EP1682649A1 - Stossbelastungsresistente tablette - Google Patents

Stossbelastungsresistente tablette

Info

Publication number
EP1682649A1
EP1682649A1 EP04765165A EP04765165A EP1682649A1 EP 1682649 A1 EP1682649 A1 EP 1682649A1 EP 04765165 A EP04765165 A EP 04765165A EP 04765165 A EP04765165 A EP 04765165A EP 1682649 A1 EP1682649 A1 EP 1682649A1
Authority
EP
European Patent Office
Prior art keywords
acid
preferred
tablet
weight
tablets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04765165A
Other languages
English (en)
French (fr)
Other versions
EP1682649B1 (de
Inventor
Thomas Holderbaum
Ulrich Pegelow
Christian Nitsch
Uta Steffen-Holderbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL04765165T priority Critical patent/PL1682649T3/pl
Publication of EP1682649A1 publication Critical patent/EP1682649A1/de
Application granted granted Critical
Publication of EP1682649B1 publication Critical patent/EP1682649B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets

Definitions

  • the present invention is in the field of compact moldings having washing and cleaning properties.
  • Such detergent tablets comprise, for example, laundry detergent tablets for washing textiles, automatic dishwashing detergent tablets or hard surface cleaning agents, bleach tablets for use in dishwashers or dishwashers, water softening tablets or patch salt tablets.
  • the invention relates to detergent tablets which are used for cleaning dishes in a domestic dishwasher and are referred to briefly as detergent tablets or dishwasher tablets.
  • Detergent tablets are widely described in the art and are becoming increasingly popular with consumers because of their ease of use. Tableted detergents and cleaners have a number of advantages over powdered ones: they are easier to dose and to handle and, due to their compact structure, have advantages in storage and transport. Also in the patent literature washing and cleaning agent tablets are thus described comprehensively. A problem which occurs again and again in the application of washing and cleaning-active moldings is the too low disintegration and dissolution rate of the moldings under conditions of use. Since sufficiently stable, i.
  • Shock-resistant moldings can only be produced by relatively high molding pressures, resulting in a strong compaction of the molding constituents and a consequent delayed disintegration of the molding in the aqueous liquor and thus to a slow release of the active substances in the washing or cleaning process ,
  • EP 687 464 (Allphamed Arzneistoff-Gesellschaft) describes effervescent tablets comprising at least one active ingredient or combination of active ingredients, at least one binder, optionally excipients such as flavors, dyes, fragrances, plasticizers, bleaching agents and effervescent additives, propylene glycol or glycerol being used as binders, preferably in amounts of from 0.004 to 2.5% by weight. Also claimed are methods of making these effervescent tablets. According to the statements of this document can be prepared with the teaching of the invention, a detergent effervescent tablet without the binder used would lead to a loss of carbon dioxide in the effervescent additives.
  • European Patent Application EP 711 828 (Unilever) describes detergent tablets containing surfactant (s), builder (s) and a polymer which acts as a binding and disintegrating aid.
  • the binders disclosed in this document should be solid at room temperature and fed to the premix to be compressed as a melt.
  • Preferred binders are the relatively high molecular weight polyethylene glycols.
  • the present invention was based on the object, washing or cleaning agent tablets provide that are characterized by short disintegration times for a given hardness and thus can be dosed via the dispensing chamber household washing machines.
  • the moldings should have increased stability against shock and impact loads. The corresponding advantages should be achieved regardless of the formulation in order to be able to dispense with expensive pre-assembly steps or the use of expensive tabletting aids only for this purpose.
  • the present invention is a tablet of compressed particulate detergent or cleaning agent having on its upper side at least two reinforcing recesses whose horizontal extent is greater than the depth of the tablet surface at the level of the tablet surface.
  • a tablet of the invention has a top and a bottom and one or more side surfaces.
  • the underside is the area of the tablets which comes in contact with the lower punch of the tablet press during the pressing process, while the upper side is the surface which contacts the upper punch of the tablet press.
  • the side surfaces are touched by the walls of the die during the pressing process, with a round or oval tablet having only one side wall (the cylinder jacket surface), whereas polygonal tablets have an equal number of side surfaces in number of corners.
  • Preferred in accordance with the invention are rectangular tablets which have four side surfaces. In the special case of the square tablet, all four side surfaces are the same size, while in tablets with rectangular top and bottom only equal to two side surfaces.
  • the top of the tablet according to the invention provided with reinforcing recesses, which are hineingegargt in the top.
  • the depressions on the tablet top correspond to elevations on the tableting punch (see below).
  • the horizontal extent of the reinforcing recesses at the level of the tablet surface is greater than their depth. In other words, the gain pits in the x, y direction on the Level of the tablet top to a greater extent than in the z-direction of the tablet height.
  • the horizontal extent of the reinforcing depressions at the level of the tablet surface is 1.01 times to 5 times, preferably 1.02 to 4 times, more preferably 1.0 to 3 times times and in particular from 1, 5 to 2 times the depth of the reinforcement pits.
  • a 5 mm deep reinforcement depression has a length or width of more than 5 mm, wherein in preferred tablets the length or width is 5.05 to 25 mm, preferably 5.5 to 20 mm, particularly preferably 5.2 to 15 mm and in particular 5.25 to 10 mm.
  • the depth of the reinforcing recesses is correlated with the height of the tablets in order to further optimize the breakage stability (kink stability) of the tablet.
  • particularly preferred tablets according to the invention are characterized in that the depth of the reinforcing recesses 0.05 times to 0, 5 times, preferably 0.1 times to 0.4 times and in particular 0.15 times to 0 , 3 times the tablet height.
  • the tablets have at least two reinforcing recesses. Depending on the shape of the reinforcing recesses but also more than two wells can be mounted on the top of the molding.
  • tablets according to the invention are preferred which have at least 3, preferably at least 4, more preferably at least 5, more preferably at least 6, more preferably at least 7, more preferably at least 8, even more preferably at least 9 and in particular at least 10 reinforcing recesses.
  • the reinforcing depressions can be embossed as straight grooves in the molding surface, but they can also be angled or wavy lines or closed outline figures.
  • the reinforcing recesses embossed according to the invention are grooves, ie straight lines which run parallel to one another on the surface of the tablet and connect one side of the tablet surface to the opposite side. These lines enclose an angle with the lateral boundary line of the tablet surface. If this is 90 °, the reinforcing recesses are parallel to the tablet width or length. Angles ⁇ 90 ° can be realized by the reinforcing recesses extending obliquely across the tablet surface.
  • Preferred tablets according to the invention are characterized in that the reinforcing recesses run parallel to one another and to the tablet width, with an equidistant arrangement of the reinforcing depressions being preferred.
  • This parallel arrangement can be realized not only with straight lines, but also with bow-shaped or wave-shaped reinforcing recesses. It is also possible to combine mutually parallel reinforcing recesses which run parallel to the tablet width with further mutually parallel reinforcing recesses which run parallel to the tablet length.
  • this "waffle iron structure" in which the intersecting reinforcing recesses enclose an angle of 90 ° with each other, can also be modified to alter the crossing angle, then at least one series of mutually parallel reinforcing recesses does not run parallel to the tablet width.
  • Tablets according to the invention in which the reinforcing recesses run parallel to the tablet width and further reinforcing recesses run parallel to the tablet length, with an equidistant arrangement of the reinforcing depressions being preferred, are preferred according to the invention.
  • a further preferred arrangement of the reinforcing recesses in the case of tablets according to the invention is that the reinforcing recesses radiate from a common center.
  • This arrangement is for example particularly advantageous if the molded body has further recesses, which are used as a cavity or cavity to incorporate therein other ingredients or to insert other tablet ingredients.
  • Such well tablets are currently known in the art as dishwashing agents and can be stabilized by the reinforcing recesses according to the invention.
  • dishwashing agents are currently known in the art as dishwashing agents and can be stabilized by the reinforcing recesses according to the invention.
  • Such an arrangement of the gain pits recalls a sun with the corresponding number of beams, for example four, five, six, seven or eight beams.
  • the "sun rays" can be formed not only by straight lines, but also by curved or wavy lines.
  • reinforcing recesses Another possibility of arranging the reinforcing recesses is to design them in outline.
  • tablets according to the invention are preferred in which the reinforcing depressions have the form of concentrically nested circles or ellipses.
  • more complicated forms such as clouds, trees, cups, hands, etc. are considered.
  • the reinforcing recesses preferably have a cross section which is semicircular or semi-elliptical or triangular.
  • the "cross section" of the reinforcing recesses is the vertical section through the tablet, vertical to the respective reinforcing depression. Accordingly, tablets according to the invention are preferred in which the cross section of the reinforcing recesses is triangular or semicircular.
  • the tablet height and the depth of the reinforcing recesses are preferably correlated with each other. In addition to the relative statements mentioned above, absolute details can be made of particularly advantageous embodiments.
  • Preferred tablets according to the invention are characterized in that the height of the tablet is 5 to 25 mm, preferably 7 to 22 mm and in particular 10 to 20 mm. Accordingly, the depth of the reinforcing recesses in preferred tablets according to the invention is 0.5 to 10 mm, preferably 0.75 to 8 mm and in particular 1 to 5 mm. The depth of the reinforcing depressions is the lowest point of the respective reinforcing depressions, for example, in the case of v-shaped reinforcing depressions, the triangular tip.
  • particulate premixes are compacted in a so-called matrix between two punches to form a solid compressed product.
  • This process hereinafter referred to as tabletting, is divided into four sections: dosing, compaction, plastic deformation and ejection.
  • the premix is introduced into the die, wherein the filling amount and thus the weight and the shape of the resulting shaped body are determined by the position of the lower punch and the shape of the pressing tool.
  • the constant dosage even at high molding throughputs is preferably achieved via a volumetric metering of the premix.
  • the upper punch contacts the pre-mix and continues to descend toward the lower punch.
  • the particles of the premix are pressed closer to each other, with the void volume within the filling between the punches decreasing continuously. From a certain position of the upper punch (and thus from a certain pressure on the premix) begins the plastic deformation, in which the particles flow together and it comes to the formation of the molding.
  • the finished molded body is pushed out of the die by the lower punch and carried away by subsequent transport means. At this time, only the weight of the shaped body is finally determined because the compacts due to physical processes (re-expansion, crystallographic effects, cooling, etc.) can change their shape and size.
  • the tabletting is carried out in commercial tablet presses, which can be equipped in principle with single or double punches.
  • eccentric tablet presses are preferably used in which the die or punches are attached to an eccentric disc, which in turn is mounted on an axis at a certain rotational speed.
  • the movement of these punches is comparable to the operation of a conventional four-stroke engine.
  • the compression can be done with a respective upper and lower punch, but it can also be attached more stamp on an eccentric disc, the number of Matrizenbohritch is extended accordingly.
  • the throughputs of eccentric presses vary depending on the type of a few hundred to a maximum of 3000 tablets per hour.
  • the lower punch is usually not moved during the pressing process. A consequence of this is that the resulting tablet has a hardness gradient, i. harder in the areas closer to the upper punch than in the areas closer to the lower punch.
  • rotary tablet presses are selected in which a larger number of dies are arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are commercially available.
  • Each die on the die table is assigned an upper and lower punch, in turn, the pressing pressure can be actively built only by the upper or lower punch, but also by both stamp.
  • the die table and the punches move about a common vertical axis, the punches are brought by means of rail-like cam tracks during the circulation in the positions for filling, compression, plastic deformation and ejection.
  • these curved paths are supported by additional low-pressure pieces, Nierderzugschienen and lifting tracks.
  • the filling of the die via a rigidly arranged supply device, the so-called filling shoe, which is connected to a reservoir for the premix.
  • the pressing pressure on the premix is individually adjustable via the compression paths for upper and lower punches, wherein the pressure build-up is done by the Vorbeirollen the stamp shank heads on adjustable pressure rollers.
  • Concentric presses can be provided with two Drik to increase the throughput, with the production of a tablet only a semicircle must be traversed.
  • several filling shoes are used arranged one behind the other, without the slightly pressed first layer is ejected before further filling.
  • suitable process control coat and point tablets can be produced in this way, which have a zwiebelschalenartigen structure, wherein in the case of the point tablets, the top of the core or the core layers is not covered and thus remains visible.
  • Even rotary tablet presses can be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes are used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses amount to over one million moldings per hour.
  • the tablets can also in the context of the present invention, multi-phase, in particular multi-layered, ausgestalten.
  • the moldings can be made in a predetermined spatial form and predetermined size.
  • the training as a blackboard the bar or bar shape, cubes, cuboids and corresponding space elements with flat side surfaces and in particular cylindrical configurations with circular or oval cross-section.
  • This last embodiment covers the presentation form of the tablet up to compact cylinder pieces with a ratio of height to diameter above 1.
  • the spatial form of another embodiment of the moldings is adapted in their dimensions of Ein Schlauerhunt of commercial household washing machines or the dosing of commercial dishwashers, so that the moldings can be metered without dosing directly into the dispenser, where they dissolve during the Ein réellevorgangs, or from where they are released during the cleaning process.
  • the detergent tablets After pressing, the detergent tablets have a high stability.
  • the breaking strength of cylindrical shaped bodies can be detected by the measurand of the diametric breaking load. This is determinable
  • is the diametrical fracture stress (DFS) in Pa
  • P is the force in N which results in the pressure applied to the molded article causing the breakage of the molded article
  • D is the molded article diameter in meters
  • t the height of the moldings.
  • the upper punch of the tablet press used for production must have corresponding elevations on the reinforcing depressions embossed on the later tablet top side. These elevations are preferably made of wear-resistant materials to increase the service life of the Tablettierstempel. In particular, metals and plastics have proven to be suitable.
  • Another object of vorligenden invention is therefore a process for the preparation of tablets from compressed particulate detergent or cleaner by per se known compression of particulate premixes, wherein for pressing an upper punch is used, which has at least two elevations on its pressing surface for pressing reinforcing recesses whose horizontal extent at the plane of the pressing surface is greater than its height.
  • the tablet to be pressed usually powdery or fine-grained material is, if not particularly complicated and the production hindering precautions for a special distribution are taken, evenly distributed when filling in the Preßmatrize. This has the consequence that the material must be most compressed at the points where the profile of the embossing element has the highest elevations.
  • the material to be pressed tries to avoid the highest pressure peaks by a movement in the direction of the less highly stressed areas, in the areas of the highest profile elevations also the highest specific surface pressures occur.
  • the profile of the embossing element consists of a flat surface, for example the base surface which surrounds the elevations for the reinforcing depressions, the highest surface loads are to be expected at the elevations, and at the summit or the highest point.
  • the area of the crest the area has only very small angles of inclination with respect to the base plane. By definition, these angles of inclination increase towards the base of the elevations and are greatest at the transition into the surrounding base area.
  • the pressing force acts perpendicular to the base plane and the surface element in the center of the dome.
  • the pressing force is directed to an increasingly inclined surface, so that the pressing force is divided into a correspondingly smaller, perpendicular to the respective surface element force component and in turn directed perpendicular thereto force component.
  • These shear forces act almost tangentially.
  • the force components perpendicular to the normal force are a measure of the shear and abrasion forces acting at the interface between the elevations for the reinforcing recesses and the material to be pressed.
  • the protrusions for the reinforcing recesses must be made of a very hard, incompressible material.
  • the adhesion tendency of the material to be pressed on the surface of the press ram is determined inter alia by the specific surface pressures between the material to be pressed and the stamp surface and by the surface structure. If, for example, the surface of the pressing or tableting punch has friction-reducing or lubricating or sliding-promoting properties, this prevents or at least reduces the sticking tendency.
  • the pressing forces are directed perpendicular to the flat base. Since the flat base area represents the lowest height in the profile of the embossing element, the lowest compression of the material to be pressed is given in this area. As a result, lower surface pressures are also to be expected in the region of the base surface than in the area of the upwardly curved elevations for the reinforcing recesses. For these reasons, the material of the base must not be incompressible, especially from the Druckgeomentrie only normal forces are to be expected.
  • a tabletting die whose embossing element is designed in the described form, is advantageously anti-adhesion or at least adhesion-reducing. With such a pressing tool long tool life and perfect tablet surfaces can be achieved.
  • embossing element of the tabletting punch is not intended to be laterally delimited by the base surface, and this of a substantially uniform, is surrounded by incompressible edge strips, repercussions of the compression and deformation process on the die inner wall are excluded on the compressible base.
  • An outwardly sloping beveling of the edge strip thereby advantageously results in a clean material distribution in the die and a stabilization of the tablet structure.
  • the embossing element consists of several individual parts.
  • the scope and cutting of the items are oriented to the different materials or material requirements.
  • the individual production of the elevations for the reinforcing recesses of incompressible and on the outer surface at least adhesion-reducing coated material, a plate-shaped element of walkbarem material for the base and an annular element of incompressible material for the edge strip is an advantageous distinction for the design of the items that because of their different materials.
  • the coating of the elevations for the reinforcing recesses must be both hard and resistant to high surface loads, but on the other hand also have a friction-reducing or lubricating property.
  • nickei Vietnamese surface coatings have been found to be very suitable, in which finest PTFE particles (Teflon) are included. These give the coating anti-adhesion and material-seizure-preventing properties.
  • an embodiment for the adhesion-reducing coating in which the base coating material consists of a nickel-phosphorus alloy instead of nickel, has also proved to be suitable.
  • the surface coating with at least adhesion-reducing effect has proven itself.
  • the surface of the pin is coated with a graphite layer, which are known as lubricating or slide-promoting, and here also serves as a binder for fixing diamond particles, which in turn give the surface the required hardness.
  • the at least adhesion-reducing coating consists essentially of carbon.
  • plastics As an alternative to metals, which may need to be coated, it is also possible to use plastics as materials for the elevations in the upper punch which characterize the reinforcing recesses. By producing the elevations of plastic materials can be produced Tablettierstkov that also realize complicated geometries.
  • plastics characterizes materials whose essential constituents consist of such macromolecular organic compounds which are produced synthetically or by modification of natural products and are in many cases meltable and formable under certain conditions (heat and pressure) Plastics are thus in principle organic polymers and can be classified either according to their physical properties (thermoplastics, thermosets and elastomers), the nature of the reaction of their preparation (polymers, polycondensates and polyadducts) or according to their chemical nature (polyolefins, polyesters, polyamides, polyols). urethanes, etc.).
  • the elevations in the upper punch represent elevations on the embossing element of the tableting punch in the context of the present invention.
  • the surface on which the elevations in the upper punch, which emboss the reinforcing depressions, are applied can also assume different shapes, from the flat, flat surface to hemispherical configurations a variety of ways is conceivable. In the context of the present invention, on the one hand, it is preferred that the surface on which the elevations in the upper punch, which emboss the reinforcing recesses, sit, plane, i. is just.
  • the base on which the elevations in the upper punch, which shape the reinforcing recesses sitting made of plastic, so that Tablettierstempel are preferred in which the elevations in the upper punch, which shape the reinforcing recesses and the flat base are made of plastic.
  • the material of the elevations in the upper punch which characterize the reinforcing recesses, is harder than that of the base surface.
  • the term "hardness” is used to denote the resistance that a solid has to the penetration of another body.
  • the Rockwell hardness (HR) suitable for higher degrees of hardness either a diamond cone (HRC) or steel balls of different diameters (HRB) are pressed into the material.
  • HRC diamond cone
  • HRB steel balls of different diameters
  • HV Vickers hardness
  • the hardness is defined as the load in relation to the impression surface (N / mm 2 ).
  • the impressions are very small, so that one can also determine the hardness of very thin layers.
  • this also applies to the Knoop hardness (HK), in the determination of which a diamond pyramid with a rhombic ground plan is used.
  • the diameter of a ball impression which was generated by impact with the hand hammer (Poldihammer, scleroscope) or by a tensioned spring, serves as a basis for calculation.
