CN2043873U - One-sided mobile artificial legs - Google Patents

One-sided mobile artificial legs Download PDF

Info

Publication number
CN2043873U
CN2043873U CN 88220187 CN88220187U CN2043873U CN 2043873 U CN2043873 U CN 2043873U CN 88220187 CN88220187 CN 88220187 CN 88220187 U CN88220187 U CN 88220187U CN 2043873 U CN2043873 U CN 2043873U
Authority
CN
China
Prior art keywords
leg
prosthetic
healthy
joint
computer system
Prior art date
Application number
CN 88220187
Other languages
Chinese (zh)
Inventor
张红军
张玉萍
Original Assignee
张红军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张红军 filed Critical 张红军
Priority to CN 88220187 priority Critical patent/CN2043873U/en
Publication of CN2043873U publication Critical patent/CN2043873U/en

Links

Abstract

The utility model discloses a one-sided mobile artificial leg which is controlled by a computer, comprising angular position pickups arranged on the moving joints of the artificial leg and the real leg, and pressure sensors arranged on both sides of the soles of feet. When the one-sided mobile artificial leg is operated, the signals of movement parameters from the angular position pickups of each joint can be collected and logged in RAM by the computer, which are output to the driver of the artificial leg after discrimination and lagging to control the artificial leg to imitate the movement of the real leg. Therefore, the operating modes, the speed, the paces of the artificial leg are the same with the real leg.

Description

本发明涉及一种由电子计算机控制的单侧机动假腿,适合于单侧下肢残缺者使用。 The present invention relates to a method of controlling a motor by a computer unilateral prosthetic leg, adapted to use unilateral lower limb defects.

现有的机动假腿采用肌电信号或固定程序控制,存在动作不灵活、适应性差、步态不自然等缺点。 Prosthetic leg using a conventional motor or EMG fixed program control, the operation is not flexible exist, poor adaptability, unnatural gait and other shortcomings.

本发明的目的在于提供一种速度、步态、运动方式都与健侧腿一致的单侧机动假腿。 Object of the present invention is to provide a speed, gait, motion are consistent with one-sided motor contralateral leg prosthetic leg.

本发明以如下方式实现的:本装置包括:1.假腿结构和动力系统:由假足、大腿段、小腿段承力结构、各活动关节的轴结构以及动力源组成。 The present invention is implemented in the following manner: The apparatus comprises: a power system and prosthetic leg structure: the prosthetic foot, thigh section, lower leg section bearing structure, each of the movable shaft structure and a power source joint composition.

2.假腿驱动系统:由假腿各运动关节及假足踝关节横向摆动(内翻,外翻)驱动器,如电动机及其减速器及液压元件组成。 2. The prosthetic leg drive system: the movements of the prosthetic leg prosthetic ankle joint and the transverse pivot joint (varus, valgus) drives, such as the motor and gear unit and hydraulic elements.

3.控制系统:由电子计算机系统和通过接口与其相连的装在健腿和假腿各运动关节上的角位置传感器及装在假足和健侧足底的压力传感器以及通过接口与计算机系统输出端相连的各关节驱动电路组成。 3. The control system: mounted on the healthy leg and leg movements prosthetic joint angular position sensor and a pressure sensor mounted on the contralateral foot and prosthetic foot and by an interface with the computer system and the output from the computer system connected thereto through the interface each joint driving circuit connected to the terminal of the composition.

