EP1684676A1 - Mit sensorik versehene fussprothese - Google Patents

Mit sensorik versehene fussprothese

Info

Publication number
EP1684676A1
EP1684676A1 EP03776700A EP03776700A EP1684676A1 EP 1684676 A1 EP1684676 A1 EP 1684676A1 EP 03776700 A EP03776700 A EP 03776700A EP 03776700 A EP03776700 A EP 03776700A EP 1684676 A1 EP1684676 A1 EP 1684676A1
Authority
EP
European Patent Office
Prior art keywords
prosthetic foot
instrumented prosthetic
sensors
foot according
instrumented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03776700A
Other languages
English (en)
French (fr)
Inventor
Stéphane BEDARD
Pierre-Olivier Roy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VICTHOM LABORATORY INC.
Original Assignee
Victhom Human Bionics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victhom Human Bionics Inc filed Critical Victhom Human Bionics Inc
Publication of EP1684676A1 publication Critical patent/EP1684676A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2/6607Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/64Knee joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2/72Bioelectric control, e.g. myoelectric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5003Prostheses not implantable in the body having damping means, e.g. shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5007Prostheses not implantable in the body having elastic means different from springs, e.g. including an elastomeric insert
    • A61F2002/5009Prostheses not implantable in the body having elastic means different from springs, e.g. including an elastomeric insert having two or more elastomeric blocks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6642Heels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6657Feet having a plate-like or strip-like spring element, e.g. an energy-storing cantilever spring keel
    • A61F2002/6671C-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6657Feet having a plate-like or strip-like spring element, e.g. an energy-storing cantilever spring keel
    • A61F2002/6685S-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/705Electromagnetic data transfer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7625Measuring means for measuring angular position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7635Measuring means for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/764Measuring means for measuring acceleration

