with their pass frequencies, these bandpass filters output a corresponding number of relative signal components in several relevant frequency ranges. which are processed in a further means, for example a neural network, to an output signal for controlling a process variable, such as the fuel or the air supply.
  • the invention aims to remedy this situation.
  • the invention as characterized in the claims, deals with the problem of pointing out an improved way for the protection of a gas turbine against damage by pressure pulsations, which in particular has a relatively high reliability and avoids unnecessary protection actions as far as possible.
  • the invention is based on the general idea of monitoring the pressure pulsations with the aid of a pulsation frequency signal.
  • the invention is characterized in that the band frequencies are kept very sharp, and the signal transmission within the band or the signal blocking outside the band is arbitrarily ideal according to the used system performance (for example, computer performance).
  • a "pulsation frequency signal” is understood to be a signal which represents the amplitudes of the pulsations (ordinate values) as a function of the frequency (abscissa values). From such a pulsation frequency signal, predetermined monitoring frequency bands can be taken out particularly easily.
  • the frequency bands can ideally be narrowly selected according to the system power used (computer power), which makes it possible to specifically and separately monitor specific pulsation frequencies without distorting their amplitudes.
  • the invention is also based on the finding that disturbing or critical, ie dangerous pulsation frequencies can be relatively close to harmless pulsation frequencies, so that a comparatively broad monitoring frequency band systematically detects harmless pulsation and accordingly can not distinguish from the critical pulsation frequencies and a falsification, in particular Exaggeration that occurs amplitudes of certain pulsation frequencies.
  • the width of the monitoring frequency bands can not be selected arbitrarily small in the case of a pulsation-time signal by means of conventional band filters (Tchebychev or the like).
  • the selectable in a pulsation time signal monitoring frequency bands are regularly relatively wide.
  • the monitoring frequency bands in the pulsation frequency signal can ideally be chosen to be closely in accordance with the system power used, so that it is possible, in particular, to exclude closely adjacent harmless pulsation frequencies from the pulsation monitoring.
  • a dynamic adaptation of the system parameters in particular bandpass limits, Time constants, etc. to different operating conditions of the gas turbine, for example, normal operation, startup, Ablasten, fuel change, etc., take place.
  • a pulsation level which is monitored within the respective monitoring frequency band, may be formed by the maximum pulsation value in the respective monitoring frequency band. That is, within the respective monitoring frequency band, the pulsation maximum (peak) is monitored in each case.
  • the pulsation level is monitored with regard to the occurrence of at least one predetermined triggering condition. This monitoring is based on the time profile of the pulsation level, ie a pulsation level-time signal. Accordingly, a pulsation level time signal is generated here, which is then monitored for at least one triggering condition.
  • the monitoring frequency band can be tracked with a frequency shift of the maximum pulsation value to the maximum pulsation value by a suitable algorithm, in such a way that the maximum pulsation level always remains within the monitoring frequency band.
  • the critical pulsation frequency assigned to the respective monitoring frequency band can change.
  • the measured pulsation frequency depends on the speed of sound at the point of origin of the pulsations, which in turn is temperature dependent.
  • the temperature can change, in particular in its combustion chamber, which results in a corresponding change in the speed of sound and thus leads to a shift in the critical pulsation frequencies.
  • Other parameters which influence the pulsation frequency are, for example, the gas composition. This may change, for example, by using a different fuel and / or adjusting a different fuel / air mixture ( ⁇ value) and / or another fuel / water mixture ( ⁇ value). Due to the automatic tracking of the monitoring frequency band, the critical pulsation frequency to be monitored can not move out of the monitoring frequency band. As a result, unnecessarily triggered protective actions, control errors or misinterpretations of the pressure pulsations due to the above-mentioned changes no longer occur with the aid of the invention.
  • the signal processing method according to the invention can be used for machine protection according to a triggering strategy.
  • This tripping strategy can be characterized in that it operates with a trip counter and with a reset counter, wherein the trip counter summed the time during which the respective pulsation level is above a predetermined level limit value to the respective preceding counter reading.
  • the trigger condition then occurs and the predetermined protection action is started when the trip counter reaches a predetermined trip count.
  • the reset counter sums the time during which the respective pulsation level is not above the previously mentioned level limit, in each case to a count set to zero.