  • Another dynamic method of determining hardness is the return method.
  • the Shore hardness determined in this way is determined in the case of steel by the ball impact test as rebound hardness or, in the case of rubber and other elastomers, as penetration resistance against a truncated cone.
  • the ball hardness is measured as the quotient of the test load and the surface of the impression of a steel ball (5 mm diameter) after 10, 30 or 60 seconds under load.
  • the elevations in the upper punch consist of a harder plastic than the base.
  • Hard plastics in particular meet the requirement profile, the elevations in the upper punch, which characterize the reinforcing recesses, at the same time be hard and resistant to high surface loads, but on the other hand must also have a friction-reducing or lubricating property.
  • plastic materials for the elevations in the upper punch, which characterize the reinforcing recesses in particular polyolefins, preferably polyethylene or polypropylene, have proven themselves.
  • Polyethylene (PE) are polymers belonging to the polyolefins with groupings of the type
  • Polyethylenes are made by polymerizing ethylene according to two fundamentally different methods, the high pressure and the low pressure process.
  • the resulting products are accordingly often referred to as high pressure polyethylene and low pressure polyethylene, respectively; they differ mainly in their degree of branching and, consequently, in their degree of crystallinity and their density. Both methods can be carried out as solution polymerization, emulsion polymerization or gas phase polymerization.
  • HMW-LDPE high molecular weight
  • the macromolecules of the polyethylenes from low-pressure process are largely linear and unbranched.
  • These polyethylenes (HDPE) have degrees of crystallinity of 60-80% and a density of about 0.94-0.965 g / cm 3 . They are particularly suitable as Mmaterialien for the elevations in the upper punch, which shape the reinforcing recesses.
  • Polypropylene are thermoplastic polymers of propylene with repeat units of the type
  • Polypropylenes can be prepared by stereospecific polymerization of propylene in the gas phase or in suspension to give highly crystalline isotactic or less crystalline syndiotactic or amorphous atactic polypropylenes, respectively. Of particular technical importance is the isotactic polypropylene, in which all methyl groups are located on one side of the polymer chain. Polypropylene is characterized by high hardness, resilience, stiffness and heat resistance and is in the context of the present invention thus a ideal material for the elevations in the upper punch, which characterize the reinforcing recesses.
  • polyamides in the context of the present invention are preferably materials which can be used for the elevations in the upper punch, which emboss the reinforcing depressions.
  • Polyamides are high molecular weight compounds consisting of building blocks linked by peptide bonds. The synthet.
  • Polyamides (PA) are, with a few exceptions, thermoplastic, chain-like polymers with recurring acid amide groups in the main chain. According to the chemical structure, the so-called homopolyamides can be divided into two groups: the aminocarboxylic acid types (AS) and the diamine-dicarboxylic acid types (AA-SS); where A is amino groups and S is carboxy groups.
  • the former are formed from one building block by polycondensation (amino acid) or polymerization ( ⁇ -lactam), the latter from two building blocks by polycondensation (diamine and dicarboxylic acid).
  • the polyamides are coded from unbranched aliphatic building blocks according to the number of carbon atoms.
  • PA 6 is the polyamide constructed from ⁇ -aminocaproic acid or ⁇ -caprolactam
  • PA 12 is a poly ( ⁇ -laurolactam) from ⁇ -laurolactam.
  • PA 66 polyhexamethylene adipamide
  • PA 610 polyhexamethylenesebacinamide
  • PA 612 polyhexamethylenedodecanamide
  • the polyamide types mentioned are preferred materials for the elevations in the upper punch which emboss the reinforcing recesses.
  • Polyurethanes are polymers (polyadducts) which can be obtained by polyaddition from dihydric and higher alcohols and isocyanates with groupings of the type
  • R 1 stands for a low molecular weight or polymeric diol residue and R 2 stands for an aliphatic or aromatic group.
  • the plastics mentioned can be used alone as materials for the elevations in the upper punch, which characterize the reinforcing recesses, but they can also be provided with coatings or laminations of metals or other materials.
  • Glass reinforced plastics are composites of a combination of a matrix of polymers and glass fibers acting as amplifiers.
  • the glass materials used for fiber reinforcement are present in the GRP as fibers, yarns, rovings (glass fiber strands), nonwovens, fabrics or mats.
  • thermosets such as, for example, epoxy resins, unsaturated polyester resins, phenolic and furan resins
  • thermoplastics such as, for example, polyamides, polycarbonates, polyacetals, polyphenylene oxides and sulfides, polypropylenes and styrene copolymers
  • the weight ratio between the reinforcing material and the polymer matrix is usually in the range from 10:90 to 65:35, with the strength properties of the GRP generally increasing to an amplifier content of about 40% by weight.
  • the manufacture of the GRP is predominantly in compression molding; Further important manufacturing processes are hand lamination, fiber spraying, continuous impregnation, winding and spin coating processes.
  • prepregs preimpregnated with fiberglass fiber materials, which are cured under application of pressure in the heat.
  • the GFK are distinguished from the non-reinforced matrix polymers by increased tensile, flexural and compressive strength, impact strength, dimensional stability and stability to the influence of heat, acids, salts, gases or solvents.
  • glass-fiber-reinforced polyterafluoroethylene and glass-fiber-reinforced polyamides have proven to be the materials of the elevations in the upper punch which characterize the reinforcing recesses.
  • plastics that are softer than the plastics used for the construction of the elevations in the upper punch, which characterize the reinforcing recesses.
  • these plastics can come from the same or from different groups, as long as the condition of hardness or softness is met.
  • adhesion-preventing or at least adhesion or adhesion-reducing effect of the walkable material for the formation of the base area has been described above. Experiments have shown that, for example, with the polyuretane Material Vulkollan or the PVC material Mipolam very good results could be achieved. Over use times of several thousand pressures, no adhesion to the base material was found.
  • the process according to the invention makes it possible to produce moldings of the most varied compositions, the process according to the invention in particular minimizing the problems in the production and use of detergent tablets for machine dishwashing. These detergent tablets usually contain only minor amounts of surfactants.
  • Detergent tablets are usually prepared by blending surfactant granules with conditioning components and then compressing this particulate premix.
  • Preferred variants of the process according to the invention are therefore characterized in that the particulate premix contains surfactant-containing granules (e) and has a bulk density of at least 500 g / l, preferably at least 600 g / l and in particular at least 700 g / l.
  • preferred methods therefore include the compression of a particulate premix of at least one surfactant-containing granules and at least one admixed pulverulent component.
  • the preparation of the surfactant-containing granules can be carried out by conventional industrial granulation processes such as compaction, extrusion, mixer granulation, pelleting or fluidized bed granulation.
  • the surfactant-containing granules satisfies certain particle size criteria in preferred process variants.
  • preferred processes according to the invention are those in which the surfactant-containing granules have particle sizes between 100 and 2000 ⁇ m, preferably between 200 and 1800 ⁇ m, particularly preferably between 400 and 1600 ⁇ m and in particular between 600 and 1400 ⁇ m.
  • the surfactant granules preferably also contain excipients, which more preferably originate from the group of builders.
  • the surfactant-containing granules contain anionic and / or nonionic surfactants and builders and have total surfactant contents of at least 10% by weight, preferably at least 15% by weight and in particular at least 20% by weight.
  • These surfactants come from the group of anionic, nonionic, zwitterionic or cationic surfactants, anionic surfactants are clearly preferred for economic reasons and because of their power spectrum.
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • Suitable surfactants of the sulfonate type are preferably C 9-13 -Alkylbenzolsul- sulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkane sulfonates, and the disulfonates obtained, for example, from C 12-i 8 monoolefins with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation obtained.
  • alkanesulfonates which are obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids for example, the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or Taigfettcicren are suitable.
  • sulfated fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and mixtures thereof, as obtained in the preparation by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal salts and, in particular, the sodium salts of the sulfuric monoesters of C 12 -C 18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 2 -C 15 - alkyl sulfates and C 14 -C 15 alkyl sulfates are preferred.
  • 2,3-alkyl sulfates which are produced for example in accordance with US Patent No. 3,234,258 or 5,075,041 and can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • the sulfuric monoesters of ethoxylated with 1 to 6 moles of ethylene oxide straight-chain or branched C 7-2 ⁇ -alcohols such as 2-methyl-branched C g . ⁇ alcohols with an average of 3.5 Mol of ethylene oxide (EO) or C 2 . 18 fatty alcohols with 1 to 4 EO are suitable. Due to their high foaming behavior, they are only used in detergents in relatively small amounts, for example in amounts of from 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8- 8 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which in themselves constitute nonionic surfactants (see description below).
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the Al k (en) yl chain or salts thereof.
  • anionic surfactants are particularly soaps into consideration.
  • Suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular of natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • surfactant granules containing from 5 to 50% by weight, preferably from 7.5 to 40% by weight and in particular from 10 to 30% by weight of anionic surfactant (s), in each case based on the granules ,
  • anionic surfactants that are used, the freedom from formulation no obstacle to be observed in the way.
  • preferred surfactant granules have a content of soap which exceeds 0.2% by weight, based on the total weight of the detergent tablets prepared in step d).
  • Preferred anionic surfactants to be used are the alkylbenzenesulfonates and fatty alcohol sulfates, with preferred detergent tablets having from 2 to 20% by weight, preferably from 2.5 to 15% by weight and in particular from 5 to 10% by weight of fatty alcohol sulfate (e), in each case based on the weight of the detergent tablets.
  • the tablets according to the invention are formulated as automatic dishwashing agents, they preferably contain only minor amounts of anionic surfactants, but mainly nonionic surfactants.
  • nonionic surfactants are preferably used alkoxylated, preferably ethoxylated, especially primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol in which the alcohol radical is linear or preferably methyl-branched in the 2-position may contain or linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • Examples of preferred ethoxylated alcohols include C 12 -alcohols with 3 EO or 4 EO, C 9 . ⁇ alcohol containing 7 EO, C 13-15 alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, C12-18 alcohols containing 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12 -14- alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x can be used in which R is a primary straight-chain or methyl-branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylaminoxid, and the fatty acid alkanolamides may be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are polyhydroxy fatty acid amides of the formula
  • RCO is an aliphatic acyl radical having 6 to 22 carbon atoms
  • R ⁇ is hydrogen
  • [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having from 1 to 8 carbon atoms, with C 1-4 alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this residue.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • Low-foaming nonionic surfactants are used as preferred surfactants.
  • the machine dishwashing detergents according to the invention contain nonionic surfactants, in particular nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • Preferred ethoxylated alcohols include, for example, 12 C i 4 alcohols containing 3 EO or 4 EO, C9-11 alcohol containing 7 EO, C 13-15 alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, C 12 . 18- alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 - ⁇ -alcohol with 3 EO and C-
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • compositions according to the invention which comprise a nonionic surfactant which has a melting point above room temperature.
  • preferred dishwashing detergents are characterized in that they contain nonionic surfactant (s) having a melting point above 20 ° C., preferably above 25 ° C., more preferably between 25 and 60 ° C. and in particular between 26.6 and 43, 3 ° C, included.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature. If highly viscous nonionic surfactants are used at room temperature, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants which have waxy consistency at room temperature are also preferred.
  • Preferred nonionic surfactants to be used at room temperature are from the groups of the alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols, and mixtures of these surfactants with structurally complicated surfactants such as Polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
  • Such (PO / EO / PO) nonionic surfactants are also distinguished by good foam control.
  • the nonionic surfactant having a melting point above room temperature is an ethoxylated nonionic surfactant consisting of the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms, preferably at least 12 mol, more preferably at least 15 mol, especially at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol emerged.
  • a particularly preferred room temperature solid nonionic surfactant is selected from a straight chain fatty alcohol having 16 to 20 carbon atoms (C 16-2 o-alcohol), preferably a C 18 alcohol and at least 12 moles, preferably at least 15 moles and especially at least 20 moles of ethylene oxide won.
  • C 16-2 o-alcohol a straight chain fatty alcohol having 16 to 20 carbon atoms
  • C 18 alcohol preferably a C 18 alcohol and at least 12 moles, preferably at least 15 moles and especially at least 20 moles of ethylene oxide won.
  • the so-called “narrow rank ethoxylates" are particularly preferred.
  • particularly preferred dishwashing agents of the invention contain ethoxylated nonionic surfactant (s) consisting of C 6-20 monohydroxyalkanols or C 6 . 20- alkylphenols or C 16-2 o-fatty alcohols and more than 12 moles, preferably more than 15 moles and in particular more than 20 moles of ethylene oxide per mole of alcohol was won (n).
  • ethoxylated nonionic surfactant consisting of C 6-20 monohydroxyalkanols or C 6 . 20- alkylphenols or C 16-2 o-fatty alcohols and more than 12 moles, preferably more than 15 moles and in particular more than 20 moles of ethylene oxide per mole of alcohol was won (n).
  • the nonionic surfactant solid at room temperature preferably additionally has propylene oxide units in the molecule.
  • such PO units make up to 25 wt .-%, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant from.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably constitutes more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • Preferred dishwashing detergents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule contain up to 25% by weight, preferably up to 20% by weight and in particular up to 15% by weight of the total molecular weight of the nonionic Surfactants are included.
  • More particularly preferred nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight.
  • -% one Block copolymers of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • Nonionic surfactants that may be used with particular preference are available, for example under the name Poly Tergent ® SLF-18 from Olin Chemicals.
  • a further preferred dishwashing detergent according to the invention contains nonionic surfactants of the formula (VI)
  • R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y is a value of at least 15.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical
  • x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5. If the value x ⁇ 2, each R 3 in the above formula may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x ⁇ 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been chosen here as an example and may be larger, with the range of variation increasing with increasing x-values and including, for example, a large number of (EO) groups combined with a small number of (PO) groups, or vice versa.
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18. Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • dishwashing agents according to the invention are preferred, the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl
  • x is n-butyl, 2-butyl or 2-methyl-2-butyl
  • x are values between 1 and 30
  • k and j are values between 1 and 12, preferably between 1 and 5
  • x is from 1 to 30, preferably from 1 to 20 and especially from 6 to 18, are particularly preferred.
  • nonionic surfactants have been low foaming nonionic surfactants which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • Machine dishwashing agents according to the invention which contain surfactants of the general formula VII as nonionic surfactant (s) are preferred here R 1 -O- (CH 2 -CH 2 -O) w - (CH 2 -CH (R 2 ) -O) x - (CH 2 -CH 2 -O) y - (CH 2 -CH (R 3 ) -0) z -H (VII)
  • R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6 .
  • the preferred nonionic surfactants of formula VII can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in formula X above may vary depending on the origin of the alcohol. When native sources are used, the radical R 1 has an even number of carbon atoms and is usually undisplayed, the linear radicals being selected from alcohols of native origin having 12 to 18 C atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred.
  • Alcohols which are accessible from synthetic sources are, for example, the Guerbet alcohols or methyl-branched or linear and methyl-branched radicals in the 2-position, as they are usually present in oxo alcohol radicals.
  • R 1 in formula VII is an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 or R 3 are independently selected from - CH 2 CH 2 -CH 3 or CH (CH 3 ) 2 are suitable.
  • Preferred automatic dishwashing agents are characterized in that R 2 and R 3 are each a residue -CH 3 , w and x independently of one another for values of 3 or 4 and y and z independently of one another represent values of 1 or 2.
  • nonionic surfactants which have a C 9-15 -alkyl radical having 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units.
  • These surfactants have the required low viscosity in aqueous solution and can be used according to the invention with particular preference.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula (VIII) R 1 O [CH 2 CH (R 3 ) O] x R 2 (VIII)
  • R 1 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 2 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably between 1 and have 5 hydroxy groups and are preferably further functionalized with an ether group
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2- Butyl radical, x for values between 1 and 40.
  • R 3 is H.
  • R 1 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms
  • R 2 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably have between 1 and 5 hydroxyl groups and x stands for values between 1 and 40.
  • R 1 which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms, furthermore a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical with 1 have up to 30 carbon atoms R 2 , which is a monohydroxylated intermediate group - CH 2 CH (OH) - adjacent.
  • R 2 which is a monohydroxylated intermediate group - CH 2 CH (OH) - adjacent.
  • Such end-capped poly (oxyalkylated) nonionic surfactants can be prepared for example by reacting a terminal epoxide of formula R 2 CH (0) CH 2 with an ethoxylated alcohol of the formula R 1 0 [CH 2 CH 2 0] x-1 CH 2 CH 2 0H.
  • the stated C chain lengths and degrees of ethoxylation or degrees of alkoxylation of the abovementioned nonionic surfactants represent statistical mean values which, for a specific product, may be an integer or a fractional number.
  • alkyl polyglycosides Another class of nonionic surfactants that can be used to advantage are the alkyl polyglycosides (APG).
  • APG alkyl polyglycosides
  • Usable Alkypolyglycoside meet the general formula RO (G) z , in which R is a linear or branched, especially in the 2-position methyl branched, saturated or unsaturated, aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the Is a symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the glycosidation degree z is between 1, 0 and 4.0, preferably between 1, 0 and 2.0 and in particular between 1, 1 and 1, 4.
  • linear alkyl polyglucosides that is to say alkyl polyglycosides in which the polyglycosyl radical is a glucose radical and the alkyl radical is an n-alkyl radical.
  • the surfactant granules may preferably contain alkylpolyglycosides, with contents of APG of more than 0.2% by weight, based on the total molding, being preferred.
  • Particularly preferred detergent tablets contain APG in amounts of from 0.2 to 10% by weight, preferably from 0.2 to 5% by weight and in particular from 0.5 to 3% by weight.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • anionic or nonionic surfactants or mixtures of these classes of surfactants and optionally amphoteric or cationic surfactants are used in the surfactant granules
  • processes according to the invention are preferred in which the surfactant content of the surfactant-containing granules 5 to 60 wt .-%, preferably 10 to 50 wt. -% and in particular 15 to 40 wt .-%, each based on the surfactant granules is.
  • the surfactant granules can be used in the detergent tablets in varying amounts. Processes according to the invention in which the proportion of surfactant-containing granules in the washing and cleaning agent tablets is 40 to 95% by weight, preferably 45% to 85 wt .-% and in particular 55 to 75 wt .-%, each based on the weight of the detergent tablets, are thereby preferred. As already mentioned above, automatic dishwashing detergent tablets usually contain only small quantities of surfactants, so that the above information does not apply to this class of detergent tablets.
  • builders are the most important ingredients of detergents and cleaners.
  • surfactant granules or where no Tensidgranulate be used as part of the premix all commonly used in detergents and cleaning agents builders may be included, especially zeolites, silicates, carbonates, organic cobuilders and - where there are no ecological prejudices against their use - also the phosphates.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x 0 2x + 1 'H 2 O, where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3.
  • both ß- and ⁇ -sodium disilicates Na 2 Si 2 0 5 'yH 2 0 are preferred.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, values of up to max. 50 nm and in particular up to max. 20 nm are preferred. Such so-called X-ray amorphous silicates also have a dissolution delay compared with the conventional water glasses.
  • compacted / compacted amorphous silicates particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • Detergents and cleaning agents which are preferred in the context of the present invention are characterized in that these silicates (e), preferably alkali metal silicates, particularly preferably crystalline or amorphous alkali disilicates, are present in amounts of from 10 to 60% by weight, preferably from 15 to 50% by weight. % and in particular from 20 to 40 wt .-%, each based on the weight of the detergent or cleaning agent.
  • these compositions preferably comprise at least one crystalline, layered silicate of the general formula NaMSi x 0 2x + 1 'y H 2 0 wherein M is sodium or hydrogen, x is a number from 1, 9 to 22 , preferably from 1, 9 to 4, and y is a number from 0 to 33.
