EP1685276B1 - Energy converting device - Google Patents

Energy converting device Download PDF

Info

Publication number
EP1685276B1
EP1685276B1 EP04761063A EP04761063A EP1685276B1 EP 1685276 B1 EP1685276 B1 EP 1685276B1 EP 04761063 A EP04761063 A EP 04761063A EP 04761063 A EP04761063 A EP 04761063A EP 1685276 B1 EP1685276 B1 EP 1685276B1
Authority
EP
European Patent Office
Prior art keywords
reaction chamber
axis
gas
water
brown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04761063A
Other languages
German (de)
French (fr)
Other versions
EP1685276A1 (en
Inventor
Hans-Peter Dr. H.C. Bierbaumer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1685276A1 publication Critical patent/EP1685276A1/en
Application granted granted Critical
Publication of EP1685276B1 publication Critical patent/EP1685276B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to an apparatus and a method for converting energy with a gas generator for producing a hydrogen-oxygen mixture or Brown gas, according to the features in the preambles of claims 1 and 22nd
  • Brown gas is produced by a special form of electrolysis from water in a so-called brown gas generator. By the electrolytic treatment of the water in the Brown gas generator this is converted into the special state and consists of a mixture of dissociated hydrogen and oxygen atoms.
  • Brown gas is sent to a combustion chamber, where it is reconverted into water molecules after combustion. The water molecules are then ionized by absorbing infrared radiation into hydrogen and oxygen.
  • Brown gas is subsequently used for welding or soldering.
  • an electrolysis cell is described with electrode plates arranged in series. These electrode plates are fastened in a tube of insulating material, whereby openings of the tube are provided between respectively adjacent electrodes.
  • the electrodes in the end region of the tube are electrically contacted to the outside to a power supply.
  • the tube with the electrodes is immersed in a solution of water and KOH.
  • solution can enter between the electrodes through the openings in the tube and, on the other hand, the gas formed can escape from the space between the electrodes.
  • this device has the advantage that hydrogen and oxygen are automatically produced in the right proportion to produce a neutral flame can.
  • the WO 03/066935 A describes a brown gas generator in which browning is generated independently of one another within an electrolytic cell at different locations. For each of the different areas, a water supply and a water cooling is provided so that the temperature in the electrolytic cell is maintained at an optimum level and the efficiency of generated browning gas increases.
  • this WO-A is a conventional brown cell is shown, which comprises a jacket in which concentrically arranged electrodes are present. The supply and removal of water or browning via an inlet or outlet, which are arranged axially.
  • the WO 00/66811 A shows a brown gas generator or an electrolytic cell for the electrolysis of water, which corresponds to that of WO 03/066935 A is very similar. It is split water in oxygen and hydrogen gas in large quantities within a short time.
  • the electrolytic cell has an oxygen and a hydrogen generator connected to a DC power source. A valve is used to check the internal pressure. Furthermore, a filter is provided to remove impurities of the gas mixture.
  • the object of the invention is to provide an apparatus and a method for the conversion of energy using a hydrogen-oxygen mixture or of Brown gas, with or with the increased efficiency can be achieved. Another object of the invention is to achieve increased productivity in the generation of the hydrogen-oxygen mixture or Brown gas.
  • This object of the invention is achieved by the device for converting energy according to the features of claim 1.
  • the advantage of this device is that so that a greater efficiency can be achieved, in which the simultaneous action of an electric field and a rotational movement on the working medium or the water is made possible by the rotationally shaped formation of the reaction space of the gas generator and so in the sequence Formation of Brown gas favors or increases its rate of education.
  • the rotor for generating a rotation with an amount of angular velocity from a range of 10 s -1 to 25 s -1 is formed, as this one on the bubbles of the forming Brown -Gases in the direction of the axis of the reaction space concentrating force can be exerted.
  • the development of the device for the conversion of energy with a discharge opening formed in a bottom plate and / or cover plate closing the reaction space, which is arranged coaxially with respect to the axis of the reaction space, has the advantage that it forms the brown space forming in the region of the axis of the reaction space. Gas can be easily sucked through this discharge opening.
  • the design according to which the outflow opening is formed by a parallel to the direction of the axis of the reaction chamber adjustable suction lance, has the advantage that an undesirable suction of the working fluid can be minimized with the Brown gas formed in the reaction chamber, in which the depth of insertion of the suction lance accordingly is set and so the outflow as close to the location of the formation of the Brown gas is introduced.
  • the formation of the device for converting energy with a sound source or in which the sound source for generating sound at a frequency in the range 25 kHz to 55 kHz, preferably from 38.5 kHz to 41.5 kHz, preferably 40.5 kHz is formed, has the advantage that by this exposure of the working medium with sound, the formation rate of the Brown gas is increased.
  • the sound source with respect to the axis of the reaction space is formed coaxially or at least a portion of the inner boundary surface of the reaction space is formed as a reflector concentrating the sound, since thus the sound concentrated in the region of the axis or the sound pressure in the area of the axis can be increased.
  • Another advantage is the design of the device in which the gas generator is formed with an infrared source, since by applying the working medium with infrared radiation also a positive influence on the formation of the Brown gas can be effected or the formation of the Brown gas is accelerated ,
  • the gas generator is formed with a magnet or which is aligned in the magnetic field direction of the magnet in the region of the axis of the reaction chamber with respect to the direction of the angular velocity of the rotor or the rotational movement of the working medium in the reaction chamber antiparallel , the advantage is achieved that the deposition of molecular oxygen or molecular hydrogen at the two electrodes is suppressed in favor of the formation of Brown gas.
  • the design of the device for converting energy with a pressure vessel for the working medium has the advantage that it allows the pressure of the working medium in the device can be optimally adjusted, whereby the formation rate of the Brown gas is favored.
  • thermogenerator formed by a heating device with a thermogenerator, wherein the interior of the thermogenerator is formed or filled with a sintered material or sintered metal, since thereby when flowing through the Brown gas through this Sintered material takes place a comparatively slow recombination or conversion into water, in which an open flame formation is omitted.
  • the formation of the heating device has the advantage that the working fluid can remain in the circuit and disposal of sewage or Residues is not required. In particular, this avoids that optionally introduced into the working medium electrolytes are gradually consumed or lost.
  • the heating device which is arranged on the heat exchanger, a fan for dissipating the heat from the heat exchanger to the environment, the advantage is achieved that thus the amount of heat release can be regulated, in which the amount of air flowing past the heat exchanger is changed.
  • the development of the device for converting energy with a control device for controlling the operating state has the advantage that it enables a central adjustment of all parameters of the individual components of the device.
  • control device for automated or program-based control, since thereby the adjustment and in particular the automated readjustment of the operating state for optimal yield of heat or formation of Brown gas can be done independently in the gas generator.
  • the object of the invention is also achieved by the process for the conversion of energy with a hydrogen-oxygen mixture or Brown gas according to the features of claim 23. It is advantageous that with this method, an increased efficiency can be achieved.
  • the formation of the method according to which a magnetic field is applied to the water and / or the Brown gas in the reaction space, wherein the magnetic induction in the region of the axis of the reaction space is oriented in anti-parallel with respect to the direction of the angular velocity, has the advantage that thereby the ions located in the rotating working medium are exerted by the magnetic field in a directed force action in the direction of the axis of the rotational movement and thus the formation of the Brown gas in the region of the axis of the rotational movement of the working medium is promoted.
  • Another advantage is the development of the method, according to which the water and the Brown gas are conveyed in a closed cycle, since on the one hand, the disposal of residues is not required and on the other hand in the working medium or the water introduced electrolytes are not consumed.
  • An optimization of the formation rate of the Brown gas can also be achieved advantageously in that the angular velocity of rotation of the water in the reaction space or the pressure of the working medium in the cycle or the sound intensity of a sound source are changed periodically. This is also due to the fact that the periodic change in the pressure of the working medium with respect to the periodic change in the sound intensity of the sound wave in antiphase takes place or that the value of the frequency of the periodic change in the pressure of the working medium and / or the sound intensity of the sound source and / or the angular velocity is selected from a range between 0.1 Hz and 10 Hz.
  • thermogenerator Also advantageous is the development of the method, according to which the recombination of the hydrogen-oxygen mixture or the Brown gas in water takes place in a thermogenerator, wherein the heat formed in the thermogenerator is removed with the water, as no separate medium for transporting Wänne is required.
  • the Fig. 1 shows a system diagram of a heating device 1, shown as a block diagram of an air heating system.
  • the heating device 1 constitutes an example of a device for the conversion of energy, by means of which the invention will be described in more detail below.
  • thermogenerator 2 a heat exchanger 3, a pressure vessel 4, a pump 5 and a gas generator 6 are connected to each other to a closed circuit for a working medium.
  • a working medium is water that is converted in the gas generator 6 in a hydrogen-oxygen mixture or in Brown gas.
  • the Brown gas enters the thermal generator 2, where heat is generated by converting the Brown gas into water, which is then transported with this water via a line 8 into the heat exchanger 3. Heat is released to the ambient air through this heat exchanger 3, whereby the temperature of the working medium or of the water is correspondingly reduced.
  • the heater 1 further has a power supply unit 12 for supplying electrical energy and a control device 13.
  • the delivery of heat through the heat exchanger 3 to the ambient air can be additionally regulated by a fan 14.
  • a temperature sensor 15 the temperature of the incoming air
  • a temperature sensor 16 the Temperature of the discharged and heated air measured. From the volume or the amount of air conveyed through the heat exchanger and the temperature difference between the two temperature sensors 15, 16, the total amount of heat dissipated to the ambient air can thus be determined.
  • the control device 13 To detect the temperatures measured by the temperature sensors 15, 16 as well as to control or regulate the fan 14, these are in communication with the control device 13 and the corresponding settings can be automated or program-controlled by them.
  • the pump 5, the pressure vessel 4 and the gas generator 6 with the control device 13 in connection.
  • the corresponding signal lines between the control device 13 and the individual components of the heating device 1 in the Fig. 1 not shown.
  • the interior of the thermal generator 2 is filled by an open-pored sintered material 17 or a sintered metal.
  • the Brown gas is supplied through the line 7 in the thermogenerator 2 and experiences on the very large surface of the inner pores of the sintered material 17 is a catalytically induced recombination or conversion into water.
  • heat is released, which is transported with the resulting water as a heat storage or energy source via the line 8 in the heat exchanger 3. It is advantageous that the recombination of the Brown gas to water in the sintered material 17 comparatively slowly and without flames is going on.
  • the thermal generator 2 is formed by a combustion chamber, wherein between the line 7 and the thermal generator 2, a flame arrester (not shown) is provided. To initiate the combustion process in the thermal generator 2, this is also equipped with an ignition device (not shown).
  • the Fig. 2 shows as a detail of the heating device 1, the structure of the gas generator 6 shown schematically.
  • the interior of the gas generator 6 is formed by a rotationally symmetrical reaction chamber 19 with respect to an axis 18.
  • a rotationally symmetrical reaction chamber 19 with respect to an axis 18.
  • the reaction space 19 is cylindrical and the boundary surfaces 20 are accordingly formed by a jacket 21 and a circular disk-shaped bottom plate 22 or a likewise circular disk-shaped cover plate 23.
  • An essentially formed by water working fluid 24 is supplied through the conduit 11 to the reaction chamber 19, wherein an inlet connection 25 of the conduit 11 and an inflow opening in the reaction chamber 19 with respect to the axis 18 is tangentially aligned.
  • An outflow opening 26 of the reaction space 19, which merges into the line 7, is arranged or aligned coaxially with respect to the axis 18 of the reaction space 19.
  • Two electrodes 29 designed as anode 27 and cathode 28 are arranged on the casing 21 of the reaction space 19, with inner electrode surfaces 30 and 31 forming the boundary surface 20 in the area of the jacket 21 of the reaction space 19 at least in regions.
  • the boundary surface 20 in the region of the shell 21 is continuous in the inner electrode surfaces 30 and 31 and thus form these surfaces together a cylinder jacket surface.
  • the working medium 24 is rotated by a rotor 32.
  • the rotor 32 is arranged in the region of the bottom plate 22 with a rotation axis 33, which is aligned coaxially with respect to the axis 18 of the rotation space 19.
  • the rotational movement of the rotor 32 takes place at an angular velocity 34 whose vectorial direction 34 is aligned parallel to the axis 18 of the reaction space 19 in the direction of the cover plate 23.
  • the movement of the working medium flowing in tangentially from the inlet connection 25 and the movement of the working medium in the reaction chamber 19 in the same direction thus takes place in the same direction, thereby avoiding turbulence of the working medium in the region of the inlet connection 25 comes.
  • the rotor 32 or a motor driving this is designed such that the rotation takes place with an amount of the angular velocity 34 from a range of 10 sec -1 to 25 sec -1 .
  • Brown gas which is a special form of electrolytically altered water, is known to be formed in the middle between the two electrodes 29 and thus accumulate in the form of bubbles 36 in the region of the axis 18 of the reaction space 19 . Due to the rotational movement of the working medium 24, the bubbles 36 of the formed Brown gas are concentrated in the region of the axis 18 of the reaction space 19 and, on the other hand, rise due to the buoyancy in the reaction space 19 in the direction of the outflow opening 26 and can thus be easily sucked through the line 7.
  • the Fig. 3 shows a further embodiment of a gas generator 6 of a heating device 1 with a cylindrical reaction space 19th
  • the electrodes 29 are embedded on the inside of the shell 21 of the reaction space 19, so that the inner electrode surfaces 30 and 31 form a cylindrical surface with the inner boundary surface 20 of the reaction space 19.
  • the bottom plate 22, the cover plate 23 and the jacket 21, which limit the reaction space 19, are made of an electrically non-conductive material, preferably a plastic.
  • the outflow opening 26 is formed in the front end region of a suction lance 37.
  • This suction lance 37 is arranged to be adjustable in the direction parallel to the axis 18 of the reaction space 19 and can thus be inserted into the reaction space 19 to different degrees. By suitably adjusting the suction lance 37 can be achieved that with the bubbles 36 of the Brown gas only a very small proportion of the working medium 34 is mitabsgesaugt.
  • the working medium 24 is introduced through the inlet connection 25, as has already been stated, into the reaction space 19 and is offset by the rotor 32 in rotary motion corresponding to the angular velocity 34.
  • the brown gas is formed in the bubbles 36, which are sucked out of the region of the axis 18 of the reaction space 19 with the aid of the suction lance 37.
  • the Fig. 4 1 shows an exemplary embodiment of the gas generator 6 of the heating device 1 with a sound source 38 arranged in the reaction space 19.
  • the sound source 38 is arranged coaxially with respect to the axis 18 of the reaction space 19 in the region of the bottom plate 22. According to this embodiment, it is also provided that the sound source 38 is mounted on the rotor 32. With this sound source 38, ultrasound at a frequency from a range of 25 kHz to 55 kHz, preferably from 38, 5 kHz to 41.5 kHz is irradiated into the reaction chamber 19 and thus the working medium 24 is applied. In particular, a frequency of 40, 5 kHz proves to be favorable.
  • the inner boundary surfaces 20 of the reaction space 19 are formed by a curved in the direction parallel to the axis 18 surface or according to this embodiment by a spherical surface. This means that at least a portion of the inner boundary surfaces 20 of the reaction space 19 is formed by a reflector 39 that concentrates the sound.
  • the inner electrode surfaces 30 and 31 thus also constitute subregions of the reflector 39.
  • the ball-shaped reflector 39 in conjunction with the sound source 38 arranged in the region of the axis 18, achieves a scarf-concentrating effect, with an increase or concentration the sound pressure over the length of the axis 18 in the region of the reaction space 19 comes.
  • the reflector 39 Since the reflector 39 is not parabolic, takes place However, the sound concentration is not in a single point or focal point but over an extended length range of the axis 18 in the reaction space 19. However, this length range of the axis 18 is also the range in which the formation of the Brown gas in the bubbles 36 can be observed. It can be seen that the application of the working medium 24 or the region of formation of the bubbles 36 of the Brown gas in the vicinity of the axis 18 with ultrasound can significantly increase the formation of the Brown gas.
  • Fig. 5 shows a further embodiment of the gas generator 6 of the heating device 1 with an infrared source 40 and a magnet 41st
  • the infrared source 40 is recessed in the region of the cover plate 23 mounted in the boundary surface 20 and radiates infrared radiation in the region of the reaction space 19 a. It turns out that by applying the working medium 24 with infrared radiation also a positive effect on the formation of the Brown gas in the bubbles 36 is effected and thus the formation of the Brown gas can be accelerated.
  • the location where the infrared source is located in the reaction space 19 is not critical to its effect. Essential is the admission of the working medium 24 with the infrared radiation as such.
  • the magnet 41 is likewise arranged in the region of the cover plate 43, the latter being oriented in such a way that the magnetic induction 42 is aligned in the region of the axis 18 of the reaction space 19 in anti-parallel with respect to the angular velocity 34 or with respect to its direction.
  • ions of the working medium 24 are guided approximately in circular paths.
  • moving charges is exerted by the magnetic field causes the antiparallel with respect to the angular velocity 34 oriented magnetic induction now an additional force, which points approximately in the direction of the axis 18 of the reaction chamber 19.
  • the ions in the working medium 24 are forced onto spiral-shaped paths which approach the axis 18 of the reaction space 19 more and more.
  • the force of the magnet 41 is thus prevented that the ions of the working medium 24 can reach the anode 27 and the cathode 28 and there lead to the formation of molecular oxygen or molecular hydrogen and on the other hand causes the ions in the range concentrated around the axis 18 and where the formation of the Brown gas in the bubbles 36 is intensified.
  • the heating device 1 therefore, a method of generating heat with Brown gas can be performed.
  • the working medium 24 or the water is first conducted in a rotationally symmetrical with respect to an axis 18 reaction chamber 19, an electric field 35 is applied, wherein the electric field direction is aligned perpendicular to the axis 18 of the reaction chamber 19 and the working fluid 24 and the water set in rotation.
  • the axis of rotation of the water is aligned coaxially with respect to the axis 18 of the reaction space 19. That on the other hand, that the direction of the electric field 35 is directed perpendicular to the axis of rotation of the water.
  • the Brown gas formed from the working medium 24 or the water under the influence of the electric field 35 and the rotation in the reaction chamber 19 is derived from the reaction chamber 19 and this then recombined in a thermogenerator 2 to water, wherein Heat is given off to this exothermic process.
  • the water formed in the thermal generator 2 is preferably also used as a transport medium for the heat and thus the resulting heat with this water or working fluid 24 transported into the heat exchanger 3. From the heat exchanger 3, the working medium 24 or the water passes through the pressure vessel 4 and the pump 5 back into the gas generator 6, where it is again available for the formation of Brown gas available. The working medium 24 or the water is thus guided in a closed circuit.
  • the pressure of the working medium 24 can be regulated in the circulation.
  • the flow rate of the working medium 24 in the circuit is determined by the pump 5, which is regulated according to the formation rate of the Brown gas.
  • the pump power is just adjusted so that as possible only the resulting Brown gas is discharged through the conduit 7 from the gas generator 6.
  • the proportion of working medium 24, which enters the line with the Brown gas, is kept as low as possible.
  • the setting of the various parameters of the operating state of the heating device 1 is preferably carried out programmatically by the control device 13.
  • the process of forming the brown gas in the gas generator 6 of the heating device 1 is preferably carried out under the additional effect of sound energy acting on the working medium 24 in the form of ultrasound through a sound source 38.
  • the formation of the Brown gas takes place under the action of a magnetic field of a magnet 41 or of infrared radiation of an infrared source 40.
  • the adjustment of the sound pressure of the sound source 38 as well as the intensity of the infrared radiation of the infrared source 40 and the magnetic induction 42 of the magnet 41 preferably takes place programmatically by the control device 13.
  • the efficiency of the method of producing heat with Brown gas is increased by the fact that the pressure of the working medium 24 in the circuit as well as the sound intensity of the sound source 38 increases and decreases in time between a minimum value and a maximum value, ie be changed periodically, with the change in pressure countercyclical to change the sound intensity.
  • the temporal change of this increase and decrease of the values of the pressure and the sound intensity can be relatively slow, and the value of the frequency of this change is in a range between 0.1 Hz and 10 Hz.
  • the Fig. 6 shows a further embodiment of a gas generator 6.
  • the inner boundary surface 20 of the reaction space 19 as well as the electrode surfaces 30 and 31 together form an inner side of a spherical surface, which act concentrating on the sound generated by the switching shaft 38. That is, the boundary surface 20 and the electrode surfaces 30 and 31 together form the reflector 39 for the concentration of the sound energy in the region of the axis 18 of the reaction space 19.
  • the inlet connection 25 is aligned tangentially to the boundary surface 20 and perpendicular to the axis 18 of the reaction space, water flows into the reaction chamber 9 a.
  • water or working fluid is placed in a rotational movement, which takes place about the axis 18 of the reaction chamber 19 as its axis of rotation.
  • a separate rotor for generating the rotational movement is therefore not predetermined in this case, the momentum of the incoming working medium is sufficient.
  • the outflow opening 26 of the suction lance 37 is formed in this embodiment of the gas generator 6 by a suction funnel 43. Subsequent to this suction funnel 43, the suction lance 37 is also equipped with a phase separator 44. By means of this phase separator 44 it is achieved that the liquid working medium is separated from the hydrogen-oxygen mixture or brown gas rising with the bubbles 36 and thus retained in the reaction space 19.
  • a throttle valve or a valve 45 is further provided in the connection to the suction lance 37 ⁇ - ⁇ enden line 7, a throttle valve or a valve 45 is further provided. By arranging the valve 45 in the conduit 7 and the pump 5 (see Fig. 1 ) in the conduit 11, the reaction space 19 simultaneously forms a pressure vessel by the throttle valve or the valve 45 opposes the working medium or the outflowing gas against the pressure built up by the pump 5 a corresponding resistance.
  • a hydrogen-oxygen mixture or brown gas occurs in the region of the axis 18 of the reaction space 19.
  • the rate of formation of this gas in the gas generator can additionally be increased by the action of the sound source 38 of the infrared source 40 and the magnets 41.
  • a magnet 41 is arranged both in the area of the cover plate 23 and in the region of the base plate 22, whereby the magnetic field or the magnetic induction 42 is homogenized in the region of the axis 18 of the reaction space 19 History has.
  • the gas generator 6 is according to this example part of a device for the conversion of energy, wherein the working medium or water in this case is not performed in a closed circuit.
  • the generated by the gas generator 6 hydrogen-oxygen mixture Brown gas is used for welding. Subsequent to the combustion of the hydrogen-oxygen mixture or Brown gas in the flame of the welding torch, the water vapor formed is released to the environment.

