JP2000355785A - Electrochemical cell - Google Patents

Electrochemical cell

Info

Publication number
JP2000355785A
JP2000355785A JP11169441A JP16944199A JP2000355785A JP 2000355785 A JP2000355785 A JP 2000355785A JP 11169441 A JP11169441 A JP 11169441A JP 16944199 A JP16944199 A JP 16944199A JP 2000355785 A JP2000355785 A JP 2000355785A
Authority
JP
Japan
Prior art keywords
anode
anolyte
cathode
electrochemical cell
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11169441A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamazaki
和彦 山崎
Takeshi Onoe
毅 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11169441A priority Critical patent/JP2000355785A/en
Publication of JP2000355785A publication Critical patent/JP2000355785A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a decomposition rate by making the distance between an anode and a cathode constant with a relatively simple structure. SOLUTION: The electrochemical cell has a perforated partition wall 16 of a blind cylindrical form which partitions a liquid vessel 11 in such a manner that an cathode chamber 19 in which an anolyte 17 is stored is formed on the inner side and a cathode chamber 20 in which a catholyte 18 is stored is formed on the outer side, respectively, the cylindrical anode 12 which is disposed within the cathode chamber and allows the flow of the anolyte, the cylindrical cathode 13 which is disposed in the cathode chamber so as to enclose the anode via the partition wall, and a circulating means 21 which circulates the anolyte solusion as to pass the anode. The cell is provided with a supply section 22 for supplying the material to be treated. The circulating means 21 has an electric motor 21a, a revolving shaft 21b which is disposed in a perpendicular direction at the center of the partition wall 16, has the bottom end arriving at the bottom of the partition wall 16 and is connected at its top end to a motor shaft of the electric motor 21a, and rotary vanes 21c which are fixed to the revolving shaft 21b and circulating the anolyte 17 and the material to be treated so as to be passed through the anode 12 and to be returned into the anode 12 by centrifugal force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被処理物質を電気
化学的手法によって酸化分解処理する電気化学セルに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical cell for subjecting a substance to be treated to oxidative decomposition by an electrochemical method.

【0002】[0002]

【従来の技術】溶媒を電気化学的手法によって酸化分解
する方法として、硝酸を主成分とし銀イオンを電解酸化
によって強力な酸化種として機能するレドックス種とし
て含有する水性電解液に電位差を与えて1価のAgイオ
ンを2価のAgイオンに変化させ、この電解液に溶媒を
混合する方法が知られている(特開平1−3068
9)。この方法では、2価のAgイオンにより溶媒が分
解され、分解に寄与して2価のAgイオンは1価のAg
イオンに変化するが、その1価のAgイオンは水性電解
液に与えられる電位差により再び2価のAgイオンに変
化して再生され、再び分解に寄与するようになってい
る。この方法により溶媒を分解するに際して、その分解
速度を速めるためには、電解液と溶媒とを流通させて電
位差により生じた2価のAgイオンを直ちに分解処理に
よって消費させることが求められる。
2. Description of the Related Art As a method for oxidatively decomposing a solvent by an electrochemical method, a potential difference is given to an aqueous electrolyte containing nitric acid as a main component and a silver ion as a redox species which functions as a strong oxidizing species by electrolytic oxidation. There is known a method in which a monovalent Ag ion is changed to a divalent Ag ion, and a solvent is mixed with the electrolytic solution (Japanese Patent Laid-Open No. 1-3068).
9). In this method, the solvent is decomposed by the divalent Ag ions, and the divalent Ag ions contribute to the decomposition to convert the monovalent Ag ions into monovalent Ag ions.
The monovalent Ag ions are converted into divalent Ag ions again due to the potential difference applied to the aqueous electrolyte, are regenerated, and contribute to decomposition again. When the solvent is decomposed by this method, in order to increase the decomposition rate, it is required that the divalent Ag ions generated by the potential difference by flowing the electrolytic solution and the solvent be immediately consumed by the decomposition treatment.