  • the crystalline layer-form silicates of the formula (I) are obtained, for example, from the company Clariant GmbH
  • Na-SKS eg Na-SKS-1 (Na 2 Si 2 2 ⁇ 4 5 - ⁇ H 2 O, kenyaite), Na-SKS-2 (Na 2 Si 14 O 2 g-xH 2 O, magadiite), Na -SKS-3 (Na 2 Si 8 O 17 -H 2 O) or Na-SKS
  • Na-SKS-5 ( ⁇ -Na 2 Si 2 O 5 ), Na-SKS-7 ( ⁇ -Na 2 Si 2 O 5 , natrosilite), Na-SKS-9 (NaHSi 2 O 5 H 2 O), Na -
  • preferred automatic dishwashing detergents or dishwashing assistants have a weight fraction of the crystalline layered silicate of the formula (I) of from 0.1 to 20% by weight, preferably from 0.2 to 15% by weight and in particular from 0, 4 to 10 wt .-%, each based on the total weight of these agents on.
  • Particular preference is given in particular to those automatic dishwasher detergents which have a total silicate content of less than 7% by weight, preferably less than 6% by weight, preferably less
  • silicate of the general formula NaMSi x 0 2x + 1 'y H 2 0 is.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable, however, are zeolite X and mixtures of A, X and / or P.
  • Commercially available and preferably usable in the context of the present invention is, for example, a cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is marketed by CONDEA Augusta SpA under the trade name AX VEGOBOND ® and by the formula n Na 2 0 ⁇ (1-n) K 2 0 ⁇ ⁇ Al 2 0 3 (2 to 2.5) Si0 2 ⁇ ( 3.5-5.5) H 2 O
  • the zeolite can be used both as a builder in a granular compound, as well as to a kind of "powdering" of the entire mixture to be pressed, usually both ways for incorporating the zeolite are used in the premix.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • additional zeolite may be incorporated into the premix by adding zeolite as a conditioning component.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably a zeolite of type A, P, X or Y.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22 wt .-%, in particular 20 to 22 wt .-% of bound water.
  • phosphates as builders are possible, unless such use should not be avoided for environmental reasons. This applies in particular to the use of agents according to the invention as automatic dishwasher detergents, which is particularly preferred in the context of the present application.
  • agents according to the invention as automatic dishwasher detergents, which is particularly preferred in the context of the present application.
  • the alkali metal phosphates with a particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the washing and cleaning agent industry.
  • Alkalimetallphosphate is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids in which metaphosphoric acids (HP0 3 ) ⁇ and orthophosphoric H 3 P0 4 in addition to high molecular weight Can distinguish representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 P0 4 exists as dihydrate (density 1, 91 like “3 , melting point 60 °) and as monohydrate (density 2.04 like “ 3 ). Both salts are white powders which are very slightly soluble in water and which lose the water of crystallization on heating and at 200 ° C into the weak acid diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 0), at higher temperature in sodium trimetaphosphate (Na 3 P 3 0 9 ) and Maddrell's salt (see below).
  • NaH 2 P0 4 is acidic; It arises when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (potassium phosphate primary or monobasic phosphate, potassium biphosphate, KDP), KH 2 P0 4 , is a white salt of density 2.33 "3 , has a melting point of 253 ° [decomposition to form potassium polyphosphate (KP0 3 ) J and is readily soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very slightly water-soluble crystalline salt. It exists anhydrous and with 2 moles (density 2.066 like “3 , water loss at 95 °), 7 moles (density 1, 68 like “ 3 , melting point 48 ° with loss of 5 H 2 0) and 12 moles water ( Density 1, 52 like “3 , melting point 35 ° with loss of 5 H 2 0), becomes anhydrous at 100 ° and goes on stronger heating in the diphosphate Na 4 P 2 0 7.
  • Disodium hydrogen phosphate is by neutralization of phosphoric acid with sodium carbonate solution under Use of phenolphthalein as an indicator
  • Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HP0 4 , is an amorphous, white salt that is readily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 P0 are colorless crystals which have a density of 1, 62 "3 and a melting point of 73-76 ° C (decomposition) as decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 0 5 ) have a density of 2.536 like "3 .
  • Trisodium phosphate is readily soluble in water under alkaline reaction and is prepared by evaporating a solution of exactly 1 mole of disodium phosphate and 1 mole of NaOH.
  • Tripotassium phosphate (tertiary or tribasic potassium phosphate), K 3 P0 4 , is a white, volatilized, granular powder with a density of 2.56 "3 , has a melting point of 1340 ° and is readily soluble in water with an alkaline reaction Heating of Thomas slag with coal and potassium sulfate Despite the higher price, in the detergent industry, the more soluble, therefore highly effective, potassium phosphates are often preferred over the corresponding sodium compounds.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 like “3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1, 815-1, 836 like " 3 , melting point 94 ° with loss of water).
  • decahydrate Density 1, 815-1, 836 like " 3 , melting point 94 ° with loss of water.
  • Na 4 P 2 0 7 arises when heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and the solution is dewatered by spraying.
  • the decahydrate complexes heavy metal salts and hardness agents and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33% "3 " which is soluble in water, the pH being 1% Solution at 25 ° 10.4.
  • Sodium and potassium phosphates in which one can distinguish cyclic representatives, the sodium or Kaliummetaphosphate and chain types, the sodium or potassium polyphosphates. In particular, for the latter are a variety of names in use: melting or annealing phosphates, Graham's salt, Kurrolsches and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O 10 (sodium tripolyphosphate)
  • n 3.
  • 100 g of water dissolve at room temperature about 17 g, at 60 ° about 20 g, at 100 ° around 32 g of the salt water-free salt; after two hours of heating the solution to 100 ° caused by hydrolysis about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the preparation of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dehydrated by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentakaliumtriphosphat, K 5 P 3 O 10 (potassium tripolyphosphate), for example, in the form of a 50 wt .-% solution (> 23% P 2 0 5 , 25% K 2 0) in the trade. The potassium polyphosphates are widely used in the washing and cleaning industry. There are also sodium potassium tripolyphosphates which can also be used in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH:
  • sodium tripolyphosphate potassium tripolyphosphate or mixtures of these two; also mixtures of sodium tripolyphosphate and Sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can be used according to the invention.
  • preferred agents are characterized in that this phosphate (s), preferably alkali metal phosphate (s), more preferably pentasodium or.
  • Pentakaliumtriphosphat sodium or potassium tripolyphosphate
  • this phosphate preferably alkali metal phosphate (s), more preferably pentasodium or.
  • Pentakaliumtriphosphat sodium or potassium tripolyphosphate
  • in amounts of 5 to 80 wt .-%, preferably from 15 to 75 wt .-%, in particular from 20 to 70 wt .-%, each based on the weight of the detergent or cleaning agent contain.
  • compositions according to the invention in which the weight ratio of potassium tripolyphosphate present in the composition to sodium tripolyphosphate is more than 1: 1, preferably more than 2: 1, preferably more than 5: 1, more preferably more than 10: 1 and in particular more than 20: 1.
  • weight ratio of potassium tripolyphosphate present in the composition to sodium tripolyphosphate is more than 1: 1, preferably more than 2: 1, preferably more than 5: 1, more preferably more than 10: 1 and in particular more than 20: 1.
  • agents according to the invention which contain exclusively potassium tripolyphosphate.
  • alkali carriers are, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal sesquicarbonates, the alkali metal silicates, alkali metal silicates and mixtures of the abovementioned substances, preference being given to using alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • alkali metal carbonates in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate.
  • Particularly preferred detergents and cleaning agents contain carbonate (s) and / or bicarbonate (s), preferably alkali metal carbonates, more preferably sodium carbonate, in amounts of from 2 to 50% by weight, preferably from 5 to 40% by weight and in particular 7.5 to 30 wt .-%, each based on the weight of the detergent or cleaning agent.
  • carbonate (s) and / or bicarbonate (s) preferably alkali metal carbonates, more preferably sodium carbonate
  • organic cobuilders it is possible in particular to use polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, further organic cobuilders (see below) and phosphonates in the detergents and cleaners according to the invention. These classes of substances are described below.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning such carboxylic acids which carry more than one acidity function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • Polyacrylates are, for example, under the names Versicol ® E5, Versicol ® E7 and Versicol ® E9 (trademark of Allied Colloids), Narlex ® LD 30 and Narlex ® LD 34 (trademark of National Adhesives), Acrysol ® LMW-10, Acrysol ® LMW 20, Acrysol ® LMW-45 and Acrysol ® A1-N (trademark of Rohm & Haas), and Sokalan ® PA-20, Sokalan ® PA-40, Sokalan ® PA 70 and Sokalan ® PA-110 (trademark of BASF) available in the stores.
  • Ethylene / maleic acid copolymers are sold under the name EMA ® (trademark of Monsanto), methyl vinyl ether / maleic acid copolymers under the name Gantrez ® AN 119 (trademark of GAF Corp.) and acrylic acid / maleic acid copolymers under the name Sokalan ® CP5 and Sokalan ® CP7 (trademark of BASF).
  • Acryiphosphinate are as DKW ® - available (trademark of National Adhesives) or Belperse ® grades (trademark of Ciba-Geigy).
  • graft copolymers which are obtained by grafting polyalkylene oxides having molecular weights of between 2000 and 100 000 with vinyl acetate.
  • the acetate groups may optionally be saponified up to 15%.
  • Polymers of this type are available under the name Sokalan ® HP22 (trademark of BASF).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the compositions is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers the salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or the salts of acrylic acid and 2-alkylallyl sulfonic acid as monomers. Derivatives included.
  • copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • Particularly preferred are polyaspartic acids or their salts and.
  • polyacetals which are prepared by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 Hydroxyl groups can be obtained.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Ethylenediamine-N, N '- disuccinate (EDDS) is preferably in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • phosphonates are, in particular, hydroxyalkane or aminoalkanephosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a co-builder. It is preferably used as the sodium salt, the disodium salt neutral and the tetrasodium salt alkaline (pH 9).
  • Ethylenediamine tetramethylene phosphonates are preferably used as aminoalkane phosphonates (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) and their higher homologues in question.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkanephosphonates also have a pronounced heavy metal binding capacity. Accordingly, in particular if the agents also contain bleach, it may be preferable to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • Detergents or cleaning agents according to the invention may furthermore contain washing or cleaning-active polymers.
  • the group of these polymers includes, for example, the rinse aid polymers and / or polymers which are effective as softeners.
  • Detergents or cleaning agents which are preferred according to the invention are characterized in that, based on their total weight, they contain 0.1 to 50% by weight, preferably between 0.2 and 40% by weight, more preferably between 0.4 and 35% by weight .-% and in particular between 0.6 and 31 wt .-% of a polymer, preferably at least one polymer from the group of cationic, anionic or amphoteric polymers.
  • Effective polymers as softeners are, for example, the sulfonic acid-containing polymers which are used with particular preference in the compositions according to the invention.
  • Suldonklare phenomenon-containing polymers are copolymers of unsaturated carboxylic acids, sulfonic acid-containing monomers and optionally other ionic or nonionic monomers.
  • unsaturated carboxylic acids of the formula XI are preferred as the monomer
  • R 1 to R 3 independently of one another are -H-CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or - COOH substituted alkyl or alkenyl radicals as defined above or for -COOH or - COOR 4 , wherein R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • Preferred among these monomers are those of the formulas XIIa, XIIb and / or XIIIc,
  • Suitable further ionic or nonionic monomers are, in particular, ethylenically unsaturated compounds.
  • the content of the monomers used according to the invention to monomers of group iii) is preferably less than 20% by weight, based on the polymer.
  • Particularly preferred polymers to be used consist only of monomers of groups i) and ii).
  • copolymers are made of
  • R 1 to R 3 independently of one another are -H-CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or - COOH substituted alkyl or alkenyl radicals as defined above or is -COOH or - COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms,
  • Particularly preferred copolymers consist of i) one or more unsaturated carboxylic acids from the group of acrylic acid, methacrylic acid and / or maleic acid ii) one or more sulfonic acid-containing monomers of the formulas XIIa, XIIb and / or XIIIc:
  • the copolymers may contain the monomers from groups i) and ii) and, if appropriate, iii) in varying amounts, it being possible for all representatives from group i) to be combined with all representatives from group ii) and all representatives from group iii).
  • Particularly preferred polymers have certain structural units, which are described below.
  • laundry detergent or detergent compositions of the invention are preferred, which are characterized in that they contain one or more copolymers, the structural units of the formula XIII - [CH 2 -CHCOOH] m - [CH 2 -CHC (O) -Y-SO 3 H] p - (XIII)
  • polymers are prepared by copolymerization of acrylic acid with a sulfonic acid-containing acrylic acid derivative.
  • acrylic acid derivative containing sulfonic acid groups is copolymerized with methacrylic acid, another polymer is obtained whose use in the washing or cleaning composition according to the invention is also preferred and characterized in that the preferred detergent or cleaner compositions comprise one or more copolymers containing structural units of the formula XIV
  • Acrylic acid and / or methacrylic acid can also be copolymerized completely analogously with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • inventively preferred detergent compositions which are characterized in that they contain one or more copolymers which contain structural units of the formula XVII
  • washing or cleaning agent compositions according to the invention which contain one or more copolymers which contain structural units of the formulas XIII and / or XIV and / or XV and / or XVI and / or XVII and / or XVIII are preferred - [CH 2 -CHCOOH] rn - [CH 2 -CHC (O) -Y-SO 3 H] p - (XIII), - [CH 2 -C (CH 3 ) COOH] m - [CH 2 -CHC ( 0) -Y-S0 3 H] p - (XIV), - [CH 2 -CHCOOH] m - [CH 2 -C (CH 3 ) C (O) -Y-S0 3 H] p - (XV), - [CH 2 -C (CH 3 ) COOH] m - [CH 2 -C (CH 3 ) C (O) -Y-SO 3 H] p - (
  • the sulfonic acid groups may be wholly or partially in neutralized form, i. in that the acidic hydrogen atom of the sulfonic acid group in some or all sulfonic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • Corresponding detergent or cleaning agent compositions which are characterized in that the sulfonic acid groups are present in the copolymer partially or fully neutralized are preferred according to the invention.
  • the monomer distribution of the copolymers used in the detergent or cleaning compositions according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90 % By weight of monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers particular preference is given to those containing from 20 to 85% by weight of monomer from group i), from 10 to 60% by weight of monomer from group ii) and from 5 to 30% by weight of monomer from group iii) ,
  • the molecular weight of the above-described sulfo-copolymers used in the detergent or cleaner compositions of the present invention can be varied to tailor the properties of the polymers to the desired end use.
  • Preferred washing or cleaning compositions are characterized in that the Copolymers of molecular weights of 2000 to 200,000 gmol "1 , preferably from 4000 to 25,000 gmol " 1 and in particular from 5000 to 15,000 gmol "1 have.
  • Particularly preferred detergents or cleaners according to the invention are characterized in that they comprise at least one polymer containing sulfonic acid groups, preferably a copolymer of i) unsaturated carboxylic acids ii) sulfonic acid group-containing monomers iii) optionally further ionic or nonionic monomers.
  • Preferred agents according to the invention may further contain amphoteric or cationic polymers to improve the rinse-off result.
  • These particularly preferred polymers are characterized by having at least one positive charge.
  • Such polymers are preferably water-soluble or water-dispersible, that is, they have a solubility in water at 25 ° C above 10 mg / ml.
  • particularly preferred detergents or cleaners are characterized in that they contain at least one polymer with a molecular weight above 2000, which has at least one positive charge.
  • Particularly preferred cationic or amphoteric polymers contain at least one ethylenically unsaturated monomer unit of the general formula
  • R 1 to R 4 independently of one another are -H-CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or - COOH substituted alkyl or alkenyl radicals as defined above, a heteroatomic group having at least one positively charged group, a quaternized nitrogen atom or at least one amine group with a positive charge in the pH range between 2 and 11 or -COOH or -COOR 5 , wherein R 5 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • Particularly preferred as part of the amphoteric polymers are unsaturated carboxylic acids of the general formula
  • R 1 to R 3 are independently -H-CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with - NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals as defined above or is - COOH or -COOR 4 , wherein R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • amphoteric polymers contain as monomer units derivatives of diallylamine, in particular dimethyldiallylammonium salt and / or
  • Methacrylamidopropyl (trimethyl) ammonium salt preferably in the form of the chloride, bromide, iodide, hydroxide, phosphate, sulfate, hydrosulfate, ethylsulfate, methyl sulfate, mesylate, tosylate, formate or acetate in combination with monomer units from the group of ethylenically unsaturated carboxylic acids.
  • the premix Prior to compression of the particulate premix to detergent tablets, the premix may be finely divided
  • Fine particulate powdering agents are well known in the art, with mostly zeolites, silicates or other inorganic salts are used.
  • the premix is "powdered” with finely divided zeolite, with faujasite-type zeolites being preferred.
  • faujasite type zeolite denotes all three zeolites which form the faujasite subgroup of the zeolite structure group 4 (cf. Donald W.
  • Mixtures or cocrystallizates of zeolites of the faujasite type with other zeolites, which need not necessarily belong to the zeolite structure group 4, can be used as a powdering agent, it being advantageous if at least 50 wt .-% of the powdery powder of a zeolite of faujasite Type persist.
  • washing and cleaning agent tablets which consist of a particulate premix containing granular components and subsequently admixed pulverulent substances, the one or more subsequently admixed pulverulent components comprising a faujasite-type zeolite having particle sizes below 100 ⁇ m, preferably below 10 ⁇ m and in particular below 5 ⁇ m and makes up at least 0.2% by weight, preferably at least 0.5% by weight and in particular more than 1% by weight of the premix to be tabletted.
  • detergent tablets and detergent tablets which additionally contain a disintegration assistant are preferred.
  • the premix additionally comprises a disintegration assistant, preferably a disintegration aid based on cellulose, preferably in granular, cogranulated or compacted form, in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6 wt .-%, each based on the weight of the premix contains, are preferred.
  • the particulate premixes to be compressed additionally comprise one or more substances from the group of bleaches, bleach activators, enzymes, pH adjusters, fragrances, perfume carriers, fluorescers, dyes, Foam inhibitors, silicone oils, anti redeposition agents, optical brighteners, grayness inhibitors, dye transfer inhibitors and corrosion inhibitors.
  • bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 0 2 -yielding peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, or Phthaloiminoperklare
  • Cleaning agents according to the invention may also contain bleaching agents from the group of organic bleaching agents.
  • Typical organic bleaching agents are the diacyl peroxides, e.g. Dibenzoyl.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid
  • PAP Phthaloiminoperoxyhexanoic acid
  • o-carboxybenzamidoperoxycaproic acid N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate
  • aliphatic and araliphatic peroxydicarboxylic acids such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, Diperoxysebacic acid, diperoxybrassic acid, the diperoxyphthalic acids, 2-decyldiperoxybutane-1,4-diacid, N, N-terephthaloyl-di (6-aminopercapronate) can be used.
  • chlorine or bromine-releasing substances are, for example, heterocyclic N-bromo- and N-chloroamides, for example trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and / or
  • Hydantoin compounds, such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
  • Preferred dispersions according to the invention contain bleaching agents in amounts of from 1 to 40% by weight, preferably from 2.5 to 30% by weight and in particular from 5 to 20% by weight, in each case based on the total dispersion.
  • the agents according to the invention are used as automatic dishwashing detergents, they may furthermore contain bleach activators as dispersed substances in order to achieve an improved bleaching effect on cleaning at temperatures of 60 ° C. and below.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylene diamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5- diacetoxy-2,5-dihydrofuran.