Abstract

The invention relates to an energy converting device comprising a gas generator (6) for the production of a hydrogen-oxygen mixture and/or brown gas, comprising a reaction chamber (19) wherein electrodes (29) are arranged. Said reaction chamber (19) is rotationally-symmetrical with respect to an axis (18). Internal defining surfaces (20) of the reaction chamber (19) are formed in the region of the jacket (21) of the reaction chamber (19) at least in certain areas by internal electrode surfaces (30, 31) of the electrodes (29) of the gas generator (6).

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Umwandlung von Energie mit einem Gasgenerator zur Erzeugung eines Wasserstoff-Sauerstoff-Gemisches bzw. von Brown-Gas, entsprechend den Merkmalen in den Oberbegriffen der Ansprüche 1 und 22.The invention relates to an apparatus and a method for converting energy with a gas generator for producing a hydrogen-oxygen mixture or Brown gas, according to the features in the preambles of claims 1 and 22nd

Aus dem Dokument US 6,443,725 B1 ist bereits eine Heizungsvorrichtung bzw. ein Verfahren zur Erzeugung von Wärme, basierend auf der zyklischen Verbrennung von Brown-Gas bekannt. Brown-Gas wird durch eine spezielle Form der Elektrolyse aus Wasser in einem sogenannten Brown-Gasgenerator hergestellt. Durch die elektrolytische Behandlung des Wassers in dem Brown-Gasgenerator wird dieses in den speziellen Zustand überführt und besteht aus einer Mischung aus dissoziierten Wasserstoff- und Sauerstoffatomen. Gemäß der US 6,443,725 B1 wird das Brown-Gas einer Verbrennungskammer zugeführt, wo es nach der Verbrennung in Wassermoleküle rückverwandelt wird. Die Wassermoleküle, werden anschließend durch Aufnahme von Infrarotstrahlung in Wasserstoff und Sauerstoff ionisiert.From the document US Pat. No. 6,443,725 B1 For example, a heating device or method for generating heat based on the cyclic combustion of Brown gas is already known. Brown gas is produced by a special form of electrolysis from water in a so-called brown gas generator. By the electrolytic treatment of the water in the Brown gas generator this is converted into the special state and consists of a mixture of dissociated hydrogen and oxygen atoms. According to the US Pat. No. 6,443,725 B1 Brown gas is sent to a combustion chamber, where it is reconverted into water molecules after combustion. The water molecules are then ionized by absorbing infrared radiation into hydrogen and oxygen.

Aus dem Dokument US 4,014,777 A sind Vorrichtungen und Verfahren zur Herstellung von Wasserstoff und Sauerstoff in der Form von Brown-Gas bekannt. Dieses Brown-Gas wird in der Folge zum Schweißen oder Löten verwendet. Gemäß einer Ausführungsform eines Brown-Gasgenerators ist eine Elektrolysezelle mit in Serie angeordneten Elektrodenplatten beschrieben. Diese Elektrodenplatten sind in einer Röhre aus isolierendem Material befestigt, wobei zwischen jeweils benachbarten Elektroden Öffnungen der Röhre vorgesehen sind. Die Elektroden im Endbereich der Röhre sind nach Außen hin zu einer Stromversorgung elektrisch kontaktiert. Die Röhre mit den Elektroden ist in eine Lösung aus Wasser und KOH eingetaucht. Durch die Öffnungen in der Röhre kann einerseits Lösung zwischen die Elektroden eintreten und andererseits das gebildete Gas aus dem Raum zwischen den Elektroden austreten. Gegenüber konventionellen Gasschweißapparaturen hat diese Vorrichtung den Vorteil, dass Wasserstoff und Sauerstoff automatisch im richtigen Verhältnis hergestellt werden, um eine neutrale Flamme erzeugen zu können.From the document US 4,014,777 A For example, devices and methods for producing hydrogen and oxygen in the form of Brown gas are known. This Brown gas is subsequently used for welding or soldering. According to one embodiment of a Brown gas generator, an electrolysis cell is described with electrode plates arranged in series. These electrode plates are fastened in a tube of insulating material, whereby openings of the tube are provided between respectively adjacent electrodes. The electrodes in the end region of the tube are electrically contacted to the outside to a power supply. The tube with the electrodes is immersed in a solution of water and KOH. On the one hand, solution can enter between the electrodes through the openings in the tube and, on the other hand, the gas formed can escape from the space between the electrodes. Compared to conventional gas welding equipment, this device has the advantage that hydrogen and oxygen are automatically produced in the right proportion to produce a neutral flame can.

Die WO 03/066935 A beschreibt einen Braungasgenerator, in dem innerhalb einer elektrolytischen Zelle an verschiedenen Orten unabhängig voneinander Braungas generiert wird. Für jeden der unterschiedlichen Bereiche ist eine Wasserzufuhr und eine Wasserkühlung vorgesehen, sodass die Temperatur in der elektrolytischen Zelle auf einem optimalen Niveau gehalten wird und die Effizienz an erzeugtem Braungas steigt. In Fig. 1 dieser WO-A wird eine herkömmliche Braungaszelle gezeigt, die einen Mantel umfasst, in dem konzentrisch angeordnete Elektroden vorhanden sind. Die Zu- bzw. Abfuhr von Wasser bzw. Braungas erfolgt über einen Zulauf bzw. Ablauf, die axial angeordnet sind.The WO 03/066935 A describes a brown gas generator in which browning is generated independently of one another within an electrolytic cell at different locations. For each of the different areas, a water supply and a water cooling is provided so that the temperature in the electrolytic cell is maintained at an optimum level and the efficiency of generated browning gas increases. In Fig. 1 this WO-A is a conventional brown cell is shown, which comprises a jacket in which concentrically arranged electrodes are present. The supply and removal of water or browning via an inlet or outlet, which are arranged axially.

Die WO 00/66811 A zeigt einen Braungasgenerator bzw. eine elektrolytische Zelle zur Elektrolyse von Wasser, welche jener der WO 03/066935 A sehr ähnlich ist. Es wird darin Wasser in Sauerstoff- und Wasserstoffgas in großer Menge innerhalb kurzer Zeit gespalten. Die elektrolytische Zelle weist einen Sauerstoff- und einen Wasserstoffgenerator auf, die mit einer Gleichstromquelle verbunden sind. Über ein Ventil wird der Innendruck kontrolliert. Weiters ist ein Filter vorgesehen, um Verunreinigungen der Gasmischung zu entfernen.The WO 00/66811 A shows a brown gas generator or an electrolytic cell for the electrolysis of water, which corresponds to that of WO 03/066935 A is very similar. It is split water in oxygen and hydrogen gas in large quantities within a short time. The electrolytic cell has an oxygen and a hydrogen generator connected to a DC power source. A valve is used to check the internal pressure. Furthermore, a filter is provided to remove impurities of the gas mixture.

Die Aufgabe der Erfindung ist es, eine Vorrichtung und ein Verfahren zur Umwandlung von Energie unter Verwendung eines Wasserstoff-Sauerstoff-Gemisch bzw. von Brown-Gas zu schaffen, mit der bzw. mit dem ein erhöhter Wirkungsgrad erzielt werden kann. Eine weitere Aufgabe der Erfindung ist es, eine erhöhte Produktivität bei der Erzeugung des Wasserstoff-Sauerstoff-Gemisches bzw. Brown-Gases zu erreichen.The object of the invention is to provide an apparatus and a method for the conversion of energy using a hydrogen-oxygen mixture or of Brown gas, with or with the increased efficiency can be achieved. Another object of the invention is to achieve increased productivity in the generation of the hydrogen-oxygen mixture or Brown gas.