运行时,使用者先运动健腿。 Operation, the user first motion healthy leg. 此时装在健腿各关节上的角位置传感器,将健腿各关节运动参数经采样器输入计算机,并按时间序列写入RAM中各关节存贮区。 This fashion angular position sensor on each leg joint health, the health of each leg articulation parameter sampled input computer, press time series in each of the joints written into the RAM memory area. 计算机首先根据健腿各关节运动参数的特征判别其运动方式(即使用者的意图,例如:行走、停止、坐下、起立,等),将各种运动方式分为两类:一类为交替运动,如:行走;第二类为同步运动,如:起立。 The computer first determines its motion (i.e., the user's intention, for example: running, stop, sit down, stand, etc.) according to the characteristic parameters of health of each leg articulation, the movement pattern is divided into various categories: one is an alternating movement, such as: walking; second category is synchronized movement, such as: stand. 根据运动方式不同计算机产生一个滞后信号;交替运动滞后时间为1/2步周期。 According to a different computer to generate a motion lag signal; alternating motion lag time period is 1/2 steps. 同步运动无滞后。 Synchronous movement without delay. 其中步周期是指健腿行走一步所用时间,根据健腿运行信号计算得出。 Wherein step cycle is healthy leg in walking time used, obtained according to the operating signal calculation healthy leg. 交替运动时,在经过1/2步周期滞后时间后计算机用与写入同一信号相同的速度,读出存于RAM中的健腿前一步的运动参数信号,输出至假腿驱动器,控制假腿运行。 When alternating movement, after a latency period of 1/2 step writing the same computer with the same velocity signal read out stored in the RAM before the step of healthy leg motion parameter signal, and outputs to drive the prosthetic leg, the artificial leg control run. 如此,使假腿每一步的动作和动作速度与健腿前一步的动作相同。 Thus, the same artificial leg before every step of the action and movement speed step with healthy leg movements. 也就是使假腿模拟健腿前半步的动作。 That is the action before half-step prosthetic leg analog healthy legs. 如果动作方式为同步运动,则将健腿运动参数信号直接输送至假腿驱动器。 If the operation mode is the synchronous movement, then the healthy leg motion parameter signals conveyed directly to drive the prosthetic leg. 使其与健腿作同步运动。 Synchronize it with healthy legs for movement.

由于上述控制方式使假腿具有操纵方便,运动灵活,步态自然等优点。 Since the above-described control manner convenient manipulation of the prosthetic leg, flexible movement, the advantages of natural gait.

以下结合附图作进一步详细说明:图1是假腿结构示意图。 Described in further detail below in conjunction with the accompanying drawings: FIG. 1 is a schematic view of the structure of the prosthetic leg.

图2是健腿传感器安装示意图。 FIG 2 is a schematic view of the sensor mounting healthy leg.

图3是本装置控制系统结构框图。 FIG 3 is a block diagram showing a control system of the present apparatus.

图4是各传感器采样电路原理图图5是假腿各关节驱动电路原理图图6是本装置步行动作示意图。 FIG 4 is a circuit diagram of each sensor sampling FIG 5 is a schematic circuit diagram of FIG. 6 drives each joint of the prosthetic leg is a schematic view of the present apparatus walking motion.

图7是本装置控制系统流程图。 FIG 7 is a flowchart illustrating a control system of the present apparatus.

参照图1,在膝关节摆动轴①、踝关节横向轴②及踝关节纵向轴③上都装有角位置传感器④。 Referring to Figure 1, the knee pivot shaft ①, ④ are equipped with an angular position sensor on the ankle joint and the ankle joint lateral shaft longitudinal axis ② ③. 在假足底部⑤装有3个压力传感器⑥。 In the false bottom of the foot is equipped with three pressure sensors ⑤ ⑥. 膝关节驱动器⑦、踝关节曲伸驱动器⑧和踝关节横向摆动(内、外翻)驱动器⑨,由伺服电动机⑩减速器(11)和传动机构组成。 Knee drive ⑦, ⑧ ankle flexion-extension and ankle drive horizontal swing (the eversion) drive ⑨, ⑩ reducer by a servomotor (11) and a transmission mechanism.

参照图2,在健侧腿的髋、膝、踝关节外侧装有用带(12)固定的角位置传感器(13)在健足底装有压力传感器(14),其数量和排列与假足相同。 Referring to FIG. 2, the contralateral leg of the hip, knee and ankle joint with the outer belt (12) fixed angular position sensor (13) is provided with a pressure sensor at the healthy foot (14), the number and arrangement of the same prosthetic foot . 上述各角位置传感器采用光栅式角度数字编码盘。 The respective angular position sensor grating type digital angle encoder disc. 压力传感器采用电阻应变式压力传感器。 A pressure sensor using resistance strain pressure sensor.

