CA2543061C - Instrumented prosthetic foot - Google Patents

Instrumented prosthetic foot Download PDF

Info

Publication number
CA2543061C
CA2543061C CA 2543061 CA2543061A CA2543061C CA 2543061 C CA2543061 C CA 2543061C CA 2543061 CA2543061 CA 2543061 CA 2543061 A CA2543061 A CA 2543061A CA 2543061 C CA2543061 C CA 2543061C
Authority
CA
Canada
Prior art keywords
sensor
prosthetic foot
instrumented prosthetic
connector
foot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA 2543061
Other languages
French (fr)
Other versions
CA2543061A1 (en
Inventor
Stephane Bedard
Pierre-Olivier Roy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VICTHOM LABORATORY INC.
Original Assignee
Victhom Human Bionics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victhom Human Bionics Inc filed Critical Victhom Human Bionics Inc
Priority to PCT/CA2003/001802 priority Critical patent/WO2005048887A1/en
Publication of CA2543061A1 publication Critical patent/CA2543061A1/en
Application granted granted Critical
Publication of CA2543061C publication Critical patent/CA2543061C/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/64Knee joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2/6607Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2/72Bioelectrical control, e.g. myoelectric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5003Prostheses not implantable in the body having damping means, e.g. shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5007Prostheses not implantable in the body having elastic means different from springs, e.g. including an elastomeric insert
    • A61F2002/5009Prostheses not implantable in the body having elastic means different from springs, e.g. including an elastomeric insert having two or more elastomeric blocks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6642Heels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6657Feet having a plate-like or strip-like spring element, e.g. an energy-storing cantilever spring keel
    • A61F2002/6671C-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6657Feet having a plate-like or strip-like spring element, e.g. an energy-storing cantilever spring keel
    • A61F2002/6685S-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/705Electromagnetic data transfer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7625Measuring means for measuring angular position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7635Measuring means for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/764Measuring means for measuring acceleration

Abstract

The present application discloses an instrument prosthetic foot (20) for use with an actuated leg prothesis (14) controlled by a controller, the instrumented prosthetic foot (20) comprising a connector to connect the instrumented prosthetic foot (20) to the leg prothesis (14), an ankle structure connected to the connector, a ground engaging member connected to the ankle, at least one sensor (22a, 22b, 24a, 24b, 26) for detecting changes in weight distribution along the foot, and an interface for transmitting signals from the sensor to the controller.

Description

INSTRUMENTED PROSTHETIC FOOT
BACKGROUND
As is well known to control engineers, the automation of complex mechanical systems is not something easy to achieve. Among such systems, conventional powered artificial limbs are notorious for having control problems. These conventional prostheses are equipped with basic controllers that artificially mobilize the joints without any interaction from the amputee and are only capable of generating basic motions. Such basic controllers do not take into consideration the dynamic conditions of the working environment, regardless the fact that the prosthesis is required to generate appropriate control within a practical application.
They are generally lacking in predictive control strategies necessary to anticipate the artificial limb's response as well as lacking in adaptive regulation enabling the adjustment of the control parameters to the dynamics of the prosthesis.
Because human limb mobility is a complex process including voluntary, reflex and random events at the same time, conventional prostheses do not have the capability to interact simultaneously with the human body and the external environment in order to have minimal appropriate functioning.

Accordingly, it is an object of the present application to obviate or mitigate some or all of the above disadvantages.

SUMMARY
According to the present invention, there is provided an instrumented prosthetic foot, the instrumented prosthetic foot comprising:
an elongated foot plate having a top and a bottom part;
an ankle structure pivotally connected to the elongated foot plate top part;
a connector to operably connect the instrumented prosthetic foot to a user;
a first rotational sensor positioned on the ankle structure about its pivot axis with the elongated foot plate, the first sensor being configured to measure the rotation of the ankle structure about its pivot axis; and a second sensor interposed between the connector and the ankle structure, the second sensor being configured to measure the pressure force on the 1a connector;
wherein the ankle structure and second sensor are connected between the connector and the top part.

According to another aspect of the present invention, there is provided an instrumented prosthetic foot system, the system comprising:
an instrumented foot comprising an elongated foot plate having a top and a bottom part and a toe and a heel region;
an ankle structure pivotally connected to the elongated foot plate top part;
a connector to connect the instrumented prosthetic foot to the leg prosthesis;
a first rotational sensor positioned on the ankle structure about its pivot axis with the elongated foot plate configured to measure the rotation of the ankle structure about its pivot axis;
a second sensor interposed between the connector and the ankle structure configured to measure the pressure force on the connector; and a controller configured to receive data relative to the position of the ankle structure about its pivot axis from the first sensor and to the pressure force on the connector from the second sensor, and configured to determine the torque between the elongated foot plate top part and the connector using the received data.