【0003】このための電気化学セルとして有機溶媒と
電解液を循環させる手段を備えたものが提案されている
(特表平4−504303)。この電気化学セルにおけ
る循環手段は、有機溶媒と電解液を貯留する槽の略中央
部に、周囲に複数の孔が形成され内部に複数の翼が設け
られた回転体を設けたドラフト管を鉛直に挿入したもの
である。複数の翼は回転体とともに回転して周囲の孔か
らドラフト管内部に侵入した有機溶媒及び電解液を下方
に向って押出すように構成される。一方、上述の電気化
学セルでは複数の球体からなる電極を層状にその槽の下
部に配設し、翼の回転によりドラフト管の下部開口部か
ら槽の下部に排出された有機溶媒及び電解液は、電極で
ある複数の球体の間を下方から上方に通過するように構
成される。この電気化学セルでは、複数の球体の間を通
過する際に1価のAgイオンは2価のAgイオンに変化
し、その層状の電極を通過した2価のAgイオンは直ち
に有機溶媒の分解処理に寄与することができるようにな
っている。
[0003] As an electrochemical cell for this purpose, a cell having means for circulating an organic solvent and an electrolyte has been proposed (Japanese Patent Application Laid-Open No. 4-504303). The circulating means in this electrochemical cell is a vertical pipe provided with a rotating body having a plurality of holes formed therein and a plurality of wings provided in a substantially central portion of a tank for storing an organic solvent and an electrolytic solution. It is inserted in. The plurality of blades are configured to rotate together with the rotating body to push out the organic solvent and the electrolyte that have entered the inside of the draft tube from the surrounding holes downward. On the other hand, in the above-mentioned electrochemical cell, electrodes composed of a plurality of spheres are arranged in layers at the lower part of the tank, and the organic solvent and the electrolyte discharged from the lower opening of the draft tube to the lower part of the tank by the rotation of the wings are Is configured to pass between a plurality of spheres, which are electrodes, from above to below. In this electrochemical cell, when passing between a plurality of spheres, monovalent Ag ions are changed into divalent Ag ions, and the divalent Ag ions passing through the layered electrode are immediately subjected to a decomposition treatment of an organic solvent. Can be contributed to.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した電気
化学セルでは複数の球体からなる電極を層状に槽の下部
に配設するので、構造が比較的複雑になる不具合があ
る。また、上述した電気化学セルでは陰極が槽の側部に
設けられ、陽極は槽の下部に層状に設けられる。このた
め陽極のそれぞれの部分と陰極との距離がそれぞれ異な
り、電極表面における電流密度が不均一になる。一般的
に、陽極における電流密度の著しい増大は、レドックス
種を電解酸化して酸化種と成す反応(銀イオンの場合;
Ag+→Ag2++e-)以外に副反応として水の分解反応
を引き起し、酸化種の電解生成効率を下げる。このた
め、電流密度の不均一は、局所的に通電量が増大するた
め、その局所において酸化種の電解生成効率の減少を招
く。従って、電極間の距離が不均一な上述の電気化学セ
ルは、溶媒の分解速度を速めるために比較的大きな電流
を流しても、局所的に通電量が増大してその局所におい
て酸化種の電解生成効率が下がるため、その分解速度が
期待したほど増大しない不具合がある。本発明の目的
は、比較的単純な構造で陽極と陰極の距離を均一にして
電流密度を均一にし、酸化種の電解生成効率を下げるこ
となく比較的大きな電流を流して分解速度を速めること
ができる電気化学セルを提供することにある。
However, in the above-mentioned electrochemical cell, since a plurality of spherical electrodes are disposed in a layered manner at the bottom of the tank, there is a problem that the structure becomes relatively complicated. In the above-described electrochemical cell, the cathode is provided on the side of the tank, and the anode is provided in a layer at the bottom of the tank. For this reason, the distance between each part of the anode and the cathode differs, and the current density on the electrode surface becomes non-uniform. In general, a significant increase in current density at the anode is caused by the reaction of the redox species with the oxidized species by electro-oxidation (in the case of silver ions;
In addition to Ag + → Ag 2+ + e ), a water decomposition reaction is caused as a side reaction to lower the efficiency of electrolytic generation of oxidized species. For this reason, the unevenness of the current density causes the amount of current to increase locally, which leads to a decrease in the efficiency of electrolytic generation of oxidizing species in the local area. Therefore, in the above-mentioned electrochemical cell in which the distance between the electrodes is non-uniform, even if a relatively large current is passed in order to increase the decomposition rate of the solvent, the amount of current locally increases and the electrolytic oxidation of oxidized species occurs locally. There is a disadvantage that the decomposition rate does not increase as expected because the production efficiency is reduced. An object of the present invention is to make the distance between the anode and the cathode uniform with a relatively simple structure to make the current density uniform, and to increase the decomposition rate by flowing a relatively large current without lowering the efficiency of electrolytic generation of oxidizing species. It is to provide an electrochemical cell which can be used.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、陽極液17が貯留される陽極室19
を内側にかつ陰極液18が貯留される陰極室20を外側
にそれぞれ形成するように液槽11を仕切る有底円筒状
の多孔性隔壁16と、陽極室19内に設けられ陽極液1
7が流通可能な円筒状の陽極12と、陰極室20内に隔
壁16を介して陽極12を包囲するように設けられた円
筒状の陰極13と、陽極12内に設けられ陽極12内部
の陽極液17を陽極12を通過させて陽極12内部に戻
るように循環させる循環手段21とを備えた電気化学セ
ルである。
The invention according to claim 1 is
As shown in FIG. 1, an anode chamber 19 in which an anolyte 17 is stored.
And a bottomed porous cylindrical partition 16 which partitions the liquid tank 11 so as to form a catholyte chamber 20 in which a catholyte 18 is stored, respectively.
, A cylindrical cathode 13 provided in the cathode chamber 20 so as to surround the anode 12 via a partition 16, and an anode provided in the anode 12 and inside the anode 12. A circulating means 21 for circulating the liquid 17 so as to pass through the anode 12 and return to the inside of the anode 12.