Definitions

  • an instrumented prosthetic foot for use with an actuated leg prosthesis controlled by a controller, the instrumented prosthetic foot comprising a connector to connect the instrumented prosthetic foot to the leg prosthesis, an ankle structure connected to the connector, a ground engaging member connected to the ankle, at least one sensor for detecting changes in weight distribution along the foot, and an interface for transmitting signals from the sensor to the controller.
  • FIG. 1 shows the lower body of an individual provided with a prosthesis and an instrumented prosthetic foot on one side and having a healthy leg on the other side.
  • FIG. 2 is a block diagram showing a control system for a prosthesis having an actuating mechanism.
  • FIG. 3 is a perspective view, from the front and slightly above, of a instrumented prosthetic foot.
  • FIG. 4 is an exploded perspective view of the instrumented prosthetic foot of FIG. 3.
  • FIG. 5 is a perspective view, from the front and slightly above, of an alternative embodiment of the instrumented prosthetic foot of FIG. 3.
  • FIG. 6 is an exploded perspective view of the instrumented prosthetic foot of FIG. 5.
  • FIG. 7 is a perspective view, from the front and slightly above, of another alternative embodiment of the instrumented prosthetic foot of FIG. 3
  • FIG. 8 is an exploded perspective view of the instrumented prosthetic foot of FIG. 7.
  • FIG. 9 is schematic view of forces exerted on a foot.
  • FIG. 10 is a perspective view, from the front and slightly above, of a further still alternative embodiment of the instrumented prosthetic foot of FIG. 3
  • FIG. 11 is an exploded perspective view of the instrumented prosthetic foot of FIG. 10.
  • FIG. 12 is a perspective view, from the front and slightly above, of a yet further still alternative embodiment of the instrumented prosthetic foot of FIG. 3
  • FIG. 13 is an exploded perspective view of the instrumented prosthetic foot of FIG. 12.
  • FIG. 14 is a perspective view, from the front and slightly above, of a further alternative embodiment of the instrumented prosthetic foot of FIG. 3
  • FIG. 15 is an exploded perspective view of the instrumented prosthetic foot of FIG. 14.
  • the appended figures show a instrumented prosthetic foot (20) having sensors (22A, 22B) for use, in cooperation with possible additional sensors (24A, 24B, 26), with a control system (100) for controlling a prosthesis (14) having an actuating mechanism (16). It should be understood that the present invention is not limited to the illustrated implementation since various changes and modifications may be effected herein without departing from the scope of the appended claims.
  • an individual (10) has a pair of legs (26) and (28), one of which, (26), is amputated above the knee.
  • a prosthesis (14) is attached to the leg (26) and includes an actuating mechanism (16), which may be either passive or active.
  • An instrumented prosthetic foot (20) is attached to the prosthesis (14) and includes sensors (22A, 22B). Additional sensors (24A, 24B) are located on the healthy foot and additional sensors (26) located on the individual (10) and/or the prosthesis (14).
  • a passive actuating mechanism may be generally defined as an electro-mechanical component that only absorbs mechanical energy in order to modify dynamics of mechanical joints of the prosthesis, while an active actuating mechanism may be generally defined as an electro-mechanical component that absorbs and supplies mechanical energy in order to set dynamics of mechanical joints of the prosthesis.
  • An example of a passive actuating mechanism is described in U.S. patent application No. 09/767,367, filed January 22, 2001 , entitled “ELECTRONICALLY CONTROLLED PROSTHETIC KNEE”.
  • Examples of active actuating mechanisms are described in U.S. patent application No. 10/463,495 filed June 17, 2003, entitled “ACTUATED PROSTHESIS FOR ABOVE-KNEE AMPUTEES", by Stephane Bedard et al., the entire disclosure of which is hereby incorporated by reference herein.
  • the prosthesis (14) is controlled, as shown schematically in FIG. 2, by a basic control system (100) comprising sensors (22A, 22B, 24A, 24B, 26), connected through an interface (30) to a controller (40).
  • the controller (40) provides signals to an actuating mechanism (16) in the prosthesis (14) , such as shown in FIG. 1.
  • the purpose of the control system (100) is to provide the required signals for controlling the actuating mechanism (16). To do so, the control system (100) is interfaced with the amputee (10) using sensors (22A, 22B, 24A, 24B, 26) to ensure proper coordination between the amputee (10) and the movements of the prosthesis (14).
  • the sensors (22A, 22B, 24A, 24B, 26) capture information, in real time, about the dynamics of the amputee's movement and provide that information to the controller (40) via the interface (30).
  • the controller (40) uses the information to determine the resistance to be applied to a joint, in the case of a passive actuating mechanism, or the joint trajectories and the required angular force or torque that must be applied by a joint, in the case of an active actuating mechanism, in order to provide coordinated movements.
  • the sensors (22A, 22B, 24A, 24B, 26) may include myoelectric sensors, neuro- sensors, kinematic sensors, kinetic sensors, strain gauges or plantar pressure sensors.
  • Myoelectric sensors are electrodes used to measure the internal or the external myoelectrical activity of skeletal muscles.
  • Neuro-sensors are electrodes used to measure the summation of one or more action potentials of peripheral nerves.
  • Kinematic sensors are used to measure the position of articulated joints, the mobility speed or acceleration of lower extremities.
  • Kinetic sensors are used to measure angular forces at articulated joints or reaction forces of lower extremities.