  • the counter reading of the trip counter is always set to zero as soon as the reset counter reaches a predetermined reset counter reading.
  • the triggering strategy according to the invention lead to a critical pulsation frequencies whose amplitude is above the predetermined level limit for a long time to trigger the respective protection action.
  • a sequence of critical pulsation amplitudes which in each case only occur for a relatively short time but also follow one another with comparatively small distances, also triggers the respective protective action.
  • the trip counter is reset to zero if no critical pulsation amplitudes occur during a period of time defined by the predetermined reset count.
  • this protection method can cover various triggering conditions. For example, the time setting and / or the trigger level for different operating conditions of the gas turbine, for example, normal operation, startup, shutdown, be chosen differently.
  • a gas turbine 1 usually comprises a compressor 2, a combustion chamber 3 and a turbine 4.
  • 1 pressure pulsations P can occur during operation of the gas turbine.
  • These pressure pulsations or pulsations P are measured for example in the region of the combustion chamber 3 with the aid of a suitable sensor 5.
  • the sensor 5 may have, for example, a microphone, a dynamic pressure booster, a piezoelectric pressure transducer, a piezoresistive pressure transducer or other suitable for detecting the pressure pulsations device.
  • the pressure pulsations P can be determined, for example, indirectly via the acceleration of combustion chamber components.
  • the measured pressure pulsations P can, for example, be processed by means of a suitable amplifier 6 in order to generate a pulsation time signal PZS therefrom.
  • the pulsation time signal PZS represents the dependence of the pulsation P on the time t.
  • Fig. 1 is this connection through a Diagram 7 visualized, in which the pulsation P forms the ordinate, while the time t forms the abscissa.
  • the pulsation time signal PZS is now transformed into a pulsation frequency signal PFS which includes the dependence of the pulsation P on the frequency f (frequency spectrum).
  • the thus determined pulsation frequency signal PFS is in Fig. 1 visualized by a diagram 8 whose ordinate is formed by the pulsation P, and whose abscissa is formed by the frequency f.
  • the pulsation frequency signal PFS can be derived from the pulsation time signal PZS by means of a suitable mathematical, in particular numerical, method, for example with the aid of a Fourier transformer 9, which performs a corresponding Fourier analysis for this purpose.
  • the Fourier transform is in Fig. 1 represented symbolically by a diagram 10.
  • the Fourier transformer 9 can operate, for example, by means of FFT (Fast Fourier Transformation) or by means of DFT (Discrete Fourier Transformation).
  • the Fourier transformer 9 can be followed by a rectifier 11, in particular an RMS rectifier, where RMS stands for Root Mean Square (ie root mean square, here effective signal level).
  • the pulsation frequency signal PFS can be additionally processed. For example, disturbances can be suppressed.
  • At least one predetermined monitoring frequency band 12 is monitored.
  • a plurality of predetermined monitoring frequency bands 12 are monitored.
  • the monitoring frequency bands 12 are marked in a further diagram 13 with curly braces.
  • each monitoring frequency band 12 it is possible to select the monitoring frequency bands 12 such that a plurality of disturbing or critical or dangerous pulsation frequencies to be monitored lie in the respective monitoring frequency band 12.
  • an embodiment is preferred in which in each monitoring frequency band 12 exactly one critical pulsation frequency to be monitored is located.
  • a significant advantage of the present invention is seen in that within the pulsation frequency signal PFS the monitoring frequency bands 12 can be selected with comparatively small frequency bandwidths. This makes it possible to clearly distinguish critical, dangerous pulsation frequencies from uncritical, harmless pulsation frequencies and thus distinguish them, even if the harmless pulsation frequencies are relatively close to critical, dangerous pulsation frequencies.
  • a pulsation level PL is determined for each predetermined monitoring frequency band 12. This pulsation level PL correlates with a pulsation amplitude of the monitored pulsation frequency within the respective monitoring frequency band 12.
  • the determination of the pulsation level PL can be carried out in different ways.
  • an average value of the pulsation amplitudes occurring in the monitoring frequency band 12 can be formed within the respective monitoring frequency band 12.
  • rms values or quadratic averages can also be formed here.
  • the averaging is particularly suitable for the determination of the pulsation level PL when the respective monitoring frequency band 12 is assigned more than a predetermined critical pulsation frequency.
  • the pulsation level PL can be determined by using the maximum pulsation value (peak value) occurring in the respective monitoring frequency band 12 for the pulsation level PL. This relationship is shown in diagram 13.
  • the pulsation maxima are each formed by peaks of the pulsation frequency signal PFS and thereby define the respective pulsation level PL.