【0006】この請求項1に係る発明では、陽極12を
包囲するように陰極13を設けるので、陽極12のそれ
ぞれの部分と陰極13との距離が略等しくなり、陽極1
2と陰極13との間に電位差を与えた時の電流密度を略
均一にする。このため、電流密度が不均一になる従来の
電気化学セルに比較して、電極面積が同一であっても酸
化種の電解生成効率を落すことなくより大きな電流を流
すことが可能になる。また、循環手段21は陽極液17
を循環させて陽極12を通過させるので、陽極12で変
化したイオンは陽極12を通過後直ちに陽極液17に含
まれる被処理物質を分解する。このため、酸化種の電解
生成効率を下げることなく比較的大きな電流を流して分
解速度を従来より速めることができる。陰極液18とし
ては硫酸(H2SO4)又は硝酸(HNO3)等のオキソ
酸が例示され、陽極液17としては電解酸化によって強
力な酸化種として機能するレドックス種、例えば1価の
銀イオン,2価のコバルトイオン又は3価のセリウムイ
オンが含有されたオキソ酸が例示される。なお、これら
は陽極12及び陰極13との間の電位差により2価の銀
イオン,3価のコバルトイオン又は4価のセリウムイオ
ンに変化する。
In the invention according to the first aspect, since the cathode 13 is provided so as to surround the anode 12, the distance between each part of the anode 12 and the cathode 13 becomes substantially equal, and
The current density when a potential difference is applied between the cathode 2 and the cathode 13 is made substantially uniform. For this reason, as compared with the conventional electrochemical cell in which the current density becomes non-uniform, even if the electrode area is the same, it is possible to flow a larger current without lowering the efficiency of electrolytic generation of oxidizing species. The circulation means 21 is provided with the anolyte 17.
Is circulated through the anode 12 so that the ions changed at the anode 12 immediately degrade the substance to be treated contained in the anolyte 17 after passing through the anode 12. For this reason, a relatively large current can be passed without lowering the efficiency of electrolytic generation of oxidizing species, and the decomposition rate can be increased as compared with the conventional case. The catholyte 18 is exemplified by an oxo acid such as sulfuric acid (H 2 SO 4 ) or nitric acid (HNO 3 ), and the anolyte 17 is a redox species which functions as a strong oxidizing species by electrolytic oxidation, for example, a monovalent silver ion And oxo acids containing divalent cobalt ions or trivalent cerium ions. These are changed to divalent silver ions, trivalent cobalt ions or tetravalent cerium ions due to the potential difference between the anode 12 and the cathode 13.

【0007】請求項2に係る発明は、請求項1に係る発
明であって、液槽11上部に被処理物質を隔壁16内に
供給する供給部22が設けられた電気化学セルである。
循環手段21により陽極液17は常に循環しているの
で、この請求項2に係る発明では、供給部22から被処
理物質を供給することによりその被処理物質は陽極液1
2とともに循環して分解され、いわゆるバッチ処理、及
び連続処理の双方を行うことができる。被処理物質とし
ては、原子力の分野で発生するもの及び一般工業分野に
おけるものの双方が挙げられる。原子力の分野で発生す
るものとしては放射性物質を含む廃棄物として発生する
ドデカン、TBP(tributyl phosphate)、デカリン、C
MPO(carbamoylmethylphosphine oxide)、トルエン、
ケロシン、ポンプ油、又はシンチレータカクテルが挙げ
られ、シンチレータカクテルに含まれる有機溶媒として
はキシレン、デカリン、シェルゾールA、ターフェニ
ル、トリエチルベンゼン、フェニルシクロヘキサンが挙
げられる。一般工業分野におけるものとしては、シクロ
ヘキサン等のシクロアルカン類、メチルエーテル等のエ
ーテル類、エチルベンゼン等のベンゼン類、多価のアル
コールを除く高級アルコール類が挙げられる。
The invention according to a second aspect is the electrochemical cell according to the first aspect, wherein a supply part 22 for supplying a substance to be treated into the partition 16 is provided above the liquid tank 11.
Since the anolyte 17 is constantly circulated by the circulating means 21, in the invention according to the second aspect, the material to be treated is supplied from the supply section 22 so that the anolyte 1
It is decomposed by circulating together with 2 and can perform both so-called batch processing and continuous processing. The substances to be treated include those generated in the field of nuclear power and those in the general industrial field. In the field of nuclear power, dodecane, TBP (tributyl phosphate), decalin, C generated as waste containing radioactive materials
MPO (carbamoylmethylphosphine oxide), toluene,
Kerosene, pump oil, or scintillator cocktail can be mentioned, and the organic solvent contained in the scintillator cocktail includes xylene, decalin, Shersol A, terphenyl, triethylbenzene, and phenylcyclohexane. Examples in the general industrial field include cycloalkanes such as cyclohexane, ethers such as methyl ether, benzenes such as ethylbenzene, and higher alcohols excluding polyhydric alcohols.