  • Strain gages are used to measure the strain forces at a specific underfoot area.
  • Plantar pressure sensors are used to measure the vertical plantar pressure of a specific underfoot area.
  • sensors which provide various information about dynamics of human locomotion may be used.
  • sensors 22A, 22B, 24A, 24B, 26
  • sensors 22A, 22B, 24A, 24B, 26
  • the sensors (22A, 22B, ) may comprise localized plantar pressure sensors located at spaced locations on the prosthetic foot (20) to measure the vertical plantar pressure of a specific underfoot area.
  • the plantar pressure sensors (24A, 24B) located on the side of the healthy foot may be provided at spaced locations in a custom-made insole, preferably in the form of a standard orthopaedic insole, that is modified to embed the two sensors (24A, 24B) for the measurement of two localized plantar pressures.
  • the sensors (22A, 22B, 24A, 24B) are operable to measure the weight transfer along the foot as the individual moves which may be combined with other sensors (26) such as kinematic sensors to measure the angular speed of body segments of the lower extremities and kinematic sensors to measure the angle of the prosthesis (14) knee joint.
  • Each sensor (22A, 22B, 24A, 24B) may comprise a thin Force-Sensing Resistor (FSR) polymer cell directly connected to the interface (30) of the control system
  • FSR Force-Sensing Resistor
  • the FSR cell has a decreasing electrical resistance in response to an increasing force applied perpendicularly to the surface thereof.
  • Each cell outputs a time variable electrical signal for which the intensity is proportional to the total vertical plantar pressure over its surface area.
  • the size and position of the plantar pressure sensors (22A, 22B, 24A, 24B) may be defined in accordance with the stability and the richness (intensity) of the localized plantar pressure signals provided by certain underfoot areas during locomotion. For example, it was found by experimentation that the heel and the toe regions are two regions of the foot sole where the Plantar Pressure Maximum Variation (PPMV) may be considered as providing a signal that is both stable and rich in information.
  • PPMV Plantar Pressure Maximum Variation
  • the controller (40) may use the data signals from the four localized plantar pressure sensors (22A, 22B, 24A, 24B), as well as the information gathered from the data signals of the other sensors (26) such as kinematic sensors, in order to decompose the locomotion of the individual (10) into a finite number of states, and generate the appropriate control signals for controlling the actuating mechanism (16) according to the locomotion.
  • the controller (40) is not limited to the use of the preceding data signals.
  • An example of a controller (40) and control system (100) using sensors comprising plantar pressure sensors as well as kinematic sensors is described in U.S.
  • the instrumented prosthetic foot (20) includes a foot plate (53), forming an elongated body, with a connector (51) at one end, a toe plate (55A) and a heel plate (55B) that is cantilevered from the foot plate (53).
  • a foot plate 53
  • a connector 511
  • a toe plate 55A
  • a heel plate 55B
  • Pressure sensors 22A, 22B
  • Pressure sensors are located at longitudinally spaced locations on the underside of the foot plate (53) and heel plate (55) respectively.
  • the sensors (22A, 22B) are covered by rigid plates (52A, 52B) and resilient pads (54A, 54B).
  • the pressure sensors (22A, 22B) are located so as to be responsive to loads imposed on the instrumented prosthetic foot (20) at the regions corresponding to the toe area and the heel area respectively.
  • the pads (54A, 54B) wrap up the rigid plates (52A, 52B) and the sensors (22A, 22B), forming a ground engaging member, in order to optimize the contact between the instrumented prosthetic foot (20) and the ground.
  • the pads (54A, 54B) may be made of 40A durometer polyurethane. Of course, other type of material may be used as well.
  • the force applied to the heel plate (55B) is measured by the sensor (22B) and a corresponding signal forwarded to the controller (40).
  • the force applied to the toe plate (55A) is also measured by the sensor (22A) and the relative loading between the two locations is measured.
  • the force applied to the toe area increases and that at the heel decreases to provide a pair of signals from which the disposition of the leg may be determined and the appropriate control provided to the actuator (16).
  • the instrumented prosthetic foot (20) includes connector (61), foot plate (63), toe plate (64A) and heel plate (64B), such as provided by, for example, a Vari-Flex® prosthetic foot from Ossur.
  • Pressure sensors (22A, 22B) are located between the foot plate (63) and rigid plates (62A, 62B). The pressure sensors (22A, 22B) are located so as to be responsive to load imposed on the instrumented prosthetic foot (20) at the regions corresponding to the toe area and the heel area respectively.
  • pressure sensor (22A) is sandwiched between a pair of rigid plates (62A), which in turn are positioned between the heel plate (64B) and the foot plate (63).
  • Pressure sensor (22B) is sandwiched between a pair of rigid plates (62B), which in turn are positioned between the foot plate (63) and the connector (61 ).
  • FIGS 7 and 8 Another alternative embodiment of the instrumented prosthetic foot (20) is shown in FIGS 7 and 8.
  • the instrumented prosthetic foot (20) includes connector (71), top foot plate (75), foam cushion core (73) and bottom foot plate (74), such as provided by, for example, a LP Talux® prosthetic foot from Ossur.
  • Pressure sensors (22A, 22B) are sandwiched between pairs of rigid plates (72A, 72B). The pressure sensors (22A, 22B) are located so as to be responsive to load imposed on the instrumented prosthetic foot (20) at the regions corresponding to the toe area and the heel area respectively.