2 BRIEF DESCRIPTION OF THE FIGURES

Embodiments of the invention will be described by way of example only with reference to the accompanying drawings, in which:

FIG. I shows the lower body of an individual provided with a prosthesis and an instrumented prosthetic foot on one side and having a healthy leg on the other side.

FIG. 2 is a block diagram showing a control system for a prosthesis having an actuating mechanism.

FIG. 3 is a perspective view, from the front and slightly above, of a instrumented prosthetic foot.

FIG. 4 is an exploded perspective view of the instrumented prosthetic foot of FIG. 3.

FIG. 5 is a perspective view, from the front and slightly above, of an alternative embodiment of the instrumented prosthetic foot of FIG. 3.

FIG. 6 is an exploded perspective view of the instrumented prosthetic foot of FIG. 5.

FIG. 7 is a perspective view, from the front and slightly above, of another alternative embodiment of the instrumented prosthetic foot of FIG. 3 FIG. 8 is an exploded perspective view of the instrumented prosthetic foot of FIG. 7.

FIG. 9 is schematic view of forces exerted on a foot.

FIG. 10 is a perspective view, from the front and slightly above, of a further still alternative embodiment of the instrumented prosthetic foot of FIG. 3 FIG. 11 is an exploded perspective view of the instrumented prosthetic foot of FIG. 10.

3 FIG. 12 is a perspective view, from the front and slightly above, of a yet further still alternative embodiment of the instrumented prosthetic foot of FIG. 3 FIG. 13 is an exploded perspective view of the instrumented prosthetic foot of FIG. 12.

FIG. 14 is a perspective view, from the front and slightly above, of a further alternative embodiment of the instrumented prosthetic foot of FIG. 3 FIG. 15 is an exploded perspective view of the instrumented prosthetic foot of FIG. 14.

DETAILED DESCRIPTION

The appended figures show a instrumented prosthetic foot (20) having sensors (22A, 22B) for use, in cooperation with possible additional sensors (24A, 24B, 26), with a control system (100) for controlling a prosthesis (14) having an actuating mechanism (16). It should be understood that the present invention is not limited to the illustrated implementation since various changes and modifications may be effected herein without departing from the scope of the appended claims.

Referring therefore to FIG. 1 an individual (10) has a pair of legs (26) and (28), one of which, (26), is amputated above the knee. A prosthesis (14) is attached to the leg (26) and includes an actuating mechanism (16), which may be either passive or active. An instrumented prosthetic foot (20) is attached to the prosthesis (14) and includes sensors (22A, 22B). Additional sensors (24A, 24B) are located on the healthy foot and additional sensors (26) located on the individual (10) and/or the prosthesis (14). A passive actuating mechanism may be generally defined as an electro-mechanical component that only absorbs mechanical energy in order to modify dynamics of mechanical joints of the prosthesis, while an active actuating mechanism may be generally defined as an electro-mechanical component that absorbs and supplies mechanical energy in order to set dynamics of mechanical joints of the prosthesis.

4 An example of the passive actuating mechanism is described in U.S. Patent No.
6,764,520 issued July 20, 2004, entitled "ELECTRONICALLY CONTROLLED
PROSTHETIC KNEE". Examples of active actuating mechanisms are described in U.S. Patent No. 7,314,490 issued January 1, 2008, entitled "ACTUATED LEG
PROSTHETIC FOR ABOVE-KNEE AMPUTEES".

The prosthesis (14) is controlled, as shown schematically in FIG. 2, by a basic control system (100) comprising sensors (22A, 22B, 24A, 24B, 26), connected through an interface (30) to a controller (40). The controller (40) provides signals to an actuating mechanism (16) in the prosthesis (14) , such as shown in FIG.
1.
The purpose of the control system (100) is to provide the required signals for controlling the actuating mechanism (16). To do so, the control system (100) is interfaced with the amputee (10) using sensors (22A, 22B, 24A, 24B, 26) to ensure proper coordination between the amputee (10) and the movements of the prosthesis (14). The sensors (22A, 22B, 24A, 24B, 26) capture information, in real time, about the dynamics of the amputee's movement and provide that information to the controller (40) via the interface (30). The controller (40) then uses the information to determine the resistance to be applied to a joint, in the case of a passive actuating mechanism, or the joint trajectories and the required angular force or torque that must be applied by a joint, in the case of an active actuating mechanism, in order to provide coordinated movements.