  • TAED tetraacetylethylened
  • bleach activators preferably used in the context of the present application are compounds from the group of cationic nitriles, in particular cationic nitrile of the formula
  • R 3 in the R 1 is -H, -CH 3 , a C 2-24 alkyl or alkenyl radical, a substituted C 2-24 alkyl or alkenyl radical having at least one substituent from the group -Cl, -Br, - OH, -NH 2 , -CN, an alkyl or alkenylaryl radical having a C 1-24 -alkyl group, or represents a substituted alkyl or alkenylaryl radical having a C 1-4 -alkyl group and at least one further substituent on the aromatic ring
  • R 2 and R 3 are independently selected from -CH 2 -CN, -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3, -CH 2 - CH 2 -CH 2 -OH
  • inventive agents is a cationic nitrile of the formula
  • bleach activators are compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylene-diamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, in particular phthalic anhydride, acylated polyvalent Alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran, n-methyl-morph
  • Hydrophilic substituted acyl acetals and acyl lactams are also preferably used.
  • Combinations of conventional bleach activators can also be used.
  • the bleach activators are usually used in automatic dishwashing detergents in amounts of from 0.1 to 20% by weight, preferably from 0.25 to 15% by weight and in particular from 1 to 10% by weight, based in each case on the composition.
  • bleach catalysts can also be incorporated into the compositions.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • bleach activators preference is given to bleach activators from the group of the polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (US Pat.
  • TAED tetraacetylethylenediamine
  • N-acylimides in particular N-nonanoylsuccinimide (NOSI)
  • acylated phenolsulfonates in particular n-nonanoyl or isononanoyloxybenzenesulfonate
  • N- or iso-NOBS N- or iso-NOBS
  • n-methyl-morpholinium acetonitrile-methyl sulfate (MMA) preferably in amounts of up to 10 wt .-%, in particular 0.1 wt .-% to 8 wt .-%, especially 2 to 8 wt .-% and particularly preferably 2 to 6 wt .-% based on the total weight of the dispersion used.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) Complexes of the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, manganese sulfate are used in conventional amounts, preferably in an amount up to 5 wt .-%, in particular of 0.0025 wt % to 1 wt .-% and particularly preferably from 0.01 wt .-% to 0.25 wt .-%, each based on the total agent used. But in special cases, more bleach activator can be used.
  • Another long-standing problem with automatic dishwashing is the corrosion of glassware, which can usually manifest itself by the appearance of turbidity, streaks and scratches, but also by iridescence of the glass surface. The observed effects are based essentially on two processes, the leakage of alkali and alkaline earth ions from the glass in conjunction with hydrolysis of the silicate network, on the other hand in a deposition of silicate compounds on the glass surface.
  • Preferred agents according to the invention therefore furthermore comprise glass corrosion protection agents, preferably from the group of magnesium and / or zinc salts and / or magnesium and / or zinc complexes.
  • a preferred class of compounds that can be added to the compositions of the invention to prevent glass corrosion are insoluble zinc salts. These can accumulate on the glass surface during the dishwashing process, preventing the dissolution of metal ions from the glass network and the hydrolysis of the silicates. In addition, these insoluble zinc salts also prevent the deposition of silicate on the glass surface, so that the glass is protected from the consequences described above.
  • Insoluble zinc salts in the context of this preferred embodiment are zinc salts which have a solubility of a maximum of 10 grams of zinc salt per liter of water at 20 ° C.
  • Examples of particularly preferred insoluble zinc salts according to the invention are zinc silicate, zinc carbonate, zinc oxide, basic zinc carbonate (Zn 2 (OH) 2 CO 3 ), zinc hydroxide, zinc oxalate, zinc monophosphate (Zn 3 (PO 4 ) 2 ), and zinc pyrophosphate (Zn 2 (P 2 0 7 )).
  • the zinc compounds mentioned are preferably employed in the compositions according to the invention in amounts which have a content of the zinc ions of between 0.02 and 10% by weight, preferably between 0.1 and 5.0% by weight and in particular between 0.2 and 1, 0 wt .-%, each based on the agent effect.
  • the exact content of the agents on the zinc salt or zinc salts is of course dependent on the type of zinc salts - the less soluble the zinc salt used, the higher its concentration should be in the inventive compositions.
  • the particle size of the salts is a criterion to be observed, so that the salts do not adhere to glassware or machine parts.
  • liquid aqueous according to the invention automatic dishwasher detergents are preferred in which the insoluble zinc salts have a particle size below 1.7 mm.
  • the insoluble zinc salt has an average particle size which is significantly below this value in order to further minimize the risk of insoluble residues, for example an average particle size of less than 250 ⁇ m. Again, this is even more true the less the zinc salt is soluble.
  • the glass corrosion inhibiting effectiveness increases with decreasing particle size.
  • the average particle size is preferably below 100 microns. For still less soluble salts, it may be even lower; For example, average particle sizes below 100 ⁇ m are preferred for the very poorly soluble zinc oxide.
  • Another preferred class of compounds are magnesium and / or zinc salt (s) of at least one monomeric and / or polymeric organic acid. The effect of this is that even with repeated use, the surfaces of glassware do not change corrosively, in particular, no turbidity, streaks or scratches, but also iridescence of the glass surfaces are not caused.
  • magnesium and / or zinc salt (s) of monomeric and / or polymeric organic acids may be included in the claimed compositions, as described above, the magnesium and / or zinc salts of monomeric and / or polymeric organic acids are derived from the Groups of unbranched saturated or unsaturated monocarboxylic acids, the branched saturated or unsaturated monocarboxylic acids, the saturated and unsaturated dicarboxylic acids, the aromatic mono-, di- and tricarboxylic acids, the sugar acids, the hydroxy acids, the oxo acids, the amino acids and / or the polymeric carboxylic acids are preferred. Within these groups, the acids mentioned below are again preferred in the context of the present invention:
  • benzoic acid 2-carboxybenzoic acid (phthalic acid), 3-carboxybenzoic acid (isophthalic acid), 4-carboxybenzoic acid (terephthalic acid), 3,4-dicarboxybenzoic acid (trimellitic acid), 3,5 -Dicarboxylicbenzoic acid (Trimesionklare).
  • sugar acids galactonic acid, mannonic acid, fructonic acid, arabinonic acid, xylonic acid, ribonic acid, 2-deoxy-ribonic acid, alginic acid.
  • hydroxy acids From the group of hydroxy acids: hydroxyphenylacetic acid (mandelic acid), 2-hydroxypropionic acid (lactic acid), malic acid (malic acid), 2,3-dihydroxybutanedioic acid (tartaric acid), 2-hydroxy-1,2,3-propanetricarboxylic acid (citric acid) .
  • Ascorbic acid 2-hydroxybenzoic acid (salicylic acid), 3,4,5-trihydroxybenzoic acid (gallic acid).
  • oxo acids 2-oxopropionic acid (pyruvic acid), 4-oxo-pentanoic acid (levulinic acid).
  • amino acids From the group of amino acids: alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, tyrosine, threonine, cysteine, asparagine, glutamine, aspartic acid, glutamic acid, lysine, arginine, histidine.
  • polymeric carboxylic acids polyacrylic acid, polymethacrylic acid, alkylacrylamide / acrylic acid copolymers, alkylacrylamide / methacrylic acid copolymers,
  • Alkylacrylamide / methylmethacrylic acid copolymers copolymers of unsaturated carboxylic acids, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers.
  • inventively preferred zinc salts of organic acids preferably organic carboxylic acids, ranging from salts which are difficult or insoluble in water, ie a solubility below 100 mg / L, preferably below 10 mg / L, in particular have no solubility, to such salts having a solubility in water above 100 mg / L, preferably above 500 mg / L, more preferably above 1 g / L and in particular above 5 g / L (all solubilities at 20 ° C water temperature).
  • the first group of zinc salts includes, for example, the zinc nitrate, the zinc oleate and the zinc stearate;
  • the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate:
  • the dispersions according to the invention comprise at least one zinc salt, but no magnesium salt of an organic acid, which is preferably at least one zinc salt of an organic carboxylic acid, more preferably a zinc salt selected from zinc stearate, zinc oleate, zinc gluconate, zinc acetate , Zinc lactate and / or Zinkeitrat acts.
  • Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
  • An agent preferred in the context of the present invention contains zinc salt in amounts of from 0.1 to 5% by weight, preferably from 0.2 to 4% by weight and in particular from 0.4 to 3% by weight, or zinc in oxidized form (calculated as Zn 2+ ) in amounts of from 0.01 to 1% by weight, preferably from 0.02 to 0.5% by weight and in particular from 0.04 to 0.2% by weight , in each case based on the total weight of the dispersion.
  • the tablets according to the invention are used as dishwashing detergents, then these detergents may contain corrosion inhibitors for protecting the items to be washed or the machine, with particular silver protectants being of particular importance in the field of automatic dishwashing. It is possible to use the known substances of the prior art. In general, silver protectants selected from the group of triazoles, benzotriazoles, bisbenzotriazoles, aminotriazoles, alkylaminotriazoles and transition metal salts or complexes can be used in particular. Particularly preferred to use are benzotriazole and / or alkylaminotriazole.
  • Examples which may be mentioned of the 3-amino-5-alkyl-1,2,4-triazoles preferably used according to the invention include: 5-propyl, -butyl, -pentyl, -heptyl, -octyl-, Nonyl, decyl, undecyl, dodecyl, isononyl, versatic-10 acid alkyl, phenyl, p-tolyl, - (4-tert-butylphenyl) -, - (4-methoxyphenyl) -, - (2-, -3-, 4-pyridyl) -, - (2 Thienyl) -, - (5-methyl-2-furyl) -, - (5-oxo-2-pyrrolidinyl) -, 3-amino-1, 2,4-triazole.
  • Preferred acids for salt formation are hydrochloric acid, sulfuric acid, phosphoric acid, carbonic acid, sulphurous acid, organic carboxylic acids such as acetic, glycolic, citric, succinic acid.
  • cleaner formulations often contain active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • active chlorine-containing agents are particularly oxygen and nitrogen-containing organic redox-active compounds, such as di- and trihydric phenols, eg. As hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucinol, pyrogallol or derivatives of these classes of compounds.
  • salt and complex inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group of manganese and / or cobalt salts and / or complexes, more preferably the cobalt (amine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and manganese sulfate.
  • zinc compounds can be used to prevent corrosion on the items to be washed.
  • redox-active substances in the compositions according to the invention.
  • These substances are preferably inorganic redox-active substances from the group of manganese, titanium, zirconium, hafnium, vanadium, cobalt and cerium salts and / or complexes, wherein the metals preferably in one of the oxidation states II, III , IV, V or VI.
  • the metal salts or metal complexes used should be at least partially soluble in water.
  • the counterions suitable for salt formation comprise all customary mono-, di- or tri-positively negatively charged inorganic anions, eg. As oxide, sulfate, nitrate, fluoride, but also organic anions such. Stearate.
  • Metal complexes in the context of the invention are compounds which consist of a central atom and one or more ligands and optionally additionally one or more of the abovementioned anions.
  • the central atom is one of the above-mentioned metals in one of the abovementioned oxidation states.
  • the ligands are neutral molecules or anions that are mono- or polydentate; the term "Ligands" in the context of the invention, for example, in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart New York, 9th edition, 1990, page 2507" explained in more detail.
  • the charge of the central atom and the charge of the ligand (s) are not zero, either one or more of the abovementioned anions or one or more cations, depending on whether there is a cationic or anionic charge surplus, e.g. As sodium, potassium, ammonium ions, for the charge balance.
  • Suitable complexing agents are, for example, citrate, acetylacetonate or 1-hydroxyethane-1,1-diphosphonate.
  • metal salts and / or metal complexes are selected from the group MnS0 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [1-hydroxyethane-1, 1- diphosphonate], V 2 0 5 , V 2 0 4 , V0 2 , TiOS0 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co (NO 3 ) 2 , Ce (NO 3 ) 3 and mixtures thereof.
  • metal salts and / or metal complexes are selected from the group MnS0 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [1-hydroxy-ethane
  • metal salts or metal complexes are generally commercially available substances that can be used for the purpose of silver corrosion protection without prior purification in the compositions of the invention.
  • this is from the S0 3 -Hergori
  • the inorganic redox-active substances are preferably coated, ie completely coated with a waterproof material which is readily soluble in the cleaning temperatures, in order to prevent their premature decomposition or oxidation during storage.
  • Preferred coating materials which are applied by known methods, such as Sandwik from the food industry, are paraffins, microwaxes, waxes of natural origin such as carnauba wax, candellila wax, beeswax, higher melting alcohols such as hexadecanol, soaps or fatty acids.
  • the coating material solid at room temperature is applied in a molten state to the material to be coated, for example by finely divided material to be coated in a continuous stream by a likewise continuously generated Spray zone of the molten coating material is thrown.
  • the melting point must be chosen so that the coating material easily dissolves or melts during the silver treatment.
  • the melting point should ideally be in the range between 45 ° C and 65 ° C and preferably in the range 50 ° C to 60 ° C.
  • the metal salts and / or metal complexes mentioned are in the agents, in particular automatic dishwashing agents, preferably in an amount of 0.05 to 6 wt .-%, preferably 0.2 to 2.5 wt .-%, based on the total weight of Contain funds.
  • Agents according to the invention may contain enzymes to increase the washing or cleaning performance, it being possible in principle to use all enzymes established for this purpose in the prior art. These include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents and cleaners, which are preferably used accordingly. Agents according to the invention preferably contain enzymes in total amounts of 1 ⁇ 10 -6 to 5 weight-percent based on active protein The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • subtilisin type examples thereof are the subtilisins BPN 'and Carlsberg, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase, proteinase K and the subtilases, but not the subtilisins in the narrower sense Proteases TW3 and TW7.
  • subtilisin Carlsberg in a developed form under the trade names Alcalase ® from Novozymes A / S, Bagsvaerd, Denmark.
  • subtilisins 147 and 309 are sold under the trade names Esperase ®, or Savinase ® from Novozymes. From the protease from Bacillus lentus DSM 5483 derived under the name BLAP ® variants are derived.
  • proteases are, for example, under the trade names Durazym ®, relase ®, Everlase® ®, Nafizym, Natalase ®, Kannase® ® and Ovozymes ® from Novozymes, under the trade names Purafect ®, Purafect ® OxP and Properase.RTM ® by the company Genencor, that under the trade name Protosol® ® from Advanced Biochemicals Ltd., Thane, India, under the trade name Wuxi ® from Wuxi Snyder Bioproducts Ltd., China, under the trade names Proleather® ® and protease P ® by the company Amano Pharmaceuticals Ltd., Nagoya, Japan, and the enzyme available under the name Proteinase K-16 from Kao Corp., Tokyo, Japan.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from ⁇ . amyloliquefaciens or from ß. stearothermophilus and their improved for use in detergents and cleaners further developments.
  • the enzyme from ß. licheniformis is available from Novozymes under the name Termamyl ® and from Genencor under the name Purastar® ® ST.
  • Development products of this ⁇ - amylase are available from Novozymes under the trade names Duramyl ® and Termamyl ® ultra, from Genencor under the name Purastar® ® OxAm and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase ®.
  • the ⁇ -amylase of ⁇ . amyloliquefaciens is sold by Novozymes under the name BAN ®, and derived variants from the ⁇ - amylase from B. stearothermophilus under the names BSG ® and Novamyl ®, likewise from Novozymes.
  • ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and cyclodextrin glucanotransferase (CGTase) from ⁇ . agaradherens (DSM 9948).
  • compositions according to the invention may contain lipases or cutinases, in particular because of their triglyceride-cleaving activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases or cutinases include, for example, the lipases originally obtainable from Humicola lanuginosa (Thermomyces lanuginosus) or further developed, in particular those with the amino acid exchange D96L. They are for example marketed by Novozymes under the trade names Lipolase ®, Lipolase Ultra ®, LipoPrime® ®, Lipozyme® ® and Lipex ®.
  • the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens.
  • lipases are available from Amano under the designations Lipase CE ®, Lipase P ®, Lipase B ®, or lipase CES ®, Lipase AKG ®, Bacillis sp. Lipase® , Lipase AP® , Lipase M- AP® and Lipase AML® are available. From the company Genencor, for example, the lipases, or cutinases can be used, the initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii.
  • Suitable mannanases are available, for example under the name Gamanase ® and Pektinex AR ® from Novozymes, under the name Rohapec ® B1 L from AB Enzymes and under the name Pyrolase® ® from Diversa Corp., San Diego, CA, USA , The from ß. subtilis .beta.-glucanase obtained is available under the name Cereflo ® from Novozymes.
  • detergent and cleaner compositions according to the invention may be oxidoreductases, for example oxidases, oxygenases, catalases, peroxidases, such as halo-, chloro-, bromo-, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) contain.
  • oxidases oxygenases, catalases, peroxidases, such as halo-, chloro-, bromo-, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) contain.
  • Suitable commercial products Denilite® ® 1 and 2 from Novozymes should be mentioned.
  • organic, particularly preferably aromatic, compounds which interact with the enzymes in order to enhance the activity of the relevant oxidoreductases (enhancers) or to ensure the flow of electrons (mediators) at greatly varying redox potentials between the oxidizing enzymes and the soils.
  • the enzymes used in agents according to the invention are either originally derived from microorganisms, such as the genera Bacillus, Streptomyces, Humicola or Pseudomonas, and / or are produced by biotechnological methods known per se by suitable microorganisms, such as transgenic expression hosts of the genera Bacillus or filamentous fungi.
  • the purification of the relevant enzymes is conveniently carried out by conventional methods, for example by precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, exposure to chemicals, deodorization or suitable combinations of these steps.
  • the agents of the invention may be added to the enzymes in any form known in the art. These include, for example, obtained by granulation, extrusion or lyophilization solid preparations or, in particular in liquid or Gel-like agents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or added with stabilizers.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • a protein and / or enzyme contained in an agent according to the invention can be protected against damage, for example inactivation, denaturation or decomposition, for example by physical influences, oxidation or proteolytic cleavage, in particular during storage.
  • damage for example inactivation, denaturation or decomposition, for example by physical influences, oxidation or proteolytic cleavage, in particular during storage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Compositions according to the invention may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • One group of stabilizers are reversible protease inhibitors. Frequently, benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are used, including in particular derivatives with aromatic groups, such as ortho-substituted, meta-substituted and para-substituted phenylboronic acids, or their salts or esters.
  • peptidic protease inhibitors are, inter alia, ovomucoid and leupeptin to mention; An additional option is the formation of fusion proteins from proteases and peptide inhibitors.
  • enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and mixtures thereof, aliphatic carboxylic acids up to C 12 , such as succinic acid, other dicarboxylic acids or salts of said acids. End-capped fatty acid amide alkoxylates are also suitable. Certain organic acids used as builders are additionally capable of stabilizing a contained enzyme. Lower aliphatic alcohols, but especially polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other frequently used enzyme stabilizers. Also used are calcium salts, such as calcium acetate or calcium formate, and magnesium salts.
  • Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or cellulose ethers, acrylic polymers and / or polyamides stabilize the enzyme preparation, inter alia, against physical influences or pH fluctuations.
  • Polyamine N-oxide containing polymers act as enzyme stabilizers.
  • Other polymeric stabilizers are the linear C 8 -C 18 polyoxyalkylenes.
  • Alkylpolyglycosides can stabilize the enzymatic components of the agent according to the invention and even increase their performance.
  • Crosslinked N-containing compounds also act as enzyme stabilizers.
  • a sulfur-containing reducing agent is, for example, sodium sulfite.
  • combinatons of stabilizers are used, for example of polyols, boric acid and / or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
  • the effect of peptide-aldehyde stabilizers is enhanced by the combination with boric acid and / or boric acid derivatives and polyols and further enhanced by the additional use of divalent cations, such as calcium ions.
  • Preferred tablets according to the invention are characterized in that they additionally contain one or more enzymes and / or enzyme preparations, preferably solid protease preparations and / or amylase preparations, in amounts of from 0.1 to 5% by weight, preferably from 0.2 to 4.5 and in particular from 0.4 to 4 wt .-%, each based on the total agent included.