  • pressure sensor (22A) is sandwiched between a pair of rigid plates (72A), which in turn are positioned within gap (76A), which is located between a bottom foot plate (74) and a foam cushion core (73).
  • Pressure sensor (22B) is sandwiched between a pair of rigid plates (72B), which in turn are positioned within gap (76B), which is located within the foam cushion core (73).
  • sensors (22A, 22B) may not be restricted to being positioned directly at the toe and heel areas, the equivalent information may be obtained by measuring the equivalent torque at the ankle and the axial force at the connector of the instrumented prosthetic foot (20).
  • F_toe and F_heel may be defined in terms of the torque measured at the ankle, M_ankle_meas, and the force measured at the connector, F_conn_meas, using the following equations:
  • the instrumented prosthetic foot (20) includes connector (81 ), foot plate (83), toe plate (84A) and heel plate (84B), such as provided by, for example, a Vari-Flex® prosthetic foot from Ossur, and load cells (22A, 22B).
  • Load cells (22A, 22B) are located below connector (91), load cell (22A) being slightly biased towards the toe area of the foot and load cell (22B) being slightly biased towards the heel area.
  • F_22B is the force measured at sensor 22B
  • F_22A is the force measured at sensor 22A; l_22B is the distance between the center of the connector (81 ) and the center of sensor 22B; l_22A is the distance between the center of the connector (81 ) and the center of sensor 22A.
  • the force (or pressure) at the toe and heel areas, F_toe and F_heel respectively was obtained either by positioning pressure sensors (22A, 22B) directly at those areas or by positioning pressure sensors or load cells (22A, 22B) in other areas and obtaining the equivalent information by computing the equivalent torque at the ankle and the axial force at the connector.
  • Other types of sensors may also be used to obtain the equivalent torque at the ankle and the axial force at the connector.
  • FIGS 12 and 13 The instrumented prosthetic foot (20) includes connector (91 ), mounted on pivoting ankle (93).
  • Bumpers (92A, 92B) are positioned between the pivoting ankle (93) and rocker plate (95) located on a foot plate (94).
  • the pivoting ankle (93) is connected to the rocker plate (95) by a pivot pin (96).
  • Such an arrangement is provided by, for example, an Elation® prosthetic foot from Ossur.
  • a load cell (22A) and an optical encoder (22B). are incorporated into the foot (20) to provide measurement of the distribution of forces along the foot (20).
  • Load cell (22A) is positioned between connector (91 ) and pivoting ankle (93).
  • Optical encoder (22B) comprises reader (221) and disk (223).
  • Equation 3 and Equation 4 may be used, for example by controller (40), to compute the equivalent pressures at the toe and heel areas by defining the equivalent torque at the ankle and the axial force at connector (91) as follows:
  • F_22A is the force measured at sensor 22A
  • R_ankle_meas is the rotation measurement of pivoting an kle (93) about pivot pin (96) as measured by optical encoder (22B);
  • R_const is a constant associated with the resistance of bumpers (92A, 92B) to compression, which constant varies depending in the material used.
  • FIGS 14 and 15 A yet further alternative embodiment of the instrumented prosthetic foot (20) is shown in FIGS 14 and 15.
  • the instrumented prosthetic foot (20) includes connector (101 ), mounted on pivoting ankle (103). Bumpers (102A, 1O2B) are positioned between the pivoting ankle (103) and rocker plate (105) located on a foot plate (104). The pivoting ankle (103) is connected to the rocker plate (105) by a pivot pin (106).
  • Such an arrangement is provided by, for example, an Elation® prosthetic foot from Ossur.
  • Pressure sensors (22A, 22B) and load cell (22C) are incorporated into the foot (20) to provide measurement of the distribution of forces along the foot (20).
  • Pressure sensor (22A) is positioned between rocker plate (85) and bumper (82A) while pressure sensor (22B) is positioned between rocker plate (85) and bumper (82B).
  • a load cell (22C) is positioned between connector (91) and pivoting ankle (93).
  • Load cell (22C) is required to compute the axial force at connector (101 ) since when there is no torque at the ankle, i.e. the wearer of the prosthesis is standing still, the axial force is being exerted in its entirety onto pivot pin (96).
  • the sensors (22A, 22B) may be directly connected to interface (30) of control system (100) or indirectly using an intermediary system (not shown), for instance a wireless emitter.
  • an intermediary system not shown
  • other types of communication link technologies may be used, such as, for example, optical.
  • non-articulated or articulated prosthetic foot may be used as well as long as the selected prosthetic foot provides approximately the same dynamical response as the ones mentioned here above. Nevertheless, an articulated foot offers the best performances.
  • the instrumented prosthetic foot (20) may further have an exposed metal or composite structure or it may have a cosmetic covering that gives it the appearance of a human ankle and foot.
  • the present invention is not limited to its use with the mechanical configuration illustrated in FIG. 1 or the control system (100) illustrated in FIG. 2. It may be used with a leg prosthesis having more than one joint. For instance, it may be used with a prosthesis having an ankle joint, a metatarsophalangeal joint or a hip joint in addition to a knee joint. Moreover, instead of a conventional socket a osseo-integrated devices could also be used, ensuring a direct attachment between the mechanical component of the prosthesis and the amputee skeleton. Other kinds of prostheses may be used as well.