The sensors (22A, 22B, 24A, 24B, 26) may include myoelectric sensors, neuro-sensors, kinematic sensors, kinetic sensors, strain gauges or plantar pressure sensors. Myoelectric sensors are electrodes used to measure the internal or the external myoelectrical activity of skeletal muscles. Neuro-sensors are electrodes used to measure the summation of one or more action potentials of peripheral nerves. Kinematic sensors are used to measure the position of articulated joints, the mobility speed or acceleration of lower extremities. Kinetic sensors are used to measure angular forces at articulated joints or reaction forces of lower extremities. Strain gages are used to measure the strain forces at a specific underfoot area. Plantar pressure sensors are used to measure the vertical plantar pressure of a specific underfoot area. Of course, additional types of sensors which provide various information about dynamics of human locomotion may be used. For a given application, the use of sensors (22A, 22B, 24A, 24B, 26) is not

5 restricted to a specific type of sensor, multiple types of sensors in various combinations may be used.

As illustrated in FIG. 1, the sensors (22A, 22B, ) may comprise localized plantar pressure sensors located at spaced locations on the prosthetic foot (20) to measure the vertical plantar pressure of a specific underfoot area. Similarly, the plantar pressure sensors (24A, 24B) located on the side of the healthy foot may be provided at spaced locations in a custom-made insole, preferably in the form of a standard orthopaedic insole, that is modified to embed the two sensors (24A, 24B) for the measurement of two localized plantar pressures. The sensors (22A, 22B, 24A, 24B) are operable to measure the weight transfer along the foot as the individual moves which may be combined with other sensors (26) such as kinematic sensors to measure the angular speed of body segments of the lower extremities and kinematic sensors to measure the angle of the prosthesis (14) knee joint.

Each sensor (22A, 22B, 24A, 24B) may comprise a thin Force-Sensing Resistor (FSR) polymer cell directly connected to the interface (30) of the control system (100) or indirectly using an intermediary system (not shown), for instance a wireless emitter. Of course, other types of communication link technologies may be used, such as, for example, optical. The FSR cell has a decreasing electrical resistance in response to an increasing force applied perpendicularly to the surface thereof. Each cell outputs a time variable electrical signal for which the intensity is proportional to the total vertical plantar pressure over its surface area.
The size and position of the plantar pressure sensors (22A, 22B, 24A, 24B) may be defined in accordance with the stability and the richness (intensity) of the localized plantar pressure signals provided by certain underfoot areas during locomotion. For example, it was found by experimentation that the heel and the toe regions are two regions of the foot sole where the Plantar Pressure Maximum

6 Variation (PPMV) may be considered as providing a signal that is both stable and rich in information.

Accordingly, the controller (40) may use the data signals from the four localized plantar pressure sensors (22A, 22B, 24A, 24B), as well as the information gathered from the data signals of the other sensors (26) such as kinematic sensors, in order to decompose the locomotion of the individual (10) into a finite number of states, and generate the appropriate control signals for controlling the actuating mechanism (16) according to the locomotion. Of course, the controller (40) is not limited to the use of the preceding data signals.

An example of a controller (40) and control system (100) using sensors comprising plantar pressure sensors as well as kinematic sensors is described in U.S. Patent No. 7,147,667 issued December 12, 2006, entitled "CONTROL
SYSTEM AND METHOD FOR CONTROLLING AN ACTUATED PROSTHESIS".

To facilitate the acquisition of the data in a repeatable and dependable manner, the sensors (22A, 22B) are incorporated in to the structure of the foot (20).
An embodiment of the instrumented prosthetic foot (20) is shown in more detail in FIGS 3 and 4. The instrumented prosthetic foot (20) includes a foot plate (53), forming an elongated body, with a connector (51) at one end, a toe plate (55A) and a heel plate (55B) that is cantilevered from the foot plate (53). Such an arrangement is provided by, for example, a Vari-Flex prosthetic foot from Ossur.
Pressure sensors (22A, 22B) are located at longitudinally spaced locations on the underside of the foot plate (53) and heel plate (55) respectively. The sensors (22A, 22B) are covered by rigid plates (52A, 52B) and resilient pads (54A, 54B).
The pressure sensors (22A, 22B) are located so as to be responsive to loads imposed on the instrumented prosthetic foot (20) at the regions corresponding to the toe area and the heel area respectively.

The rigid plates (52A, 52B) covering the sensors (22A, 22B), although not essential, help to optimize the pressure distribution on the entire surface of the

7 PCT/CA2003/001802 sensors (22A, 22B) as well as inhibiting any shearing and may be made of 85A
durometer polyurethane. Of course, other type of material may be used as well.
The pads (54A, 54B) wrap up the rigid plates (52A, 52B) and the sensors (22A, 22B), forming a ground engaging member, in order to optimize the contact between the instrumented prosthetic foot (20) and the ground. The pads (54A, 54B) may be made of 40A durometer polyurethane. Of course, other type of material may be used as well.