  • enzymes and / or enzyme preparations preferably solid protease preparations and / or amylase preparations
  • Agents preferred according to the invention are characterized in that they contain, based on their total weight, at least 20% by weight, preferably at least 30% by weight, particularly preferably at least 40% by weight and in particular at least 50% by weight of builders and / or bleaching agents and / or bleach activators and / or washing or cleaning-active polymers and / or glass corrosion inhibitors and / or silver protectants and / or enzymes.
  • compositions according to the invention consist of at least 90% by weight, preferably at least 92% by weight, preferably at least 94% by weight, especially preferably at least 96% by weight, more preferably at least 98% by weight and most preferably at least 99.5% by weight, exclusively of builders and / or bleaches and / or bleach activators and / or washing or cleaning-active polymers and / or glass corrosion inhibitors and / or silver protectants and / or enzymes.
  • washing or cleaning agents according to the invention which, based on their total weight, are between 0.04 and 18% by weight, preferably between 0.08 and 16% by weight and in particular between 0.2 and 14% by weight.
  • the detergent tablets may also contain components which positively influence the oil and grease washability from textiles (so-called soil repellents). This effect is particularly evident when a textile is dirty, which has been previously washed several times with a detergent prepared according to the invention, which contains this oil and fat dissolving component.
  • the preferred oil and fat dissolving components include, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxy-propylcellulose with a proportion of methoxyl groups of 15 to 30 wt .-% and hydroxypropoxyl groups of 1 to 15 wt .-%, each based on the nonionic cellulose ether, as well as the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof. Particularly preferred of these are the sulfonated derivatives of phthalic and terephthalic acid polymers.
  • the shaped bodies may contain, as optical brighteners, derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or similarly constructed compounds which, instead of the morpholino group, a diethanolamino group , a methylamino group, an anilino group or a 2-methoxyethylamino group. Furthermore, brighteners of the substituted diphenylstyrene type may be present, e.g. the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or
  • Dyes and fragrances are added to the detergent tablets according to the invention to improve the aesthetic appearance of the products and to provide the consumer in addition to the softness a visual and sensory "typical and distinctive" product available.
  • perfume oils or fragrances can individual perfume compounds, for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenyl glycinate, allylcyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals having 8-18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones such as the ionone, oc-lsomethylionon and Methylcedrylketon the alcohols include anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol; the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures as are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • the content of the detergent tablets and detergent tablets produced according to the invention is usually less than 0.01% by weight of dyes, while fragrances may account for up to 2% by weight of the total formulation.
  • the fragrances can be incorporated directly into the compositions prepared according to the invention, but it can also be advantageous to apply the fragrances to carriers, which enhance the adhesion of the perfume to the laundry and provide a slower fragrance release for long-lasting fragrance of the textiles.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • compositions according to the invention can be colored with suitable dyes.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the agents and to light and no pronounced substantivity to textile fibers so as not to stain them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Saccharide Compounds (AREA)

Description

„Stoßbelastungsresistente Tablette"
Die vorliegende Erfindung liegt auf dem Gebiet der kompakten Formkörper, die wasch- und reinigungsaktive Eigenschaften aufweisen. Solche Wasch- und Reinigungsmittelformkörper umfassen beispielsweise Waschmittelformkörper für das Waschen von Textilien, Reinigungsmittelformkörper für das maschinelle Geschirrspülen oder die Reinigung harter Oberflächen, Bleichmittelformkörper zum Einsatz in Wasch- oder Geschirrspülmaschinen, Wasserenthärtungsformkörper oder Fleckensalztabletten. Insbesondere betrifft die Erfindung Wasch- und Reinigungsmittelformkörper, die zum Reinigen von Geschirr in einer Haushaltsgeschirrspülmaschine eingesetzt und kurz als Reinigungsmitteltabletten oder Geschirrspülmitteltabletten bezeichnet werden.
Wasch- und Reinigungsmittelformkörper sind im Stand der Technik breit beschrieben und erfreuen sich beim Verbraucher wegen der einfachen Dosierung zunehmender Beliebtheit. Tablettierte Wasch- und Reinigungsmittel haben gegenüber pulverförmigen eine Reihe von Vorteilen: Sie sind einfacher zu dosieren und zu handhaben und haben aufgrund ihrer kompakten Struktur Vorteile bei der Lagerung und beim Transport. Auch in der Patentliteratur sind Wasch- und Reinigungsmittelformkörper folglich umfassend beschrieben. Ein Problem, das bei der Anwendung von wasch- und reinigungsaktiven Formkörpern immer wieder auftritt, ist die zu geringe Zerfalls- und Lösegeschwindigkeit der Formkörper unter Anwendungsbedingungen. Da hinreichend stabile, d.h. form- und bruchbeständige Formkörper nur durch verhältnismäßig hohe Preßdrucke hergestellt werden können, kommt es zu einer starken Verdichtung der Formkörperbestandteile und zu einer daraus folgenden verzögerten Desintegration des Formkörpers in der wäßrigen Flotte und damit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvorgang.
Ein weiteres Problem, das insbesondere bei Wasch- und Reinigungsmitteltabletten auftritt, ist die oftmals unzureichende Stabilität dieser Tabletten gegen die Belastungen bei Verpackung, Transport und Handhabung, d.h. gegen Fall- und Stoßbeanspruchungen. Nach dem Verpressen werden die Tabletten auf Transportbändern der Verpackung zugeführt, wobei die Tabletten einzeln oder gruppiert mit einer Folie umhüllt und anschließend in Kartons verpackt werden. Beim Abfüllen trifft die Tablette auf einer annähernd parabelförmigen Wurfbahn aus dem Förderband der Folienumschlagmaschine auf die Kartonwand oder die bereits vorher eingefüllten Tabletten. Hier treten insbesondere bei rechteckigen Tabletten Kräfte in Längsrichtung der Tablette auf, die zu Kantenbruch- und Abrieberscheinungen führen können und das Erscheinungsbild des Formkörpers beeinträchtigen oder gar zu einer völligen Zerstörung der Formkörperstruktur führen.
Zur Überwindung der Dichotomie zwischen Härte, d.h. Transport- und Handhabungsstabilität, und leichtem Zerfall der Formkörper sind im Stand der Technik viele Lösungsansätze entwickelt worden. Ein insbesondere aus der Pharmazie bekannter und auf das Gebiet der Wasch- und Reinigungsmittelformkörper ausgedehnter Ansatz ist die Inkorporation bestimmter Desintegrationshilfsmittel, die den Zutritt von Wasser erleichtern oder bei Zutritt von Wasser quellen bzw. gasentwickelnd oder in anderer Form desintegrierend wirken. Andere Lösungsvorschläge aus der Patentliteratur beschreiben die Verpressung von Vorgemischen bestimmter Teilchengrößen, die Trennung einzelner Inhaltsstoffe von bestimmten anderen Inhaltsstoffen sowie die Beschichtung einzelner Inhaltsstoffe oder des gesamten Formkörpers mit Bindemitteln.
So beschreibt die EP 687 464 (Allphamed Arzneimittel-Gesellschaft) Brausetabletten, bestehend aus mindestens einem Wirkstoff oder einer Wirkstoffkombination, mindestens einem Bindemittel, ggf. Trägerstoffen wie Aromen, Farbstoffen, Duftstoffen, Weichmachern, Bleichmitteln und Brausezusätzen, wobei als Bindemittel Propylenglykol oder Glycerin, vorzugsweise in Mengen von 0,004 bis 2,5 Gew.-%, verwendet werden. Ebenfalls beansprucht werden Verfahren zur Herstellung dieser Brausetabletten. Nach den Aussagen dieser Schrift läßt sich mit der erfindungsgemäßen Lehre auch eine Waschmittel-Brausetablette herstellen, ohne daß die eingesetzten Bindemittel zu einem Kohlendioxidverlust bei den Brausezusätzen führen würde.
Die europäische Patentanmeldung EP 711 828 (Unilever) beschreibt Waschmitteltabletten, die Tensid(e), Gerüststoff(e) sowie ein Polymer enthalten, das als Binde- und Desintegrationshilfsmittel wirkt. Die in dieser Schrift offenbarten Bindemittel sollen bei Raumtemperatur fest sein und dem zu verpressenden Vorgemisch als Schmelze zugeführt werden. Bevorzugte Bindemittel sind dabei die höhermolekularen Polyethylenglycole.
Der Einsatz von festen Polyethylenglycolen wird auch in der deutschen Patentanmeldung DE 197 09 411.2 (Henkel) beschrieben. Diese Schrift lehrt synergistische Effekte zwischen den Polyethylen-glycolen und übertrockneten amorphen Silikaten.
Lösungen zum Problem der Friabilität bzw. Abriebstabilität von Wasch- und Reinigungsmittelformkörpern werden beispielsweise in der DE 198 41 146 (Henkel) offenbart. Nach der Lehre dieser Schrift wirkt sich der Zusatz von nichttensidischen, wasserlöslichen, flüssigen Bindemitteln zu den zu tablettierenden Mischungen positiv auf deren Abriebverhalten aus. Allen Lösungsansätzen gemeinsam ist der Gedanke, die Inhaltsstoffe gezielt zu verändern bzw. spezielle Inhaltsstoffe einzuarbeiten, so daß die Tabletteneigenschaften positiv beeinflußt werden. Ein rezepturunabhängiger Lösungsansatz für die genannten Probleme wird im Stand der Technik nicht offenbart.
Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, Wasch- oder Reinigungsmitteltabletten bereitzustellen, die sich bei vorgegebener Härte durch kurze Zerfallszeiten auszeichnen und sich somit auch über die Einspülkammer haushaltsüblicher Waschmaschinen dosieren lassen. Zusätzlich zu diesen Anforderungen sollten die Formkörper dabei eine erhöhte Stabilität gegen Stoß- und Fallbelastungen aufweisen. Die entsprechenden Vorteile sollten dabei rezepturunabhängig erreicht werden, um auf aufwendige Vorkonfektionierungsschritte oder den Einsatz teurer Tablettierhilfsmittel nur zu diesem Zweck verzichten zu können.
Es wurde nun gefunden, daß der Oberflächengestaltung der Tabletten bei der Lösung der vorstehend genannten Probleme eine besondere Bedeutung zukommt.
Gegenstand der vorliegenden Erfindung ist eine Tablette aus verpreßtem teilchenförmigen Wasch- oder Reinigungsmittel, die auf ihrer Oberseite mindestens zwei Verstärkungsvertiefungen aufweist, deren horizontale Ausdehnung auf der Ebene der Tablettenoberfläche größer ist als deren Tiefe.
Eine erfindungsgemäße Tabletten besitzt eine Ober- und eine Unterseite sowie eine bzw. mehrere Seitenflächen. Die Unterseite ist die Fläche der Tabletten, die beim Preßvorgang mit dem Unterstempel der Tablettenpresse in Berührung kommt, während die Oberseite diejenige Fläche ist, die den Oberstempel der Tablettenpresse kontaktiert. Die Seitenflächen werden beim Preßvorgang von den Wänden der Matrize berührt, wobei eine runde bzw. ovale Tablette lediglich eine Seitenwand (die Zylindermantelfläche) besitzt, während mehreckige Tabletten eine der Anzahl der Ecken gleiche Anzahl an Seitenflächen besitzen. Erfindungsgemäß bevorzugt sind rechteckige Tabletten, welche vier Seitenflächen besitzen. Im Spezialfall der quadratischen Tablette sind alle vier Seitenflächen gleich groß, während sich bei Tabletten mit rechteckiger Ober- und Unterseite jeweils nur zwei Seitenflächen gleichen.
Die Oberseite der Tablette ist erfindungsgemäß mit Verstärkungsvertiefungen versehen, die in die Oberseite hineingeprägt sind. Den Vertiefungen auf der Tablettenoberseite entsprechen dabei Erhebungen auf dem Tablettierstempel (siehe unten). Erfindungsgemäß ist die horizontale Ausdehnung der Verstärkungsvertiefungen auf der Ebene der Tablettenoberfläche größer ist als deren Tiefe. In anderen Worten weisen die Verstärkungsvertiefungen in x,y-Richtung auf der Ebene der Tablettenoberseite eine größere Ausdehnung auf als in z-Richtung der Tablettenhöhe. Bei erfindungs-gemäß bevorzugten Tabletten beträgt die horizontale Ausdehnung der Verstärkungsvertiefungen auf der Ebene der Tablettenoberfläche das 1 ,01 -fache bis 5-fache, vorzugsweise das 1 ,02-fache bis 4-fache, besonders bevorzugt das 1 ,04-fache bis 3-fache und insbesondere das 1 ,05-fache bis 2-fache der Tiefe der Verstärkungsvertiefungen.
Eine 5 mm tiefe Verstärkungsvertiefung besitzt demnach eine Länge bzw. Breite von mehr als 5 mm, wobei in bevorzugten Tabletten die Länge bzw. Breite 5,05 bis 25 mm, vorzugsweise 5,5 bis 20 mm, besonders bevorzugt 5,2 bis 15 mm und insbesondere 5,25 bis 10 mm beträgt.
In erfindungsgemäß bevorzugten Tabletten ist die Tiefe der Verstärkungsvertiefungen mit der Höhe der Tabletten korreliert, um die Bruchstabilität (Knickstabilität) der Tablette weiter zu optimieren. Hier sind besonders bevorzugte erfindungsgemäße Tabletten dadurch gekennzeichnet, daß die Tiefe der Verstärkungsvertiefungen das 0,05-fache bis 0, 5-fache, vorzugsweise das 0,1-fache bis 0,4-fache und insbesondere das 0,15-fache bis 0,3-fache der Tablettenhöhe beträgt.
Erfindungsgemäß weisen die Tabletten mindestens zwei Verstärkungsvertiefungen auf. In Abhängigkeit von der Form der Verstärkungsvertiefungen können aber auch mehr als zwei Vertiefungen auf der Formkörperoberseite angebracht werden. So sind beispielsweise erfindungsgemäße Tabletten bevorzugt, die mindestens 3, vorzugsweise mindestens 4, besonders bevorzugt mindestens 5, weiter bevorzugt mindestens 6, weiter bevorzugt mindestens 7, weiter bevorzugt mindestens 8, weiter bevorzugt mindestens 9 und insbesondere mindestens 10 Verstärkungsvertiefungen aufweisen.
Die Vetstärkungsvertiefungen können als gerade Rillen in die Formkörperoberfläche geprägt werden, sie können aber auch gewinkelte oder gewellte Linien oder geschlossene Umrißfiguren sein. Im einfachsten Fall handelt es sich bei den erfindungsgemäß eingeprägten Verstärkungsvertiefungen um Rillen, d.h. gerade Linien, die auf der Oberfläche der Tablette parallel zueinander verlaufen und eine Seite der Tablettenoberfläche mit der gegenüberliegenden Seite verbinden. Diese Linien schließen mit der seitlichen Begrenzungslinie der Tablettenoberfläche einen Winkel ein. Sofern dieser 90° beträgt, verlaufen die Verstärkungsvertiefungen parallel zur Tablettenbreite bzw. -länge. Winkel < 90° können realisiert werden, indem die Verstärkungsvertiefungen schrägt über die Tablettenoberfläche verlaufen. Bevorzugte erfindungsgemäße Tabletten sind dadurch gekennzeichnet, daß die Verstärkungsvertiefungen parallel zueinander und zur Tabletten breite verlaufen, wobei eine äquidistante Anordnung der Verstärkungsvertiefungen bevorzugt ist. Diese parallele Anordnung knn nicht nur mit geraden Linien realisiert werden, sondern auch mit bogen- oder wellenförmig ausgestalteten Verstärkungsvertiefungen. Man kann auch zueinander parallele Verstärkungsvertiefungen, welche parallel zur Tablettenbreite verlaufen, mit weiteren zueinander parallelen Verstärkungsvertiefungen kombinieren, welche parallel zur Tablettenlänge verlaufen. Diese „Waffeleisenstruktur", in der die sich kreuzenden Verstärkungsvertiefungen miteinander einen Winkel von 90° einschließen, kann natürlich auch dahingehend modifiziert werden, daß der Kreuzungswinkel verändert wird. Dann verläuft mindestens eine Serie von zueinander parallelen Verstärkungsvertiefungen nicht parallel zur Tablettenbreite bzw. -länge. Erfindungsgemäße Tabletten, bei denen die Verstärkungsvertiefungen parallel zur Tablettenbreite und weitere Verstärkungsvertiefungen parallel zur Tablettenlänge verlaufen, wobei eine äquidistante Anordnung der Verstärkungsvertiefungen bevorzugt ist, sind erfindungsgemäß bevorzugt.
Eine weitere bevorzugte Anordnung der Verstärkungsvertiefungen besteht bei erfindungsgemäßen Tabletten darin, daß die Verstärkungsvertiefungen strahlenförmig von einem gemeinsamen Mittelpunkt ausgehen. Diese Anordnung ist beispielsweise dann besonders vorteilhaft, wenn der Formkörper weitere Vertiefungen aufweist, welche als Mulde bzw. Kavität genutzt werden, um darin andere Inhaltsstoffe zu inkorporieren oder andere Tablettenbestandteile einzufügen. Solche Muldentabletten sind im Stand der Technik derzeit als Geschirrspülmittel bekannt und können durch die erfindungsgemäßen Verstärkungsvertiefungen stabilisiert werden. Optisch erinnert eine solche Anordnung der Verstärkungsvertiefungen an eine Sonne mit der entsprechenden Anzahl an Strahlen, beispielsweise vier, fünf, sechs, sieben oder acht Strahlen. Selbstverständlich können auch die „Sonnenstrahlen" nicht nur durch gerade Linien, sondern auch durch gekrümmte oder gewellte Linien gebildet werden.
Eine weitere Möglichkeit der Anordnung der Verstärkungsvertiefungen besteht darin, diese umrißförmig auszugestalten. Hier sind erfindungsgemäße Tabletten bevorzugt, bei denen die Verstärkungsvertiefungen die Form konzentrisch ineinander gestellter Kreise oder Ellipsen aufweisen. Daneben kommen auch kompliziertere Formen wie Wolken, Bäume, Tassen, Hände usw. in Betracht.
Unabhängig von der äußeren Form der Verstärkungsvertiefungen weisen diese vorzugsweise einen Querschnitt auf, welcher halbkreisförmig bzw. halbellipsenförmig oder dreiecksförmig ist. Der „Querschnitt" der Verstärkungsvertiefungen ist dabei der Senkrechtschnitt durch die Tablette, vertikal zur jeweiligen Verstärkungsvertiefung. Dementsprechend sind erfindungsgemäße Tabletten bevorzugt, bei denen der Querschnitt der Verstärkungsvertiefungen dreiecks- oder halbkreisförmig ist. Wie bereits weiter oben dargestellt, sind die Tablettenhöhe und die Tiefe der Verstärkungsvertiefungen vorzugsweise miteinander korreliert. Zusätzlich zu den weiter oben genannten Relativangaben lassen sich absolute Angaben zu besonders vorteilhaften Ausführungsformen machen. Bevorzugte erfindungsgemäße Tabletten sind dadurch gekennzeichnet, daß die Höhe der Tablette 5 bis 25 mm, vorzugsweise 7 bis 22 mm und insbesondere 10 bis 20 mm beträgt. Demnach beträgt die Tiefe der Verstärkungsvertiefungen in bevorzugten erfindungsgemäßen Tabletten 0,5 bis 10 mm, vorzugsweise 0,75 bis 8 mm und insbesondere 1 bis 5 mm. Die Tiefe der Verstärkungsver-tiefungen ist dabei der tiefste Punkt der jeweiligen Verstärkungsvertiefungen, beispielsweise bei v-förmigen Verstärkungsvertiefungen die Dreiecksspitze.