Landscapes

  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Prostheses (AREA)
EP03776700A 2003-11-18 2003-11-18 Mit sensorik versehene fussprothese Withdrawn EP1684676A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2003/001802 WO2005048887A1 (en) 2003-11-18 2003-11-18 Instrumented prosthetic foot

Publications (1)

Publication Number Publication Date
EP1684676A1 true EP1684676A1 (de) 2006-08-02

Family

ID=34596800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03776700A Withdrawn EP1684676A1 (de) 2003-11-18 2003-11-18 Mit sensorik versehene fussprothese

Country Status (7)

Country Link
EP (1) EP1684676A1 (de)
JP (1) JP4320017B2 (de)
KR (1) KR101007946B1 (de)
CN (1) CN1878517B (de)
AU (2) AU2003286026B2 (de)
CA (1) CA2543061C (de)
WO (1) WO2005048887A1 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003236750B2 (en) 2002-08-22 2006-08-10 Victhom Human Bionics Inc. Actuated leg prosthesis for above-knee amputees
US8007544B2 (en) 2003-08-15 2011-08-30 Ossur Hf Low profile prosthetic foot
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US20050107889A1 (en) 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
US8057550B2 (en) 2004-02-12 2011-11-15 össur hf. Transfemoral prosthetic systems and methods for operating the same
US7637959B2 (en) 2004-02-12 2009-12-29 össur hf Systems and methods for adjusting the angle of a prosthetic ankle based on a measured surface angle
US7347877B2 (en) 2004-05-28 2008-03-25 össur hf Foot prosthesis with resilient multi-axial ankle
WO2006069264A1 (en) 2004-12-22 2006-06-29 össur hf Systems and methods for processing limb motion
US8048007B2 (en) 2005-02-02 2011-11-01 össur hf Prosthetic and orthotic systems usable for rehabilitation
SE528516C2 (sv) 2005-04-19 2006-12-05 Lisa Gramnaes Kombinerat aktivt och passivt benprotessystem samt en metod för att utföra en rörelsecykel med ett sådant system
DE102005031185A1 (de) 2005-07-01 2007-01-04 Otto Bock Healthcare Ip Gmbh & Co. Kg Orthopädietechnisches Hilfsmittel, insbesondere Prothese für eine Extremität
US8852292B2 (en) 2005-09-01 2014-10-07 Ossur Hf System and method for determining terrain transitions
DE102006004132B4 (de) * 2006-01-27 2019-04-25 Ottobock Se & Co. Kgaa Künstlicher Fuß und Verfahren zur Steuerung der Bewegung eines künstlichen Fußes
CA2676067C (en) * 2007-01-19 2017-06-20 Victhom Human Bionics, Inc. Reactive layer control system for prosthetic and orthotic devices
CN101317792B (zh) * 2008-07-10 2010-06-09 王雨函 假脚嵌入装置
US9554922B2 (en) * 2008-09-04 2017-01-31 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
DE102008060177A1 (de) 2008-12-02 2010-06-17 Otto Bock Healthcare Gmbh Künstlicher Fuß
CN101961271B (zh) * 2010-09-13 2012-03-21 北京大学 一种基于动力膝下假肢的阻抗控制方法
US8915968B2 (en) 2010-09-29 2014-12-23 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US8961618B2 (en) 2011-12-29 2015-02-24 össur hf Prosthetic foot with resilient heel
KR101476889B1 (ko) * 2012-10-05 2014-12-29 인하대학교 산학협력단 보행 보조 장치 및 그 구동 방법
CN105228559B (zh) 2013-02-26 2018-01-09 奥苏尔公司 具有增强的稳定性和弹性能恢复的假足
CA2866027A1 (en) 2013-10-03 2015-04-03 Farsad Kiani Controller unit for a functional electrical stimulation (fes) orthotic system
CA2866028A1 (en) 2013-10-03 2015-04-03 Farsad Kiani Electrical stimulation for a functional electrical stimulation system
US9375570B2 (en) 2013-10-03 2016-06-28 Ensilver Canada Sensor unit for a functional electrical stimulation (FES) orthotic system
WO2016004090A1 (en) 2014-06-30 2016-01-07 össur hf Prosthetic feet and foot covers
US9364657B2 (en) 2014-10-31 2016-06-14 Ensilver Canada Cuff unit for a functional electrical stimulation system
EP3954341B1 (de) 2016-12-01 2023-08-23 Össur Iceland EHF Fussprothese mit einstellbarer fersenhöhe
US11446164B1 (en) 2017-09-15 2022-09-20 Össur Iceland Ehf Variable stiffness mechanisms
US10980648B1 (en) 2017-09-15 2021-04-20 Össur Iceland Ehf Variable stiffness mechanism and limb support device incorporating the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4387472A (en) * 1980-10-02 1983-06-14 Medical Center Prosthetics, Inc. Torque absorber with biofeedback
CN2043873U (zh) * 1988-11-21 1989-09-06 张红军 单侧机动假腿
JPH05123348A (ja) * 1991-11-09 1993-05-21 Imasen Gijutsu Kenkyusho:Kk 義足の足部
US6500210B1 (en) * 1992-09-08 2002-12-31 Seattle Systems, Inc. System and method for providing a sense of feel in a prosthetic or sensory impaired limb
US5443528A (en) * 1992-11-17 1995-08-22 Allen; Scott Coil spring prosthetic foot
DE19521464C2 (de) * 1995-06-13 1999-08-19 Leuven K U Res & Dev Verfahren zur Steuerung der Kniebremse eines Prothesen-Kniegelenkes sowie Oberschenkelprothese
DE19754690A1 (de) * 1997-12-10 1999-07-01 Biedermann Motech Gmbh Beinprothese mit einem künstlichen Kniegelenk mit einer Regeleinrichtung
DE19859931A1 (de) * 1998-12-24 2000-07-06 Biedermann Motech Gmbh Beinprothese mit einem künstlichen Kniegelenk und Verfahren zur Steuerung einer Beinprothese
US6875241B2 (en) * 2000-06-30 2005-04-05 Roland J. Christensen, As Operating Manager Of Rjc Development Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Variable resistance cell
KR100401457B1 (ko) * 2000-11-27 2003-10-10 산재의료관리원 다기능 인공발
DE10139333A1 (de) * 2001-08-10 2003-03-06 Biedermann Motech Gmbh Sensoreinrichtung, insbesondere für eine Prothese und Prothese mit einer solchen Sensoreinrichtung
AU2003236750B2 (en) * 2002-08-22 2006-08-10 Victhom Human Bionics Inc. Actuated leg prosthesis for above-knee amputees