  • the pulsation levels PL are now monitored with regard to the occurrence of at least one predetermined triggering condition.
  • This monitoring is in Fig. 1 in a further diagram 14, which represents the time profile of the pulsation level PL.
  • the pulsation level PL forms the ordinate, while the abscissa is formed by the time t.
  • the diagram 14 shows here the time course of the pulsation level PL, ie a pulsation level time signal PLZS for a single monitoring frequency band 12 and thus in particular for only one critical pulsation frequency to be monitored.
  • a pulsation level-time signal PLZS is generated here, which is then monitored with regard to the at least one triggering condition. It is basically possible to prepare this pulsation level-time signal PLZS in a suitable manner. In particular, averaging can also take place here, in particular by determining the effective value.
  • the pulsation levels PL are suitably monitored independently of one another for the various monitoring frequency bands 12.
  • a maximum pulsation level PL max can be used as a triggering condition. Once the pulsation level PL the maximum pulsation level PL max is reached, this tripping condition is present. This is indicated in the diagram 14 by the intersection of the pulsation level time signal PLZS with the maximum value of the pulsation level PL max , which is denoted by 15 in the diagrams 13 and 14. The intersection point 15 thus represents the occurrence of said trigger condition, which according to the invention triggers a predetermined protective action, which is symbolized here in the diagrams 13 and 14 by an arrow 16.
  • This protective action 16 may be, for example, a withdrawal of the fuel supply and / or an enrichment of the fuel / air mixture or a shutdown of the combustion chamber 3, but also only an alarm of the operator. Likewise, other protective reactions 16 or combinations of such measures are possible.
  • the pulsation level PL is formed within the individual monitoring frequency bands 12 by the peak value occurring therein, according to an advantageous embodiment it is possible not to fix the monitoring frequency band 12 statically, but dynamically to shifts in the maximum pulsation value here to adjust the pulsation level PL. This is done by a corresponding shift of the respective monitoring frequency band 12, such that the peak of the pulsation frequency signal PFS remains within the monitoring frequency band 12.
  • a shift of the critical pulsation frequency to be monitored along the abscissa, ie a frequency shift occurs, for example, when the speed of sound changes within the combustion chamber 3, for example as a result of a change in temperature. In this way it can be avoided that the pulsation frequency to be monitored moves out of the monitoring frequency band 12, even if only a very small frequency bandwidth is selected for the monitoring frequency band 12.
  • harmonics For processing the pulsation frequency signal PFS, it is also possible to hide harmonics. For example, this is first checked when a pulsation occurs in a corresponding test band, if this could be a harmonic of a pulsation (fundamental frequency, base) from a low frequency range. If this is the case, all harmonics are deleted from the considered part of the pulsation frequency signal PFS, that is, the signal amplitudes over the respective frequencies set to zero. Pulsation levels are thus taken into account in the monitoring only if the associated pulsation is not a harmonic. Because the fundamental pulsation underlying the harmonics is already monitored in its own monitoring frequency band 12.
  • FIG. 2 The monitoring of the pulsation level time signal PLZS in the case of the invention can also take place in that at least one other triggering condition has a special triggering strategy.
  • This tripping strategy works with a tripping counter AZ and with a reset counter RZ.
  • Fig. 2 now three diagrams are summarized, of which the upper represents the time course of the pulsation level PL, while the middle shows the time course of the trigger counter AZ, and the lower reflects the time course of the reset counter RZ. Accordingly, the upper diagram shows the pulsation level timing signal PLZS, while the lower diagrams represent a trip counter signal AZS and a reset counter signal RZS, respectively.
  • the upper diagram also contains a level limit PL limit .
  • This level limit value PL limit can be smaller than the maximum pulsation level PL max from the diagram 14 in accordance with FIG Fig. 1 , While exceeding or reaching the pulsation level maximum PL max immediately triggers the protective action 16, reaching or exceeding the Level limit PL limit according to the triggering strategy described below not immediately to trigger the protection action 16. It is in principle possible that both trigger conditions exist side by side.
  • the trip counter AZ counts the time during which the pulsation level PL is above the level limit PL limit .
  • the trip counter AZ always adds this time to a previous counter reading.
  • the trigger condition occurs.
  • a trigger signal (flag) is set for this purpose, and the respective protection action 16 is started.
  • the reset counter RZ counts the time during which the pulsation level PL is below or not above the level limit value PL limit .
  • the reset counter RZ adds up to a count set to zero. However, as soon as the reset counter RZ reaches a predetermined reset count RZ limit , the count of the trigger counter AZ is set to zero.