【0008】請求項3に係る発明は、請求項1又は2記
載の発明であって、循環手段21が、液槽11の上方に
設けられた電動モータ21aと、隔壁16の中心に鉛直
方向に設けられ下端が隔壁16の底部に達し上端が電動
モータ21aのモータ軸に連結された回転軸21bと、
回転軸21bに固着され陽極12内部の陽極液17及び
供給部22から供給された被処理物質を遠心力により陽
極12を通過させて陽極12内部に戻るように循環させ
る回転翼21cとを有する電気化学セルである。電動モ
ータ21aと回転軸21bと回転翼21cからなる循環
手段21は、周囲に複数の孔が形成され内部に複数の翼
が設けられた回転体を設けたドラフト管からなる従来技
術における循環手段より簡易であり、この請求項3に係
る発明では、従来技術における電気化学セルに比較して
構造を単純にすることができる。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the circulating means 21 is arranged vertically between the electric motor 21a provided above the liquid tank 11 and the center of the partition wall 16. A rotating shaft 21b having a lower end reaching the bottom of the partition 16 and an upper end connected to the motor shaft of the electric motor 21a;
A rotating blade 21c fixed to the rotating shaft 21b and circulating the anolyte 17 inside the anode 12 and the substance supplied from the supply unit 22 through the anode 12 by centrifugal force and returning to the inside of the anode 12; It is a chemical cell. The circulating means 21 including the electric motor 21a, the rotating shaft 21b, and the rotating blades 21c is different from the circulating means in the related art including a draft tube provided with a rotating body having a plurality of holes formed therein and a plurality of blades provided therein. In the invention according to claim 3, the structure can be simplified as compared with the electrochemical cell in the related art.

【0009】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、陽極液17がオキソ酸と
電解酸化によって強力な酸化種として機能するレドック
ス種とを含み、陰極液18がオキソ酸を含み、被処理物
質が有機溶媒であって、陽極12と陰極13との間に電
位差を与えることによりレドックス種を酸化種として機
能させて有機溶媒を酸化分解するように構成された電気
化学セルである。この請求項4に係る「有機溶媒」と
は、有機溶媒単体の他に、被酸化性物質が溶解されたも
のも含む。溶解される被酸化性物質には、二酸化ウラ
ン、二酸化プルトニウム等の核燃料物質、工場の操業プ
ロセスで混入した金属、金属酸化物、又は固形有機物が
挙げられ、固形有機物には濾紙、キムワイプ、キムタオ
ル、マウス等の生物試料、活性炭等が含まれる。
The invention according to claim 4 is the invention according to claims 1 to 3
In the invention according to any one of the above, the anolyte 17 contains oxo acid and a redox species that functions as a strong oxidizing species by electrolytic oxidation, the catholyte 18 contains oxo acid, and the substance to be treated is an organic solvent. An electrochemical cell configured to cause a redox species to function as an oxidizing species by applying a potential difference between the anode 12 and the cathode 13 to oxidatively decompose an organic solvent. The “organic solvent” according to the fourth aspect includes, in addition to the organic solvent alone, a solvent in which an oxidizable substance is dissolved. The oxidizable substances to be dissolved include nuclear fuel substances such as uranium dioxide and plutonium dioxide, and metals, metal oxides, or solid organic substances mixed in the operation process of a factory. Solid organic substances include filter paper, Kimwipes, Kim towels, and the like. Biological samples such as mice, activated carbon and the like are included.

【0010】[0010]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて詳しく説明する。図1及び図2に示すように、
本発明の電気化学的セル10は円筒状の有底容器である
液槽11に陽極12と陰極13が設けられたものであ
り、液槽11には蓋板14により上部が閉じられる。蓋
板14には後述する陽極液17から生じるCO2を外部
に放散させる第1ガス孔14aと、後述する陰極液18
から生じるNOxをNOx処理系に通じさせる第2ガス孔
14bが形成される。蓋板14には有底円筒状の多孔性
隔壁16が液槽11と略同心状にその液槽11を仕切る
ように設けられる。この多孔性隔壁16の内側には陽極
液17が貯留される陽極室19が形成され、この多孔性
隔壁16の外側には陰極液18が貯留される陰極室20
が形成される。この多孔性隔壁16としては多孔質アル
ミナ、バイコールガラス、フッ素系樹脂膜(商品名;n
afion)等が例示される。
Embodiments of the present invention will now be described in detail with reference to the drawings. As shown in FIGS. 1 and 2,
The electrochemical cell 10 of the present invention is provided with an anode 12 and a cathode 13 in a liquid tank 11 which is a cylindrical bottomed container, and the liquid tank 11 is closed at its upper part by a lid plate 14. The cover plate 14 has a first gas hole 14a for dispersing CO 2 generated from an anolyte 17 described later to the outside, and a catholyte 18 described later.
A second gas hole 14b is formed to allow NOx generated from the gas to communicate with the NOx processing system. A cylindrical porous wall 16 having a bottom is provided on the cover plate 14 so as to partition the liquid tank 11 substantially concentrically with the liquid tank 11. An anode chamber 19 for storing an anolyte 17 is formed inside the porous partition 16, and a cathode chamber 20 for storing a catholyte 18 outside the porous partition 16.
Is formed. As the porous partition wall 16, porous alumina, Vycor glass, fluorine resin film (trade name: n
afion) and the like.