Diese Aufgabe der Erfindung wird durch die Vorrichtung zur Umwandlung von Energie entsprechend den Merkmalen des Anspruchs 1 gelöst. Der Vorteil dieser Vorrichtung liegt darin, dass damit ein größerer Wirkungsgrad erzielt werden kann, in dem durch die rotationsförmige Ausbildung des Reaktionsraums des Gasgenerators die gleichzeitige Einwirkung eines elektrischen Feldes und einer Rotationsbewegung auf das Arbeitsmedium bzw. das Wasser ermöglich wird und so in der Folge die Bildung von Brown-Gas begünstigt bzw. deren Bildungsrate erhöht wird.This object of the invention is achieved by the device for converting energy according to the features of claim 1. The advantage of this device is that so that a greater efficiency can be achieved, in which the simultaneous action of an electric field and a rotational movement on the working medium or the water is made possible by the rotationally shaped formation of the reaction space of the gas generator and so in the sequence Formation of Brown gas favors or increases its rate of education.

Vorteilhaft ist auch die Weiterbildung, wonach zumindest ein tangential zum Mantel des Reaktionsraums ausgerichteter Einlaufstutzen für das Arbeitsmedium in dem Mantel des Reaktionsraums ausgebildet ist, da dadurch das Arbeitsmedium alleine schon durch die Einströmbewegung des Arbeitsmediums in den Reaktionsraum in Rotation versetzt wird.Also advantageous is the development, according to which at least one tangent to the jacket of the reaction chamber aligned inlet pipe for the working medium is formed in the jacket of the reaction chamber, since thereby the working medium alone is already offset by the inflow of the working fluid in the reaction chamber in rotation.

Vorteilhaft ist auch die Weiterbildungen der Vorrichtung zur Umwandlung von Energie, wonach der Rotor zur Erzeugung einer Rotation mit einem Betrag der Winkelgeschwindigkeit aus einem Bereich von 10 s-1 bis 25 s-1 ausgebildet ist, da dadurch eine auf die Blasen des sich bildenden Brown-Gases in Richtung auf die Achse des Reaktionsraums konzentrierend wirkende Kraft ausgeübt werden kann.Also advantageous is the developments of the device for the conversion of energy, according to which the rotor for generating a rotation with an amount of angular velocity from a range of 10 s -1 to 25 s -1 is formed, as this one on the bubbles of the forming Brown -Gases in the direction of the axis of the reaction space concentrating force can be exerted.

Die Weiterbildung der Vorrichtung zur Umwandlung von Energie mit einer in einer den Reaktionsraum abschließenden Bodenplatte und/oder Deckplatte ausgebildeten Ausströmöffnung, die bezüglich der Achse des Reaktionsraums koaxial angeordnet ist, hat den Vorteil, dass damit das sich im Bereich der Achse des Reaktionsraums bildende Brown-Gas durch diese Ausströmöffnung leicht abgesaugt werden kann.The development of the device for the conversion of energy with a discharge opening formed in a bottom plate and / or cover plate closing the reaction space, which is arranged coaxially with respect to the axis of the reaction space, has the advantage that it forms the brown space forming in the region of the axis of the reaction space. Gas can be easily sucked through this discharge opening.

Die Ausbildung, wonach die Ausströmöffnung durch eine parallel zur Richtung der Achse des Reaktionsraums verstellbare Absauglanze ausgebildet ist, hat den Vorteil, dass damit ein unerwünschtes Absaugen vom Arbeitsmedium mit dem im Reaktionsraum gebildeten Brown-Gas minimiert werden kann, in dem die Einschiebtiefe der Absauglanze entsprechend eingestellt wird und so die Ausströmöffnung möglichst nah an den Ort der Entstehung des Brown-Gases herangeführt wird.The design, according to which the outflow opening is formed by a parallel to the direction of the axis of the reaction chamber adjustable suction lance, has the advantage that an undesirable suction of the working fluid can be minimized with the Brown gas formed in the reaction chamber, in which the depth of insertion of the suction lance accordingly is set and so the outflow as close to the location of the formation of the Brown gas is introduced.

Die Ausbildung der Vorrichtung zur Umwandlung von Energie mit einer Schallquelle bzw. in dem die Schallquelle zur Erzeugung von Schall mit einer Frequenz aus einem Bereich 25 kHz bis 55 kHz, vorzugsweise von 38,5 kHz bis 41,5 kHz, bevorzugt 40,5 kHz ausgebildet ist, hat den Vorteil, dass durch diese Beaufschlagung des Arbeitsmediums mit Schall, die Bildungsrate des Brown-Gases erhöht wird.The formation of the device for converting energy with a sound source or in which the sound source for generating sound at a frequency in the range 25 kHz to 55 kHz, preferably from 38.5 kHz to 41.5 kHz, preferably 40.5 kHz is formed, has the advantage that by this exposure of the working medium with sound, the formation rate of the Brown gas is increased.

Vorteilhaft sind auch die Weiterbildungen der Vorrichtung, in dem die Schallquelle bezüglich der Achse des Reaktionsraums koaxial ausgebildet ist bzw. zumindest ein Teilbereich der inneren Begrenzungsfläche des Reaktionsraums als ein den Schall konzentrierender Reflektor geformt ist, da damit der Schall im Bereich der Achse konzentriert bzw. der Schalldruck im Bereich der Achse erhöht werden kann.Also advantageous are the developments of the device in which the sound source with respect to the axis of the reaction space is formed coaxially or at least a portion of the inner boundary surface of the reaction space is formed as a reflector concentrating the sound, since thus the sound concentrated in the region of the axis or the sound pressure in the area of the axis can be increased.

Von Vorteil ist auch die Ausbildung der Vorrichtung, in dem der Gasgenerator mit einer Infrarotquelle ausgebildet ist, da durch das Beaufschlagen des Arbeitsmediums mit Infrarotstrahlung ebenfalls eine positive Beeinflussung der Bildung des Brown-Gases bewirkt werden kann bzw. die Bildung des Brown-Gases beschleunigt wird.Another advantage is the design of the device in which the gas generator is formed with an infrared source, since by applying the working medium with infrared radiation also a positive influence on the formation of the Brown gas can be effected or the formation of the Brown gas is accelerated ,

Durch die Weiterbildung der Vorrichtung zur Umwandlung von Energie, wobei der Gasgenerator mit einem Magneten ausgebildet ist bzw. die im Magnetfeldrichtung des Magneten im Bereich der Achse des Reaktionsraums bezüglich der Richtung der Winkelgeschwindigkeit des Rotors bzw. der Drehbewegung des Arbeitsmediums in den Reaktionsraum antiparallel ausgerichtet ist, wird der Vorteil erzielt, dass die Abscheidung von molekularem Sauerstoff bzw. molekularem Wasserstoff an den beiden Elektroden zugunsten der Bildung von Brown-Gas unterdrückt wird. Durch die Drehbewegung des Arbeitsmediums im Magnetfeld des Magneten mit einer antiparallelen Einstellung der Magnetfeldrichtung bezüglich der Winkelgeschwindigkeit der Drehbewegung des Arbeitsmediums wird nämlich erreicht, dass auf Ionen in dem Arbeitsmedium durch das Magnetfeld eine resultierende Kraftwirkung ausgeübt wird, die die Ionen auf eine spiralförmige, in Richtung auf die Achse des Reaktionsraums verlaufende Bewegungsbahn, zwingt. Es wird somit verhindert, dass sich die Ionen den Elektroden nähern und sich dort abscheiden.Through the development of the device for converting energy, wherein the gas generator is formed with a magnet or which is aligned in the magnetic field direction of the magnet in the region of the axis of the reaction chamber with respect to the direction of the angular velocity of the rotor or the rotational movement of the working medium in the reaction chamber antiparallel , the advantage is achieved that the deposition of molecular oxygen or molecular hydrogen at the two electrodes is suppressed in favor of the formation of Brown gas. By the rotational movement of the working medium in the magnetic field of the magnet with an antiparallel setting of the magnetic field direction with respect to the angular velocity of the rotational movement of the working medium is namely achieved that a force exerted on ions in the working medium by the magnetic field, the ions in a spiral, in the direction on the axis of the reaction space running path, forces. It is thus prevented that the ions approach the electrodes and settle there.

Die Ausbildung der Vorrichtung zur Umwandlung von Energie mit einem Druckgefäß für das Arbeitsmedium hat den Vorteil, dass damit der Druck des Arbeitsmediums in der Vorrichtung optimal eingestellt werden kann, wodurch die Bildungsrate des Brown-Gases begünstigt wird.The design of the device for converting energy with a pressure vessel for the working medium has the advantage that it allows the pressure of the working medium in the device can be optimally adjusted, whereby the formation rate of the Brown gas is favored.

Vorteilhaft ist auch die Weiterbildung der Vorrichtung zur Umwandlung von Energie, indem diese durch eine Heizungsvorrichtung mit einem Thermogenerator gebildet wird, wobei der Innenraum des Thermogenerators mit einem Sinterwerkstoff bzw. Sintermetall ausgebildet bzw. erfüllt ist, da dadurch beim Durchströmen des Brown-Gases durch diesen Sinterwerkstoff eine vergleichsweise langsam erfolgende Rekombination bzw. Umwandlung in Wasser erfolgt, bei der eine offene Flammenbildung unterbleibt.Also advantageous is the development of the device for the conversion of energy by this is formed by a heating device with a thermogenerator, wherein the interior of the thermogenerator is formed or filled with a sintered material or sintered metal, since thereby when flowing through the Brown gas through this Sintered material takes place a comparatively slow recombination or conversion into water, in which an open flame formation is omitted.

Die Ausbildung der Heizungsvorrichtung, wonach der Gasgenerator, der Thermogenerator, der Wärmetauscher, das Druckgefäß und die Pumpe zu einem geschlossenen Kreislauf für das Arbeitsmedium miteinander verbunden sind, hat den Vorteil, dass das Arbeitsmedium in dem Kreislauf verbleiben kann und eine Entsorgung von Abwasser bzw. Reststoffen nicht erforderlich ist. Insbesondere wird damit vermieden, dass in das Arbeitsmedium gegebenenfalls eingebrachte Elektrolyten allmählich verbraucht werden bzw. verloren gehen.The formation of the heating device, according to which the gas generator, the thermogenerator, the heat exchanger, the pressure vessel and the pump are connected to a closed circuit for the working medium, has the advantage that the working fluid can remain in the circuit and disposal of sewage or Residues is not required. In particular, this avoids that optionally introduced into the working medium electrolytes are gradually consumed or lost.

Durch die Ausbildung der Heizungsvorrichtung, wonach an dem Wärmetauscher ein Ventilator zur Abfuhr der Wärme von dem Wärmetauscher an die Umgebung angeordnet ist, wird der Vorteil erzielt, dass damit das Ausmaß der Wärmeabgabe reguliert werden kann, in dem die Menge der an dem Wärmetauscher vorbeiströmenden Luft verändert wird.By forming the heating device, which is arranged on the heat exchanger, a fan for dissipating the heat from the heat exchanger to the environment, the advantage is achieved that thus the amount of heat release can be regulated, in which the amount of air flowing past the heat exchanger is changed.

Die Weiterbildung der Vorrichtung zur Umwandlung von Energie mit einer Steuervorrichtung zur Steuerung des Betriebszustandes hat den Vorteil, dass damit eine zentrale Einstellung aller Parameter der einzelnen Komponenten der Vorrichtung ermöglicht wird.The development of the device for converting energy with a control device for controlling the operating state has the advantage that it enables a central adjustment of all parameters of the individual components of the device.

Vorteilhaft ist auch die Ausbildung der Steuervorrichtung zur automatisierten bzw. programmbasierten Steuerung, da dadurch die Einstellung und insbesondere die automatisierte Nachregelung des Betriebszustandes zur optimalen Ausbeute von Wärme bzw. Bildung von Brown-Gas in den Gasgenerator selbstständig erfolgen kann.Also advantageous is the design of the control device for automated or program-based control, since thereby the adjustment and in particular the automated readjustment of the operating state for optimal yield of heat or formation of Brown gas can be done independently in the gas generator.

Die Aufgabe der Erfindung wird eigenständig auch durch das Verfahren zur Umwandlung von Energie mit einem Wasserstoff-Sauerstoff-Gemisch bzw. Brown-Gas entsprechend den Merkmalen des Anspruches 23 gelöst. Vorteilhaft ist dabei, dass mit diesem Verfahren ein erhöhter Wirkungsgrad erzielt werden kann.The object of the invention is also achieved by the process for the conversion of energy with a hydrogen-oxygen mixture or Brown gas according to the features of claim 23. It is advantageous that with this method, an increased efficiency can be achieved.

Die Ausbildung des Verfahrens, wonach das Wasser und/oder das Brown-Gas in dem Reaktionsraum mit einem Magnetfeld beaufschlagt wird, wobei die magnetische Induktion im Bereich der Achse des Reaktionsraums antiparallel bezüglich der Richtung der Winkelgeschwindigkeit ausgerichtet ist, hat den Vorteil, dass dadurch auf die sich in den rotierenden Arbeitsmedium befindlichen Ionen durch das Magnetfeld eine in Richtung auf die Achse der Rotationsbewegung in gerichteter Kraftwirkung ausgeübt wird und so die Bildung des Brown-Gases im Bereich der Achse der Rotationsbewegung des Arbeitsmediums begünstigt wird.The formation of the method according to which a magnetic field is applied to the water and / or the Brown gas in the reaction space, wherein the magnetic induction in the region of the axis of the reaction space is oriented in anti-parallel with respect to the direction of the angular velocity, has the advantage that thereby the ions located in the rotating working medium are exerted by the magnetic field in a directed force action in the direction of the axis of the rotational movement and thus the formation of the Brown gas in the region of the axis of the rotational movement of the working medium is promoted.

Die Weiterbildung des Verfahrens, in dem das Wasser und/oder das Brown-Gas in dem Reaktionsraum mit Schallenergie beaufschlagt wird, bzw. in dem das Wasser und/oder das Brown-Gas in dem Reaktionsraum mit Infrarotstrahlung beaufschlagt wird, hat den Vorteil, dass dadurch die Bildungsrate des Brown-Gases erhöht wird.The development of the method, in which the water and / or the Brown gas in the reaction chamber is acted upon with sound energy, or in which the water and / or the Brown gas is acted upon in the reaction chamber with infrared radiation, has the advantage that thereby increasing the rate of formation of the Brown gas.

Von Vorteil ist auch die Weiterbildung des Verfahrens, wonach das Wasser und das Brown-Gas in einen geschlossenen Kreislauf befördert werden, da dadurch einerseits die Entsorgung von Reststoffen nicht erforderlich ist und andererseits in dem Arbeitsmedium bzw. dem Wasser eingebrachte Elektrolyten nicht verbraucht werden.Another advantage is the development of the method, according to which the water and the Brown gas are conveyed in a closed cycle, since on the one hand, the disposal of residues is not required and on the other hand in the working medium or the water introduced electrolytes are not consumed.