In operation, therefore, as the foot (20) traverses the ground, the force applied to the heel plate (55B) is measured by the sensor (22B) and a corresponding signal forwarded to the controller (40). The force applied to the toe plate (55A) is also measured by the sensor (22A) and the relative loading between the two locations is measured. As the foot (20) continues to traverse the ground, the force applied to the toe area increases and that at the heel decreases to provide a pair of signals from which the disposition of the leg may be determined and the appropriate control provided to the actuator (16).

An alternative embodiment of the instrumented prosthetic foot (20) is shown in FIGS 5 and 6. The instrumented prosthetic foot (20) includes connector (61), foot plate (63), toe plate (64A) and heel plate (64B), such as provided by, for example, a Vari-Flex prosthetic foot from Ossur. Pressure sensors (22A, 22B) are located between the foot plate (63) and rigid plates (62A, 62B). The pressure sensors (22A, 22B) are located so as to be responsive to load imposed on the instrumented prosthetic foot (20) at the regions corresponding to the toe area and the heel area respectively. More specifically, pressure sensor (22A) is sandwiched between a pair of rigid plates (62A), which in turn are positioned between the heel plate (64B) and the foot plate (63). Pressure sensor (22B) is sandwiched between a pair of rigid plates (62B), which in turn are positioned between the foot plate (63) and the connector (61).

As for the previous embodiment, rigid plates (62A, 62B) covering the sensors (22A, 22B), although not essential, help to optimize the pressure distribution on the entire surface of the sensors (22A, 22B) as well as inhibiting any shearing and

8 may be made of 85A durometer polyurethane. Of course, other type of material may be used as well.

Another alternative embodiment of the instrumented prosthetic foot (20) is shown in FIGS 7 and 8. The instrumented prosthetic foot (20) includes connector (71), top foot plate (75), foam cushion core (73) and bottom foot plate (74), such as provided by, for example, a LP Talux prosthetic foot from Ossur. Pressure sensors (22A, 22B) are sandwiched between pairs of rigid plates (72A, 72B).
The pressure sensors (22A, 22B) are located so as to be responsive to load imposed on the instrumented prosthetic foot (20) at the regions corresponding to the toe area and the heel area respectively. More specifically, pressure sensor (22A) is sandwiched between a pair of rigid plates (72A), which in turn are positioned within gap (76A), which is located between a bottom foot plate (74) and a foam cushion core (73). Pressure sensor (22B) is sandwiched between a pair of rigid plates (72B), which in turn are positioned within gap (76B), which is located within the foam cushion core (73).

Again, as for the previous embodiments, rigid plates (72A, 72B) covering the sensors (22A, 22B), although not essential, help to optimize the pressure distribution on the entire surface of the sensors (22A, 22B) as well as preventing any shearing and may be made of 85A durometer polyurethane. Of course, other type of material may be used as well.

In the previous embodiments, the force (or pressure) at the toe and heel areas, F -toe and F_heel respectively, was obtained by positioning pressure sensors (22A, 22B) directly at those areas. More specifically, referring to FIG. 9, F -toe and F -heel were obtained as follows:

F_toe=F_toe_meas Equation I
F_heel = F_heel_meas Equation 2 In other possible embodiments of the instrumented prosthetic foot (20), sensors (22A, 22B) may not be restricted to being positioned directly at the toe and heel

9 areas, the equivalent information may be obtained by measuring the equivalent torque at the ankle and the axial force at the connector of the instrumented prosthetic foot (20). F toe and F -heel may be defined in terms of the torque measured at the ankle, M_ankle_meas, and the force measured at the connector, F_conn_mess, using the following equations:

F toe= M_ankle_meas+(F_conn_meas=I_heel) Equation 3 (I _ heel + I _ toe) F_heel = -M ankle_meas+(F_conn meas. I_toe) Equation 4 (I_heel+l_toe) where 1 -heel is the distance between the center of the connector and the center of the heel area;

1 -toe is the distance between the center of the connector and the center of the toe area.