【0011】陽極液17は硫酸(H2SO4)又は硝酸
(HNO3)等のオキソ酸を主成分とし、1価の銀イオ
ン,2価のコバルトイオン又は3価のセリウムイオン等
の電解酸化によって強力な酸化種として機能するレドッ
クス種を含むものであり、陰極液18はオキソ酸のみか
ら構成される。この実施の形態における陽極液17は硝
酸と1価のAgイオンを含みものであり、陰極液18は
硝酸を含みAgイオンを含まないものである。陽極12
及び陰極13は白金により作られ、陽極12は円筒状に
かつ陽極液17が流通可能に形成される。この陽極12
は陽極室19内に隔壁16と同心状に設けられる。陰極
13は陽極12を包囲可能な円筒状に形成され、この陰
極13は陰極室20内に隔壁16を介してその陽極12
を包囲するように設けられる。この陽極12と陰極13
との間に電位差を与えることにより、この電気化学セル
10は陽極液17に含有されるレドックス種を酸化種と
して機能させるように構成される。なお、陰極12bは
オキソ酸に耐え得るものであればステンレス鋼その他の
鋼材であっても良い。
The anolyte 17 is mainly composed of an oxo acid such as sulfuric acid (H 2 SO 4 ) or nitric acid (HNO 3 ), and electrolytically oxidizes monovalent silver ions, divalent cobalt ions or trivalent cerium ions. And a catholyte 18 comprising only oxo acid. The anolyte 17 in this embodiment contains nitric acid and monovalent Ag ions, and the catholyte 18 contains nitric acid and does not contain Ag ions. Anode 12
The cathode 13 is made of platinum, and the anode 12 is formed in a cylindrical shape so that the anolyte 17 can flow therethrough. This anode 12
Is provided concentrically with the partition 16 in the anode chamber 19. The cathode 13 is formed in a cylindrical shape capable of surrounding the anode 12, and the cathode 13 is placed in a cathode chamber 20 through a partition 16.
. The anode 12 and the cathode 13
The electrochemical cell 10 is configured to allow the redox species contained in the anolyte 17 to function as an oxidizing species by providing a potential difference between the redox species and the oxidizing species. The cathode 12b may be stainless steel or another steel material as long as it can withstand oxoacid.

【0012】陽極12の内部にはこの陽極12内部の陽
極液17を陽極12を通過させて再び陽極12内部に戻
るように循環させる循環手段21が設けられる。この実
施の形態における循環手段21は、液槽11の上方に設
けられた電動モータ21aと、隔壁16の中心に鉛直に
設けられ下端が隔壁16の底部に達し上端が電動モータ
21aの回転軸に連結された回転軸21bと、この回転
軸21bの下部に固着された回転翼21cとを有する。
回転翼21cは陽極室19の中央部及び下部に相当する
回転軸21bに固着され、陽極室19の上部に相当する
回転軸21bには設けられていない。一方、液槽11上
部である蓋板14には被処理物質を隔壁16内に供給す
る供給部22が設けられ、電動モータ21aが駆動する
と回転翼21cが回転軸21bとともに回転し、回転翼
21cは陽極12内部の陽極液17及び供給部22から
供給された被処理物質を遠心力により陽極12を通過さ
せて陽極12の内部に戻るように循環させるように構成
される。
Inside the anode 12, a circulating means 21 for circulating the anolyte 17 inside the anode 12 so as to pass through the anode 12 and return to the inside of the anode 12 again is provided. The circulating means 21 in this embodiment includes an electric motor 21 a provided above the liquid tank 11, a vertically provided center at the center of the partition 16, a lower end reaching the bottom of the partition 16, and an upper end serving as a rotating shaft of the electric motor 21 a. It has a rotating shaft 21b connected thereto and a rotating wing 21c fixed to a lower portion of the rotating shaft 21b.
The rotating blade 21c is fixed to a rotating shaft 21b corresponding to the center and lower part of the anode chamber 19, and is not provided on the rotating shaft 21b corresponding to the upper part of the anode chamber 19. On the other hand, a supply unit 22 for supplying the substance to be treated into the partition 16 is provided on the lid plate 14 above the liquid tank 11, and when the electric motor 21a is driven, the rotary blade 21c rotates together with the rotary shaft 21b, and the rotary blade 21c Is configured to circulate the anolyte 17 inside the anode 12 and the substance to be processed supplied from the supply unit 22 so as to pass through the anode 12 by centrifugal force and return to the inside of the anode 12.

【0013】このように構成された電気化学セルにより
被処理物が有機溶媒の場合における酸化分解方法につい
て説明する。先ず、有機溶媒の酸化分解に際して隔壁1
6により仕切られた陽極室19に硝酸と1価のAgイオ
ンを含む陽極液17を貯留し、陰極室20に硝酸を含み
Agイオンを含まない陰極液18を貯留する。その後、
陽極12と陰極13との間に電位差を与え、陽極液17
を電解してその電解液に含有される1価のAgイオンを
2価のAgイオンに変える。その後、循環手段21の電
動モータ21aを駆動して回転軸21bとともに回転翼
21cを回転させ、被処理物質である有機溶媒を供給部
から陽極液17中に投入する。
An oxidative decomposition method in the case where an object to be treated is an organic solvent using the thus constructed electrochemical cell will be described. First, when oxidative decomposition of the organic solvent, the partition 1
An anolyte 17 containing nitric acid and monovalent Ag ions is stored in an anode chamber 19 partitioned by 6, and a catholyte 18 containing nitric acid and containing no Ag ions is stored in a cathode chamber 20. afterwards,
A potential difference is applied between the anode 12 and the cathode 13 to form an anolyte 17
To convert monovalent Ag ions contained in the electrolytic solution into divalent Ag ions. Thereafter, the electric motor 21a of the circulating means 21 is driven to rotate the rotary blade 21c together with the rotary shaft 21b, and the organic solvent as the substance to be treated is injected into the anolyte 17 from the supply unit.