Eine Optimierung der Bildungsrate des Brown-Gases kann in vorteilhafter Weise auch dadurch erzielt werden, dass die Winkelgeschwindigkeit der Rotation des Wassers in dem Reaktionsraum bzw. der Druck des Arbeitsmediums in den Kreislauf bzw. die Schallintensität einer Schallquelle periodisch verändert werden. Dazu trägt auch bei, dass die periodische Veränderung des Drucks des Arbeitsmediums bezüglich der periodischen Veränderung der Schallintensität der Schallwelle in Gegenphase erfolgt bzw. dass der Wert der Frequenz der periodischen Veränderung des Drucks des Arbeitsmediums und/oder der Schallintensität der Schallquelle und/oder der Winkelgeschwindigkeit aus einem Bereich zwischen 0,1 Hz und 10 Hz gewählt ist.An optimization of the formation rate of the Brown gas can also be achieved advantageously in that the angular velocity of rotation of the water in the reaction space or the pressure of the working medium in the cycle or the sound intensity of a sound source are changed periodically. This is also due to the fact that the periodic change in the pressure of the working medium with respect to the periodic change in the sound intensity of the sound wave in antiphase takes place or that the value of the frequency of the periodic change in the pressure of the working medium and / or the sound intensity of the sound source and / or the angular velocity is selected from a range between 0.1 Hz and 10 Hz.

Vorteilhaft ist auch die Weiterbildung des Verfahrens, wonach die Rekombination des Wasserstoff-Sauerstoff-Gemisches bzw. des Brown-Gases in Wasser in einem Thermogenerator erfolgt, wobei die im Thermogenerator gebildete Wärme mit dem Wasser abgeführt wird, da so kein separates Medium zum Transport der Wänne erforderlich ist.Also advantageous is the development of the method, according to which the recombination of the hydrogen-oxygen mixture or the Brown gas in water takes place in a thermogenerator, wherein the heat formed in the thermogenerator is removed with the water, as no separate medium for transporting Wänne is required.

Durch die Ausbildung des Verfahrens, wonach das Brown-Gas in dem Thermogenerator durch einen Sinterwerkstoff hindurchgeleitet wird, wird der Vorteil erzielt, dass so Flammenbildung bei der Rekombination des Brown-Gases zu Wasser unterbleibt und die Transformation des Brown-Gases in Wasser vergleichsweise langsam erfolgt.By the formation of the method according to which the Brown gas is passed through a sintered material in the thermogenerator, the advantage is achieved that thus flamming in the recombination of the Brown gas to water is omitted and the transformation of the Brown gas in water takes place comparatively slowly ,

Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.For a better understanding of the invention, this will be explained in more detail with reference to the following figures.

Es zeigen in schematisch vereinfachter Darstellung:

Fig. 1
ein Anlagenschema einer Heizungsvorrichtung, dargestellt als Blockschaltbild eines Luftheizungssystems;
Fig. 2
den Aufbau des Gasgenerators als Detail der Heizungsvorrichtung schematisiert dargestellt;
Fig. 3
ein weiteres Ausführungsbeispiel eines Gasgenerators einer Heizungsvorrichtung mit einem zylinderförmigen Reaktionsraum, geschnitten dargestellt;
Fig. 4
ein Ausführungsbeispiel des Gasgenerators der Heizungsvorrichtung mit einer in dem Reaktionsraum angeordneten Schallquelle;
Fig. 5
ein weiteres Ausführungsbeispiel des Gasgenerators der Heizungsvorrichtung mit einer Infrarotquelle und einem Magneten;
Fig. 6
ein weiteres Ausführungsbeispiel eines Gasgenerators.
In a simplified schematic representation:
Fig. 1
a system diagram of a heating device, shown as a block diagram of an air heating system;
Fig. 2
the structure of the gas generator shown schematically as a detail of the heating device;
Fig. 3
a further embodiment of a gas generator of a heating device with a cylindrical reaction space, shown in section;
Fig. 4
an embodiment of the gas generator of the heating device with a sound source arranged in the reaction space;
Fig. 5
another embodiment of the gas generator of the heating device with an infrared source and a magnet;
Fig. 6
another embodiment of a gas generator.

Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen.By way of introduction, it should be noted that in the differently described embodiments, the same parts are provided with the same reference numerals or the same component names, wherein the disclosures contained in the entire description can be mutatis mutandis to the same parts with the same reference numerals or component names. Also, the location information chosen in the description, such as top, bottom, side, etc. related to the immediately described and illustrated figure and are to be transferred to the new situation mutatis mutandis when a change in position.

Die Fig. 1 zeigt ein Anlagenschema einer Heizungsvorrichtung 1, dargestellt als Blockschaltbild eines Luftheizungssystems.The Fig. 1 shows a system diagram of a heating device 1, shown as a block diagram of an air heating system.

Die Heizungsvorrichtung 1 bildet ein Beispiel einer Vorrichtung zur Umwandlung von Energie, mit deren Hilfe die Erfindung nachfolgend näher beschrieben wird.The heating device 1 constitutes an example of a device for the conversion of energy, by means of which the invention will be described in more detail below.

Ein Thermogenerator 2, ein Wärmetauscher 3, ein Druckgefäß 4, eine Pumpe 5 und ein Gasgenerator 6 sind zu einem geschlossenen Kreislauf für ein Arbeitsmedium miteinander verbunden. Als Arbeitsmedium dient Wasser, dass im Gasgenerator 6 in ein Wasserstoff-Sauerstoff-Gemisch bzw. in Brown-Gas umgewandelt wird. Durch eine Leitung 7 gelangt das Brown-Gas in den Thermogenerator 2, wo durch Umwandlung des Brown-Gases in Wasser Wärme erzeugt wird, die anschließend mit diesem Wasser über eine Leitung 8 in den Wärmetauscher 3 transportiert wird. Durch diesen Wärmetauscher 3 wird Wärme an die Umgebungsluft abgegeben, wobei sich die Temperatur des Arbeitsmediums bzw. des Wassers entsprechend reduziert. Über eine Leitung 9 zwischen dem Wärmetauscher 3 und dem Druckgefäß 4, eine Leitung 10, zwischen dem Druckgefäß 4 und der Pumpe 5 und schließlich eine Leitung 11 zwischen der Pumpe 5 und dem Gasgenerator 6 wird das abgekühlte Wasser wieder zurück in den Gasgenerator 6 geführt. Die Heizvorrichtung 1 verfügt weiters über ein Netzgerät 12 zur Versorgung mit elektrischer Energie und über einen Steuervorrichtung 13. Die Abgabe der Wärme durch den Wärmetauscher 3 an die Umgebungsluft kann zusätzlich auch noch durch einen Ventilator 14 reguliert werden. Dazu wird durch einen Temperaturfühler 15 die Temperatur der zuströmenden Luft und durch einen Temperaturfühler 16 die Temperatur der abgeführten und erwärmten Luft gemessen. Aus dem Volumen bzw. der Menge der durch den Wärmetauscher hindurchgeförderten Luft und der Temperaturdifferenz zwischen den beiden Temperaturfühlern 15, 16 kann somit die insgesamt an die Umgebungsluft abgeführte Wärmemenge bestimmt werden. Zur Erfassung der durch die Temperaturfühler 15, 16 gemessenen Temperaturen als auch zur Ansteuerung bzw. Regulierung des Ventilators 14 stehen diese mit der Steuervorrichtung 13 in Verbindung und können die entsprechenden Einstellungen durch diese automatisiert bzw. programmgesteuert erfolgen. In gleicher Weise stehen die Pumpe 5, das Druckgefäß 4 als auch der Gasgenerator 6 mit der Steuervorrichtung 13 in Verbindung. Aus Gründen der besseren Übersicht, sind die entsprechenden Signalleitungen zwischen der Steuervorrichtung 13 und den einzelnen Komponenten der Heizungsvorrichtung 1 in der Fig. 1 nicht eingezeichnet.A thermogenerator 2, a heat exchanger 3, a pressure vessel 4, a pump 5 and a gas generator 6 are connected to each other to a closed circuit for a working medium. As a working medium is water that is converted in the gas generator 6 in a hydrogen-oxygen mixture or in Brown gas. Through a line 7, the Brown gas enters the thermal generator 2, where heat is generated by converting the Brown gas into water, which is then transported with this water via a line 8 into the heat exchanger 3. Heat is released to the ambient air through this heat exchanger 3, whereby the temperature of the working medium or of the water is correspondingly reduced. Via a line 9 between the heat exchanger 3 and the pressure vessel 4, a line 10, between the pressure vessel 4 and the pump 5 and finally a line 11 between the pump 5 and the gas generator 6, the cooled water is fed back into the gas generator 6. The heater 1 further has a power supply unit 12 for supplying electrical energy and a control device 13. The delivery of heat through the heat exchanger 3 to the ambient air can be additionally regulated by a fan 14. For this purpose, by a temperature sensor 15, the temperature of the incoming air and by a temperature sensor 16 the Temperature of the discharged and heated air measured. From the volume or the amount of air conveyed through the heat exchanger and the temperature difference between the two temperature sensors 15, 16, the total amount of heat dissipated to the ambient air can thus be determined. To detect the temperatures measured by the temperature sensors 15, 16 as well as to control or regulate the fan 14, these are in communication with the control device 13 and the corresponding settings can be automated or program-controlled by them. In the same way, the pump 5, the pressure vessel 4 and the gas generator 6 with the control device 13 in connection. For better clarity, the corresponding signal lines between the control device 13 and the individual components of the heating device 1 in the Fig. 1 not shown.

Gemäß einem ersten Ausführungsbeispiel ist das Innere des Thermogenerators 2 durch einen offenporigen Sinterwerkstoff 17 bzw. ein Sintermetall erfüllt. Das Brown-Gas wird durch die Leitung 7 in den Thermogenerator 2 zugeführt und erfährt an der sehr großen Oberfläche der inneren Poren des Sinterwerkstoffs 17 eine katalytisch induzierte Rekombination bzw. eine Umwandlung in Wasser. Bei dieser Umwandlung des Wasserstoff-Sauerstoff-Gemischs bzw. des Brown-Gases in Wasser wird Wärme frei, die mit dem entstandenen Wasser als Wärmespeicher bzw. Energieträger über die Leitung 8 in den Wärmetauscher 3 transportiert wird. Vorteilhaft ist dabei, dass die Rekombination des Brown-Gases zu Wasser in dem Sinterwerkstoff 17 vergleichsweise langsam und ohne Flammenbildung vor sich geht.According to a first embodiment, the interior of the thermal generator 2 is filled by an open-pored sintered material 17 or a sintered metal. The Brown gas is supplied through the line 7 in the thermogenerator 2 and experiences on the very large surface of the inner pores of the sintered material 17 is a catalytically induced recombination or conversion into water. In this conversion of the hydrogen-oxygen mixture or the Brown gas in water heat is released, which is transported with the resulting water as a heat storage or energy source via the line 8 in the heat exchanger 3. It is advantageous that the recombination of the Brown gas to water in the sintered material 17 comparatively slowly and without flames is going on.

In einem weiteren Ausführungsbeispiel der Heizungsvorrichtung 1 ist der Thermogenerator 2 durch eine Verbrennungskammer ausgebildet, wobei zwischen der Leitung 7 und dem Thermogenerator 2 eine Flammenrückschlagsicherung (nicht dargestellt) vorgesehen ist. Zur Einleitung des Verbrennungsvorganges in den Thermogenerator 2 ist dieser auch mit einer Zündvorrichtung (nicht dargestellt) ausgestattet.In a further embodiment of the heating device 1, the thermal generator 2 is formed by a combustion chamber, wherein between the line 7 and the thermal generator 2, a flame arrester (not shown) is provided. To initiate the combustion process in the thermal generator 2, this is also equipped with an ignition device (not shown).

Die Fig. 2 zeigt als Detail der Heizungsvorrichtung 1 den Aufbau des Gasgenerators 6 schematisiert dargestellt.The Fig. 2 shows as a detail of the heating device 1, the structure of the gas generator 6 shown schematically.

Das Innere des Gasgenerators 6 wird durch einen bezüglich einer Achse 18 rotationssymmetrisch geformten Reaktionsraum 19 gebildet. Zur besseren Anschaulichkeit sind von diesem Reaktionsraum 19 nur durch strichlierte Linien angedeutete äußere Begrenzungsflächen 20 dargestellt. Gemäß diesem Ausführungsbeispiel ist der Reaktionsraum 19 zylinderförmig ausgebildet und die Begrenzungsflächen 20 werden demgemäss durch einen Mantel 21 und eine kreisscheibenförmige Bodenplatte 22 bzw. eine ebenfalls kreisscheibenförmige Deckplatte 23 gebildet.The interior of the gas generator 6 is formed by a rotationally symmetrical reaction chamber 19 with respect to an axis 18. For better clarity are of this Reaction space 19 shown only by dashed lines indicated outer boundary surfaces 20. According to this embodiment, the reaction space 19 is cylindrical and the boundary surfaces 20 are accordingly formed by a jacket 21 and a circular disk-shaped bottom plate 22 or a likewise circular disk-shaped cover plate 23.