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2005048887A1 *

Also Published As

Publication number Publication date
JP2007511239A (ja) 2007-05-10
AU2003286026B2 (en) 2009-12-03
CN1878517B (zh) 2010-09-01
WO2005048887A1 (en) 2005-06-02
JP4320017B2 (ja) 2009-08-26
KR101007946B1 (ko) 2011-01-14
AU2003286026A1 (en) 2005-06-08
KR20060100427A (ko) 2006-09-20
CA2543061A1 (en) 2005-06-02
AU2010200238A1 (en) 2010-02-11
CA2543061C (en) 2012-01-24
AU2010200238B2 (en) 2013-08-01
CN1878517A (zh) 2006-12-13

Similar Documents

Publication Publication Date Title
AU2010200238B2 (en) Instrumented Prosthetic Foot
US7955398B2 (en) Instrumented prosthetic foot
US9526636B2 (en) Instrumented prosthetic foot
EP1542627B1 (de) Positionierung von künstlichen unteren gliedmassenpropriozeptoren
JP5013881B2 (ja) 動作制御式足ユニットのためのシステム及び方法
Sup et al. Self-contained powered knee and ankle prosthesis: Initial evaluation on a transfemoral amputee
US9022965B2 (en) Knee orthosis, and method for controlling a knee orthosis
WO2004017871A2 (en) Positioning of lower extremities artificial proprioceptors
US9192487B2 (en) Joint control systems and methods utilizing muscle activation sensing
LaPrè et al. Redefining prosthetic ankle mechanics: Non-anthropomorphic ankle design
WO2015170964A1 (en) A prosthetic limb integrated with a sensory system
LaPrè et al. A Robotic Foot-Ankle Prosthesis with Active Alignment
Sup et al. Manuscript 2: Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121129

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VICTHOM LABORATORY INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170705