Zur Herstellung der erfindungsgemäßen Tabletten werden partikelförmige Vorgemische in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung, plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können. Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Bei Exzenterpressen wird der Unterstempel während des Preßvorgangs im Regelfall nicht bewegt. Eine Folge hiervon ist, daß die resultierende Tablette einen Härtegradienten aufweist, d.h. in den Bereichen, die dem Oberstempel näher lagen, härter ist als in den Bereichen, die dem Unterstempel näherlagen.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
Selbstverständlich lassen sich die Tabletten im Rahmen der vorliegenden Erfindung ebenfalls mehrphasig, insbesondere mehrschichtig, ausgestalten. Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen oder der Dosierkammer handelsüblicher Geschirrspülmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflösen, bzw. von wo aus sie während des Reinigungsvorgangs freigesetzt werden. Selbstverständlich ist aber auch ein Einsatz der Wasch- und Reinigungsmittelformkörper über Dosierhilfen problemlos möglich.
Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach
2P σ = πDt
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper. Um erfindungsgemäße Formkörper zu erhalten, muß der Oberstempel der zur Herstellung eingesetzten Tablettenpresse den auf der späteren Tablettenoberseite eingeprägten Verstärkungsvertiefungen entsprechende Erhebungen aufweisen. Diese Erhebungen sind vorzugsweise aus verschleißfesten Materialien gefertigt, um die Standzeiten der Tablettierstempel zu erhöhen. Als geeignet haben sich insbesondere Metalle und Kunststoffe erwiesen.
Ein weiterer Gegenstand der vorligenden Erfindung ist daher ein Verfahren zur Herstellung von Tabletten aus verpreßtem teilchenförmigen Wasch- oder Reinigungsmittel durch an sich bekanntes Verpressen von partikelförmigen Vorgemischen, wobei zur Verpressung ein Oberstempel eingesetzt wird, der auf seiner Preßfläche mindestens zwei Erhebungen zum Pressen von Verstärkungsvertiefungen aufweist, deren horizontale Ausdehnung auf der Ebene der Preßfläche größer ist als deren Höhe.
Das zu Tabletten zu verpressende, meist pulverförmige oder feinkörnige Material wird, wenn nicht besonders aufwendige und die Produktion behindernde Vorkehrungen für eine spezielle Verteilung getroffen werden, bei Einfüllen in der Preßmatrize etwa gleichmäßig verteilt. Dies hat zur Folge, daß das Material an den Stellen, an denen das Profil des Prägeelements die höchsten Erhebungen aufweist, am stärksten komprimiert werden muß. Obwohl das zu verpressende Material den höchsten Druckspitzen durch eine Bewegung in Richtung der weniger hoch beanspruchten Bereiche auszuweichen versucht, treten in den Bereichen der höchsten Profilerhebungen auch die höchsten spezifischen Flächendrücke auf.
Besteht das Profil des Prägeelements aus einer ebenen Fläche, beispielsweise der Grundfläche, die die Erhebungen für die Verstärkungsvertiefungen umgibt, sind die höchsten Flächenbelastungen an den Erhebungen, und daran in der Kuppe bzw. dem höchsten Punkt zu erwarten. Im Bereich der Kuppe hat die Fläche nur ganz geringe Neigungswinkel in Bezug auf die Grundflächenebene. Diese Neigungswinkel nehmen definitionsgemäß in Richtung zur Basis der Erhebungen zu und sind beim Übergang in die umgebende Grundfläche am größten. Die Preßkraft wirkt senkrecht zur Grundflächenebene und zum Flächenelement im Mittelpunkt der Kuppe. Mit steigendem Abstand von diesem Mittelpunkt-Element ist die Preßkraft auf eine zunehmend geneigte Fläche gerichtet, so daß die Preßkraft in eine entsprechend kleiner werdende, senkrecht auf dem jeweiligen Flächenelement stehende Kraftkomponente und eine wiederum senkrecht darauf gerichtete Kraftkomponente aufgeteilt wird. Diese Querkräfte wirken quasi tangential. Die senkrecht zur Normalkraft stehenden Kraftkomponenten sind ein Maß für die Scher- und Abrasionskräfte, die an der Grenzfläche zwischen den Erhebungen für die Verstärkungsvertiefungen und zu verpressendem Material wirken. Unter anderem wegen dieser Abrasionskräfte müssen die Erhebungen für die Verstarkungsvertiefungen aus einem sehr harten, inkompressiblen Material hergestellt sein.
Die Anhaftneigung des zu verpressenden Materials auf der Oberfläche des Preßstempels wird unter anderem von den spezifischen Flächendrücken zwischen dem zu verpressendem Material und der Stempeloberfläche sowie von der Oberflächenstruktur bestimmt. Hat die Oberfläche des Preß- oder Tablettierstempels beispielsweise reibungsvermindernde oder schmierende bzw. gleitfördernde Eigenschaften, wird dadurch die Haftneigung verhindert oder zumindest vermindert.
Wie schon erwähnt, sind die Preßkräfte senkrecht auf die ebene Grundfläche gerichtet. Da die ebene Grundfläche die niedrigste Höhe im Profil des Prägeelements darstellt, ist in diesem Bereich die geringste Kompression des zu verpressenden Materials gegeben. Dies führt dazu, daß im Bereich der Grundfläche auch geringere Flächendrücke zu erwarten sind als im Bereich der nach oben gewölbten Erhebungen für die Verstärkungsvertiefungen. Aus diesen Gründen muß das Material der Grundfläche auch nicht inkompressibel sein, zumal aus der Druckgeomentrie nur Normalkräfte zu erwarten sind.
Die Struktur von Schüttungen aus pulverförmigen oder feinkristallinen Substanzen ist zwar in Bezug auf größere Flächen oder Volumina als gleichförmig zu betrachten, im Mikrobereich jedoch durchaus unterschiedlich. Durch diese im Mikrobereich unterschiedlichen Dichteverhältnisse werden den an der Oberfläche des Grundflächenmaterials anstehenden gleichmäßigen Preßkräften unterschiedliche Widerstände des zu verpressenden Materials entgegengesetzt. Dies führt dazu, daß an im Mikrobereich beabstandeten Punkten an der Oberfläche unterschiedliche spezifische Drücke und demzufolge bei kompressiblen Material des Grundflächenelements geringstfügig unterschiedliche Verformungen des Materials auftreten. Diese hier als Walken bezeichnete Erscheinung hat das Entstehen von unterschiedlichen Normal- und Querkräften an der Materialoberfläche zur Folge, wodurch die Neigung zum Anhaften von Material an der Oberfläche des Prägeelements im Bereich der Grundfläche verhindert oder zumindest weitestgehend vermindert wird.
Ein Tablettierstempel, dessen Prägeelement in der beschriebenen Form ausgeführt ist, ist in vorteilhafter Weise anhaftverhütend oder zumindest adhäsionsreduzierend. Mit einem solchen Preßwerkzeug können lange Werkzeugstandzeiten und einwandfreie Tablettenoberflächen erreicht werden.
In einer Ausführungsform, in der das Prägeelement des Tablettierstempels seitlich nicht von der Grundfläche begrenzt sein soll, und diese von einem im wesentlichen gleichmäßigen, inkompressiblen Randstreifen umgeben ist, werden Rückwirkungen des Kompressions- und Verformungsgeschehens an der Matrizeninnenwand auf die kompressible Grundfläche ausgeschlossen. Eine nach außen ansteigende Abschrägung des Randstreifens bewirkt dabei in vorteilhafter Weise eine saubere Materialverteilung in der Matritze und eine Stabilisierung der Tablettenstruktur.
Ganz besondere Vorteile bei der Herstellung des Tablettierstempels und der Standfestigkeit des Preßwerkzeuges werden in einer Ausführungsform gewährleistet, in der das Prägeelement aus mehreren Einzelteilen besteht. Zweckmäßigerweise werden Umfang und Zuschnitt der Einzelteile an den unterschiedlichen Materialien bzw. Materialanforderungen orientiert. So ist die Einzelfertigung der Erhebungen für die Verstärkungsvertiefungen aus inkompressiblem und an der Außenoberfläche zumindest adhäsionsreduzierend beschichtetem Material, eines plattenförmigen Elementes aus walkbarem Material für die Grundfläche und eines ringförmigen Elementes aus inkompressiblem Material für den Randstreifen eine vorteilhafte Abgrenzung für die Gestaltung der Einzelteile, die sich wegen ihrer unterschiedlichen Materialien anbietet.
Wie weiter oben beschrieben, muß die Beschichtung der Erhebungen für die Verstärkungsvertiefungen zugleich hart und widerstandsfähig gegen hohe Flächenbelastungen sein, zum anderen aber auch eine reibungsmindernde oder schmierende Eigenschaft aufweisen. Hierzu haben sich nickeihaltige Oberflächenbeschichtungen als sehr geeignet erwiesen, in denen feinste PTFE-Partikel (Teflon) eingeschlossen sind. Diese verleihen dem Überzug anhaftverhütende und materialfressen-verhütende Eigenschaften. Alternativ dazu hat sich auch eine Ausführungsform für die adhäsionsreduzierende Beschichtung bewährt, bei der das Grundbeschichtungsmaterial statt aus Nickel aus einer Nickel-Phosphor-Legierung besteht.
Als weitere Alternative für die Oberflächenbeschichtung mit zumindest adhäsions-reduzierender Wirkung, die aber auch ansonsten die Anforderungen an Härte und Beständigkeit erfüllt, hat sich eine Beschichtung aus Diamantpartikel enthaltendem Graphit bewährt. Dabei wird die Oberfläche des Zapfens mit einer Graphitlage beschichtet, die als schmierend oder gleitfördernd bekannt sind, und die hier gleichzeitig als Binder zur Fixierung von Diamantpartikeln dient, die ihrerseits der Oberfläche die erforderliche Härte verleihen. Versuche mit diesen Oberflächenbeschichtungen der Erhebungen für die Verstärkungsvertiefungen haben gezeigt, daß auch bei sehr langen Standzeiten der Werkzeuge keine Materialanhaftungen zu beobachten waren. Es ist daher bevorzugt, daß die zumindest adhäsionsreduzierende Beschichtung im wesentlichen aus Kohlenstoff besteht.
Die haftungsverhindernde oder zumindest haftungs- oder adhäsionsreduzierende Wirkung des walkbaren Materials für die Bildung der Grundfläche wurde vorstehend beschrieben. In Versuchen hat sich gezeigt, daß beispielsweise mit dem Polyuretan-Werkstoff Vulkollan oder dem PVC-Werkstoff Mipolam sehr gute Ergebnisse erzielt werden konnten. Über Einsatzzeiten von mehreren tausend Pressungen wurden keinerlei Anhaftungen an dem Grundflächenmaterial festgestellt.
Alternativ zu Metallen, welche gegebenenfalls beschichtet werden müssen, lassen sich als Materialien für die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, auch Kunststoffe einsetzen. Durch die Fertigung der Erhebungen aus Kunststoffmaterialien lassen sich Tablettierstempel herstellen, die auch komplizierte Geometrien realisieren.
Der Begriff „Kunststoffe" charakterisiert dabei im Rahmen der vorliegenden Erfindung Materialien, deren wesentliche Bestandteile aus solchen makromolekularen organischen Verbindungen bestehen, die synthetisch oder durch Abwandeln von Naturprodukten entstehen. Sie sind in vielen Fällen unter bestimmten Bedingungen (Wärme und Druck) schmelz- und formbar. Kunststoffe sind also prinzipiell organische Polymere und können entweder nach ihren physikalischen Eigenschaften (Thermoplaste, Duroplaste und Elastomere), nach der Art der Reaktion ihrer Herstellung (Polymerisate, Polykondensate und Polyaddukte) oder nach ihrer chemischen Natur (Polyolefine, Polyester, Polyamide, Poly-urethane usw.) klassifiziert werden.
Die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, stellen dabei im Rahmen der vorliegenden Erfindung Erhebungen auf dem Prägeelement des Tablettierstempels dar. Die Fläche, auf der die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, aufgebracht sind, kann dabei ebenfalls unterschiedliche Formen annehmen, wobei von der planen, ebenen Fläche bis hin zu halbkugelförmigen Ausgestaltungen eine Vielzahl von Möglichkeiten denkbar ist. Im Rahmen der vorliegenden Erfindung ist es einerseits bevorzugt, daß die Fläche, auf der die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, sitzen, plan, d.h. eben ist.
Vorzugsweise wird auch die Grundfläche, auf der die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, sitzen, aus Kunststoff gefertigt, so daß Tablettierstempel bevorzugt sind, bei denen die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen und die ebene Grundfläche aus Kunststoff gefertigt sind.
Besonders bevorzugt ist es dabei im Rahmen der vorliegenden Erfindung, wenn das Material der Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, härter ist als das der Grundfläche. Der Begriff „Härte" ist im Rahmen der vorliegenden Erfindung die Bezeichnung für den Widerstand, den ein Festkörper dem Eindringen eines anderen Körpers entgegensetzt. Während beispielsweise bei Mineralien die sogenannte Ritzhärte (Härte nach Mohs) gemessen wird, haben sich technisch andere Verfahren zur Härteprüfung durchgesetzt. Am häufigsten werden hierbei Brinell-, Rockwell- und Vickers-Verfahren (besonders für Stahl und sonstige Metalle) angewendet. Zur Ermittlung der Brinell-Härte (HB, Kugeldruckhärte, DIN 50351 ) werden genormte Stahl- oder Widiakugeln mit 10 mm Durchmesser und einer Prüflast P (in N ausgedrückt) stoßfrei in die zu prüfenden Stoffe gedrückt und die Oberfläche O (in mm2) der eingedrückten Kalotte des Durchmessers d bestimmt. Die Brinell-Härte ist dann gegeben durch:
Bei der für höhere Härtegrade geeigneten Bestimmung der Rockwell-Härte (HR) werden entweder ein Diamantkonus (HRC) oder Stahlkugeln von verschiedenen Durchmessern (HRB) in den Werkstoff gepreßt. Bei der Bestimmung der Vickers-Härte (HV) benutzt man eine Diamantpyramide mit einem Flächenöffnungswinkel von 136°; auch hier wird die Härte definiert als Last bezogen auf die Eindrucksoberfläche (N/mm2). Bei diesem Prüfverfahren sind die Eindrücke sehr klein, so daß man auch die Härte bei sehr dünnen Schichten bestimmen kann. Analog gilt dies auch für die Knoop-Härte (HK), bei deren Bestimmung eine Diamantpyramide mit rhombischem Grundriß zur Anwendung kommt. Bei der Schlaghärtebestimmung dient der Durchmesser eines Kugeleindrucks, der durch Schlag mit dem Handhammer (Poldihammer, Skleroskop) oder durch eine gespannte Feder erzeugt wurde, als Berechnungsgrundlage. Ein anderes, ebenfalls dynamisches Verfahren zur Härtebestimmung ist das Rücksprung-Verfahren. Die auf diese Weise ermittelte Shore-Härte wird bei Stahl durch die Kugelfallprobe als Rückprallhärte bestimmt bzw. bei Gummi und anderen Elastomeren als Eindring-Widerstand gegen einen Kegelstumpf gemessen.
Bei härteren Kunststoffen, z.B. bei harten Thermoplasten und besonders bei Duroplasten, mißt man die Kugeldruckhärte als Quotient aus Prüfkraft und Oberfläche des Eindrucks einer Stahlkugel (5 mm Durchmesser) nach 10, 30 od. 60 Sekunden unter Last.
Wie weiter oben beschrieben, bestehen die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, aus einem härteren Kunststoff als die Grundfläche. Harte Kunststoffe erfüllen dabei insbesondere das Anforderungsprofil, die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, zugleich hart und widerstandsfähig gegen hohe Flächenbelastungen sein, zum anderen aber auch eine reibungsmindernde oder schmierende Eigenschaft aufweisen muß. Als Kunststoffmaterialien für die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, haben sich insbesondere Polyolefine, vorzugsweise Polyethylen oder Polypropylen, bewährt. Polyethylene (PE) sind dabei zu den Polyolefinen gehörende Polymere mit Gruppierungen des Typs
-[CH2-CH2]-
als charakteristischer Grundeinheit der Polymerkette. Polyethylene werden durch Polymerisation von Ethylen nach zwei grundsätzlich unterschiedlichen Methoden, dem Hochdruck- und dem Niederdruck-Verfahren hergestellt. Die resultierenden Produkte werden entsprechend häufig als Hochdruck-Polyethylen bzw. Niederdruck-Polyethylen bezeichnet; sie unterscheiden sich hauptsächlich hinsichtlich ihres Verzweigungsgrades und damit verbunden in ihrem Kristallinitätsgrad und ihrer Dichte. Beide Verfahren können als Lösungspolymerisation, Emulsionspolymerisation oder Gasphasenpolymerisation durchgeführt werden.
Beim Hochdruck-Verfahren fallen verzweigte Polyethylene mit niedriger Dichte (ca. 0,915- 0,935 g/cm3) und Kristallinitätsgraden von ca. 40-50% an, die man als LDPE-Typen bezeichnet. Produkte mit höherer Molmasse und dadurch bedingter verbesserter Festigkeit und Streckbarkeit tragen die Kurzbezeichnung HMW-LDPE (HMW=high molecular weight). Durch Copolymerisation des Ethylens mit längerkettigen Olefinen, insbesondere mit Buten und Octen, kann der ausgeprägte Verzweigungsgrad der im Hochdruck-Verfahren hergestellten Polyethylene reduziert werden; die Copolymere haben das Kurzzeichen LLD-PE (linear low density polyethylene).
Die Makromoleküle der Polyethylene aus Niederdruck-Verfahren sind weitgehend linear und unverzweigt. Diese Polyethylene (HDPE) haben Kristallinitätsgrade von 60-80% und eine Dichte von ca. 0,94-0,965 g/cm3. Sie sind als Mmaterialien für die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, besonders geeignet.
Polypropylene (PP) sind thermoplastische Polymere des Propylens mit Grundeinheiten des Typs
-[CH(CH3)-CH2]-
Polypropylene können durch stereospezifische Polymerisation von Propylen in der Gasphase oder in Suspension zu hochkristallinen isotaktischen oder zu weniger kristallinen syndiotaktischen bzw. zu amorphen ataktischen Polypropylenen hergestellt werden. Technisch wichtig ist insbesondere das isotaktische Polypropylen, bei dem alle Methylgruppen auf einer Seite der Polymerkette lokalisiert sind. Polypropylen zeichnet sich durch hohe Härte, Rückstellfähigkeit, Steifheit und Wärmebeständigkeit aus und ist im Rahmen der vorliegenden Erfindung somit ein ideales Material für die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen.
Eine Verbesserung der mechanischen Eigenschaften der Polypropylene erreicht man durch Verstärkung mit Talkum, Kreide, Holzmehl oder Glasfasern, und auch das Aufbringen metallischer Überzüge ist möglich.
Neben den Polyolefinen sind Polyamide im Rahmen der vorliegenden Erfindung bevorzugt einsetzbare Materialien für die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen. Polyamide sind hochmolekulare Verbindungen, die aus durch Peptid-Bindungen verknüpften Bausteinen bestehen. Die synthet. Polyamide (PA) sind bis auf wenige Ausnahmen thermoplastische, kettenförmige Polymere mit wiederkehrenden Säureamid- Gruppierungen in der Hauptkette. Nach dem chemischen Aufbau lassen sich die sogenannten Homopolyamide in zwei Gruppen einteilen: den Aminocarbonsäure-Typen (AS) und den Diamin- Dicarbonsäure-Typen (AA-SS); dabei bezeichnen A Amino-Gruppen und S Carboxy-Gruppen. Erstere werden aus einem Baustein durch Polykondensation (Aminosäure) oder Polymerisation (ω-Lactam), letztere aus zwei Bausteinen durch Polykondensation (Diamin und Dicarbonsäure) gebildet.