Following the previous discussion about the locations of sensors (22A, 22B), a further alternative embodiment of the instrumented prosthetic foot (20) is shown in FIGS 10 and 11. The instrumented prosthetic foot (20) includes connector (81), foot plate (83), toe plate (84A) and heel plate (84B), such as provided by, for example, a Vari-Flex prosthetic foot from Ossur, and load cells (22A, 22B).
Load cells (22A, 22B) are located below connector'(81), load cell (22A) being slightly biased towards the toe area of the foot and load cell (22B) being slightly biased towards the heel area. Since the sensors (22A, 22B) are not located directly at the toe and heel areas, Equation 3 and Equation 4 may be used, for example by controller (40), to compute the equivalent pressures at the toe and heel areas by defining the equivalent torque at the ankle and the axial force at connector (81) as follows:

F_conn _meas = F_ 22B +F-22A Equation 5 M_ankle_measF_22B=I_22B-F_22A=I_22A Equation 6 where F_22B is the force measured at sensor 22B;
F_22A is the force measured at sensor 22A;

5 1_22B is the distance between the center of the connector (81) and the center of sensor 22B;

I_22A is the distance between the center of the connector (81) and the center of sensor 22A.

In the previous embodiments of the instrumented prosthetic foot (20), the force (or

10 pressure) at the toe and heel areas, F -toe and F_heel respectively, was obtained either by positioning pressure sensors (22A, 22B) directly at those areas or by positioning pressure sensors or load cells (22A, 22B) in other areas and obtaining the equivalent information by computing the equivalent torque at the ankle and the axial force at the connector. Other types of sensors may also be used to obtain the equivalent torque at the ankle and the axial force at the connector. Such an example is illustrated by a further still embodiment of the instrumented prosthetic foot (20), which is shown in FIGS 12 and 13. The instrumented prosthetic foot (20) includes connector (91), mounted on pivoting ankle (93). Bumpers (92A, 92B) are positioned between the pivoting ankle (93) and rocker plate (95) located on a foot plate (94). The pivoting ankle (93) is connected to the rocker plate (95) by a pivot pin (96). Such an arrangement is provided by, for example, an Elation prosthetic foot from Ossur. A load cell (22A) and an optical encoder (22B).
are incorporated into the foot (20) to provide measurement of the distribution of forces along the foot (20). Load cell (22A) is positioned between connector (91) and pivoting ankle (93). Optical encoder (22B) comprises reader (221) and disk (223).
Reader (221) is located on pivoting ankle (93) while disk (223) is located on rocker plate (95) and encircles pivot pin (96). Once again, Equation 3 and Equation 4 may be used, for example by controller (40), to compute the equivalent pressures

11 at the toe and heel areas by defining the equivalent torque at the ankle and the axial force at connector (91) as follows:

F_conn_meas = F_22A Equation 7 M_ankle_meas=R_ankle_meas=R_const Equation 8 where F_22A is the force measured at sensor 22A;

R ankle meas is the rotation measurement of pivoting an kle (93) about pivot pin (96) as measured by optical encoder (22B);

R const is a constant associated with the resistance of bumpers (92A, 92B) to compression, which constant varies depending in the material used.

A yet further alternative embodiment of the instrumented prosthetic foot (20) is shown in FIGS 14 and 15. The instrumented prosthetic foot (20) includes connector (101), mounted on pivoting ankle (103). Bumpers (102A, 102B) are positioned between the pivoting ankle (103) and rocker plate (105) located on a foot plate (104). The pivoting ankle (103) is connected to the rocker plate (105) by a pivot pin (106). Such an arrangement is provided by, for example, an Elation prosthetic foot from Ossur. Pressure sensors (22A, 22B) and load cell (22C) are incorporated into the foot (20) to provide measurement of the distribution of forces along the foot (20). Pressure sensor (22A) is positioned between rocker plate (85) and bumper (82A) while pressure sensor (22B) is positioned between rocker plate (85) and bumper (82B). A load cell (22C) is positioned between connector (91) and pivoting ankle (93).

In this embodiment, Equation 6 is used to compute the equivalent torque at the ankle, while the axial force at connector (101) is computed using the following equation:

12 F_conn_meas=F_22C Equation 9 Load cell (22C) is required to compute the axial force at connector (101) since when there is no torque at the ankle, i.e. the wearer of the prosthesis is standing still, the axial force is being exerted in its entirety onto pivot pin (96).

In all of the described embodiments, the sensors (22A, 22B) may be directly connected to interface (30) of control system (100) or indirectly using an intermediary system (not shown), for instance a wireless emitter. Of course, other types of communication link technologies may be used, such as, for example, optical.

Other types of non-articulated or articulated prosthetic foot may be used as well as long as the selected prosthetic foot provides approximately the same dynamical response as the ones mentioned here above. Nevertheless, an articulated foot offers the best performances. The instrumented prosthetic foot (20) may further have an exposed metal or composite structure or it may have a cosmetic covering that gives it the appearance of a human ankle and foot.