Ein im Wesentlichen durch Wasser gebildetes Arbeitsmedium 24 wird durch die Leitung 11 dem Reaktionsraum 19 zugeführt, wobei ein Einlaufstutzen 25 der Leitung 11 bzw. eine Einströmöffnung in den Reaktionsraum 19 bezüglich der Achse 18 tangential ausgerichtet ist. Eine in die Leitung 7 übergehende Ausströmöffnung 26 des Reaktionsraums 19 ist bezüglich der Achse 18 des Reaktionsraums 19 koaxial angeordnet bzw. ausgerichtet. Am Mantel 21 des Reaktionsraums 19 sind zwei als Anode 27 bzw. Kathode 28 ausgebildete Elektroden 29 angeordnet, wobei innere Elektrodenoberflächen 30 bzw. 31 zumindest bereichsweise die Begrenzungsfläche 20 im Bereich des Mantels 21 des Reaktionsraums 19 bilden. D.h. die Begrenzungsfläche 20 im Bereich des Mantels 21 geht stetig in die inneren Elektrodenoberflächen 30 bzw. 31 über und bilden diese Flächen somit gemeinsam eine Zylindermantelfläche. Dadurch wird vermieden, dass es beim Vorbeiströmen des Arbeitsmediums an den Rändern der Elektrodenoberflächen 30 bzw. 31 zu Verwirbelungen des Arbeitsmediums 24 kommt. Das Arbeitsmedium 24 wird nämlich durch einen Rotor 32 in eine Drehbewegung bzw. in Rotation versetzt. Der Rotor 32 ist im Bereich der Bodenplatte22 mit einer Rotationsachse 33, die bezüglich der Achse 18 des Rotationsraums 19 koaxial ausgerichtet ist, angeordnet. Die Drehbewegung des Rotors 32 erfolgt mit einer Winkelgeschwindigkeit 34, deren vektorielle Richtung 34 parallel zur Achse 18 des Reaktionsraums 19 in Richtung auf die Deckplatte 23 ausgerichtet ist. Im Bereich des Mantels 21 erfolgt somit die Bewegung des aus dem Einlaufstutzen 25 tangential einströmenden Arbeitsmediums und die Bewegung des sich in dem Reaktionsraum 19 in Drehbewegung befindlichen Arbeitsmediums in der gleichen Richtung, wodurch vermieden wird, dass es im Bereich des Einlaufstutzens 25 zu Verwirbelungen des Arbeitsmediums kommt. Der Rotor 32 bzw. ein diesen antreibender Motor ist so ausgebildet, dass die Rotation mit einem Betrag der Winkelgeschwindigkeit 34 aus einem Bereich von 10 sec-1 bis 25 sec-1 erfolgt.An essentially formed by water working fluid 24 is supplied through the conduit 11 to the reaction chamber 19, wherein an inlet connection 25 of the conduit 11 and an inflow opening in the reaction chamber 19 with respect to the axis 18 is tangentially aligned. An outflow opening 26 of the reaction space 19, which merges into the line 7, is arranged or aligned coaxially with respect to the axis 18 of the reaction space 19. Two electrodes 29 designed as anode 27 and cathode 28 are arranged on the casing 21 of the reaction space 19, with inner electrode surfaces 30 and 31 forming the boundary surface 20 in the area of the jacket 21 of the reaction space 19 at least in regions. That is, the boundary surface 20 in the region of the shell 21 is continuous in the inner electrode surfaces 30 and 31 and thus form these surfaces together a cylinder jacket surface. This avoids that there is turbulence of the working medium 24 at the edges of the electrode surfaces 30 and 31 as the working medium flows past. Namely, the working medium 24 is rotated by a rotor 32. The rotor 32 is arranged in the region of the bottom plate 22 with a rotation axis 33, which is aligned coaxially with respect to the axis 18 of the rotation space 19. The rotational movement of the rotor 32 takes place at an angular velocity 34 whose vectorial direction 34 is aligned parallel to the axis 18 of the reaction space 19 in the direction of the cover plate 23. In the region of the jacket 21, the movement of the working medium flowing in tangentially from the inlet connection 25 and the movement of the working medium in the reaction chamber 19 in the same direction thus takes place in the same direction, thereby avoiding turbulence of the working medium in the region of the inlet connection 25 comes. The rotor 32 or a motor driving this is designed such that the rotation takes place with an amount of the angular velocity 34 from a range of 10 sec -1 to 25 sec -1 .

Wird durch Anlegen einer elektrischen Spannung an den Elektroden 29 zwischen der Anode 27 und der Kathode 28 ein elektrisches Feld 35 erzeugt, so kommt es zu einer entsprechenden Bewegung, der in dem Arbeitsmedium 24 vorhandenen Ionen und in der Folge an der Anode 27 zur Bildung von molekularem Sauerstoff und an der Kathode 28 zur Bildung von molekularem Wasserstoff. Diese Abscheidung von Sauerstoff bzw. von Wasserstoff findet bei der gewöhnlichen elektrolytischen Aufspaltung von Wasser an den Elektrodenoberflächen 30 bzw. 31 statt. Von der Bildung von Brown-Gas, das eine besondere Form elektrolytisch veränderten Wassers darstellt, ist bekannt, dass dieses in der Mitte zwischen den beiden Elektroden 29 gebildet wird und sich somit in der Form von Blasen 36 im Bereich der Achse 18 des Reaktionsraums 19 ansammelt. Die Blasen 36 des gebildeten Brown-Gases werden, bedingt durch die Rotationsbewegung des Arbeitsmediums 24, im Bereich der Achse 18 des Reaktionsraums 19 konzentriert und steigen andererseits, bedingt durch den Auftrieb in dem Reaktionsraum 19, in Richtung auf die Ausströmöffnung 26 auf und können somit leicht durch die Leitung 7 abgesaugt werden. Durch die mit Hilfe des Rotors 32 erzeugte Drehbewegung des Arbeitsmediums 24 in dem Reaktionsraum 19 wird somit erreicht, dass auf die Blasen 36 des entstehenden Brown-Gases eine Kraftwirkung ausgeübt wird, wodurch diese weiter im Bereich der Achse 18 des Reaktionsraums 19 konzentriert werden und dadurch das gebildete Brown-Gas durch die Ausströmöffnung 26 bzw. die Leitung 7 aus dem Reaktionsraum 19 abgesaugt werden kann. Andererseits wird durch die rotationsförmige Strömung des Arbeitsmediums aber auch erreicht, dass die Diffusionsbewegung der Ionen in Richtung auf die Elektroden 29 hin bzw. entsprechend der Richtung des elektrischen Feldes 35 eine ständige Ablenkbewegung erfährt und somit die Abscheidung von molekularem Sauerstoff bzw. von molekularem Wasserstoff an den Elektroden 29 verhindert bzw. unterdrückt wird, wodurch umgekehrt die Bildung des Brown-Gases in den Blasen 36 begünstigt wird. Die Ausbeute dieses in dem Gasgenerator 6 gebildeten Brown-Gases wird somit deutlich verbessert.If an electric field 35 is generated by the application of an electrical voltage to the electrodes 29 between the anode 27 and the cathode 28, then the result is a corresponding one Movement, the ions present in the working medium 24 and subsequently at the anode 27 for the formation of molecular oxygen and at the cathode 28 for the formation of molecular hydrogen. This deposition of oxygen or hydrogen takes place in the usual electrolytic splitting of water at the electrode surfaces 30 and 31, respectively. The formation of Brown gas, which is a special form of electrolytically altered water, is known to be formed in the middle between the two electrodes 29 and thus accumulate in the form of bubbles 36 in the region of the axis 18 of the reaction space 19 , Due to the rotational movement of the working medium 24, the bubbles 36 of the formed Brown gas are concentrated in the region of the axis 18 of the reaction space 19 and, on the other hand, rise due to the buoyancy in the reaction space 19 in the direction of the outflow opening 26 and can thus be easily sucked through the line 7. By means of the rotational movement of the working medium 24 in the reaction chamber 19, generated with the aid of the rotor 32, it is thus achieved that a force is exerted on the bubbles 36 of the resulting Brown gas, whereby they are concentrated further in the region of the axis 18 of the reaction space 19 and thereby the formed Brown gas can be sucked out of the reaction space 19 through the discharge opening 26 or the line 7. On the other hand, however, it is also achieved by the rotational flow of the working medium that the diffusion movement of the ions in the direction of the electrodes 29 or in accordance with the direction of the electric field 35 experiences a constant deflection movement and thus the deposition of molecular oxygen or of molecular hydrogen the electrodes 29 is prevented or suppressed, which in turn promotes the formation of the Brown gas in the bubbles 36. The yield of this formed in the gas generator 6 Brown gas is thus significantly improved.

Die Fig. 3 zeigt ein weiteres Ausführungsbeispiel eines Gasgenerators 6 einer Heizungsvorrichtung 1 mit einem zylinderförmigen Reaktionsraum 19.The Fig. 3 shows a further embodiment of a gas generator 6 of a heating device 1 with a cylindrical reaction space 19th

Die Elektroden 29 sind an der Innenseite des Mantels 21 des Reaktionsraums 19 eingebettet, sodass die inneren Elektrodenoberflächen 30 bzw. 31 mit der inneren Begrenzungsfläche 20 des Reaktionsraums 19 eine zylinderförmige Fläche bilden. Die Bodenplatte 22, die Deckplatte 23 und der Mantel 21, die den Reaktionsraum 19 begrenzen, sind aus einem elektrisch nicht leitenden Material, bevorzugt einem Kunststoff, hergestellt.The electrodes 29 are embedded on the inside of the shell 21 of the reaction space 19, so that the inner electrode surfaces 30 and 31 form a cylindrical surface with the inner boundary surface 20 of the reaction space 19. The bottom plate 22, the cover plate 23 and the jacket 21, which limit the reaction space 19, are made of an electrically non-conductive material, preferably a plastic.

Die Ausströmöffnung 26, die sich in die Leitung 7 fortsetzt, ist wiederum koaxial zur Achse 18 des Reaktionsraums 19 im Bereich der Deckplatte 23 angeordnet. Dazu ist nun zusätzlich vorgesehen, dass die Ausströmöffnung 26 im vorderen Endbereich einer Absauglanze 37 ausgebildet ist. Diese Absauglanze 37 ist in Richtung parallel zur Achse 18 des Reaktionsraums 19 verstellbar angeordnet und kann somit in den Reaktionsraum 19 unterschiedlich weit eingeschoben werden. Durch geeignete Einstellung der Absauglanze 37 kann erreicht werden, dass mit den Blasen 36 des Brown-Gases nur ein sehr geringer Anteil des Arbeitsmediums 34 mitabgesaugt wird. Das Arbeitsmedium 24 wird durch den Einlaufstutzen 25, wie bereits ausgeführt worden ist, in den Reaktionsraum 19 eingebracht und wird durch den Rotor 32 in Drehbewegung entsprechend der Winkelgeschwindigkeit 34 versetzt. Unter der gleichzeitigen Wirkung des elektrischen Feldes 35 und der Drehbewegung, entsprechend der Winkelgeschwindigkeit 34, kommt es zur Bildung des Brown-Gases in den Blasen 36, die mit Hilfe der Absauglanze 37 aus dem Bereich der Achse 18 des Reaktionsraums 19 abgesaugt werden.The outflow opening 26, which continues in the line 7, in turn, is arranged coaxially to the axis 18 of the reaction space 19 in the region of the cover plate 23. For this purpose, it is additionally provided that the outflow opening 26 is formed in the front end region of a suction lance 37. This suction lance 37 is arranged to be adjustable in the direction parallel to the axis 18 of the reaction space 19 and can thus be inserted into the reaction space 19 to different degrees. By suitably adjusting the suction lance 37 can be achieved that with the bubbles 36 of the Brown gas only a very small proportion of the working medium 34 is mitabsgesaugt. The working medium 24 is introduced through the inlet connection 25, as has already been stated, into the reaction space 19 and is offset by the rotor 32 in rotary motion corresponding to the angular velocity 34. Under the simultaneous action of the electric field 35 and the rotational movement, corresponding to the angular velocity 34, the brown gas is formed in the bubbles 36, which are sucked out of the region of the axis 18 of the reaction space 19 with the aid of the suction lance 37.

Die Fig. 4 zeigt ein Ausführungsbeispiel des Gasgenerators 6 der Heizungsvorrichtung 1 mit einer in dem Reaktionsraum 19 angeordneten Schallquelle 38.The Fig. 4 1 shows an exemplary embodiment of the gas generator 6 of the heating device 1 with a sound source 38 arranged in the reaction space 19.

Die Schallquelle 38 ist koaxial bezüglich der Achse 18 des Reaktionsraums 19 im Bereich der Bodenplatte 22 angeordnet. Gemäß diesem Ausführungsbeispiel ist außerdem vorgesehen, dass die Schallquelle 38 an dem Rotor 32 angebracht ist. Mit dieser Schallquelle 38 wird Ultraschall mit einer Frequenz aus einem Bereich von 25 kHz bis 55 kHz, vorzugsweise von 38, 5 kHz bis 41,5 kHz in den Reaktionsraum 19 eingestrahlt und damit das Arbeitsmedium 24 beaufschlagt. Als günstig erweist sich insbesondere eine Frequenz von 40, 5 kHz. Zusätzlich zur Anordnung der Schallquelle 38 in dem Reaktionsraum 39 sind die inneren Begrenzungsflächen 20 des Reaktionsraums 19 durch eine auch in Richtung parallel zur Achse 18 gekrümmte Fläche bzw. gemäß diesem Ausführungsbeispiel durch eine Kugelfläche gebildet. D.h. es ist zumindest ein Teilbereich der inneren Begrenzungsflächen 20 des Reaktionsraums 19 durch einen, den Schall konzentrierenden Reflektor 39 gebildet. Die inneren Elektrodenoberflächen 30 bzw. 31 stellen somit ebenfalls Teilbereiche des Reflektors 39 dar. Durch den kugelförmig ausgebildeten Reflektor 39 wird in Verbindung mit der im Bereich der Achse 18 angeordneten Schallquelle 38 eine den Schal konzentrierende Wirkung erzielt, wobei es zu einer Erhöhung bzw. Konzentration des Schalldrucks über die Länge der Achse 18 im Bereich des Reaktionsraums 19 kommt. Da der Reflektor 39 nicht parabolisch geformt ist, erfolgt die Schallkonzentration nicht in einem einzelnen Punkt bzw. Brennpunkt sondern über einen ausgedehnten Längenbereich der Achse 18 in dem Reaktionsraum 19. Dieser Längenbereich der Achse 18 ist aber auch der Bereich, indem die Bildung des Brown-Gases in den Blasen 36 beobachtet werden kann. Es zeigt sich, dass durch die Beaufschlagung des Arbeitsmediums 24 bzw. des Bereichs der Entstehung der Blasen 36 des Brown-Gases in der Umgebung der Achse 18 mit Ultraschall eine deutliche Verstärkung der Bildung des Brown-Gases erreicht werden kann.The sound source 38 is arranged coaxially with respect to the axis 18 of the reaction space 19 in the region of the bottom plate 22. According to this embodiment, it is also provided that the sound source 38 is mounted on the rotor 32. With this sound source 38, ultrasound at a frequency from a range of 25 kHz to 55 kHz, preferably from 38, 5 kHz to 41.5 kHz is irradiated into the reaction chamber 19 and thus the working medium 24 is applied. In particular, a frequency of 40, 5 kHz proves to be favorable. In addition to the arrangement of the sound source 38 in the reaction chamber 39, the inner boundary surfaces 20 of the reaction space 19 are formed by a curved in the direction parallel to the axis 18 surface or according to this embodiment by a spherical surface. This means that at least a portion of the inner boundary surfaces 20 of the reaction space 19 is formed by a reflector 39 that concentrates the sound. The inner electrode surfaces 30 and 31 thus also constitute subregions of the reflector 39. The ball-shaped reflector 39, in conjunction with the sound source 38 arranged in the region of the axis 18, achieves a scarf-concentrating effect, with an increase or concentration the sound pressure over the length of the axis 18 in the region of the reaction space 19 comes. Since the reflector 39 is not parabolic, takes place However, the sound concentration is not in a single point or focal point but over an extended length range of the axis 18 in the reaction space 19. However, this length range of the axis 18 is also the range in which the formation of the Brown gas in the bubbles 36 can be observed. It can be seen that the application of the working medium 24 or the region of formation of the bubbles 36 of the Brown gas in the vicinity of the axis 18 with ultrasound can significantly increase the formation of the Brown gas.

Es ist zwar nicht unbedingt erforderlich, die Schallquelle 38 an dem Rotor 32 anzubringen und mit diesem mitzurotieren, dies hat aber andererseits den Vorteil, dass bei einer nicht rotationssymmetrischen Abstrahlungscharakteristik der Schallquelle 38 bezüglich der Achse 18 durch die Drehbewegung mit dem Rotor 32 eine zeitliche Mittelung bzw. Gleichverteilung der räumlichen Verteilung des Schalldruckes über jeweils eine Umdrehung des Rotors 32 hinweg erfolgt.Although it is not absolutely necessary to attach the sound source 38 to the rotor 32 and mitzurotieren with this, but this has the advantage that with a non-rotationally symmetrical radiation characteristic of the sound source 38 with respect to the axis 18 by the rotational movement with the rotor 32, a time averaging or uniform distribution of the spatial distribution of the sound pressure over one revolution of the rotor 32 away takes place.