参照图3,各角度和压力传感器(15)经采样器(16)与计算机(17)的输入接口端相连。 Referring to Figure 3, each angle, and a pressure sensor (15) is connected to a computer (17) the sampled input interface end (16). 计算机的输出端经过输出接口与假腿各关节驱动电路(18)相连接。 The output of the computer through the output interface circuit driving each joint of the prosthetic leg (18) is connected.

参照图4,由各关节角位置传感器和双足底压力传感器采集的各关节角位置信号和足底压力信号输入多路器的输入端Sr,多路器的输出端So与计算机的输入接口相连接,计算机通过改变输出至通道地址寄存器输入端A1,2,3的地址信号,实现对各传感器的周期采样。 Phase input interface 4, the respective articulated joint angular position signal each angular position sensor and a pressure sensor to collect the feet bottom plantar pressure signal input and the input of the multiplexer Sr, So the output of the multiplexer to the computer with reference to FIG. connected to the computer output channel address register input address signal terminal A1,2,3 realize the sampling period of each of the sensors by varying.

参照图5,由计算机输出接口输出的速度控制脉冲输出至脉冲分配器CH250的输入端CL,方向控制信号输出至方向控制输入端C。 Referring to FIG. 5, is controlled by the speed of the computer output interface to the input terminal of the pulse output of the pulse distributor CH250 CL, a direction control signal to the direction control input C. CH250的A,B,C三个输出端分别与PA、PB、PC3个结构相同的功率放大器输入端相连接,功率放大器的输出端分别与步进电机的绕组LA、LB、LC相连接。 CH250 of A, B, C, respectively and three output terminals PA, PB, the same configuration as a PC3 connected to the input of the power amplifier, the output terminal of the power amplifier are respectively connected to the stepper motor windings LA, LB, LC.

参照图6,首先对步行过程作一简要分析:静止站立时健足(19)与假足(20)处于相同位置。 Referring to FIG 6, first, during walking for a brief analysis: standing healthy foot rest (19) and the prosthetic foot (20) in the same position. 开始行走后健腿先跨出第一步(21)称为健腿启始步,继而假腿应在健足着地后跨出假腿启始步(22),由图可知健腿启始步步距小于假腿启始步,因此不能使用健腿启始步运动参数作为假腿启始步的控制信号,而要采用另外的控制方法。 After the start of walking legs to take the first step Kin (21) referred to health legs start step, then the prosthetic leg to be taken after the prosthetic leg started to start the healthy foot step (22), seen from the healthy leg FIG starting step step size smaller than a prosthetic leg start step, the control signal can not be used as a starting step of the prosthetic leg start step healthy leg motion parameter, and to use another control method. 在启始步完成后进入连续步行状态,此时两腿交替运动步幅步态一致。 After completion of the step start walking into the continuous state where the legs alternating movement consistent pace gait. 因此可以用健腿每一步的运动参数信号滞后1/2步周期作为假腿下一步运动的控制信号。 1/2 step can be hysteresis control signal as a periodic motion of the prosthetic leg with the next step of the health of each leg motion parameter signals. 如图中假腿运动(23)的控制信号可采用健腿前半步运动(24)的运动参数信号。 As shown in the prosthetic leg motion (23) of the control signal may take half a step before moving healthy leg (24) of the motion parameter signals. 当使用者停止步行时首先停止健腿运动,此时假腿应作终止步运动(25)。 When the user stops walking first stop healthy leg movement, this time an artificial leg should be terminated step movement (25). 终止步步距应等于连续步的1/2以使得在停止步行后两腿并拢(26)。 Should be equal to the termination step from 1/2 consecutive steps such that after stopping the walking legs close together (26). 通过以上分析可知:在连续步行中假腿与健腿动作相同,相差1/2步周期,可以采用健腿运动参数信号直接控制假腿运动,而在启动步和终止步中假腿与健腿动作不同,需使用特殊方法进行控制。 By the above analysis: same as in the continuous walking prosthetic leg with healthy leg movements, the step difference of 1/2 period, healthy leg motion parameter signal may be used to directly control movement of the prosthetic leg, and terminate at the start step and step prosthetic leg with healthy leg different actions need to use a special method for controlling.