  • the pulsation level PL again exceeds the level limit value PL limit , so that the trigger counter AZ adds up again to the previous counter reading.
  • the counter reading of the trigger counter AZ reaches the trigger counter reading AZ limit .
  • the protection action 16 is started. For example, an alarm is issued or changed for the duration of the protective action 16, the fuel supply to the combustion chamber 3.
  • the status of the protective action 16 is also entered in the middle diagram, with a simplified distinction here only between an off state and an on state.
  • the history of the protection action status is in Fig. 2 denoted by SAZ. At time t 6 is thus switched from the off state to the on state.
  • the reset counter RZ starts again from zero to total the time.
  • the reset counter RZ reaches a counter reading designated RZ SAZ .
  • the protection action status is changed, that is to say switched over from the on state to the off state.
  • the trip counter AZ is reset to zero at the same time.
  • the reset counter RZ reaches the reset count RZ limit , which itself resets the count of the trigger counter AZ to zero.
  • the associated counter reading RZ SAZ is selected to be smaller than the reset counter reading RZ limit .
  • the pulsation level PL again exceeds the level limit PL limit , so that the trip counter AZ starts counting the time again. In this case, the trip counter AZ starts this time because of the previous reset of the value zero.
  • the pulsation level PL drops below the level limit value PL limit again .
  • the trip counter AZ stops counting while the reset counter RZ starts counting again from zero.
  • the reset counter RZ reaches its reset counter RZ limit , which triggers a reset of the count of the trigger counter AZ to the value zero.
  • the trip counter AZ starts again at zero when the pulsation level PL exceeds the level limit value PL limit .
  • the pulsation level PL drops below the level limit value PL limit again . While the count of the trigger counter AZ is held, the reset counter RZ starts to count from zero again.
  • the reset counter RZ reaches its reset counter RZ limit , which causes a reset of the trigger counter AZ.
  • the pulsation level PL reaches its limit value PL limit again at this time t 15 , which immediately triggers counting of the trigger counter AZ.
  • the pulsation level PL drops below the level limit value PL limit again .
  • the accumulated count of the trigger counter AZ is held, while the reset counter RZ starts again from zero to count the time.
  • a control system 17 of the gas turbine 1 may have a pulsation measuring device 18, a pulsation evaluation device 19 and a control device 20. Furthermore, one can also Control device 21 and optionally a display and / or diagnostic system 22 may be provided.
  • the pulsation measuring device 18 comprises a sensor system 5 and the signal amplifier 6 and can furthermore have a galvanic isolating device 23.
  • the pulsation measuring device 18 thus serves to measure the pressure pulsations P at the gas turbine 1, in particular in the combustion chamber 3. Furthermore, the pulsation measuring device 18 generates the pulsation time signal PZS.
  • the Pulsationsauswert worn 19 includes, for example, a low-pass filter 24, an analog input 25, an analog output 26, and a digital input 27 and a digital output 28.
  • the inputs and outputs 25 to 28 are integrated into a computer 29, the real-time processing of the Pulsation time signal PZS allows.
  • the Pulsationsauswak 19 transform the pulsation time signal PZS in the pulsation frequency signal PFS, from the pulsation frequency signal PFS for at least one predetermined monitoring frequency band 12 to determine the pulsation level PL, this pulsation level PL in terms of occurrence at least Monitor a predetermined trigger condition and generate a trigger signal when this at least one trigger condition occurs.
  • the transmission of the pulsation-time signal PZS between the pulsation measuring device 18 and the Pulsationsauswoke 19 can be effected by a galvanically decoupled connection 30, that is, without direct electrical contact.
  • the signal transmission takes place optically or via a transformer.
  • the galvanic decoupling is achieved here by the galvanic separation device 23.
  • control device 20 controls the normal operation of the gas turbine 1 and makes it possible by its integration into the control system 17 the execution of predetermined protection actions, if the respective trigger signal is present.
  • the control device 20 can also receive the pulsation levels PL of the monitoring bands via the analog output 26 and even the evaluation of the trigger signal in accordance with Fig. 2 carry out.
  • the control device 21 can communicate with the computer 29 of the pulsation evaluation device 19 via a network connection 31 and via a network controller 32.
  • the control device 21 can, for example, configure, visualize and / or store the pulsation monitoring which is carried out with the aid of the pulsation evaluation device 19.
  • the control device 21 is here coupled to the display and / or diagnostic system 22, for example via the Internet 33, which allows, for example, an evaluation of the long-term operation of the gas turbine 1. In particular, this evaluation can be carried out centrally for several different gas turbines 1, which can be distributed globally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Measuring Fluid Pressure (AREA)