Fig. 5 zeigt ein weiteres Ausführungsbeispiel des Gasgenerators 6 der Heizungsvorrichtung 1 mit einer Infrarotquelle 40 und einem Magneten 41. Fig. 5 shows a further embodiment of the gas generator 6 of the heating device 1 with an infrared source 40 and a magnet 41st

Die Infrarotquelle 40 ist im Bereich der Deckplatte 23 versenkt in die Begrenzungsfläche 20 angebracht und strahlt Infrarotstrahlung in den Bereich des Reaktionsraums 19 ein. Es zeigt sich, dass durch das Beaufschlagen des Arbeitsmediums 24 mit Infrarotstrahlung ebenfalls eine positive Beeinflussung der Bildung des Brown-Gases in den Blasen 36 bewirkt wird und damit die Bildung des Brown-Gases beschleunigt werden kann. Die Stelle, an der die Infrarotquelle in dem Reaktionsraum 19 angeordnet ist, ist für deren Wirkung nicht entscheidend. Wesentlich ist die Beaufschlagung des Arbeitsmediums 24 mit der Infrarotstrahlung als solcher.The infrared source 40 is recessed in the region of the cover plate 23 mounted in the boundary surface 20 and radiates infrared radiation in the region of the reaction space 19 a. It turns out that by applying the working medium 24 with infrared radiation also a positive effect on the formation of the Brown gas in the bubbles 36 is effected and thus the formation of the Brown gas can be accelerated. The location where the infrared source is located in the reaction space 19 is not critical to its effect. Essential is the admission of the working medium 24 with the infrared radiation as such.

Der Magnet 41 ist ebenfalls im Bereich der Deckplatte 43 angeordnet, wobei dieser so ausgerichtet ist, dass die magnetische Induktion 42 im Bereich der Achse 18 des Reaktionsraums 19 antiparallel bezüglich der Winkelgeschwindigkeit 34 bzw. bezüglich deren Richtung ausgerichtet ist. Unter der gemeinsamen der Wirkung der durch den Rotor 32 hervorgerufenen Rotation des Arbeitsmediums 24 und dem elektrischen Feld 35 werden Ionen des Arbeitsmediums 24 annähernd in Kreisbahnen geführt. Entsprechend der Kraft, die auf in Magnetfeldern bewegte Ladungen durch das Magnetfeld ausgeübt wird, bewirkt die antiparallel bezüglich der Winkelgeschwindigkeit 34 ausgerichtete magnetische Induktion nun eine zusätzliche Kraft, die annähernd in Richtung auf die Achse 18 des Reaktionsraums 19 weist. Durch diese zusätzliche Kraftwirkung werden die Ionen in dem Arbeitsmedium 24 auf spiralförmige Bahnen gezwungen, die sich immer weiter der Achse 18 des Reaktionsraums 19 annähern. Durch die Kraftwirkung des Magneten 41 wird somit verhindert, dass die Ionen des Arbeitsmediums 24 an die Anode 27 bzw. an die Kathode 28 gelangen können und dort zur Bildung von molekularem Sauerstoff bzw. molekularem Wasserstoff führen und wird andererseits bewirkt, dass die Ionen im Bereich um die Achse 18 konzentriert werden und dort die Bildung des Brown-Gases in den Blasen 36 intensiviert wird.The magnet 41 is likewise arranged in the region of the cover plate 43, the latter being oriented in such a way that the magnetic induction 42 is aligned in the region of the axis 18 of the reaction space 19 in anti-parallel with respect to the angular velocity 34 or with respect to its direction. Under the common effect of the rotation of the working medium 24 and the electric field 35 caused by the rotor 32, ions of the working medium 24 are guided approximately in circular paths. According to the force acting on in magnetic fields moving charges is exerted by the magnetic field causes the antiparallel with respect to the angular velocity 34 oriented magnetic induction now an additional force, which points approximately in the direction of the axis 18 of the reaction chamber 19. As a result of this additional force effect, the ions in the working medium 24 are forced onto spiral-shaped paths which approach the axis 18 of the reaction space 19 more and more. By the force of the magnet 41 is thus prevented that the ions of the working medium 24 can reach the anode 27 and the cathode 28 and there lead to the formation of molecular oxygen or molecular hydrogen and on the other hand causes the ions in the range concentrated around the axis 18 and where the formation of the Brown gas in the bubbles 36 is intensified.

Mit der Heizungsvorrichtung 1 kann somit ein Verfahren zur Erzeugung von Wärme mit Brown-Gas durchgeführt werden. Dazu wird zunächst das Arbeitsmedium 24 bzw. das Wasser in einem bezüglich einer Achse 18 rotationssymmetrisch geformten Reaktionsraum 19 geleitet, ein elektrisches Feld 35 angelegt, wobei die elektrische Feldrichtung senkrecht bezüglich der Achse 18 des Reaktionsraums 19 ausgerichtet ist und das Arbeitsmedium 24 bzw. das Wasser in Rotation versetzt. Die Rotationsachse des Wassers ist bezüglich der Achse 18 des Reaktionsraums 19 koaxial ausgerichtet. D.h. andererseits, dass die Richtung des elektrischen Feldes 35 senkrecht bezüglich der Rotationsachse des Wassers gerichtet ist. In einem weiteren Schritt wird das unter dem Einfluss des elektrischen Feldes 35 und der Rotation in dem Reaktionsraum 19 aus dem Arbeitsmedium 24 bzw. dem Wasser gebildete Brown-Gas aus dem Reaktionsraum 19 abgeleitet und dieses anschließend in einem Thermogenerator 2 zu Wasser rekombiniert, wobei durch diesen exothermen Prozess Wärme abgegeben wird. Das in dem Thermogenerator 2 gebildete Wasser wird vorzugsweise auch als Transportmedium für die Wärme verwendet und somit die entstandene Wärme mit diesem Wasser bzw. Arbeitsmedium 24 in den Wärmetauscher 3 transportiert. Aus dem Wärmetauscher 3 gelangt das Arbeitsmedium 24 bzw. das Wasser über das Druckgefäß 4 und die Pumpe 5 wieder zurück in den Gasgenerator 6, wo es erneut zur Bildung von Brown-Gas zur Verfügung steht. Das Arbeitsmedium 24 bzw. das Wasser wird somit in einem geschlossenen Kreislauf geführt.With the heating device 1, therefore, a method of generating heat with Brown gas can be performed. For this purpose, the working medium 24 or the water is first conducted in a rotationally symmetrical with respect to an axis 18 reaction chamber 19, an electric field 35 is applied, wherein the electric field direction is aligned perpendicular to the axis 18 of the reaction chamber 19 and the working fluid 24 and the water set in rotation. The axis of rotation of the water is aligned coaxially with respect to the axis 18 of the reaction space 19. That on the other hand, that the direction of the electric field 35 is directed perpendicular to the axis of rotation of the water. In a further step, the Brown gas formed from the working medium 24 or the water under the influence of the electric field 35 and the rotation in the reaction chamber 19 is derived from the reaction chamber 19 and this then recombined in a thermogenerator 2 to water, wherein Heat is given off to this exothermic process. The water formed in the thermal generator 2 is preferably also used as a transport medium for the heat and thus the resulting heat with this water or working fluid 24 transported into the heat exchanger 3. From the heat exchanger 3, the working medium 24 or the water passes through the pressure vessel 4 and the pump 5 back into the gas generator 6, where it is again available for the formation of Brown gas available. The working medium 24 or the water is thus guided in a closed circuit.

Mit Hilfe des Druckgefäßes 4 kann der Druck des Arbeitsmediums 24 in dem Kreislauf reguliert werden. Die Strömungsgeschwindigkeit des Arbeitsmediums 24 in dem Kreislauf wird durch die Pumpe 5 bestimmt, wobei diese entsprechen der Bildungsrate des Brown-Gases reguliert wird. Die Pumpenleistung wird gerade so eingestellt, dass möglichst nur das entstandene Brown-Gas durch die Leitung 7 aus dem Gasgenerator 6 abgeleitet wird. Der Anteil von Arbeitsmedium 24, das mit dem Brown-Gas in die Leitung gelangt, wird so möglichst gering gehalten. Die Einstellung der verschiedenen Parameter des Betriebszustandes der Heizungsvorrichtung 1 erfolgt vorzugsweise programmgesteuert durch die Steuervorrichtung 13.With the help of the pressure vessel 4, the pressure of the working medium 24 can be regulated in the circulation. The flow rate of the working medium 24 in the circuit is determined by the pump 5, which is regulated according to the formation rate of the Brown gas. The pump power is just adjusted so that as possible only the resulting Brown gas is discharged through the conduit 7 from the gas generator 6. The proportion of working medium 24, which enters the line with the Brown gas, is kept as low as possible. The setting of the various parameters of the operating state of the heating device 1 is preferably carried out programmatically by the control device 13.

Der Vorgang der Bildung des Brown-Gases in dem Gasgenerator 6 der Heizungsvorrichtung 1 erfolgt bevorzugt unter der zusätzlichen Einwirkung von Schallenergie, die in der Form von Ultraschall durch eine Schallquelle 38 auf das Arbeitsmedium 24 einwirkt. Bevorzugt ist auch noch vorgesehen, dass die Bildung des Brown-Gases unter der Einwirkung eines Magnetfeldes eines Magneten 41 bzw. von Infrarotstrahlung einer Infrarotquelle 40 erfolgt. Die Einstellung des Schalldrucks der Schallquelle 38 als auch die Intensität der Infrarotstrahlung der Infrarotquelle 40 und der magnetischen Induktion 42 des Magneten 41 erfolgt vorzugsweise programmgesteuert durch die Steuervorrichtung 13.The process of forming the brown gas in the gas generator 6 of the heating device 1 is preferably carried out under the additional effect of sound energy acting on the working medium 24 in the form of ultrasound through a sound source 38. Preferably, it is also provided that the formation of the Brown gas takes place under the action of a magnetic field of a magnet 41 or of infrared radiation of an infrared source 40. The adjustment of the sound pressure of the sound source 38 as well as the intensity of the infrared radiation of the infrared source 40 and the magnetic induction 42 of the magnet 41 preferably takes place programmatically by the control device 13.

Es wurde außerdem gefunden, dass der Wirkungsgrad des Verfahrens zur Erzeugung von Wärme mit Brown-Gas dadurch erhöht wird, dass der Druck des Arbeitsmediums 24 in dem Kreislauf als auch die Schallintensität der Schallquelle 38 zeitlich zwischen einem Minimalwert und einem Maximalwert auf- und abschwellend, d.h. periodisch, verändert werden, wobei die Veränderung des Drucks antizyklisch zur Veränderung der Schallintensität verläuft. Die zeitliche Veränderung dieses Auf- und Abschwellens der Werte des Druckes und der Schallintensität kann dabei relativ langsam erfolgen, und liegt der Wert der Frequenz dieser Veränderung in einem Bereich zwischen 0,1 Hz und 10 Hz.It has also been found that the efficiency of the method of producing heat with Brown gas is increased by the fact that the pressure of the working medium 24 in the circuit as well as the sound intensity of the sound source 38 increases and decreases in time between a minimum value and a maximum value, ie be changed periodically, with the change in pressure countercyclical to change the sound intensity. The temporal change of this increase and decrease of the values of the pressure and the sound intensity can be relatively slow, and the value of the frequency of this change is in a range between 0.1 Hz and 10 Hz.

Die Fig. 6 zeigt ein weiteres Ausführungsbeispiel eines Gasgenerators 6.The Fig. 6 shows a further embodiment of a gas generator 6.

Die innere Begrenzungsfläche 20 des Reaktionsraums 19 als auch die Elektrodenoberflächen 30 und 31 bilden gemeinsam eine Innenseite einer Kugeloberfläche, die auf den von der Schaltwelle 38 erzeugten Schall konzentrierend wirken. D.h. die Begrenzungsoberfläche 20 und die Elektrodenoberflächen 30 und 31 bilden gemeinsam den Reflektor 39 zur Konzentration der Schallenergie im Bereich der Achse 18 des Reaktionsraums 19. Durch den Einlaufstutzen 25 der tangential zur Begrenzungsfläche 20 und senkrecht zur Achse 18 des Reaktionsraums ausgerichtet ist, strömt Wasser in den Reaktionsraum 9 ein. Durch die somit vorgegebene Einströmrichtung durch den Einlaufstutzen 25 wird das in dem Reaktionsraum 19 befindliche Wasser bzw. Arbeitsmedium in eine Drehbewegung versetzt, die um die Achse 18 des Reaktionsraums 19 als dessen Drehachse erfolgt. Ein gesonderter Rotor zur Erzeugung der Drehbewegung ist in diesem Fall also nicht vorgegeben, der Impuls des einströmenden Arbeitsmediums ist dazu ausreichend.The inner boundary surface 20 of the reaction space 19 as well as the electrode surfaces 30 and 31 together form an inner side of a spherical surface, which act concentrating on the sound generated by the switching shaft 38. That is, the boundary surface 20 and the electrode surfaces 30 and 31 together form the reflector 39 for the concentration of the sound energy in the region of the axis 18 of the reaction space 19. Through the inlet connection 25 is aligned tangentially to the boundary surface 20 and perpendicular to the axis 18 of the reaction space, water flows into the reaction chamber 9 a. By thus predetermined inflow through the inlet pipe 25 which is located in the reaction chamber 19 water or working fluid is placed in a rotational movement, which takes place about the axis 18 of the reaction chamber 19 as its axis of rotation. A separate rotor for generating the rotational movement is therefore not predetermined in this case, the momentum of the incoming working medium is sufficient.

Die Ausströmöffnung 26 der Absauglanze 37 ist in diesem Ausführungsbeispiel des Gasgenerators 6 durch einen Absaugtrichter 43 gebildet. Anschließend an diesen Absaugtrichter 43 ist die Absauglanze 37 auch mit einer Phasentrenneinrichtung 44 ausgestattet. Durch diese Phasentrenneinrichtung 44 wird erreicht, dass das flüssige Arbeitsmedium von dem mit den Blasen 36 aufsteigenden Wasserstoff-Sauerstoff-Gemisch bzw. Brown-Gas getrennt wird und so in dem Reaktionsraum 19 zurückgehalten wird. In der auf die Absauglanze 37 anschlie-βenden Leitung 7 ist weiters ein Drosselventil bzw. ein Ventil 45 vorgesehen. Durch Anordnung des Ventils 45 in der Leitung 7 und der Pumpe 5 (siehe Fig. 1) in der Leitung 11 bildet der Reaktionsraum 19 gleichzeitig auch ein Druckgefäß, indem das Drosselventil bzw. das Ventil 45 dem Arbeitsmedium bzw. dem abströmenden Gas gegen den durch die Pumpe 5 aufgebauten Druck einen entsprechenden Widerstand entgegensetzt.The outflow opening 26 of the suction lance 37 is formed in this embodiment of the gas generator 6 by a suction funnel 43. Subsequent to this suction funnel 43, the suction lance 37 is also equipped with a phase separator 44. By means of this phase separator 44 it is achieved that the liquid working medium is separated from the hydrogen-oxygen mixture or brown gas rising with the bubbles 36 and thus retained in the reaction space 19. In the connection to the suction lance 37 β-βenden line 7, a throttle valve or a valve 45 is further provided. By arranging the valve 45 in the conduit 7 and the pump 5 (see Fig. 1 ) in the conduit 11, the reaction space 19 simultaneously forms a pressure vessel by the throttle valve or the valve 45 opposes the working medium or the outflowing gas against the pressure built up by the pump 5 a corresponding resistance.