参照图7,在运行中,装在健腿和假腿各运动关节及足底传感器连续采取健腿的运动参数,并按时间序列依次写入各传感器的存贮区。 Referring to FIG 7, in operation, mounted at the healthy leg and the prosthetic leg and foot joint movements to take continuous sensor healthy leg motion parameter, press time series are sequentially written in the memory region of each sensor. 并按步周期进行数据刷新。 And press step cycle data refresh.

在健腿运动开始后,立即进行健腿运动方式判别,其目的是在使用者开始运动健腿时,判断其将要进行的运动方式,例如:启步、行走、停止、坐下、起立等。 After motion starts healthy leg, immediately determining healthy leg motion, which aims at the user begins to move healthy leg, which motion is determined to be carried out, for example: start step, walking, stop, sit down, stand and the like. 以便控制假腿以相同的方式运动。 In order to control prosthetic leg movement in the same way. 这一判断的依据是:健腿在作不同方式的运动时,其各个关节的角位置及身体重心位置的变化有一定的相对关系。 This judgment is based on: healthy leg while doing sports in different ways, there is a certain relationship between the relative angular position of the body and change the center of gravity of each of its joints. 例如:启步时,在健腿膝关节屈曲的同时身体重心向前转移。 For example: When Kai-step, transferred at the same time healthy leg knee flexion of the body center of gravity forward. 在起立时,在重心前移的同时健腿膝关节作伸运动。 In starting immediately, while the center of gravity forward for healthy legs stretched knee movement. 而坐下时,在膝关节曲的同时,身体重心后移等。 And sit down, while the knee song, after the body center of gravity moved and so on. 将各种健腿不同运动方式的关节角位置及重心改变特征参数预先存贮在计算机的ROM中。 The angular position of the joint and the center of gravity of the various healthy leg motion parameter change characteristic stored in advance in the ROM of the computer. 并与当时由健腿关节角位置及重心传感器采集的运动参数进行相关比较。 And compared with the associated motion parameters was collected by healthy leg joint angular position sensor and the center of gravity. 就能够判定健腿当前的运动方式。 It is possible to determine the current health of the leg movement. 其运动方式可分为两类:同步运动,如下蹲、下坐、起立等;交替运动,如行走、跑等。 Motion which can be divided into two categories: synchronous movement, as squatting, sitting next, and so on standing; alternating movement, such as walking, running and the like.

如果判定为起立、坐下等,两腿同时运动的同步运动方式,则转入同步运动模块。 If it is determined to stand, sit and so on, while simultaneously the legs motion movement of the module into synchronized movement. 此模块将健腿各关节传感器输出信号,经简单处理成为假腿驱动信号后,立即输送至假腿驱动器,使两腿在运行中同步动作。 After this module healthy joints sensor output signal of each leg, the artificial leg by simply processed into a drive signal, the prosthetic leg immediately sent to the driver, so that the synchronous operation of the legs during operation.

如果判定为行走等两腿作交替动作的运动方式,则转入交替运动模块。 If it is determined as the alternate action of the legs and walking motion, the process proceeds to block alternating movement. 此模块中首先进行启始步判别。 This module is first step to initiate discrimination. 即判别健腿是否在进行启始步运动。 That determine whether healthy leg during the initiation step movement. 进行这一判别的依据是:根据在此前健腿是否有步行运动,两腿是否处于相同位置。 This is the basis for discrimination: depending on whether there is movement in previously healthy walking legs, legs is in the same position.

如果判定为启始步,则转入启始步运行模块。 If it is determined as the start step, then step into the starting operation of the module. 因为正常人在启始步中两腿动作不同,无法以健腿动作参数控制假腿运行,所以,在计算机的ROM中存有假腿启始步控制程序。 Because the normal step in initiating action different legs, unable to healthy leg motion parameter control prosthetic leg running, so there prosthetic leg starting step control program in the computer's ROM. 这段程序是对健康人启始步运动参数进行测量而得到的。 This program is a beginning step Kangren Qi Jian movement parameter measurements obtained. 在启始步中假腿的运动由这段程序控制。 Movement in the starting step in prosthetic leg controlled by this program. 启始步完成后,转入连续步行。 After starting step is completed, into continuous walking. 由连续步行模块控制。 Module is controlled by the continuous walking.