【0014】回転翼21cは回転することにより陽極室
19の中央部及び下部に相当する陽極12内部の陽極液
17及び供給部22から供給された有機溶媒を、遠心力
により図1に矢印で示すように陽極12の内側から外側
に向って通過させる。陽極12を通過した陽極液17及
び有機溶媒は隔壁16に達し、その後上昇して陽極室1
9の上部から中央に戻り再び下降するように循環する。
電位差により陽極12を通過する際に変化した2価のA
gイオンは、陽極液17とともに循環する有機溶媒と混
合することによりこの有機溶媒を酸化分解する。この酸
化分解する量に応じて有機溶媒を供給部22から追加供
給する。有機溶媒がベンゼンである場合の分解反応を例
示すると、以下(1)の反応式で示すように分解され、
この分解時に発生するCO2は第1ガス孔14aから図
示しない排ガス系に向って排出される。
As the rotor 21c rotates, the anolyte 17 inside the anode 12 corresponding to the central part and lower part of the anode chamber 19 and the organic solvent supplied from the supply part 22 are indicated by arrows in FIG. 1 by centrifugal force. The anode 12 is passed from inside to outside. The anolyte solution 17 and the organic solvent that have passed through the anode 12 reach the partition 16, and then rise to rise in the anode chamber 1.
9 returns to the center from the upper part and circulates so as to descend again.
Divalent A changed when passing through anode 12 due to potential difference
The g ion oxidizes and decomposes the organic solvent by mixing with the organic solvent circulating with the anolyte 17. An organic solvent is additionally supplied from the supply unit 22 according to the amount of the oxidative decomposition. As an example of the decomposition reaction when the organic solvent is benzene, the decomposition is performed as shown by the following reaction formula (1).
The CO 2 generated during this decomposition is discharged from the first gas hole 14a toward an exhaust gas system (not shown).

【0015】 C66+42H2O+30Ag2+→6CO2↑+30H3++30Ag+…(1) なお、上述した実施の形態では、回転翼21cを陽極室
19の中央部及び下部に相当する回転軸21bに固着
し、回転翼21cを回転させて陽極液等を陽極室19の
中央部及び下部から外方に移動させ隔壁16に沿って上
昇させ陽極室19の上部から中央に戻り再び下降するよ
うに循環させたが、回転翼21cを陽極室19の中央部
及び上部に相当する回転軸21bに固着し、回転翼21
cを回転させて陽極液等を陽極室19の中央部及び上部
から外方に移動させ隔壁16に沿って下昇させ陽極室1
9の下部から中央に戻り再び上降するように循環させて
もよい。
[0015] C 6 H 6 + 42H 2 O + 30Ag 2+ → 6CO 2 ↑ + 30H 3 0 + + 30Ag + ... (1) In the embodiment described above, corresponding rotor blades 21c in the central portion and the lower portion of the anode chamber 19 The anolyte and the like are fixed to the rotating shaft 21b, and the wings 21c are rotated to move the anolyte and the like outward from the central portion and the lower portion of the anode chamber 19, rise along the partition wall 16, return to the center from the upper portion of the anode chamber 19, and descend again. However, the rotating blades 21c are fixed to the rotating shaft 21b corresponding to the central portion and the upper portion of the anode chamber 19, and the rotating blades 21c are fixed.
c to rotate the anolyte and the like outward from the central part and the upper part of the anode chamber 19, and move down along the partition 16 to form the anode chamber 1.
It may be circulated so that it returns to the center from the lower part of 9 and goes up and down again.

【0016】[0016]