Codiert werden die Polyamide aus unverzweigten aliphatischen Bausteinen nach der Anzahl der C-Atome. So ist die Bezeichnung PA 6 beispielsweise das aus ε-Aminocapronsäure oder ε- Caprolactam aufgebaute Polyamid und. PA 12 ist ein Poly(ε-Iaurinlactam) aus ε-Laurinlactam. Beim Typ AA-SS werden zuerst die Kohlenstoff-Anzahl des Diamins und dann die der Dicarbonsäure genannt: PA 66 (Polyhexamethylenadipinamid) entsteht aus Hexamethylendiamin (1 ,6-Hexandiamin) und Adipinsäure, PA 610 (Polyhexamethylensebacinamid) aus 1 ,6- Hexandiamin und Sebacinsäure, PA 612 (Polyhexamethylendodecanamid) aus 1 ,6-Hexandiamin und Dodecandisäure. Die genannten Polyamid-Typen sind im Rahmen der vorliegenden Erfindung bevorzugte Materialien für die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen.
Polyurethane (PUR) sind durch Polyaddition aus zwei- und höherwertigen Alkoholen und Isocyanaten zugängliche Polymere (Polyaddukte) mit Gruppierungen des Typs
-[CO-NH-R2-NH-CO-0-R1-0]-
als charakteristische Grundeinheiten der Basis-Makromoleküle, bei denen R1 für einen niedermolekularen oder polymeren Diol-Rest und R2 für eine aliphatische oder aromatische Gruppe steht. Technisch wichtige PUR werden hergestellt aus Polyester- und/oder Polyetherdiolen und beispielsweise aus 2,4- bzw. 2,6-Toluoldiisocyanat (TDI, R2=C6H3-CH3), 4,4'- Methylendi(phenylisocyanat) (MDI, R2=C6H -CH2-C6H4) oder Hexamethylendiisocyanat [HMDI, 2=(CH2)6].
Die genannten Kunststoffe können allein als Materialien für die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, eingesetzt werden, sie können aber auch mit Beschichtungen oder Laminierungen aus Metallen oder anderen Stoffen versehen werden. Besonders bewährt hat sich im Rahmen der vorliegenden Erfindung der Einsatz glasfaserverstärkter Kunststoffe als Material für die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen. Glasfaserverstärkte Kunststoffe (GFK) sind Verbundwerkstoffe aus einer Kombination von einer Matrix aus Polymeren und als Verstärker wirkenden Glasfasern. Die zur Faserverstärkung verwendeten Glasmaterialien liegen in den GFK als Fasern, Garne, Rovings (Glasseidenstränge), Vliese, Gewebe oder Matten vor. Als polymere Matrixsysteme für GFK sind sowohl Duroplaste (wie beispielsweise Epoxidharze, ungesättigte Polyesterharze, Phenol- u. Furanharze), als auch Thermoplaste (wie beispielsweise Polyamide, Polycarbonate, Polyacetale, Polyphenylenoxide und -sulfide, Polypropylene und Styrolcopolymere) geeignet. Das Gewichtsverhältnis zwischen Verstärkerstoff und Polymermatrix liegt üblicherweise im Bereich von 10:90-65:35, wobei die Festigkeitseigenschaften der GFK in der Regel bis zu einem Verstärkergehalt von ca. 40 Gew.-% zunehmen.
Die Herstellung der GFK erfolgt vorwiegend in Preßverfahren; weitere wichtige Fertigungsverfahren sind Handlaminier-, Faserspritz-, kontinuierliche Imprägnier-, Wickel- und Schleuderverfahren. Vielfach geht man auch von sogenannten Prepregs, mit Harzen vorimprägnierte Glasfasermaterialien, aus, die unter Anwendung von Druck in der Wärme gehärtet werden. Die GFK zeichnen sich gegenüber den nicht verstärkten Matrixpolymeren durch erhöhte Zug-, Biege- und Druckfestigkeit, Schlagzähigkeit, Formbeständigkeit und Stabilität gegenüber dem Einfluß von Wärme, Säuren, Salzen, Gasen oder Lösungsmitteln aus. Im Rahmen der vorliegenden Erfindung haben sich insbesondere glasfaserverstärktes Polyterafluoethylen und glasfaserverstärkte Polyamide als Materialien die Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, bewährt.
Als Material für die Grundfläche eignen auch hier sich Kunststoffe, die weicher sind als die zum Bau der Erhebungen im Oberstempel, welche die Verstärkungsvertiefungen prägen, verwendeten Kunststoffe. Selbstverständlich können diese Kunststoffe aus den gleichen oder auch aus unterschiedlichen Gruppen stammen, solange die Bedingung an die Härte bzw. Weichheit erfüllt ist. Die vorzugsweise haftungsverhindemde oder zumindest haftungs- oder adhäsionsreduzierende Wirkung des walkbaren Materials für die Bildung der Grundfläche wurde vorstehend beschrieben. In Versuchen hat sich gezeigt, daß beispielsweise mit dem Polyuretan- Werkstoff Vulkollan oder dem PVC-Werkstoff Mipolam sehr gute Ergebnisse erzielt werden konnten. Über Einsatzzeiten von mehreren tausend Pressungen wurden keinerlei Anhaftungen an dem Grundflächenmaterial festgestellt.
Mit dem erfindungsgemäßen Verfahren lassen sich Formkörper der unterschiedlichsten Zusammen-setzungen herstellen, wobei das erfindungsgemäße Verfahren insbesondere die Probleme bei der Herstellung und Anwendung von Reinigungsmitteltabletten für das maschinelle Geschirrspülen minimiert. Diese Reinigungsmitteltabletten enthalten üblicherweise nur untergeordnete Mengen an Tensiden.
Waschmitteltabletten werden üblicherweise durch Abmischung von Tensidgranulaten mit Aufbereitungskomponenten und nachfolgendes Verpressen dieses teilchenförmigen Vorgemischs hergestellt. Bevorzugte Varianten des erfindungsgemäßen Verfahrens sind daher dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch tensidhaltige(s) Granulat(e) enthält und ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l aufweist.
Im Rahmen der vorliegenden Erfindung bevorzugte Verfahren umfassen daher das Verpressen eines teilchenförmigen Vorgemischs aus mindestens einem tensidhaltigen Granulat und mindestens einer zugemischten pulverförmigen Komponente. Die Herstellung der tensidhaltigen Granulate kann dabei durch übliche technische Granulationsverfahren wie Kompaktierung, Extrusion, Mischergranulation, Pelletierung oder Wirbelschichtgranulation erfolgen. Das tensidhaltige Granulat genügt in bevorzugten Verfahrensvarianten bestimmten Teilchengrößenkriterien. So sind erfindungsgemäße Verfahren bevorzugt, bei denen das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 μm, vorzugsweise zwischen 200 und 1800 μm, besonders bevorzugt zwischen 400 und 1600 μm und insbesondere zwischen 600 und 1400μm, aufweist.
Neben den Aktivsubstanzen (anionische und/oder nichtionische und/oder kationische und/oder amphotere Tenside) enthalten die Tensidgranulate vorzugsweise noch Trägerstoffe, die besonders bevorzugt aus der Gruppe der Gerüststoffe stammen. Besonders vorteilhafte Verfahren sind dadurch gekennzeichnet, daß das tensidhaltige Granulat anionische und/oder nichtionische Tenside sowie Gerüststoffe enthält und Gesamt-Tensidgehalte von mindestens 10 Gew.-%, vorzugsweise mindestens 15 Gew.-% uns insbesondere mindestens 20 Gew.-%, aufweist. Diese grenzflächenaktive Substanzen stammen aus der Gruppe der anionischen, nichtionischen, zwitterionischen oder kationischen Tenside, wobei anionische Tenside aus ökonomischen Gründen und aufgrund ihres Leistungsspektrums deutlich bevorzugt sind.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsul- fonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-i8-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und Cι2-C15- Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-2ι-Alkohole, wie 2-Methyl-verzweigte Cg.ι Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Cι2.18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-ι8-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der AI k(en)yl kette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Im Rahmen der vorliegenden Erfindung sind Tensidgranulate bevorzugt, die 5 bis 50 Gew.-%, vorzugsweise 7,5 bis 40 Gew.-% und insbesondere 10 bis 30 Gew.-% anionische Tensid(e), jeweils bezogen auf das Granulat, enthalten.
Bei der Auswahl der anionischen Tenside, die zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Tensidgranulate weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Gesamtgewicht des in Schritt d) hergestellten Wasch- und Reinigungsmittelformkörpers, übersteigt. Bevorzugt einzusetzende anionische Tenside sind dabei die Alkylbenzolsulfonate und Fettalkoholsulfate, wobei bevorzugte Wasch- und Reinigungsmittelformkörper 2 bis 20 Gew.-%, vorzugsweise 2,5 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% Fettalkoholsulfat(e), jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformkörper, enthalten. Werden die erfindungsgemäßen Tabletten als maschinelle Geschirrspülmittel formuliert, enthalten sie vorzugsweise nur untergeordnete Mengen an Aniontensiden, sondern hauptsächlich Niotenside.
Als nichtionische Tenside werden dabei vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-ι - Alkohole mit 3 EO oder 4 EO, C9.ι Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Mono- glykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1 ,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel,
R
R-CO-N-[Z]
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R^ für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel
R1-0-R2
R-CO-N-[Z]
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N- Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden. Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten die erfindungsgemäßen Reinigungsmittel für das maschinellen Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-SteIlung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-i4-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12.18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-ι -Alkohol mit 3 EO und C-|2-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Insbesondere bevorzugt sind erfindungsgemäße Mittel, die ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Demzufolge sind bevorzugte Geschirrspülmittel dadurch gekennzeichnet, daß sie nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, enthalten.
Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperaturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)- Niotenside zeichnen sich darüberhinaus durch gute Schaumkontrolle aus.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-2o-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow ränge ethoxylates" (siehe oben) besonders bevorzugt.
Demnach enthalten besonders bevorzugte erfindungsgemäße Geschirrspülmittel ethoxylierte(s) Niotensid(e), das/die aus C6-20-Monohydroxyalkanolen oder C6.20-Alkylphenolen oder C16-2o- Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurde(n).
Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Geschirrspülmittel sind dadurch gekennzeichnet, daß sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen, enthalten.
Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen- Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
Ein weiter bevorzugtes erfindungsgemäßes Geschirrspülmittel enthält nichtionische Tenside der Formel (VI)
R10[CH2CH(CH3)0]x[CH2CH20]y[CH2CH(OH)R2], (VI)
in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1 ,5 und y für einen Wert von mindestens 15 steht.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel
R10[CH2CH(R3)0]x[CH2]kCH(OH)[CH2]jOR2
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder - CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)- Gruppen einschließt, oder umgekehrt.
Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu
R10[CH2CH(R3)0]xCH2CH(OH)CH2OR2
vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesonders von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
Faßt man die letztgenannten Aussagen zusammen, sind erfindungsgemäße Geschirrspülmittel bevorzugt, die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel
R10[CH2CH(R3)0]x[CH2]kCH(OH)[CH2]jOR2
enthalten, in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, wobei Tenside des Typs
R10[CH2CH(R3)0]xCH2CH(OH)CH2OR2
in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesonders von 6 bis 18 steht, besonders bevorzugt sind.
Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die als nichionische(s) Tensid(e) Tenside der allgemeinen Formel VII enthalten R1-0-(CH2-CH2-0)w-(CH2-CH(R2)-0)x-(CH2-CH2-0)y-(CH2-CH(R3)-0)z-H (VII)
in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6.24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3; -CH2CH3, -CH2CH2-CH3, CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
Die bevorzugten Niotenside der Formel VII lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R1-OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R1 in der vorstehenden Formel X kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzeigt, wobei die linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, bevorzugt sind. Aus synthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unabhängig von der Art des zur Herstellung der erfindungsgemäß in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, bei denen R1 in Formel VII für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.
Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R2 bzw. R3 unabhängig voneinander ausgewählt sind aus - CH2CH2-CH3 bzw. CH(CH3)2 sind geeignet. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß R2 bzw. R3 für einen Rest -CH3, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.
Zusammenfassend sind zum Einsatz in den erfindungsgemäßen Mitteln insbesondere nichtionische Tenside bevorzugt, die einen C9-15-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt vonl bis 4 Ethylenoxideinheiten, gefolgt vonl bis 4 Propylenoxid-einheiten aufweisen. Diese Tenside weisen in wäßriger Lösung die erforderliche niedrige Viskosität auf und sind erfindungsgemäß mit besonderem Vorzug einsetzbar.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel (VIII) R10[CH2CH(R3)0]xR2 (VIII)
in der R1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und vorzugsweise weiterhin mit einer Ethergruppe funktionalisiert sind , R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 40.
Bei besonders bevorzugten Niotenside der vorstehenden Formel (XIII) steht R3 für H. Bei den resultierenden endgruppenverschlossenen Poly(oxyalkylierten) Niotensiden der Formel (IX)
R10[CH2CH20]xR2 (IX)
sind insbesondere solche Niotenside bevorzugt, bei denen R1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und x für Werte zwischen 1 und 40 steht.
Insbesondere werden solche endgruppenverschlossenen Poly(oxyalkylierten) Niotenside bevorzugt, die gemäß der Formel (X)
R10[CH2CH20]xCH2CH(OH)R2 (X)
neben einem Rest R1, welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest mit 1 bis 30 Kohlenstoffatomen R2 aufweisen, welcher einer monohydroxylierten Zwischengruppe - CH2CH(OH)- benachbart ist. x steht in dieser Formel für Werte zwischen 1 und 40. Derartige endgruppenverschlossenen Poly(oxyalkylierten) Niotenside lassen sich beispielsweise durch Umsetzung eines endständigen Epoxids der Formel R2CH(0)CH2 mit einem ethoxylierten Alkohol der Formel R10[CH2CH20]x-1CH2CH20H erhalten. Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade bzw. Alkoxylierungsgrade der vorgenannten Niotenside stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxylierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.
Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1 ,0 und 4,0, vorzugsweise zwischen 1 ,0 und 2,0 und insbesondere zwischen 1 ,1 und 1 ,4.
Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.
Die Tensidgranulate können bevorzugt Alkylpolyglycoside enthalten, wobei Gehalte an APG über 0,2 Gew.-%, bezogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Unabhängig davon, ob anionische oder nichtionische Tenside oder Mischungen aus diesen Tensidklassen sowie gegebenenfalls amphotere oder kationische Tenside im Tensidgranulat eingesetzt werden, sind erfindungsgemäße Verfahren bevorzugt, bei denen der Tensidgehalt des tensidhaltigen Granulats 5 bis 60 Gew.-%, vorzugsweise 10 bis 50 Gew.-% und insbesondere 15 bis 40 Gew.-%, jeweils bezogen auf das Tensidgranulat, beträgt.
Das Tensidgranulat kann in den Wasch- und Reinigungsmittelformkörpern in variierenden Mengen eingesetzt werden. Erfindungsgemäße Verfahren, in denen der Anteil des tensidhaltigen Granulats an den Wasch- und Reinigungsmittelformkörpern 40 bis 95 Gew.-%, vorzugsweise 45 bis 85 Gew.-% und insbesondere 55 bis 75 Gew.-%, jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformkörper, beträgt, sind dabei bevorzugt. Wie bereits vorstehend erwähnt, enthalten Reinigungsmitteltabletten für das maschinelle Geschirrspülen üblicherweise nur geringe Mengen an Tensiden, so daß die vorstehenden Angaben für diese Klasse von Reinigungsmitteltabletten nicht gelten.
Neben den waschaktiven Substanzen sind Gerüststoffe die wichtigsten Inhaltsstoffe von Wasch- und Reinigungsmitteln. In den Tensidgranulaten, oder dort, wo keine Tensidgranulate eingesetzt werden auch als Bestandteil des Vorgemischs können alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen - auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSix02x+1 'H20, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si205 ' yH20 bevorzugt.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na20 : Si02 von 1 :2 bis 1 :3,3, vorzugsweise von 1 :2 bis 1 :2,8 und insbesondere von 1 :2 bis 1 :2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate. Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittel sind dadurch gekennzeichnet, daß diese Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Waschoder Reinigungsmittels, enthalten.
Werden die erfindungsgemäßen Mittel als maschinelle Geschirrspülmittel eingesetzt, so enthalten diese Mittel vorzugsweise mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel NaMSix02x+1 ' y H20, worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1 ,9 bis 22, vorzugsweise von 1 ,9 bis 4, ist und y für eine Zahl von 0 bis 33 steht. Die kristallinen schichtförmigen Silikate der Formel (I) werden beispielsweise von der Fa. Clariant GmbH
(Deutschland) unter dem Handelsnamen Na-SKS vertrieben, z.B. Na-SKS-1 (Na2Si22θ45-χH2θ, Kenyait), Na-SKS-2 (Na2Si14θ2g-xH20, Magadiit), Na-SKS-3 (Na2Si8017-χH20) oder Na-SKS-
4 (Na2Si409-χH20, Makatit).
Für die Zwecke der vorliegenden Erfindung besonders geeignet sind Mittel, die kristalline Schichtsilikate der Formel (I) enthalten, in denen x für 2 steht. Von diesen eignen sich vor allem
Na-SKS-5 (α-Na2Si205), Na-SKS-7 (ß-Na2Si205, Natrosilit), Na-SKS-9 (NaHSi205 H20), Na-
SKS-10 (NaHSi205-3H20, Kanemit), Na-SKS-11 (t-Na2Si205) und Na-SKS-13 (NaHSi205), insbesondere aber Na-SKS-6 (δ-Na2Si205). Einen Überblick über kristalline Schichtsilikate findet sich z.B. in dem in "Seifen-Öle-Fette-Wachse, 116 Jahrgang, Nr. 20/1990" auf den Seiten 805 - 808 veröffentlichten Artikel.
Bevorzugte maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel weisen im Rahmen der vorliegenden Anmeldung einen Gewichtsanteil des kristallinen schichtförmigen Silikats der Formel (I) von 0,1 bis 20 Gew.-%, vorzugsweise von 0,2 bis 15 Gew.-% und insbesondere von 0,4 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht dieser Mittel, auf. Besonders bevorzugt werden insbesondere solche maschinellen Geschirrspülmittel, die einen Gesamtsilikatgehalt unterhalb 7 Gew.-%, vorzugsweise unterhalb 6 Gew.-%, bevorzugt unterhalb
5 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-%, ganz besonders bevorzugt unterhalb 3 Gew.-% und insbesondere unterhalb 2,5 Gew.-% aufweisen, wobei es sich bei diesem Silikat, bezogen auf das Gesamtgewicht des enthaltenen Silikats, vorzugsweise zu mindestens 70 Gew.- %, bevorzugt zu mindestens 80 Gew.-% und insbesondere zu mindestens 90 Gew.-% um Silikat der allgemeinen Formel NaMSix02x+1 ' y H20 handelt. Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa20 (1-n)K20 Al203 (2 - 2,5)Si02 (3,5 - 5,5) H20
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granulären Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Falls gewünscht, kann über die durch das Tensidgranulat eingebrachte Menge an Zeolith vom P- und/oder X-Typ hinaus weiterer Zeolith in das Vorgemisch inkorporiert werden, indem Zeolith als Aufbereitungskomponente zugegeben wird. Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise ein Zeolith vom Typ A, P, X oder Y. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Dies gilt insbesondere für den Einsatz erfindungsgemäßer Mittel als maschinelle Geschirrspülmittel, welcher im Rahmen der vorliegenden Anmeldung besonders bevorzugt ist. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HP03)π und Orthophosphorsäure H3P04 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2P04, existiert als Dihydrat (Dichte 1 ,91 gern"3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gern"3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P20 ), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P309) und Maddrellsches Salz (siehe unten), übergehen. NaH2P04 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2P04, ist ein weißes Salz der Dichte 2,33 gern"3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KP03)J und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HP04, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gern"3, Wasserverlust bei 95°), 7 Mol. (Dichte 1 ,68 gern"3, Schmelzpunkt 48° unter Verlust von 5 H20) und 12 Mol. Wasser (Dichte 1 ,52 gern"3, Schmelzpunkt 35° unter Verlust von 5 H20), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P207 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HP04, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3P0 , sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1 ,62 gern"3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P205) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P205) eine Dichte von 2,536 gern"3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3P04, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gern"3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt. Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P207, existiert in wasserfreier Form (Dichte 2,534 gern"3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1 ,815-1 ,836 gern"3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P207 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P207, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern"3 dar, das in Wasser löslich ist, wobei der pH- Wert der 1 %igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2P04 bzw. des KH2P04 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H20 kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(0)(ONa)-0]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P205, 25% K20) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaP03)3 + 2 KOH -} Na3K2P3O10 + H20
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Im Rahmen der vorliegenden Erfindung bevorzugte Mittel sind dadurch gekennzeichnet, daß diese Phosphat(e), vorzugsweise Alkalimetaliphosphat(e), besonders bevorzugt Pentanatriumbzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 15 bis 75 Gew.-% uns insbesondere von 20 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels, enthalten.