在连续步行控制模块中,把写在RAM中的健腿传感器采集的运动参数信号,在滞后1/2步周期后,用与写入时相同的顺序和速度读出。 In the continuous walking control module, the motion parameter signals written in the RAM healthy leg collected by the sensor, after the lag period of 1/2 step, by reading out the same order and speed writing. 在进行简单处理使成为假腿驱动信号后,输出至假腿驱动器控制假腿运行。 Simple treatment to be performed prosthetic leg drive signal is output to the driver control prosthetic leg prosthetic leg running. 步周期长度依据健足底压力感受器采集的信号经简单计算求出。 Step period length signal based on acquired health plantar baroreceptor simple calculation obtained.

当使用者停止步行时,首先停止健腿的运动,此时运动方式判别模块根据健腿运动停止,并且身体重心定位于健腿即可判定为终止步,并转入终止步运行控制模块。 When the user stops walking, stop motion healthy leg, this time to stop motion determination module in accordance with movement of the leg health, body weight and can be positioned in the healthy leg is determined that the termination step, and proceeds to step terminates the execution control module.

在终止步控制模块中,将假腿终止运动前最后一步各关节运动均减少1/2幅度,并停止于各关节角度与健腿相同的位置。 In the termination step control module, the prosthetic leg final step before the termination of the movement of each articulation 1/2 were reduced amplitude, and stops at the angle of each joint position of the same healthy leg. 以使得当使用者停止步行时假腿跟行半步后与健腿靠拢并停止运动。 So that when a user with an artificial leg after half a step closer to the line and stop motion with healthy legs stop walking.

为了让使用者在站立和行走中更加稳定,还设有假足踝关节平衡补偿控制模块。 In order to allow users to more stable standing and walking, the ankle joint is also a false balance compensation control module. 其过程是:计算机根据假足底压力传感器采集的人体重心改变参数,监视人体重心移动并通过踝关节横向摆动(内、外翻)驱动器使假足作相应的横向摆动而实现的。 The process is: the computer to change the parameters according to body center of gravity prosthesis plantar pressure sensor collected by the monitoring human ankle joint and the center of gravity moves laterally oscillating (the eversion) allows the prosthetic foot for driving the respective weaving achieved.

Claims (3)