Durch das Zusammenwirken des elektrischen Feldes 35 und der im Reaktionsraum 19 erfolgenden Drehbewegung des Arbeitsmediums kommt es im Bereich der Achse 18 des Reaktionsraums 19 zur Bildung eines Wasserstoff-Sauerstoff-Gemisches bzw. von Brown-Gas. Die Bildungsrate dieses Gases in dem Gasgenerator kann zusätzlich noch durch die Einwirkung der Schallquelle 38 der Infrarotquelle 40 und der Magneten 41 erhöht werden. Gemäß diesem Ausführungsbeispiel ist vorgesehen, dass sowohl im Bereich der Deckplatte 23 als auch im Bereich der Bodenplatte 22 ein Magnet 41 angeordnet ist, wodurch erreicht wird, dass das magnetische Feld bzw. die magnetische Induktion 42 im Bereich der Achse 18 des Reaktionsraums 19 einen homogeneren Verlauf aufweist.Due to the interaction of the electric field 35 and the rotational movement of the working medium taking place in the reaction space 19, the formation of a hydrogen-oxygen mixture or brown gas occurs in the region of the axis 18 of the reaction space 19. The rate of formation of this gas in the gas generator can additionally be increased by the action of the sound source 38 of the infrared source 40 and the magnets 41. According to this exemplary embodiment, it is provided that a magnet 41 is arranged both in the area of the cover plate 23 and in the region of the base plate 22, whereby the magnetic field or the magnetic induction 42 is homogenized in the region of the axis 18 of the reaction space 19 History has.

Der Gasgenerator 6 ist gemäß diesem Beispiel Bestandteil einer Vorrichtung zur Umwandlung von Energie, wobei das Arbeitsmedium bzw. Wasser in diesem Fall nicht in einem geschlossen Kreislauf geführt wird. Das vom Gasgenerator 6 erzeugte Wasserstoff-Sauerstoff-Gemisch bzw. Brown-Gas wird zum Schweißen verwendet. Anschließend an die Verbrennung des Wasserstoff-Sauerstoff-Gemischs bzw. Brown-Gases in der Flamme des Schweißbrenners wird der gebildete Wasserdampf an die Umgebung abgegeben.The gas generator 6 is according to this example part of a device for the conversion of energy, wherein the working medium or water in this case is not performed in a closed circuit. The generated by the gas generator 6 hydrogen-oxygen mixture Brown gas is used for welding. Subsequent to the combustion of the hydrogen-oxygen mixture or Brown gas in the flame of the welding torch, the water vapor formed is released to the environment.

BezugszeichenaufstellungREFERENCE NUMBERS

11
HeizungsvorrichtungHeating device
22
Thermogeneratorthermogenerator
33
Wärmetauscherheat exchangers
44
Druckgefäßpressure vessel
55
Pumpepump
66
Gasgeneratorinflator
77
Leitungmanagement
88th
Leitungmanagement
99
Leitungmanagement
1010
Leitungmanagement
1111
Leitungmanagement
1212
Netzgerätpower Supply
1313
Steuervorrichtungcontrol device
1414
Ventilatorfan
1515
Temperaturfühlertemperature sensor
1616
Temperaturfühlertemperature sensor
1717
SinterwerkstoffSintered material
1818
Achseaxis
1919
Reaktionsraumreaction chamber
2020
Begrenzungsflächeboundary surface
2121
Mantelcoat
2222
Bodenplattebaseplate
2323
Deckplattecover plate
2424
Arbeitsmediumworking medium
2525
Einlaufstutzenflowguide
2626
Ausströmöffnungoutflow
2727
Anodeanode
2828
Kathodecathode
2929
Elektrodeelectrode
3030
Elektrodenoberflächeelectrode surface
3131
Elektrodenoberflächeelectrode surface
3232
Rotorrotor
3333
Rotationsachseaxis of rotation
3434
Winkelgeschwindigkeitangular velocity
3535
elektrisches Feldelectric field
3636
Blasebladder
3737
Absauglanzesuction lance
3838
Schallquellesound source
3939
Reflektorreflector
4040
Infrarotquelleinfrared source
4141
Magnetmagnet
4242
Induktioninduction
4343
Absaugtrichtersuction funnel
4444
PhasentrenneinrichtungPhase separator
4545
VentilValve

Claims (33)

  1. Device for converting energy comprising a gas generator (6) for generating a hydrogen-oxygen mixture or Brown's gas with a reaction chamber (19), in which electrodes (29) are disposed, which reaction chamber (19) is of a rotationally symmetrical shape with respect to an axis (18), and at least certain regions of the inner boundary surfaces (20) of the reaction chamber (19) in the region of a jacket (21) of the reaction chamber (19) are formed by inner electrode surfaces (30, 31) of the electrodes (29) of the gas generator (6), characterised in that a rotor (32) with a rotation axis (33) is provided in the gas generator (6) and the rotation axis (33) is oriented coaxially with the axis (18) of the reaction chamber (19).
  2. Device as claimed in claim 1, characterised in that at least one inlet connector (25) for a working medium (24) is provided in the jacket (21), oriented at a tangent with respect to the jacket (21) of the reaction chamber (19).
  3. Device as claimed in claim 2, characterised in that the rotor (32) is designed to generate a rotation with an angular velocity (34) in a range of from 10 s-1 to 25 s-1.
  4. Device as claimed in one of the preceding claims, characterised in that an outlet orifice (26) is provided in a base plate (22) and/or cover plate (23) closing off the reaction chamber (19) and the outlet orifice (26) is disposed coaxially with the axis (18) of the reaction chamber (19).
  5. Device as claimed in claim 4, characterised in that the outlet orifice (26) is provided in the form of a suction lance (37) which is displaceable parallel with the direction of the axis (18) of the reaction chamber (19).
  6. Device as claimed in claim 4 or 5, characterised in that the outlet orifice (26) is provided in the form of a suction funnel (43).
  7. Device as claimed in claim 5 or 6, characterised in that a phase separation device (44) is provided in the suction lance (37).
  8. Device as claimed in one of claims 4 to 7, characterised in that a throttle valve or a valve (45) is disposed in a line (7) connected to the outlet orifice (26) and the reaction chamber (19) is provided in the form of a pressure vessel.
  9. Device as claimed in one of the preceding claims, characterised in that the gas generator (6) is provided with an acoustic source (38).
  10. Device as claimed in claim 9, characterised in that the acoustic source (38) is designed to generate sound at a frequency in a range of from 25 kHz to 55 kHz, preferably from 38.5 kHz to 41.5 kHz, more preferably 40.5 kHz.
  11. Device as claimed in claim 9 or 10, characterised in that the acoustic source (38) is oriented coaxially with the axis (18) of the reaction chamber (19).
  12. Device as claimed in one of claims 9 to 11, characterised in that at least a part-region of the inner boundary surface (20) of the reaction chamber (19) is shaped as a reflector (39) for concentrating the sound.
  13. Device as claimed in one of the preceding claims, characterised in that the gas generator (6) is provided with an IR source.
  14. Device as claimed in one of the preceding claims, characterised in that the gas generator (6) is provided with a magnet (41).
  15. Device as claimed in claim 14, characterised in that a magnetic field direction of the magnet in the region of the axis (18) of the reaction chamber (19) is oriented anti-parallel with respect to a direction of an angular velocity (34) of the rotor (32).
  16. Device as claimed in one of the preceding claims, characterised in that a pressure vessel (4) is provided for the working medium (24).
  17. Device as claimed in one of the preceding claims, characterised in that it is designed as a heating device (1) with a heat generator (2) and an interior of the heat generator (2) is provided with a sintered material (17).
  18. Device as claimed in claim 17, characterised in that the gas generator (6), the heat generator (2), a heat exchanger (3), the pressure vessel (4) and a pump (5) are connected to one another to form a closed circuit for the working medium (24).
  19. Device as claimed in claim 18, characterised in that a fan (14) is provided on the heat exchanger (3) for feeding heat away from the heat exchanger (3).
  20. Device as claimed in one of the preceding claims, characterised in that a control system (13) is provided for controlling the operating mode.
  21. Device as claimed in claim 20, characterised in that the control system (13) is designed to run an automatic control.
  22. Method of converting energy using a hydrogen-oxygen mixture or Brown's gas, whereby a working medium (24) or water is fed into a reaction chamber (19) of a rotationally symmetrical shape with respect to an axis (18), and an electric field (35) is applied between electrodes (29), and an electric field direction is oriented perpendicular to the axis (18) of the reaction chamber (19) and the hydrogen-oxygen mixture or Brown's gas formed in the region of the axis (18) of the reaction chamber (19) is fed out of the reaction chamber (19) and the hydrogen-oxygen mixture or Brown's gas is recombined to form water characterised in that and the water is displaced in rotation, and a rotation axis (33) of the water is oriented coaxially with the axis (18) of the reaction chamber (19).
  23. Method as claimed in claim 22, characterised in that the water and/or Brown's gas in the reaction chamber (19) is exposed to a magnetic field, and a magnetic induction (42) in the region of the axis (18) of the reaction chamber (19) is oriented anti-parallel with respect to the direction of the angular velocity (34).
  24. Method as claimed in claim 22 or 23, characterised in that the water and/or Brown's gas is exposed to acoustic energy in the reaction chamber (19).
  25. Method as claimed in one of claims 22 to 24, characterised in that the water and/or Brown's gas is exposed to IR radiation in the reaction chamber (19).
  26. Method as claimed in one of claims 22 to 25, characterised in that the water and Brown's gas are conveyed in a closed circuit.
  27. Method as claimed in one of claims 22 to 26, characterised in that an angular velocity (34) of the rotation of the water in the reaction chamber (19) is periodically varied.
  28. Method as claimed in one of claims 22 to 27, characterised in that a pressure of the working medium (24) in the circuit is periodically varied.
  29. Method as claimed in one of claims 22 to 28, characterised in that an acoustic intensity of an acoustic source (38) in the reaction chamber (19) is periodically varied.
  30. Method as claimed in claim 29, characterised in that the periodic variation in the pressure of the working medium (24) takes place in an opposite phase from the periodic variation of the acoustic intensity of the acoustic source (38).
  31. Method as claimed in one of claims 22 to 30, characterised in that the value of a frequency of the periodic variation in the pressure of the working medium (24) and/or the acoustic intensity of the acoustic source (38) and/or the angular velocity (34) is selected from a range of between 0.1 Hz and 10 Hz.
  32. Method as claimed in one of claims 22 to 31, characterised in that the recombination of the hydrogen-oxygen mixture or Brown's gas takes place in a heat generator (2) and the heat generated as a result is fed away with the water.
  33. Method as claimed in claim 32, characterised in that the Brown's gas is fed through a sintered material (17) in the heat generator (2).
EP04761063A 2003-10-14 2004-10-06 Energy converting device Active EP1685276B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0161803A AT412972B (en) 2003-10-14 2003-10-14 DEVICE FOR CONVERTING ENERGY
PCT/AT2004/000341 WO2005035833A1 (en) 2003-10-14 2004-10-06 Energy converting device

Publications (2)

Publication Number Publication Date
EP1685276A1 EP1685276A1 (en) 2006-08-02
EP1685276B1 true EP1685276B1 (en) 2012-02-22

Family

ID=34140236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04761063A Active EP1685276B1 (en) 2003-10-14 2004-10-06 Energy converting device

Country Status (17)

Country Link
US (1) US20070065765A1 (en)
EP (1) EP1685276B1 (en)
JP (1) JP2007508454A (en)
CN (1) CN1882716B (en)
AT (2) AT412972B (en)
AU (1) AU2004279896B2 (en)
BR (1) BRPI0415272A (en)
CA (1) CA2542278A1 (en)
DK (1) DK1685276T3 (en)
EG (1) EG24536A (en)
ES (1) ES2382378T3 (en)
HK (1) HK1101601A1 (en)
IL (1) IL174933A (en)
NO (1) NO20062067L (en)
NZ (1) NZ547197A (en)
RU (1) RU2350691C2 (en)
WO (1) WO2005035833A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503715B1 (en) * 2006-09-18 2007-12-15 Hans-Peter Dr Bierbaumer Cooling device i.e. air-conditioning device, for ship, has browngas burner, and heat source designed as combustion device for hydrogen-oxygen-mixture in form of brown-gas or thermogenerator for converting hydrogen-oxygen-mixture into heat
US20100000876A1 (en) * 2008-07-02 2010-01-07 Sandbox Energy Systems, LLC Caviation assisted sonochemical hydrogen production system
EP2233843A1 (en) * 2009-03-23 2010-09-29 OPAi-NL B.V. Installation for generating heat and/or electricity in buildings
US20120097550A1 (en) * 2010-10-21 2012-04-26 Lockhart Michael D Methods for enhancing water electrolysis
ITMI20121048A1 (en) * 2012-06-18 2013-12-19 Industrie De Nora Spa ELECTROLYTIC CELL EQUIPPED WITH CONCENTRIC PAIRS OF ELECTRODES
WO2015125981A1 (en) * 2014-02-20 2015-08-27 Kim Kil Son High energy efficiency apparatus for generating the gas mixture of hydrogen and oxygen by water electrolysis
US20200024756A1 (en) * 2016-12-01 2020-01-23 Cetamax Ventures Ltd. Apparatus and method for generating hydrogen by electrolysis
CN106949673B (en) * 2017-03-27 2019-09-27 中国科学院理化技术研究所 A kind of active magnetic regenerator and magnetic refrigerating system
BG67095B1 (en) * 2017-06-05 2020-06-30 Георгиев Желев Живко Method and device for cavitation-implosive energy transformation and air purification in buildings and metropolitan areas
EP4063538A1 (en) * 2019-11-20 2022-09-28 Hydris Ecotech, S.L. Device for generating oxyhydrogen gas (hho) and system for the same purpose including said device
KR102493660B1 (en) * 2020-12-08 2023-01-31 주식회사 나노텍세라믹스 Water electrolysis system
WO2023079534A1 (en) * 2021-11-08 2023-05-11 Richard Gardiner A system for seperating hydrogen from water
DE102022123756A1 (en) 2022-09-16 2024-03-21 Julius Justenhoven Device and method for influencing moving matter by means of at least one magnetic field and/or an electric field