Claims (16)

  1. Procédé de protection d'une turbine à gaz (1) contre les dommages par les pulsations de pression (P),
    - selon lequel les pulsations de pression (P) qui se produisent pendant le fonctionnement de la turbine à gaz (1) sont mesurées,
    - selon lequel un signal de temps de pulsation (PZS) est généré à partir des pulsations de pression (P) mesurées,
    - selon lequel le signal de temps de pulsation (PZS) est transformé en un signal de fréquence de pulsation (PFS),
    - selon lequel un niveau de pulsation (PL) est déterminé à partir du signal de fréquence de pulsation (PFS) pour au moins une bande de fréquence de surveillance (12) prédéfinie,
    - selon lequel le niveau de pulsation (PL) est surveillé pour y déceler la survenance d'au moins une condition de déclenchement prédéfinie,
    caractérisé en ce
    qu'un signal de temps de niveau de pulsation (PLZS) est généré à partir du niveau de pulsation (PL), lequel est surveillé pour y déceler l'au moins une condition de déclenchement et
    - une action protectrice (16) prédéfinie est exécutée en cas de survenance de l'au moins une condition de déclenchement.
  2. Procédé selon la revendication 1, caractérisé en ce que le niveau de pulsation (PL) est déterminé par calcul de la somme ou intégration et/ou par calcul de la valeur moyenne des valeurs de pulsation (P) dans la bande de fréquence de surveillance (12) correspondante.
  3. Procédé selon la revendication 1, caractérisé en ce que le niveau de pulsation (PL) est formé par la valeur de pulsation maximale (P) dans la bande de fréquence de surveillance (12) correspondante.
  4. Procédé selon la revendication 3, caractérisé en ce qu'en cas de décalage en fréquence de la valeur de pulsation maximale (P), la bande de fréquence de surveillance (12) est asservie à la valeur de pulsation maximale (P) de sorte que la valeur de pulsation maximale (P) demeure à l'intérieur de la bande de fréquence de surveillance (12).
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la bande de fréquence de surveillance (12) correspondante est définie de telle sorte qu'exactement une pulsation (P) critique préalablement connue se trouve dans cette bande de fréquence de surveillance (12) avec sa fréquence de pulsation lorsqu'elle se produit.
  6. Procédé selon la revendication 1, caractérisé en ce que le signal de temps de niveau de pulsation (PLZS) est préparé par calcul de la valeur moyenne.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la transformation du signal de temps de pulsation (PZS) en le signal de fréquence de pulsation (PFS) est effectuée au moyen d'une transformation numérique-mathématique, notamment au moyen d'une transformation de Fourier rapide (FFT) ou au moyen d'une transformation de Fourier discrète (DFT).
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce
    - que lorsqu'une pulsation (P) se produit, un contrôle est effectué pour vérifier si cette pulsation (P) est une harmonique d'une pulsation (P) issue d'une plage de fréquences plus basse,
    - procédé selon lequel le niveau de pulsation (PL) correspondant n'est surveillé que si la pulsation (P) associée n'est pas une telle harmonique.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la survenance de l'au moins une condition de déclenchement est surveillée séparément pour chaque bande de fréquence de surveillance (12).
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce
    - que l'au moins une condition de déclenchement possède une stratégie de déclenchement qui fonctionne avec un compteur de déclenchement (AZ) et un compteur de remise à zéro (RZ),
    - que le compteur de déclenchement (AZ) additionne le temps (t) pendant lequel le niveau de pulsation (PL) respectif se trouve au-dessus d'une valeur de seuil de niveau (PLlimit) prédéfinie à la valeur de comptage respectivement précédente,
    - que la condition de déclenchement se produit et l'action protectrice (16) prédéfinie est démarrée dès que le compteur de déclenchement (AZ) atteint une valeur de comptage de déclenchement (AZlimit) prédéfinie,
    - que le compteur de remise à zéro (RZ) additionne respectivement le temps (t) pendant lequel le niveau de pulsation (PL) respectif ne se trouve pas au-dessus de la valeur de seuil de niveau (PLlimit) à une valeur de comptage mise à zéro,
    - que la valeur de comptage du compteur de déclenchement (AZ) est mise à zéro dès que le compteur de remise à zéro (RZ) atteint une valeur de comptage de remise à zéro (RZlimit) prédéfinie.
  11. Procédé selon la revendication 10, caractérisé en ce qu'il est mis fin à l'action protectrice (16) et la valeur de comptage du compteur de déclenchement (AZ) est mise à zéro lorsque le compteur de remise à zéro (RZ) atteint une valeur de comptage (RZSAZ) prédéfinie pendant l'action protectrice (16).
  12. Procédé selon la revendication 11, caractérisé en ce que ladite valeur de comptage (RZSAZ) prédéfinie est inférieure à la valeur de comptage de remise à zéro (RZlimit).
  13. Système de commande pour une turbine à gaz (1),
    - comprenant un dispositif de mesure de pulsations (18) qui mesure les pulsations de pression (P) qui se produisent pendant le fonctionnement de la turbine à gaz (1) à l'aide d'un dispositif de détection (5) et génère un signal de temps de pulsation (PZS) corrélé avec celles-ci,
    - comprenant un dispositif d'interprétation des pulsations (19) qui transforme le signal de temps de pulsation (PZS) en un signal de fréquence de pulsation (PFS), détermine un niveau de pulsation (PL) à partir du signal de fréquence de pulsation (PFS) pour au moins une bande de fréquence de surveillance (12) prédéfinie, surveille celui-ci pour y déceler la survenance d'au moins une condition de déclenchement prédéfinie, génère un signal de temps de niveau de pulsation (PLZS) à partir du niveau de pulsation (PL), lequel est surveillé pour y déceler l'au moins une condition de déclenchement et génère un signal de déclenchement en cas de survenance de l'au moins une condition de déclenchement,
    - comprenant un dispositif de commande (20) qui, lorsque le signal de déclenchement est présent, exécute une action protectrice (16) prédéfinie.
  14. Système de commande selon la revendication 13, caractérisé en ce qu'une liaison (30) de découplage galvanique est établie pour la transmission du signal de temps de pulsation (PZS) entre le dispositif de mesure de pulsations (18) et le dispositif d'interprétation des pulsations (19).
  15. Système de commande selon la revendication 13 ou 14, caractérisé en ce qu'il existe un dispositif de contrôle (21) qui est raccordé au dispositif d'interprétation des pulsations (19) par le biais d'une connexion de réseau (31) et qui permet une configuration du dispositif d'interprétation des pulsations (19) et/ou visualise et/ou met en mémoire la surveillance des pulsations.
  16. Système de commande selon la revendication 15, caractérisé en ce que le dispositif de contrôle (21) est raccordé à un système d'affichage et/ou de diagnostic (22) qui sert à interpréter le fonctionnement à long terme de la turbine à gaz (1).
EP06101128.4A 2005-02-03 2006-02-01 Méthode de protection et système de contrôle pour turbine à gaz Active EP1688671B2 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1612005 2005-02-03