【発明の効果】以上述べたように、本発明によれば、陽
極室を内側に陰極室を外側にそれぞれ形成するように液
槽を仕切る有底円筒状の多孔性隔壁と、陽極室内に設け
られ陽極液が流通可能な円筒状の陽極と、陰極室内に隔
壁を介して陽極を包囲するように設けられた円筒状の陰
極とを備えたので、陽極のそれぞれの部分と陰極との距
離を略等しくすることができ、電極表面における電流密
度を均一にすることができ、酸化種の電解生成効率を下
げることなく比較的大きな電流を流すことができる。ま
た、陽極を通過させて陽極液を循環させる循環手段を備
えたので、陽極で変化したイオンを陽極を通過後直ちに
陽極液に含まれる被処理物質の分解に直ちに寄与させる
ことができ、分解速度を従来より速めることができる。
また、被処理物質を隔壁内に供給する供給部を設けれ
ば、被処理物質のいわゆるバッチ処理、及び連続処理の
双方を行うことができ、従来技術における電気化学セル
に比較して構造を単純にすることができる。
As described above, according to the present invention, a cylindrical bottomed porous partition partitioning a liquid tank so that an anode chamber is formed inside and a cathode chamber is formed outside, respectively, is provided in the anode chamber. And a cylindrical anode through which the anolyte can flow, and a cylindrical cathode provided so as to surround the anode through a partition in the cathode chamber, so that the distance between each part of the anode and the cathode is reduced. The current density can be made substantially equal, the current density on the electrode surface can be made uniform, and a relatively large current can flow without lowering the efficiency of electrolytic generation of oxidizing species. In addition, since the circulation means for circulating the anolyte by passing through the anode is provided, the ions changed at the anode can immediately contribute to the decomposition of the substance to be treated contained in the anolyte immediately after passing through the anode, and the decomposition rate can be increased. Can be faster than before.
In addition, if a supply unit for supplying the substance to be treated into the partition is provided, both the so-called batch processing and the continuous processing of the substance to be treated can be performed, and the structure is simpler than the electrochemical cell in the related art. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学セルの構成を示す縦断面図。FIG. 1 is a longitudinal sectional view showing a configuration of an electrochemical cell of the present invention.

【図2】図1のA−A線断面図。FIG. 2 is a sectional view taken along line AA of FIG. 1;

【符号の説明】[Explanation of symbols]

11 液槽 12 陽極 13 陰極 16 多孔性隔壁 17 陽極液 18 陰極液 19 陽極室 20 陰極室 21 循環手段 21a 電動モータ 21b 回転軸 21c 回転翼 22 供給部 DESCRIPTION OF SYMBOLS 11 Liquid tank 12 Anode 13 Cathode 16 Porous partition wall 17 Anolyte 18 Catholyte 19 Anode chamber 20 Cathode chamber 21 Circulation means 21a Electric motor 21b Rotary shaft 21c Rotor blade 22 Supply part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K021 AB25 BA04 BA06 BA17 BC03 CA10 DB01 DB05 DB40 DC11 DC15  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K021 AB25 BA04 BA06 BA17 BC03 CA10 DB01 DB05 DB40 DC11 DC15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陽極液(17)が貯留される陽極室(19)を内
側にかつ陰極液(18)が貯留される陰極室(20)を外側にそ
れぞれ形成するように液槽(11)を仕切る有底円筒状の多
孔性隔壁(16)と、 前記陽極室(19)内に設けられ前記陽極液(17)が流通可能
な円筒状の陽極(12)と、 前記陰極室(20)内に前記隔壁(16)を介して前記陽極(12)
を包囲するように設けられた円筒状の陰極(13)と、 前記陽極(12)内に設けられ前記陽極(12)内部の陽極液(1
7)を前記陽極(12)を通過させて前記陽極(12)内部に戻る
ように循環させる循環手段(21)とを備えた電気化学セ
ル。
A liquid tank (11) so that an anode chamber (19) storing an anolyte (17) is formed inside and a cathode chamber (20) storing a catholyte (18) is formed outside. A cylindrical porous partition (16) having a bottom that partitions the anode chamber (19), a cylindrical anode (12) provided in the anode chamber (19), and through which the anolyte (17) can flow, and the cathode chamber (20) The anode (12) through the partition (16) in
A cylindrical cathode (13) provided so as to surround the anolyte (1) provided inside the anode (12) and provided inside the anode (12).
A circulating means (21) for circulating 7) back through the anode (12) and back into the anode (12).
【請求項2】 液槽(11)上部に被処理物質を隔壁(16)内
に供給する供給部(22)が設けられた請求項1記載の電気
化学セル。
2. The electrochemical cell according to claim 1, further comprising a supply section (22) for supplying the substance to be treated into the partition (16) above the liquid tank (11).
【請求項3】 循環手段(21)が、液槽(11)の上方に設け
られた電動モータ(21a)と、隔壁(16)の中心に鉛直方向
に設けられ下端が前記隔壁(16)の底部に達し上端が前記
電動モータ(21a)のモータ軸に連結された回転軸(21b)
と、前記回転軸(21b)に固着され陽極(12)内部の陽極液
(17)及び供給部(22)から供給された被処理物質を遠心力
により前記陽極(12)を通過させて前記陽極(12)内部に戻
るように循環させる回転翼(21c)とを有する請求項1又
は2記載の電気化学セル。
3. A circulating means (21) comprising: an electric motor (21a) provided above the liquid tank (11); and a circulating means (21) provided vertically in the center of the partition (16) and a lower end of the partition (16). A rotating shaft (21b) reaching the bottom and having an upper end connected to the motor shaft of the electric motor (21a)
And the anolyte fixed to the rotating shaft (21b) and inside the anode (12).
(17) and a rotating blade (21c) for circulating the substance to be processed supplied from the supply unit (22) through the anode (12) by centrifugal force and returning to the inside of the anode (12). Item 3. The electrochemical cell according to Item 1 or 2.
【請求項4】 陽極液(17)がオキソ酸と電解酸化によっ
て強力な酸化種として機能するレドックス種とを含み、
陰極液(18)がオキソ酸を含み、被処理物質が有機溶媒で
あって、陽極(12)と陰極(13)との間に電位差を与えるこ
とにより前記レドックス種を酸化種として機能させて前
記有機溶媒を酸化分解するように構成された請求項1な
いし3いずれか記載の電気化学セル。
4. An anolyte (17) comprising oxo acid and a redox species which functions as a strong oxidizing species by electrolytic oxidation,
The catholyte (18) contains oxo acid, the substance to be treated is an organic solvent, and the redox species functions as an oxidizing species by giving a potential difference between the anode (12) and the cathode (13). 4. The electrochemical cell according to claim 1, wherein the electrochemical cell is configured to oxidatively decompose an organic solvent.
JP11169441A 1999-06-16 1999-06-16 Electrochemical cell Withdrawn JP2000355785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11169441A JP2000355785A (en) 1999-06-16 1999-06-16 Electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11169441A JP2000355785A (en) 1999-06-16 1999-06-16 Electrochemical cell