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2159246B2 (en) * 1971-11-30 1977-12-08 Götz, Friedrich, DipL-Phys, 5628 Heiligenhaus DEVICE FOR GENERATING A MIXTURE OF HYDROGEN AND OXYGEN
US3821358A (en) * 1973-02-01 1974-06-28 Gen Electric Closed-cycle thermochemical production of hydrogen and oxygen
US3969214A (en) * 1973-05-31 1976-07-13 Mack Harris Permanent magnet hydrogen oxygen generating cells
US4014777A (en) * 1973-07-20 1977-03-29 Yull Brown Welding
US4081656A (en) * 1973-07-20 1978-03-28 Yull Brown Arc-assisted oxy/hydrogen welding
NZ174922A (en) * 1973-07-20 1978-06-20 T Brown Generation of hydrogen/oxygen mixtures and method of oxy/hydrogen welding
DE2350720C3 (en) * 1973-10-10 1979-11-08 Hoechst Ag, 6000 Frankfurt Polymerisation process
US3925212A (en) * 1974-01-02 1975-12-09 Dimiter I Tchernev Device for solar energy conversion by photo-electrolytic decomposition of water
US3980907A (en) * 1974-01-16 1976-09-14 Asahi Kasei Kogyo Kabushiki Kaisha Method and apparatus for generating electricity magneto hydrodynamically
US4011148A (en) * 1975-03-11 1977-03-08 Electricite De France (Service National) Method of electrolysis
US4193879A (en) * 1977-04-25 1980-03-18 Leach Sam L Apparatus for powerful energy transfer technique
US4426354A (en) * 1978-05-01 1984-01-17 Solar Reactor Corporation Power generator system for HCl reaction
US4182662A (en) * 1979-07-12 1980-01-08 Energy Development Associates, Inc. Method of forming hydrogen
US4284899A (en) * 1979-03-08 1981-08-18 Bendiks Donald J Gravity fed power generator
US4316787A (en) * 1979-08-06 1982-02-23 Themy Constantinos D High voltage electrolytic cell
JPS5696084A (en) * 1979-12-28 1981-08-03 Nobuyoshi Tsuji Rotary electrolytic machine of water
US4582720A (en) * 1982-09-20 1986-04-15 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for forming non-single-crystal layer
US4613304A (en) * 1982-10-21 1986-09-23 Meyer Stanley A Gas electrical hydrogen generator
GB2142423B (en) * 1983-03-10 1986-08-06 Smith Dr Eric Murray Production of liquid hydrogen
JPS60262986A (en) * 1984-06-08 1985-12-26 Miyazawa Seisakusho:Kk Simultaneous forming apparatus of gaseous oxygen and hydrogen
US4699700A (en) * 1986-05-19 1987-10-13 Delphi Research, Inc. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor
US4752364A (en) * 1986-05-19 1988-06-21 Delphi Research, Inc. Method for treating organic waste material and a catalyst/cocatalyst composition useful therefor
US4701379A (en) * 1986-08-27 1987-10-20 The United States Of America As Represented By The United States Department Of Energy Boron hydride polymer coated substrates
US4936961A (en) * 1987-08-05 1990-06-26 Meyer Stanley A Method for the production of a fuel gas
JPH0677648B2 (en) * 1988-12-23 1994-10-05 株式会社日立製作所 Method and apparatus for gas-liquid separation of conductive gas-liquid two-phase flow
US4976863A (en) * 1989-01-26 1990-12-11 Pec Research, Inc. Wastewater treatment process
US5037518A (en) * 1989-09-08 1991-08-06 Packard Instrument Company Apparatus and method for generating hydrogen and oxygen by electrolytic dissociation of water
US5348629A (en) * 1989-11-17 1994-09-20 Khudenko Boris M Method and apparatus for electrolytic processing of materials
GB2238059A (en) * 1989-11-17 1991-05-22 Command International Inc Electrolytic gas generating apparatus for producing a combustible mixture of hydrogen and oxygen by electrolysis of water for particular use in gas welding
US5176809A (en) * 1990-03-30 1993-01-05 Leonid Simuni Device for producing and recycling hydrogen
NL9001916A (en) * 1990-08-30 1992-03-16 Stichting Energie TAPE SUITABLE FOR USE IN FUEL CELLS, ELECTRODE SUITABLE FOR USE IN A FUEL CELL, METHOD FOR SINTERING SUCH ELECTRODE AND FUEL CELL FITTED WITH SUCH ELECTRODE.
US5159900A (en) * 1991-05-09 1992-11-03 Dammann Wilbur A Method and means of generating gas from water for use as a fuel
US5882502A (en) * 1992-04-01 1999-03-16 Rmg Services Pty Ltd. Electrochemical system and method
US5229977A (en) * 1992-06-17 1993-07-20 Southwest Research Institute Directional underwater acoustic pulse source
US5531865A (en) * 1992-08-19 1996-07-02 Cole; Leland G. Electrolytic water purification process
JPH0773909A (en) * 1993-08-23 1995-03-17 Ebara Res Co Ltd Photoelectro chemical device
WO1995006144A1 (en) * 1993-08-27 1995-03-02 OSHIDA, Hisako +hf Water electrolyzing method and apparatus
US5419877A (en) * 1993-09-17 1995-05-30 General Atomics Acoustic barrier separator
CN1144544A (en) * 1994-03-08 1997-03-05 水气新西兰有限公司 Electrolytic apparatus
DE4415005A1 (en) * 1994-04-29 1995-11-02 Vorwerk Co Interholding Device for separating solid or liquid particles from a gas stream
JP3402515B2 (en) * 1994-05-23 2003-05-06 日本碍子株式会社 Hydrogen separator, hydrogen separator using the same, and method for producing hydrogen separator
JP3220607B2 (en) * 1995-01-18 2001-10-22 三菱商事株式会社 Hydrogen / oxygen gas generator
DE19504632C2 (en) * 1995-02-13 2000-05-18 Deutsch Zentr Luft & Raumfahrt Electrolyser and method for the electrolysis of a fluid electrolyte
US6200292B1 (en) * 1996-06-18 2001-03-13 C. R. Bard, Inc. Suction and irrigation handpiece and tip
US5845485A (en) * 1996-07-16 1998-12-08 Lynntech, Inc. Method and apparatus for injecting hydrogen into a catalytic converter
US6204545B1 (en) * 1996-10-09 2001-03-20 Josuke Nakata Semiconductor device
US6221117B1 (en) * 1996-10-30 2001-04-24 Idatech, Llc Hydrogen producing fuel processing system
FR2758317B1 (en) * 1997-01-13 1999-09-17 Piotr Czernichowski CONVERSION OF HYDROCARBONS ASSISTED BY SLIDING ELECTRIC ARCS IN THE PRESENCE OF WATER VAPOR AND/OR CARBON DIOXIDE
US6207055B1 (en) * 1997-06-16 2001-03-27 Idaho Research Foundation, Inc. Method and apparatus for forming a slurry
US6224741B1 (en) * 1997-08-08 2001-05-01 Peremelec Electrode Ltd. Electrolyte process using a hydrogen storing metal member
EP1008557B1 (en) * 1997-08-11 2007-12-26 Ebara Corporation Hydrothermal electolysis method and apparatus
US6299744B1 (en) * 1997-09-10 2001-10-09 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
US5900330A (en) * 1997-09-25 1999-05-04 Kagatani; Takeo Power device
US6113865A (en) * 1998-02-05 2000-09-05 Dammann; Wilbur A. Reactor configuration for a liquid gasification process
US6488401B1 (en) * 1998-04-02 2002-12-03 Anthony E. Seaman Agitators for wave-making or mixing as for tanks, and pumps and filters
US6126794A (en) * 1998-06-26 2000-10-03 Xogen Power Inc. Apparatus for producing orthohydrogen and/or parahydrogen
FR2780986B1 (en) * 1998-07-10 2000-09-29 Electrolyse L PROCESS FOR TRANSFORMATION OF CHEMICAL STRUCTURES IN A FLUID UNDER PRESSURE AND AT TEMPERATURE AND DEVICE FOR ITS IMPLEMENTATION
WO2000047519A1 (en) * 1999-02-10 2000-08-17 Ebara Corporation Method and apparatus for treating aqueous medium
US6585882B1 (en) * 1999-02-10 2003-07-01 Ebara Corporation Method and apparatus for treatment of gas by hydrothermal electrolysis
WO2000066811A1 (en) * 1999-04-29 2000-11-09 Hung Chang Co., Ltd. Apparatus and method for electrolyzing water
US6459231B1 (en) * 1999-05-03 2002-10-01 Takeo Kagatani Power device
JP2000355785A (en) * 1999-06-16 2000-12-26 Mitsubishi Materials Corp Electrochemical cell
KR100379768B1 (en) * 1999-09-04 2003-04-10 김상남 Energy creating and producting device from cycling combustion of brown gas
US6471834B2 (en) * 2000-01-31 2002-10-29 A. Nicholas Roe Photo-assisted electrolysis apparatus
US6279321B1 (en) * 2000-05-22 2001-08-28 James R Forney Method and apparatus for generating electricity and potable water
FR2810992B1 (en) * 2000-07-03 2002-10-25 Ifremer METHOD FOR IMPROVING TRANSFER IN A BIOREACTION CHAMBER
US6579638B2 (en) * 2000-07-11 2003-06-17 Armand Brassard Regenerative fuel cell system
US6610193B2 (en) * 2000-08-18 2003-08-26 Have Blue, Llc System and method for the production and use of hydrogen on board a marine vessel
JP2002096065A (en) * 2000-09-21 2002-04-02 Takahashi Kinzoku Kk Preparation method and device for washing water, and washing water
US6395252B1 (en) * 2000-09-29 2002-05-28 Ut-Battelle, Llc Method for the continuous production of hydrogen
DE10056096A1 (en) * 2000-11-13 2002-06-13 Bayer Ag Device for irradiating liquids
WO2002044081A1 (en) * 2000-11-30 2002-06-06 Rmg Services Pty Ltd Electrolytic commercial production of hydrogen from hydrocarbon compounds
CN2474546Y (en) * 2000-12-25 2002-01-30 陈尉 Multipurpose electrochemical oxygen generator
WO2002066585A2 (en) * 2001-02-21 2002-08-29 Cornelis Johannes De Jager Method and apparatus for producing combustible fluid
JP2003059518A (en) * 2001-08-22 2003-02-28 Shimadzu Corp Carbon dioxide and methane immobilization control system
US6606860B2 (en) * 2001-10-24 2003-08-19 Mcfarland Rory S. Energy conversion method and system with enhanced heat engine
US7494731B2 (en) * 2001-12-27 2009-02-24 Toyota Jidosha Kabushiki Kaisha Fuel cell power generation system
JP2003214312A (en) * 2002-01-25 2003-07-30 Eiji Asari Generating system by electrolyte solution and its generating device
KR20040080332A (en) * 2002-01-29 2004-09-18 미쓰비시 쇼지 가부시키가이샤 High-pressure hydrogen producing apparatus and producing method
KR100479472B1 (en) * 2002-02-04 2005-03-30 주식회사 이앤이 Brown gas generator
US7135155B1 (en) * 2002-11-21 2006-11-14 Hydrotech Solutions, L.L.C. Velocity induced catalyzed cavitation process for treating and conditioning fluids
WO2004097072A1 (en) * 2003-04-30 2004-11-11 Hydrox Holdings Limited Method and apparatus for producing combustible fluid
US6719817B1 (en) * 2003-06-17 2004-04-13 Daniel J Marin Cavitation hydrogen generator

Also Published As

Publication number Publication date
ATA16182003A (en) 2005-02-15
CN1882716B (en) 2010-04-28
IL174933A (en) 2011-02-28
RU2350691C2 (en) 2009-03-27
JP2007508454A (en) 2007-04-05
DK1685276T3 (en) 2012-06-11
ATE546566T1 (en) 2012-03-15
NO20062067L (en) 2006-05-08
AT412972B (en) 2005-09-26
IL174933A0 (en) 2006-08-20
BRPI0415272A (en) 2006-12-12
US20070065765A1 (en) 2007-03-22
CN1882716A (en) 2006-12-20
AU2004279896A1 (en) 2005-04-21
CA2542278A1 (en) 2005-04-21
AU2004279896B2 (en) 2009-12-17
EG24536A (en) 2009-08-31
ES2382378T3 (en) 2012-06-07
WO2005035833A1 (en) 2005-04-21
NZ547197A (en) 2009-12-24
HK1101601A1 (en) 2007-10-18
RU2006116500A (en) 2007-11-27
EP1685276A1 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
EP1685276B1 (en) Energy converting device
EP1875140B1 (en) Heat generator
AT508813B1 (en) ELECTROLYTIC REACTION SYSTEM FOR GENERATING GASEOUS HYDROGEN AND OXYGEN
DE60115785T2 (en) Heating plant operated by hydrogen combustion
AT508785B1 (en) DEVICE FOR HEATING A FLUID
DE60224166T2 (en) "Treatment device with air cooling system"
AT508783B1 (en) DEVICE FOR HEATING A FLUID
EP3024778A1 (en) Reactor for releasing hydrogen from a liquid compound
DE2107834A1 (en) Arc heater
WO2011082441A2 (en) Device for heating a fluid
DE10052722A1 (en) Gas generator for producing oxygen gas comprises an electrolytic trough, a mixing chamber, a pump and a burner
DE3529233C2 (en)
EP2168409A1 (en) Apparatus for generating a plasma jet
DE2602513A1 (en) PROCESS FOR CUTTING, MACHINING, WELDING AND RELOADING METALLIC OR NON-METALLIC MATERIALS WITH AN ELECTRIC ARC AND DEVICE FOR CARRYING OUT THE PROCESS
DE19805110A1 (en) Temperature control device for a mold
EP4103765B1 (en) Electrolytic reaction system for producing gaseous hydrogen and oxygen
EP3865455A1 (en) Method and device for obtaining browns gas and / or oxygen and hydrogen, especially for combustion engines, heating burners or fuel cells
DE102008011048B4 (en) Device for generating movements in glass melts by means of the Lorentz force and use of the device
DE2525401A1 (en) RADIATION SOURCE OF HIGH INTENSITY
AT503715B1 (en) Cooling device i.e. air-conditioning device, for ship, has browngas burner, and heat source designed as combustion device for hydrogen-oxygen-mixture in form of brown-gas or thermogenerator for converting hydrogen-oxygen-mixture into heat
EP0194539A2 (en) High-frequency ozonizer
DE1271852B (en) Plasma torch
AT501680B1 (en) HEAT GENERATOR
DE3434373C1 (en) Gas lasers, especially CO2 lasers
DE2432963A1 (en) METHOD AND DEVICE FOR GENERATING ULTRAVIOLET RADIATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 546566

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013318

Country of ref document: DE

Effective date: 20120419

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABP PATENT NETWORK SWISS GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2382378

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120607

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120622

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013318

Country of ref document: DE

Effective date: 20121123

BERE Be: lapsed

Owner name: BIERBAUMER, HANS-PETER DR. H.C.

Effective date: 20121031

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121006

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013318

Country of ref document: DE

Effective date: 20130501

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABP PATENT NETWORK AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131029

Year of fee payment: 10

Ref country code: CH

Payment date: 20131028

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121007

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 546566

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141006