It should be noted that the present invention is not limited to its use with the mechanical configuration illustrated in FIG. 1 or the control system (100) illustrated in FIG. 2. It may be used with a leg prosthesis having more than one joint.
For instance, it may be used with a prosthesis having an ankle joint, a metatarsophalangeal joint or a hip joint in addition to a knee joint.
Moreover, instead of a conventional socket a osseo-integrated devices could also be used, ensuring a direct attachment between the mechanical component of the prosthesis and the amputee skeleton. Other kinds of prostheses may be used as well.

Claims (19)

What is claimed is:
1. An instrumented prosthetic foot, the instrumented prosthetic foot comprising:
an elongated foot plate having a top and a bottom part;
an ankle structure pivotally connected to the elongated foot plate top part;
a connector to operably connect the instrumented prosthetic foot to a user;
a first rotational sensor positioned on the ankle structure about its pivot axis with the elongated foot plate, the first sensor being configured to measure the rotation of the ankle structure about its pivot axis; and a second sensor interposed between the connector and the ankle structure, the second sensor being configured to measure the pressure force on the connector;
wherein the ankle structure and second sensor are connected between the connector and the top part.
2. An instrumented prosthetic foot according to claim 1, wherein the first sensor is an optical encoder.
3. An instrumented prosthetic foot according to claim 1 or 2, wherein the second sensor is a load cell.
4. An instrumented prosthetic foot according to any one of claims 1 to 3, wherein the first and second sensor are configured to transmit signals to a controller of an actuated leg prosthesis using a wired connection
5. An instrumented prosthetic foot according to any one of claims 1 to 3, wherein the first and second sensor are configured to transmit signals to a controller of an actuated leg prosthesis using a wireless connection.
6. An instrumented prosthetic foot according to any one of claims 1 to 3, wherein the first and second sensor are configured to transmit signals to a controller of an actuated leg prosthesis using an optical interface.
7. An instrumented prosthetic foot according to any one of claims 1 to 6, wherein the connector removably connects the instrumented prosthetic foot to a leg prosthesis.
8. An instrumented prosthetic foot according to claim 1, wherein the second sensor is configured to measure an axial force on the connector.
9. An instrumented prosthetic foot system, the system comprising:
an instrumented foot comprising an elongated foot plate having a top and a bottom part and a toe and a heel region;
an ankle structure pivotally connected to the elongated foot plate top part;
a connector to connect the instrumented prosthetic foot to the leg prosthesis;
a first rotational sensor positioned on the ankle structure about its pivot axis with the elongated foot plate configured to measure the rotation of the ankle structure about its pivot axis;
a second sensor interposed between the connector and the ankle structure configured to measure the pressure force on the connector; and a controller configured to receive data relative to the position of the ankle structure about its pivot axis from the first sensor and to the pressure force on the connector from the second sensor, and configured to determine the torque between the elongated foot plate top part and the connector using the received data.
10. An instrumented prosthetic foot system according to claim 9, wherein the controller further determines the pressure force on the toe and the heel region of the elongated foot plate using the received data.
11. An instrumented prosthetic foot system according to claim 9, wherein the controller determines the torque via the following equation:

M = R ANKLE R CONST
where M is the torque;
R ANKLE is the data relative to rotation of the ankle structure about its pivot axis measured by the first sensor; and R CONST is a constant associated with the rotation of the ankle about its axis.
12. An instrumented prosthetic foot system according to claim 11, wherein the controller further determines the pressure force on the toe and the heel region of the elongated foot plate via the following equation:

F TOE = (M + F S2 L HEEL) / (L HEEL + L TOE) F HEEL = (-M + F S2 L TOE) (L HEEL + L TOE) where F S2 is the pressure force measured by the second sensor;
F TOE is the pressure force on the toe region of the elongated foot plate;
F HEEL is the pressure force on the heel region of the elongated foot plate;
L TOE is the distance between a center of the connector and a center of the toe region; and L HEEL is the distance between the center of the connector and a center of the heel region.
13. An instrumented prosthetic foot system according to any one of claims 9 to 12, wherein the first and second sensor transmit signals to the controller using a wired connection.
14. An instrumented prosthetic foot system according to any one of claims 9 to 12, wherein the first and second sensor transmit signals to the controller using a wireless connection.
15. An instrumented prosthetic foot system according to any one of claims 9 to 12, wherein the first and second sensor transmit signals to the controller using an optical interface.
16. An instrumented prosthetic foot system according to claim 9, wherein the connector removably connects the instrumented prosthetic foot to a leg prosthesis.
17. An instrumented prosthetic foot system according to any one of claims 9 to 16, wherein the first sensor is an optical encoder.
18. An instrumented prosthetic foot system according to any one of claims 9 to 17, wherein the second sensor is a load cell.
19. An instrumented prosthetic foot system according to claim 9, wherein the second sensor is configured to measure an axial force on the connector.
CA 2543061 2003-11-18 2003-11-18 Instrumented prosthetic foot Active CA2543061C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CA2003/001802 WO2005048887A1 (en) 2003-11-18 2003-11-18 Instrumented prosthetic foot