Publications (3)

Publication Number Publication Date
EP1688671A1 EP1688671A1 (fr) 2006-08-09
EP1688671B1 true EP1688671B1 (fr) 2015-12-09
EP1688671B2 EP1688671B2 (fr) 2019-01-09

Family

ID=34974592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06101128.4A Active EP1688671B2 (fr) 2005-02-03 2006-02-01 Méthode de protection et système de contrôle pour turbine à gaz

Country Status (2)

Country Link
US (1) US7751943B2 (fr)
EP (1) EP1688671B2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020200118A1 (de) * 2020-01-08 2021-07-08 Volkswagen Aktiengesellschaft Verfahren zur Detektion eines kritischen Zustands bei einem Kältemittelkreislauf eines Fahrzeuges

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20071048A1 (it) * 2007-05-23 2008-11-24 Nuovo Pignone Spa Metodo per il controllo delle dinamiche di pressione e per la stima del ciclo di vita della camera di combustione di una turbina a gas
EP2239505A1 (fr) * 2009-04-08 2010-10-13 Siemens Aktiengesellschaft Procédé d'analyse de la tendance d'une chambre de combustion à émettre des bruits à basse fréquence et procédé de commande d'une turbine à gaz
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
EP2520863B1 (fr) 2011-05-05 2016-11-23 General Electric Technology GmbH Procédé de protection d'un moteur à turbine à gaz contre des valeurs de processus dynamique élevées et moteur de turbine à gaz pour l'exécution de ce procédé
CH705179A1 (de) * 2011-06-20 2012-12-31 Alstom Technology Ltd Verfahren zum Betrieb einer Verbrennungsvorrichtung sowie Verbrennungsvorrichtung zur Durchführung des Verfahrens.
ITMI20112018A1 (it) * 2011-11-07 2013-05-08 Ansaldo Energia Spa Impianto a turbina a gas per la produzione di energia elettrica
US9804054B2 (en) * 2012-10-01 2017-10-31 Indian Institute Of Technology Madras System and method for predetermining the onset of impending oscillatory instabilities in practical devices
DE102013226049A1 (de) * 2013-12-16 2015-06-18 Siemens Aktiengesellschaft Vorrichtung sowie Verfahren zum Erfassen des aktuellen Schädigungszustandes einer Maschine
EP2942565A1 (fr) * 2014-05-05 2015-11-11 Siemens Aktiengesellschaft Procédé de fonctionnement d'un système de brûleur
EP3091286B1 (fr) * 2015-05-04 2021-01-13 Ansaldo Energia IP UK Limited Procédé et appareil permettant de faire fonctionner un dispositif de combustion
EP3104078A1 (fr) * 2015-06-12 2016-12-14 IFTA Ingenieurbüro Für Thermoakustik GmbH Procédé et appareil de précurseur thermoacoustique
RU2618774C1 (ru) * 2016-01-11 2017-05-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Способ контроля вибрационного горения в камере сгорания газотурбинного двигателя
US10436123B2 (en) 2017-03-08 2019-10-08 General Electric Company Methods and apparatus for closed-loop control of a gas turbine
EP3759393B1 (fr) * 2018-02-27 2022-03-30 Potsdam-Institut für Klimafolgenforschung E.V. Procédé servant à minimiser des instabilités thermoacoustiques d'une turbine à gaz
EP3814739B1 (fr) * 2018-07-23 2023-07-12 Indian Institute Of Technology Madras (IIT Madras) Système et procédé de détermination précoce de l'apparition d'instabilités oscillatoires imminentes
EP3781921A4 (fr) * 2018-07-25 2022-01-19 Indian Institute of Technology Madras (IIT Madras) Système et procédé de détermination de l'amplitude d'instabilités oscillantes dans des dispositifs mécaniques à fluide
WO2020025380A1 (fr) * 2018-07-31 2020-02-06 Siemens Aktiengesellschaft Détecteur à ionisation de flamme et procédé d'analyse d'un gaz de mesure contenant de l'oxygène
EP3845815B1 (fr) * 2019-12-31 2023-03-22 Ansaldo Energia Switzerland AG Moteur à turbine à gaz doté d'une protection active contre les pulsations et procédé de fonctionnement d'un moteur de turbine à gaz
US20230280033A1 (en) * 2022-03-07 2023-09-07 Baker Hughes Holdings Llc Combustion Quality Spectrum