Publications (1)

Publication Number Publication Date
JP2000355785A true JP2000355785A (en) 2000-12-26

Family

ID=15886675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11169441A Withdrawn JP2000355785A (en) 1999-06-16 1999-06-16 Electrochemical cell

Country Status (1)

Country Link
JP (1) JP2000355785A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137528A (en) * 2002-10-16 2004-05-13 Naoki Nomura Device for generating gas by electrolysis
JP2007508454A (en) * 2003-10-14 2007-04-05 ビールバウマー,ハンス−ペーター Energy converter
JP2016023362A (en) * 2014-07-24 2016-02-08 中国電力株式会社 Hydrogen-containing liquid generator
CN107254689A (en) * 2012-03-29 2017-10-17 卡勒拉公司 The electrochemical hydrogen oxide system and method aoxidized using metal
US10287223B2 (en) 2013-07-31 2019-05-14 Calera Corporation Systems and methods for separation and purification of products
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide
US10844496B2 (en) 2015-10-28 2020-11-24 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137528A (en) * 2002-10-16 2004-05-13 Naoki Nomura Device for generating gas by electrolysis
JP2007508454A (en) * 2003-10-14 2007-04-05 ビールバウマー,ハンス−ペーター Energy converter
CN107254689A (en) * 2012-03-29 2017-10-17 卡勒拉公司 The electrochemical hydrogen oxide system and method aoxidized using metal
US10287223B2 (en) 2013-07-31 2019-05-14 Calera Corporation Systems and methods for separation and purification of products
JP2016023362A (en) * 2014-07-24 2016-02-08 中国電力株式会社 Hydrogen-containing liquid generator
US10844496B2 (en) 2015-10-28 2020-11-24 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide

Similar Documents

Publication Publication Date Title
US7387719B2 (en) Mediated electrochemical oxidation of biological waste materials
US7531708B2 (en) Mediated electrochemical oxidation for decontamination
US7531710B2 (en) Mediated electrochemical oxidation of inorganic materials
AU2002258953A1 (en) Mediated electrochemical oxidation of biological waste materials
US20050139486A1 (en) Mediated electrochemical oxidation of halogenated hydrocarbon waste materials
WO2003095116A2 (en) Mediated electrochemical oxidation of organic waste materials
WO2003091165A1 (en) Mediated electrochemical oxidation process used as a hydrogen fuel generator
CN104112485B (en) A kind of device of continuous destruction Spent Radioactive organic solvent
Pollet et al. Sonoelectrochemical recovery of silver from photographic processing solutions
JP2000355785A (en) Electrochemical cell
CN109970156B (en) CuO modified sepiolite composite material and preparation method and application method thereof
US20050103642A1 (en) Mediated electrochemical oxidation of destruction of sharps
US7531080B2 (en) Mediated electrochemical oxidation used for sterilization/disinfection
JP3695828B2 (en) Electrochemical oxidation of Am (III) to Am (VI) useful for separating americium from spent nuclear fuel reprocessing solutions
US4869794A (en) Process for eliminating the chloride ions present in contaminated solid wastes, such as incineration ashes contaminated by actinides
JP2000355784A (en) Oxidation decomposition apparatus of organic solvent and oxidation decomposition method therefor
GB2225340A (en) Circulation of electrolyte in an electrochemical cell, using Taylor vortices
JP2004117149A (en) Method and device for electrolytic decontamination for waste material from reprocessing facility
JPS60250300A (en) Method and device for treating solution for decontamination having organic acid
Sini et al. Destruction of soluble organics generated during the dissolution of sintered uranium carbide by mediated electrochemical oxidation process
JP2001179259A (en) Electrochemical cell and method for oxidative decomposition treatment of organic waste using the same
JP4146394B2 (en) Water treatment apparatus and water treatment method
JP3080596B2 (en) Decomposition method of CMPO
Ganesh et al. Electrolytic and ozone aided destruction of oxalate ions in plutonium oxalate supernatant of the PUREX process: A comparative study
Gutiérrez-Hernández et al. Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905