Publications (2)

Publication Number Publication Date
CA2543061A1 CA2543061A1 (en) 2005-06-02
CA2543061C true CA2543061C (en) 2012-01-24

Family

ID=34596800

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2543061 Active CA2543061C (en) 2003-11-18 2003-11-18 Instrumented prosthetic foot

Country Status (7)

Country Link
EP (1) EP1684676A1 (en)
JP (1) JP4320017B2 (en)
KR (1) KR101007946B1 (en)
CN (1) CN1878517B (en)
AU (2) AU2003286026B2 (en)
CA (1) CA2543061C (en)
WO (1) WO2005048887A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323354B2 (en) 2003-11-18 2012-12-04 Victhom Human Bionics Inc. Instrumented prosthetic foot
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9078774B2 (en) 2004-12-22 2015-07-14 össur hf Systems and methods for processing limb motion
US9271851B2 (en) 2004-02-12 2016-03-01 össur hf. Systems and methods for actuating a prosthetic ankle
US9526636B2 (en) 2003-11-18 2016-12-27 Victhom Laboratory Inc. Instrumented prosthetic foot
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535024B2 (en) 2002-08-22 2019-01-16 Victhom Human Bionics Inc. Actuated prosthesis for above-knee amputees
US8007544B2 (en) 2003-08-15 2011-08-30 Ossur Hf Low profile prosthetic foot
US7347877B2 (en) 2004-05-28 2008-03-25 össur hf Foot prosthesis with resilient multi-axial ankle
CA2601778C (en) 2005-02-02 2014-08-12 Ossur Hf Prosthetic and orthotic systems usable for rehabilitation
SE528516C2 (en) 2005-04-19 2006-12-05 Lisa Gramnaes Combined active and passive leg prosthesis and a method for performing an operating cycle of such a system
DE102005031185A1 (en) 2005-07-01 2007-01-04 Otto Bock Healthcare Ip Gmbh & Co. Kg The orthopedic aid, particularly a prosthesis for a limb
US8852292B2 (en) 2005-09-01 2014-10-07 Ossur Hf System and method for determining terrain transitions
DE102006004132B4 (en) 2006-01-27 2019-04-25 Ottobock Se & Co. Kgaa Artificial foot and method for controlling the movement of an artificial foot
CA2676067C (en) * 2007-01-19 2017-06-20 Victhom Human Bionics, Inc. Reactive layer control system for prosthetic and orthotic devices
CN102036626B (en) 2008-03-24 2014-07-02 奥瑟Hf公司 Transfemoral prosthetic systems and methods for operating the same
CN101317792B (en) 2008-07-10 2010-06-09 王雨函 Prosthetic foot implanting device
US9554922B2 (en) * 2008-09-04 2017-01-31 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
DE102008060177A1 (en) 2008-12-02 2010-06-17 Otto Bock Healthcare Gmbh An artificial foot
CN101961271B (en) * 2010-09-13 2012-03-21 北京大学 Dynamic knee prothesis-based impedance control method
WO2012047721A1 (en) 2010-09-29 2012-04-12 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US8961618B2 (en) 2011-12-29 2015-02-24 össur hf Prosthetic foot with resilient heel
KR101476889B1 (en) * 2012-10-05 2014-12-29 인하대학교 산학협력단 Walking assistance device and drive method
CA2866025A1 (en) 2013-10-03 2015-04-03 Quiang Song Sensor unit for a functional electrical stimulation (fes) orthotic system
US9375569B2 (en) 2013-10-03 2016-06-28 Ensilver Canada Controller unit for a functional electrical stimulation (FES) orthotic system
CA2866028A1 (en) 2013-10-03 2015-04-03 Farsad Kiani Electrical stimulation for a functional electrical stimulation system
US9364657B2 (en) 2014-10-31 2016-06-14 Ensilver Canada Cuff unit for a functional electrical stimulation system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4387472A (en) * 1980-10-02 1983-06-14 Medical Center Prosthetics, Inc. Torque absorber with biofeedback
CN2043873U (en) 1988-11-21 1989-09-06 张红军 One-sided mobile artificial legs
JPH05123348A (en) * 1991-11-09 1993-05-21 Imasen Gijutsu Kenkyusho:Kk Foot part of artificial leg
US6500210B1 (en) * 1992-09-08 2002-12-31 Seattle Systems, Inc. System and method for providing a sense of feel in a prosthetic or sensory impaired limb
US5443528A (en) * 1992-11-17 1995-08-22 Allen; Scott Coil spring prosthetic foot
DE19521464C2 (en) 1995-06-13 1999-08-19 Leuven K U Res & Dev Method for controlling the brake of a knee prosthetic knee joint, and thigh prosthesis
DE19754690A1 (en) * 1997-12-10 1999-07-01 Biedermann Motech Gmbh Leg prosthesis with an artificial knee joint with a control device
DE19859931A1 (en) * 1998-12-24 2000-07-06 Biedermann Motech Gmbh Leg prosthesis with an artificial knee joint and method for controlling a leg prosthesis
US6875241B2 (en) * 2000-06-30 2005-04-05 Roland J. Christensen, As Operating Manager Of Rjc Development Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Variable resistance cell
KR100401457B1 (en) * 2000-11-27 2003-10-10 산재의료관리원 Multi-functioning artificial foot
DE10139333A1 (en) * 2001-08-10 2003-03-06 Biedermann Motech Gmbh Sensor device, in particular for a prosthesis and prosthesis with such a sensor device
EP2535024B2 (en) * 2002-08-22 2019-01-16 Victhom Human Bionics Inc. Actuated prosthesis for above-knee amputees