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083234A (en) 1975-12-25 1978-04-11 Nissan Motor Company, Limited Method of and system for detecting misfire in internal combustion engine
US20020107625A1 (en) 2001-01-08 2002-08-08 Folker Beck Monitoring device for a working vehicle
US6535124B1 (en) 2001-04-03 2003-03-18 Abb Automation Inc. Method and apparatus for digital analysis and signal conditioning in a turbine generator silo combustor
US20040194468A1 (en) * 2002-07-16 2004-10-07 Ryan William Richard Automatic combustion control for a gas turbine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544478A (en) * 1994-11-15 1996-08-13 General Electric Company Optical sensing of combustion dynamics
US6095793A (en) * 1998-09-18 2000-08-01 Woodward Governor Company Dynamic control system and method for catalytic combustion process and gas turbine engine utilizing same
DE19941917C2 (de) 1998-12-22 2001-09-27 Woehler Mesgeraete Kehrgeraete Verfahren zur Überwachung und Regelung von Feuerungsanlagen
US6591182B1 (en) * 2000-02-29 2003-07-08 General Electric Company Decision making process and manual for diagnostic trend analysis
US6839613B2 (en) * 2001-07-17 2005-01-04 General Electric Company Remote tuning for gas turbines
JP4056232B2 (ja) 2001-08-23 2008-03-05 三菱重工業株式会社 ガスタービン制御装置、ガスタービンシステム及びガスタービン遠隔監視システム
US7017415B2 (en) * 2001-09-27 2006-03-28 Siemens Westinghouse Power Corporation Apparatus for sensing pressure fluctuations in a hostile environment
EP1327824A1 (fr) * 2001-12-24 2003-07-16 ABB Schweiz AG Détection et réglage du point de fonctionnement d'une chambre de combustion de turbine à gaz en approchant la limite d'extinction
DE10213682A1 (de) * 2002-03-27 2003-10-09 Alstom Switzerland Ltd Verfahren und Vorrichtung zur Kontrolle von thermoakustischen Instabilitäten bzw. Schwingungen in einem Verbrennungssystem
AU2003238326A1 (en) 2002-07-19 2004-02-09 Alstom Technology Ltd Method for controlling the introduction of inert media into a combustion chamber
US6993960B2 (en) 2002-12-26 2006-02-07 Woodward Governor Company Method and apparatus for detecting combustion instability in continuous combustion systems
US6962043B2 (en) * 2003-01-30 2005-11-08 General Electric Company Method and apparatus for monitoring the performance of a gas turbine system
GB0304325D0 (en) * 2003-02-26 2003-04-02 Rolls Royce Plc Stall detection and recovery system
US6823254B2 (en) * 2003-03-28 2004-11-23 Honeywell International, Inc. Method and system for turbomachinery surge detection
US7191084B2 (en) * 2005-04-20 2007-03-13 General Electric Company Method and apparatus for gas turbine engine ignition systems
US7412320B2 (en) * 2005-05-23 2008-08-12 Siemens Power Generation, Inc. Detection of gas turbine airfoil failure
US20060283190A1 (en) * 2005-06-16 2006-12-21 Pratt & Whitney Canada Corp. Engine status detection with external microphone
US7151872B1 (en) * 2005-11-22 2006-12-19 General Electric Company Method, system and module for monitoring a power generating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083234A (en) 1975-12-25 1978-04-11 Nissan Motor Company, Limited Method of and system for detecting misfire in internal combustion engine
US20020107625A1 (en) 2001-01-08 2002-08-08 Folker Beck Monitoring device for a working vehicle
US6535124B1 (en) 2001-04-03 2003-03-18 Abb Automation Inc. Method and apparatus for digital analysis and signal conditioning in a turbine generator silo combustor
US20040194468A1 (en) * 2002-07-16 2004-10-07 Ryan William Richard Automatic combustion control for a gas turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020200118A1 (de) * 2020-01-08 2021-07-08 Volkswagen Aktiengesellschaft Verfahren zur Detektion eines kritischen Zustands bei einem Kältemittelkreislauf eines Fahrzeuges