1.一种由假足、大腿段、小腿段、联接以上各部分的活动关节以及各关节驱动器所构成的单侧机动假腿,其特征在于有:a.装在假腿及对侧健腿各运动关节上的角位置传感器,装在假足底部和对侧健足底部的压力传感器,所述的各传感器的输出端,通过采样电路与能控制假腿模拟健腿动作的计算机系统的输入端相连接,所述的各传感器将各关节运动参数信号输入计算机顺序写入RAM中各关节存贮区,b.假腿驱动电路,所述的假腿驱动电路由脉冲分配器和放大器相连组成,所述的假腿驱动电路的输出端与假腿驱动器的输入端相连接,所述的假腿驱动电路的输入端与计算机系统的输出端相连接,所述的驱动电路接受计算机输出的存贮在RAM中的健腿各关节运动参数信号,c.用于身体平衡补偿的装在假足踝关节上的假足踝关节横向摆动(内翻,外翻)驱动器,所述 A prosthetic leg by a motor unilateral prosthetic foot, thigh section, leg section, each part of the movable joints and each joint coupled above configuration drives, wherein there are:. A leg prosthesis and mounted contralateral healthy leg the computer system of input angular position sensor on each motion of a joint, a pressure sensor mounted on the top and bottom of the prosthetic foot contralateral healthy foot, the output terminal of each sensor can be controlled by a sampling circuit and analog healthy leg prosthetic leg operation end connected to a respective articulation parameters of each sensor input signal sequentially written into the RAM in the computer memory of each joint zone, b. prosthetic leg driving circuit, the driving circuit is connected to the leg prosthesis and the dispenser by a pulse amplifier output terminal and the input terminal of the computer system, the output of the input end of the prosthetic leg with a prosthetic leg drive circuit connected to drive said driving circuit is connected to the prosthetic leg, the drive circuit receives output from the computer memory storage in the RAM healthy leg motion parameter signals each joint, c. prosthetic ankle joint for balance compensation body mounted on the prosthetic ankle joint weaving (varus, valgus) driver, the 的踝关节横向摆动驱动器的输入端,通过驱动电路与计算机系统的输出端相连。 Weaving ankle drive joint input terminal, an output terminal connected through the drive circuit of the computer system.
2.如权利要求1所述的单侧机动假腿,其特征在于所述的计算机系统包括:采样电路、与之相连的输入接口、输入端与输入接口相连的CPU、与CPU输出端相连的输出接口、以及与CPU相连的RAM和ROM组成,所述的计算机系统能将由健腿各传感器输入的健腿运动参数信号与存贮在ROM中的健腿运动特征参数信号进行相关比较,产生健腿运动方式信号,并能根据这一运动方式信号产生相应的滞后长度信号,所述的计算机系统能根据这一滞后信号实现将健腿各关节运动参数信号写入RAM与读出RAM输送至假腿驱动器之间的滞后时间。 2. The motor unilateral prosthetic leg according to claim 1, wherein said computer system comprising: a sampling circuit connected to an input interface connected thereto, and the CPU input terminal connected to an input interface, an output terminal of the CPU an output interface, ROM and RAM connected to the CPU, and the composition of the computer system can input by Jian Jian sensors each leg and the leg motion parameter signal stored in the correlation comparison healthy leg motion parameter signals characteristic of the ROM, to produce health leg mode signal, and to generate a corresponding signal in accordance with the length of this lag motion mode signal, the computer system can be read and written to the RAM in accordance with the delay signal to achieve healthy each leg articulation parameter signal sent to the RAM false lag time between the legs of the driver. 所述的计算机系统能在启始步运行时实现将存贮于ROM中的启始步运行控制程序读出并输送至假腿驱动器。 The computer system can be implemented in the runtime start step stored in the ROM program execution control step starting reading out and sent to drive the prosthetic leg. 所述的计算机系统能在终止步运行时将输出至假腿各关节驱动器的控制信号中的幅度参数减小1/2。 Amplitude parameters of the computer system can be output to the driver of each joint prosthetic leg at termination step operation control signal is reduced 1/2.
3.如权利要求2所述的单侧机动假腿,其特征是:所述的计算机系统内装有写有用于判别健腿运动方式的健腿运动特征参数和假腿启始步运行控制信号的ROM。 3. The motor unilateral prosthetic leg according to claim 2, characterized in that: said computer system that has the written healthy leg motion feature parameters and start the prosthetic leg for discriminating healthy leg motion starting step operation control signal ROM.
CN 88220187 1988-11-21 1988-11-21 One-sided mobile artificial legs CN2043873U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 88220187 CN2043873U (en) 1988-11-21 1988-11-21 One-sided mobile artificial legs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 88220187 CN2043873U (en) 1988-11-21 1988-11-21 One-sided mobile artificial legs

Publications (1)

Publication Number Publication Date
CN2043873U true CN2043873U (en) 1989-09-06

Family

ID=4852452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 88220187 CN2043873U (en) 1988-11-21 1988-11-21 One-sided mobile artificial legs

Country Status (1)