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323354B2 (en) 2003-11-18 2012-12-04 Victhom Human Bionics Inc. Instrumented prosthetic foot
US9526636B2 (en) 2003-11-18 2016-12-27 Victhom Laboratory Inc. Instrumented prosthetic foot
US9271851B2 (en) 2004-02-12 2016-03-01 össur hf. Systems and methods for actuating a prosthetic ankle
US9078774B2 (en) 2004-12-22 2015-07-14 össur hf Systems and methods for processing limb motion
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US10369019B2 (en) 2013-02-26 2019-08-06 Ossur Hf Prosthetic foot with enhanced stability and elastic energy return

Also Published As

Publication number Publication date
EP1684676A1 (en) 2006-08-02
AU2003286026A1 (en) 2005-06-08
AU2010200238B2 (en) 2013-08-01
CN1878517A (en) 2006-12-13
CN1878517B (en) 2010-09-01
KR20060100427A (en) 2006-09-20
CA2543061A1 (en) 2005-06-02
JP4320017B2 (en) 2009-08-26
JP2007511239A (en) 2007-05-10
WO2005048887A1 (en) 2005-06-02
AU2003286026B2 (en) 2009-12-03
AU2010200238A1 (en) 2010-02-11
KR101007946B1 (en) 2011-01-14

Similar Documents

Publication Publication Date Title
Mueller et al. Differences in the gait characteristics of patients with diabetes and peripheral neuropathy compared with age-matched controls
Kawamoto et al. Power assist method based on phase sequence and muscle force condition for HAL
Nolan Carbon fibre prostheses and running in amputees: a review
JP4300213B2 (en) Control system and method for controlling the driving source with prosthetics
US9066819B2 (en) Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US8870967B2 (en) Artificial joints using agonist-antagonist actuators
Flowers et al. An electrohydraulic knee-torque controller for a prosthesis simulator
US5695527A (en) Coil prosthetic foot
US6379393B1 (en) Prosthetic, orthotic, and other rehabilitative robotic assistive devices actuated by smart materials
Sup et al. Design and control of a powered transfemoral prosthesis
US5746774A (en) Knee joint mechanism for knee disarticulation prosthesis
US6007582A (en) Prosthetic foot with means for energy storage and release
Cherelle et al. Design and validation of the ankle mimicking prosthetic (AMP-) foot 2.0
US20020133237A1 (en) Prosthetic foot with energy transfer medium including variable viscosity fluid
US5571212A (en) Prosthetic ankle joint for pivotally connecting a residual limb to a prosthetic foot
US5116383A (en) Lowelimb prothesis
Klute et al. Mechanical properties of prosthetic limbs: Adapting to the patient.
US5728177A (en) Prosthesis with foam block ankle
Au et al. Powered ankle--foot prosthesis improves walking metabolic economy
Schmalz et al. Energy expenditure and biomechanical characteristics of lower limb amputee gait:: The influence of prosthetic alignment and different prosthetic components
Hafner et al. Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature
US9358137B2 (en) Actuated prosthesis for amputees
Postema et al. Energy storage and release of prosthetic feet Part 1: Biomechanical analysis related to user benefits
US9333097B2 (en) Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US7985193B2 (en) Intelligent orthosis

Legal Events

Date Code Title Description
EEER Examination request