Also Published As

Publication number Publication date
EP1688671B2 (fr) 2019-01-09
US20060266045A1 (en) 2006-11-30
EP1688671A1 (fr) 2006-08-09
US7751943B2 (en) 2010-07-06

Similar Documents

Publication Publication Date Title
EP1688671B1 (fr) Méthode de protection et système de contrôle pour turbine à gaz
EP2201430B1 (fr) Procédé d'analyse du fonctionnement d'une turbine à gaz
EP2404059B1 (fr) Procédé de surveillance d'éoliennes
EP1476733B1 (fr) Procede et dispositif pour la detection d'une action mecanique impulsionnelle sur une partie d'installation
EP2789914A1 (fr) Procédé destiné à la surveillance d'un état de flamme
DE102009000286A1 (de) Überwachung eines Partikelgrenzwerts im Abgas einer Brennkraftmaschine
DE4303030A1 (fr)
EP2718681B1 (fr) Procédé et dispositif pour surveiller les vibrations de tête de bobine d'un générateur
EP3058430B1 (fr) Dispositif et procédé permettant de détecter l'état d'endommagement instantané d'une machine
DE102011055523A1 (de) Verfahren und Vorrichtung zur Schwingungsanalyse von Anlagen oder Maschinenelementen
EP1922530B1 (fr) Procédé et dispositif permettant de détecter l'endroit où un effet mécanique impulsionnel est appliqué sur une partie d'une installation
DE102016107428A1 (de) Dynamisches Druckverfahren des Detektierens von Flamme-Ein/Aus in Rohrbrennern von Gasturbinen zum Schutz der Maschine
EP3250918B1 (fr) Procédé de détection de cavitation
EP3589843B1 (fr) Procédé et dispositif pour détecter un indicateur pour la prédiction d'une instabilité dans un compresseur, et usage correspondant
DE10361755A1 (de) System und Verfahren zur Gegendrucküberwachung bei Dampfturbinen unter Verwendung dynamischer Drucksensoren
EP2464956A1 (fr) Procédé de détection précoce de dommages dans une transmission de véhicule automobile
DE102010009941A1 (de) Verfahren zum Überwachen von Windturbinen
DE102006004163A1 (de) Schutzverfahren und Steuerungssystem für eine Gasturbine
DE102009039693A1 (de) Vorrichtung und Verfahren zur Detektion einer Veränderung der aerodynamischen Anströmverhältnisse rotierender Turbinenschaufeln
DE60319245T2 (de) Verfahren und einrichtung zur bestimmung des zustands einer turbinenschaufel und zur verwendung der gesammelten informationen zur schätzung der lebensdauer der schaufel
EP2915998A1 (fr) Procédé de fonctionnement d'une éolienne
DE3314143A1 (de) Stroemungsabrisserkennungsvorrichtung und -verfahren
DE102011055826A1 (de) Systeme und Verfahren zum Schutz gegen Pumpvorläufer
DE2624321C2 (de) Verfahren und Vorrichtung zum Kontrollieren der Funktionsfähigkeit eines in einer Sicherheitsanordnung enthaltenen Meßkanals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070209

17Q First examination report despatched

Effective date: 20070315

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 764752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014662

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160310

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014662

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014662

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160409

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502006014662

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAZ Examination of admissibility of opposition: despatch of communication + time limit

Free format text: ORIGINAL CODE: EPIDOSNOPE2

PLBA Examination of admissibility of opposition: reply received

Free format text: ORIGINAL CODE: EPIDOSNOPE4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20160906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 764752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160201

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ANSALDO ENERGIA IP UK LIMITED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170216

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014662

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20160906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180201

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20190109

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502006014662

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006014662

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006014662

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ANSALDO ENERGIA IP UK LIMITED, LONDON, GB

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 19