Country Link
CN (1) CN2043873U (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303951C (en) * 2004-09-16 2007-03-14 上海交通大学 Double feet walking artificial limb control system
CN100384391C (en) 2002-08-22 2008-04-30 维克多姆人体机械公司 Lower extremities artificial proprioceptors, method and device for control its actuator
CN100477973C (en) * 2002-08-22 2009-04-15 维克多姆人体机械公司 Control system and method for controlling an actuated prosthesis
CN100528107C (en) 2006-11-06 2009-08-19 上海理工大学 Intelligent lap artificial limb system controlled to follow pace of health leg
CN1929797B (en) 2004-02-12 2010-05-26 奥瑟Hf公司 System and method for motion-controlled foot unit
CN1878517B (en) 2003-11-18 2010-09-01 维克多姆人体机械公司 Instrumented prosthetic foot
CN101836909A (en) * 2010-04-23 2010-09-22 上海科生假肢有限公司 Multipath control signal source for multi-freedom upper artificial limb and related control method and device
US8323354B2 (en) 2003-11-18 2012-12-04 Victhom Human Bionics Inc. Instrumented prosthetic foot
CN102885661A (en) * 2012-10-29 2013-01-23 河北工业大学 Dynamic prosthetic knee joint
US8657886B2 (en) 2004-02-12 2014-02-25 össur hf Systems and methods for actuating a prosthetic ankle
US8702811B2 (en) 2005-09-01 2014-04-22 össur hf System and method for determining terrain transitions
US8801802B2 (en) 2005-02-16 2014-08-12 össur hf System and method for data communication with a mechatronic device
US8814949B2 (en) 2005-04-19 2014-08-26 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9078774B2 (en) 2004-12-22 2015-07-14 össur hf Systems and methods for processing limb motion
US9358137B2 (en) 2002-08-22 2016-06-07 Victhom Laboratory Inc. Actuated prosthesis for amputees
CN106239481A (en) * 2016-08-31 2016-12-21 南京晨光集团有限责任公司 Micro hydraulic servo system for exoskeleton robot
US9526635B2 (en) 2007-01-05 2016-12-27 Victhom Laboratory Inc. Actuated leg orthotics or prosthetics for amputees
US9526636B2 (en) 2003-11-18 2016-12-27 Victhom Laboratory Inc. Instrumented prosthetic foot
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US9808357B2 (en) 2007-01-19 2017-11-07 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US9895240B2 (en) 2012-03-29 2018-02-20 Ösur hf Powered prosthetic hip joint
US9925071B2 (en) 2010-09-29 2018-03-27 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US10195057B2 (en) 2004-02-12 2019-02-05 össur hf. Transfemoral prosthetic systems and methods for operating the same
US10357381B2 (en) 2014-12-08 2019-07-23 Rehabilitation Instititute of Chicago Powered and passive assistive device and related methods

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358137B2 (en) 2002-08-22 2016-06-07 Victhom Laboratory Inc. Actuated prosthesis for amputees
CN100384391C (en) 2002-08-22 2008-04-30 维克多姆人体机械公司 Lower extremities artificial proprioceptors, method and device for control its actuator
CN100477973C (en) * 2002-08-22 2009-04-15 维克多姆人体机械公司 Control system and method for controlling an actuated prosthesis
CN100506189C (en) 2002-08-22 2009-07-01 维克多姆人体机械公司 Actuated leg prosthesis for above-knee amputees
US9649206B2 (en) 2002-08-22 2017-05-16 Victhom Laboratory Inc. Control device and system for controlling an actuated prosthesis
CN1878517B (en) 2003-11-18 2010-09-01 维克多姆人体机械公司 Instrumented prosthetic foot
US8323354B2 (en) 2003-11-18 2012-12-04 Victhom Human Bionics Inc. Instrumented prosthetic foot
US8986397B2 (en) 2003-11-18 2015-03-24 Victhom Human Bionics, Inc. Instrumented prosthetic foot
US9526636B2 (en) 2003-11-18 2016-12-27 Victhom Laboratory Inc. Instrumented prosthetic foot
CN1929797B (en) 2004-02-12 2010-05-26 奥瑟Hf公司 System and method for motion-controlled foot unit
US10195057B2 (en) 2004-02-12 2019-02-05 össur hf. Transfemoral prosthetic systems and methods for operating the same
US8657886B2 (en) 2004-02-12 2014-02-25 össur hf Systems and methods for actuating a prosthetic ankle
US9271851B2 (en) 2004-02-12 2016-03-01 össur hf. Systems and methods for actuating a prosthetic ankle
CN1303951C (en) * 2004-09-16 2007-03-14 上海交通大学 Double feet walking artificial limb control system
US9078774B2 (en) 2004-12-22 2015-07-14 össur hf Systems and methods for processing limb motion
US8801802B2 (en) 2005-02-16 2014-08-12 össur hf System and method for data communication with a mechatronic device
US8814949B2 (en) 2005-04-19 2014-08-26 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US9717606B2 (en) 2005-04-19 2017-08-01 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US9066819B2 (en) 2005-04-19 2015-06-30 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US8852292B2 (en) 2005-09-01 2014-10-07 Ossur Hf System and method for determining terrain transitions
US8702811B2 (en) 2005-09-01 2014-04-22 össur hf System and method for determining terrain transitions
CN100528107C (en) 2006-11-06 2009-08-19 上海理工大学 Intelligent lap artificial limb system controlled to follow pace of health leg
US9526635B2 (en) 2007-01-05 2016-12-27 Victhom Laboratory Inc. Actuated leg orthotics or prosthetics for amputees
US9808357B2 (en) 2007-01-19 2017-11-07 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US10299943B2 (en) 2008-03-24 2019-05-28 össur hf Transfemoral prosthetic systems and methods for operating the same
CN101836909B (en) 2010-04-23 2012-05-23 上海科生假肢有限公司 Control method of one freedom degree or multi-freedom upper artificial limb
CN101836909A (en) * 2010-04-23 2010-09-22 上海科生假肢有限公司 Multipath control signal source for multi-freedom upper artificial limb and related control method and device
US9925071B2 (en) 2010-09-29 2018-03-27 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US10251762B2 (en) 2011-05-03 2019-04-09 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US9895240B2 (en) 2012-03-29 2018-02-20 Ösur hf Powered prosthetic hip joint
CN102885661A (en) * 2012-10-29 2013-01-23 河北工业大学 Dynamic prosthetic knee joint
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US10369019B2 (en) 2013-02-26 2019-08-06 Ossur Hf Prosthetic foot with enhanced stability and elastic energy return
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US10357381B2 (en) 2014-12-08 2019-07-23 Rehabilitation Instititute of Chicago Powered and passive assistive device and related methods
CN106239481A (en) * 2016-08-31 2016-12-21 南京晨光集团有限责任公司 Micro hydraulic servo system for exoskeleton robot

Similar Documents

Publication Publication Date Title
Miller Real-time neural network control of a biped walking robot
Brenière et al. Are dynamic phenomena prior to stepping essential to walking?
Doorenbosch et al. Two strategies of transferring from sit-to-stand; the activation of monoarticular and biarticular muscles
Aoyagi et al. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury
US4988300A (en) Riding simulator
Neuhaus et al. Design and evaluation of Mina: A robotic orthosis for paraplegics
Buczek et al. Stance phase knee and ankle kinematics and kinetics during level and downhill running
US9649206B2 (en) Control device and system for controlling an actuated prosthesis
Vander Linden et al. Variant and invariant characteristics of the sit-to-stand task in healthy elderly adults
CN101897643B (en) Wearable power assistive device for helping user to move their hand
US8888723B2 (en) Gait rehabilitation methods and apparatuses
US9198821B2 (en) Lower extremity exoskeleton for gait retraining
Bernhardt et al. Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT
Kepple et al. Relative contributions of the lower extremity joint moments to forward progression and support during gait
Nigg et al. A kinematic comparison of overground and treadmill running
US4653479A (en) Interrupted drive limb motion apparatus
US8359123B2 (en) Robotic system and training method for rehabilitation using EMG signals to provide mechanical help
Sup et al. Self-contained powered knee and ankle prosthesis: Initial evaluation on a transfemoral amputee
Brenière et al. Control of gait initiation
CN101282696B (en) Motion assistance apparatus and method
JP3178876B2 (en) 3 bearing dynamic exercise for exercise equipment
JP4178187B2 (en) Wearable action assisting device and a control program
Belli et al. Moment and power of lower limb joints in running
US20030064869A1 (en) Mechanism for manipulating and measuring legs during stepping
JP4178185B2 (en) Wearable action assisting device, and a control method of the driving source in the wearable action-assist device, and program

Legal Events

Date Code Title Description
C06 Publication
C14 Granted
C19 Lapse of patent right due to non-payment of the annual fee