Besonders bevorzugt werden insbesondere solche erfindungsgemäßen Mittel, bei denen das Gewichtsverhältnis von im Mittel enthaltenen Kaliumtripolyphosphat zu Natriumtripolyphosphat mehr als 1 :1 , vorzugsweise mehr als 2:1 , bevorzugt mehr als 5:1 , besonders bevorzugt mehr als 10:1 und insbesondere mehr als 20:1 beträgt. Besonders bevorzugt werden insbesondere solche erfindungsgemäßen Mittel, welche ausschließlich Kaliumtripolyphosphat enthalten.
Weitere Gerüststoffe sind die Alkaliträger. Als Alkaliträger gelten beispielsweise Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetall- sesquicarbonate, die genannten Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat.
Besonders bevorzugte Wasch- und Reinigungsmittel enthalten Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonate, besonders bevorzugt Natriumcarbonat, in Mengen von 2 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-% und insbesondere von 7.5 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels.
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmitteln insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol. Polyacrylate sind beispielsweise unter den Bezeichnungen Versicol® E5, Versicol® E7 und Versicol® E9 (Warenzeichen der Allied Colloids), Narlex® LD 30 und Narlex® LD 34 (Warenzeichen der national Adhesives), Acrysol® LMW-10, Acrysol® LMW-20, Acrysol® LMW-45 und Acrysol® A1-N (Warenzeichen der Firma Rohm & Haas) sowie Sokalan® PA-20, Sokalan® PA-40, Sokalan® PA-70 und Sokalan® PA-110 (Warenzeichen der BASF) im Handel erhältlich. Ethylen/Maleinsäure-Copolymere werden unter dem Namen EMA® (Warenzeichen der Monsanto) vertrieben, Methylvinylether/Maleinsäure-Copolymere unter dem Namen Gantrez® AN 119 (Warenzeichen der GAF Corp.) und Acrylsäure/ Maleinsäure-Copolymere unter dem Namen Sokalan® CP5 und Sokalan® CP7 (Warenzeichen der BASF). Acryiphosphinate sind als DKW®- (Warenzeichen der National Adhesives) bzw. Belperse®-Typen (Warenzeichen der Ciba-Geigy) erhältlich. In Kombination mit den genannten Polymeren oder als alleiniger Vergrauungsinhibitor können auch Pfropfcopolymere eingesetzt werden, die durch Pfropfen von Polyalkylenoxiden mit Molekulargewichten zwischen 2000 und 100000 mit Vinylacetat erhalten werden. Die Acetatgruppen können gegebenenfalls bis zu 15 % verseift sein. Polymere dieses Typs sind unter dem Namen Sokalan® HP22 (Warenzeichen der BASF) im Handel.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Malein-säure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-AlkylallyIsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1 ,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Erfindungsgemäße Wasch- oder Reinigungsmittel können weiterhin wasch- oder reinigungsaktive Poylmere enthalten. Zur Gruppe dieser Polymere zählen beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere. Erfindungsgemäß bevorzugte Wasch- oder Reinigungsmittel sind dabei dadurch gekennzeichnet, daß sie, bezogen auf ihr Gesamtgewicht, 0,1 bis 50 Gew.-%, vorzugsweise zwischen 0,2 und 40 Gew.-%, besonders bevorzugt zwischen 0,4 und 35 Gew.-% und insbesondere zwischen 0,6 und 31 Gew.-% eines Polymers, vorzugsweise mindestens eines Polymeres aus der Gruppe der kationischen, anionischen oder amphoteren Polymere, enthalten.
Als Enthärter wirksame Polymere sind beispielsweise die Sulfonsäuregruppen-haltigen Polymere, welche in den erfindungsgemäßen Mitteln mit besonderem Vorzug eingesetzt werden.
Besonders bevorzugt als Suldonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
Im Rahmen der vorliegenden Erfindung sind ungesättigte Carbonsäuren der Formel XI als Monomer bevorzugt,
R1(R2)C=C(R3)COOH (XI),
in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
Unter den ungesättigten Carbonsäuren, die sich durch die Formel XI beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel XII bevorzugt,
R5(R6)C=C(R7)-X-S03H (XII),
in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)π- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2- und -C(0)-NH-CH(CH2CH3)-.
Unter diesen Monomeren bevorzugt sind solche der Formeln Xlla, Xllb und/oder Xllc,
H2C=CH-X-S03H (Xlla), H2C=C(CH3)-X-S03H (Xllb), H03S-X-(R6)C=C(R7)-X-S03H (Xllc),
in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2- und -C(0)-NH- CH(CH2CH3)-.
Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure (X = -C(0)NH-CH(CH2CH3) in Formel Xlla), 2-Acrylamido-2- propansulfonsäure (X = -C(0)NH-C(CH3)2 in Formel Xlla), 2-Acrylamido-2-methyl-1- propansulfonsäure (X = -C(0)NH-CH(CH3)CH2- in Formel Xlla), 2-Methacrylamido-2-methyl-1- propansulfonsäure (X = -C(0)NH-CH(CH3)CH2- in Formel Xllb), 3-Methacrylamido-2-hydroxy- propansulfonsäure (X = -C(0)NH-CH2CH(OH)CH2- in Formel Xllb), Allylsulfonsäure (X = CH2 in Formel Xlla), Methallylsulfonsäure (X = CH2 in Formel Xllb), Allyloxybenzolsulfonsäure (X = -CH2- 0-C6H4- in Formel Xlla), Methallyloxybenzolsulfonsäure (X = -CH2-0-C6H4- in Formel Xllb), 2- Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure (X = CH2 in Formel Xllb), Styrolsulfonsäure (X = C6H4 in Formel Xlla), Vinylsulfonsäure (X nicht vorhanden in Formel Xlla), 3-SulfopropyIacrylat (X = -C(0)NH-CH2CH2CH2- in Formel Xlla), 3- Sulfopropylmethacrylat (X = -C(0)NH-CH2CH2CH2- in Formel Xllb), Sulfomethacrylamid (X = - C(0)NH- in Formel Xllb), Sulfomethylmethacrylamid (X = -C(0)NH-CH2- in Formel Xllb) sowie wasserlösliche Salze der genannten Säuren.
Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der erfindungsgemäß eingesetzten Polymere an Monomeren der Gruppe iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).
Zusammenfassend sind Copolymere aus
i) ungesättigten Carbonsäuren der Formel XI.
R1(R2)C=C(R3)COOH (XI),
in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist,
ii) Sulfonsäuregruppen-haltigen Monomeren der Formel XII
R5(R6)C=C(R7)-X-S03H (XII),
in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2- und -C(0)-NH-CH(CH2CH3)-
iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
besonders bevorzugte Inhaltsstoffe der erfindungsgemäßen Wasch- oder Reinigungsmittelzusammensetzungen.
Besonders bevorzugte Copolymere bestehen aus i) einer oder mehrerer ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln Xlla, Xllb und/oder Xllc:
H2C=CH-X-S03H (Xlla), H2C=C(CH3)-X-S03H (Xllb), H03S-X-(R6)C=C(R7)-X-S03H (Xllc),
in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus - (CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2- und -C(0)-NH- CH(CH2CH3)- iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
So sind beispielsweise erfindungsgemäße Wasch- oder Reinigungsmittelzusammensetzungen bevorzugt, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XIII -[CH2-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (XIII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen- haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz in den erfindungsgemäßen Wasch- oder Reinigungsmittelzusammensetzungen ebenfalls bevorzugt und dadurch gekennzeichnet ist, daß die bevorzugten Wasch- oder Reinigungsmittelzusammensetzungen ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XIV
-[CH2-C(CH3)COOH]m-[CH2-CHC(0)-Y-S03H]p- (XIV),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen- haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind erfindungsgemäße Wasch- oder
Reinigungsmittelzusammensetzungen, die ein oder mehrere Copolymere enthalten, welche Struktureinheiten der Formel XV
-[CH2-CHCOOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (XV),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind, ebenfalls eine bevorzugte Ausführungsform der vorliegenden Erfindung, genau wie auch Wasch- oder Reinigungsmittelzusammensetzungen bevorzugt sind, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XVI
-[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (XVI),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Wasch- oder Reinigungsmittelzusammensetzungen, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XVII
-[HOOCCH-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (XVII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)π- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind und zu Wasch- oder Reinigungsmittelzusammensetzungen, welche dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XVIII
-[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(0)0-Y-S03H]p- (XVIII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Zusammenfassend sind erfindungsgemäße Wasch- oder Reinigungsmittelzusammensetzungen bevorzugt, die ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formeln XIII und/oder XIV und/oder XVund/oder XVI und/oder XVII und/oder XVIII -[CH2-CHCOOH]rn-[CH2-CHC(0)-Y-S03H]p- (XIII), -[CH2-C(CH3)COOH]m-[CH2-CHC(0)-Y-S03H]p- (XIV), -[CH2-CHCOOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (XV), -[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (XVI), -[HOOCCH-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (XVII), -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(0)0-Y-S03H]p- (XVIII),
enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Entsprechende Wasch- oder Reinigungsmittelzusammensetzungen, die dadurch gekennzeichnet sind, daß die Sulfonsäuregruppen im Copolymer teil- oder vollneutralisiert vorliegen, sind erfindungsgemäß bevorzugt.
Die Monomerenverteilung der in den erfindungsgemäßen Wasch- oder Reinigungsmittelzusammensetzungen eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.- % Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
Die Molmasse der in den erfindungsgemäßen Wasch- oder Reinigungsmittelzusammensetzungen eingesetzten vorstehend beschriebenen Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmittelzusammensetzungen sind dadurch gekennzeichnet, daß die Copolymere Molmassen von 2000 bis 200.000 gmol"1, vorzugsweise von 4000 bis 25.000 gmol"1 und insbesondere von 5000 bis 15.000 gmol"1 aufweisen.
Besonders bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittel zeichnen sich dadurch aus, daß sie mindestens ein Sulfonsäuregruppen-haltiges Polymer, vorzugsweise ein Copolymer aus i) Ungesättigten Carbonsäuren ii) Sulfonsäuregruppen-haltigen Monomeren iii) Gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren, enthalten.
Bevorzugte erfindungsgemäße Mittel, welche als maschinelle Geschirrspülmittel eingesetzt werden, können zur Verbesserung des Klarspülergebnisses weiterhin amphotere oder kationische Polymere enthalten. Diese besonders bevorzugten Polymere sind dadurch gekennzeichnet, daß sie mindestens eine positive Ladung aufweisen. Derartige Polymere sind vorzugsweise wasserlöslich oder wasserdispergierbar, das heißt, sie weisen in Wasser bei 25°C eine Löslichkeit oberhalb 10 mg/ml auf. Im Rahmen der vorliegenden Anmeldung besonders bevorzugte Waschoder Reinigungsmittel sind dadurch gekennzeichnet, daß sie mindestens ein Polymer mit einem Molekulargewicht oberhalb 2000 enthalten, welches mindestens eine positive Ladung aufweist.
Besonders bevorzugt kationische oder amphotere Polymere enthalten mindestens eine ethylenisch ungesättigte Monomereinheit der allgemeinen Formel
R1(R2)C=C(R3)R4
in der R1 bis R4 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert, eine heteroatomare Gruppe mit mindestens einer positiv geladenen Gruppe, einem quaternisierten Stickstoffatom oder zumindest einer Amingruppe mit einer postiven Ladung im pH-Bereich zwischen 2 und 11 oder für -COOH oder -COOR5 steht, wobei R5 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
Beispiele für die vorgenannten (unpolmyerisierten) Monomereinheiten sind Diallylamin, Methyldiallylamin, Dimethyldimethylammoniumsalze, Acrylamidopropyl(trimethyl)ammoniumsalze (R1, R2, und R3, H, R4 = C(0)NH(CH2)2N+(CH3)3 X),
Methacrylamidopropyl(trimethyl)ammoniumsalze (R1 und R2 = H, R3 = CH3 H, R4 = C(0)NH(CH2)2N+(CH3)3 X). Besonders bevorzugt als Bestandteil der amphoteren Polymere werden ungesättigte Carbonsäuren der allgemeinen Formel
R1(R2)C=C(R3)COOH
eingesetzt, in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für - COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
Besonders bevorzugte amphotere Polymere enthalten als Monomereinheiten Derivate des Diallylamins, insbesondere Dimethyldiallylammoniumsalz und/oder
Methacrylamidopropyl(trimethyl)-ammoniumsalz, vorzugsweise in Form des Chlorids, Bromids, lodids, Hydroxids, Phosphats, Sulfats, Hydrosulfats, Ethylsulfasts, Methylsulfats, Mesylats, Tosylats, Formiats oder Acetats in Kombination mit Monomereinheiten aus der Gruppe der ethylenisch ungesättigten Carbonsäuren.
Vor der Verpressung des teilchenförmigen Vorgemischs zu Wasch- und Reinigungsmittelformkörpern kann das Vorgemisch mit feinteiligen
Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Verpressung) als auch der fertigen Wasch- und Reinigungsmittelformkörper von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze eingesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit- Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind als Abpuderungsmittel einsetzbar, wobei es von Vorteil ist, wenn mindestens 50 Gew.-% des Abpuderungsmittels aus einem Zeolithen vom Faujasit-Typ bestehen. Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die aus einem teilchenförmigen Vorgemisch bestehen, das granuläre Komponenten und nachträglich zugemischte pulverförmige Stoffe enthält, wobei die bzw. eine der nachträglich zugemischten pulverförmigen Komponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb 100μm, vorzugsweise unterhalb 10μm und insbesondere unterhalb 5μm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu verpressenden Vorgemischs ausmacht.
Erfindungsgemäß sind Wasch- und Reinigungsmittelformkörper bevorzugt, die zusätzlich ein Desintegrationshilfsmittel enthalten. Auch erfindungsgemäße Verfahren, in denen das Vorgemisch zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granulärer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gewicht des Vorgemischs, enthält, sind bevorzugt. Neben den genannten Bestandteilen Tensid, Builder und Desintegrationshilfsmittel, oder an ihrer Stelle können im erfindungsgemäßen Verfahren die zu verpressenden teilchenförmigen Vorgemische zusätzlich einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten.
Unter den als Bleichmittel dienenden, in Wasser H202 liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H202 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder
Diperdodecandisäure. Erfindungsgemäße Reinigungsmittel können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure
[Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N- nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1 ,12-Diperoxycarbonsäure, 1 ,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan- 1 ,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
Als Bleichmittel in den erfindungsgemäßen Dispersionen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder
Dichlohsocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1 ,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
Bevorzugte erfindungsgemäße Dispersionen enthalten Bleichmittel in Mengen von 1 bis 40 Gew.- %, vorzugsweise von 2,5 bis 30 Gew.-% und insbesondere von 5 bis 20 Gew.-%, jeweils bezogen auf die gesamte Dispersion.
Werden die erfindungsgemäßen Mittel als maschinelle Geschirrspülmittel eingesetzt, so können diese als dispergierte Stoffe weiterhin Bleichaktivatoren enthalten, um beim Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen- diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrile, insebsondere kationische Nitril der Formel
R1 I R2-N(+)-(CH2)-CN XH,
R3 in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C^-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2- CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-0)nH mit n = 1 , 2, 3, 4, 5 oder 6 und X ein Anion ist.
In besonders bevorzugten erfindungsgemäßen Mitteln ist ein kationisches Nitril der Formel
R4 I R5-N(+)-(CH2)-CN X(_), I R6
enthalten, in der R4, R5 und R6 unabhängig voneinander ausgewählt sind aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, wobei R4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R5 = R6 = -CH3 und insbesondere R4 = R5 = R6 = -CH3 gilt und Verbindungen der Formeln (CH3)3N(+)CH2-CN X", (CH3CH2)3N(+)CH2-CN X" , (CH3CH2CH2)3N(+)CH2-CN X", (CH3CH(CH3))3N(+)CH2-CN X", oder (HO-CH2-CH2)3N(+)CH2-CN X" besonders bevorzugt sind, wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH3)3N(+)CH2-CN X", in welcher X" für ein Anion steht, das aus der Gruppe Chlorid, Bromid, lodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.
Als Bleichaktivatoren können weiterhin Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C- Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen- diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n- Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA) sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Die Bleichaktivatoren werden in maschinellen Geschirrspülmitteln üblicherweise in Mengen von 0,1 bis 20 Gew.-%, vorzugsweise von 0,25 bis 15 Gew.-% und insbesondere von 1 bis 10 Gew.-%, jeweils bezogen auf das Mittel, eingesetzt.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleich katalysatoren in die Mittel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Sofern neben den Nitrilquats weitere Bleichaktivatoren eingesetzt werden sollen, werden bevorzugt Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-% bezogen auf das Gesamtgewicht der Dispersion, eingesetzt.
Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.
Ein weiteres wichtiges Kriterium zur Beurteilung eines maschinellen Geschirrspülmittels ist neben dessen Reinigungsleistung das optische Erscheinungsbild des trockenen Geschirrs nach erfolgter Reinigung. Eventuell auftretende Calciumcarbonat-Ablagerungen auf Geschirr oder im Maschineninnenraum können beispielsweise die Kundenzufriedenheit beeinträchtigen und haben damit ursächlichen Einfluß auf den wirtschaftlichen Erfolg eines derartigen Reinigungsmittels. Ein weiteres seit langem bestehendes Problem beim maschinellen Geschirrspülen ist die Korrosion von Glasspülgut, die sich in der Regel durch Auftreten von Trübungen, Schlieren und Kratzern aber auch durch ein Irisieren der Glasoberfläche äußern kann. Die beobachteten Effekte beruhen dabei im wesentlichen auf zwei Vorgängen, dem Austritt von Alkali- und Erdalkaliionen aus dem Glas in Verbindung mit einer Hydrolyse des Silikat-Netzwerks, zum anderen in einer Ablagerung silikatischer Verbindungen auf der Glasoberfläche.
Die genannten Probleme können mit den erfindungsgemäßen Dispersionen gelöst werden, wenn zusätzlich zu den vorstehend genannten zwingenden und gegebenenfalls optionalen Inhaltsstoffen bestimmte Glaskorrosionsinhibitoren in die Mittel inkorporiert werden. Bevorzugte erfindungsgemäße Mittel enthalten daher weiterhin Glaskorrosionsschutzmittel, vorzugsweise aus der Gruppe der Magnesium- und/oder Zinksalze und/oder Magnesium- und/oder Zinkkomplexe.
Eine bevorzugte Klasse von Verbindungen, die zur Verhinderung der Glaskorrosion den erfindungsgemäßen Mitteln zugesetzt werden können, sind unlösliche Zinksalze. Diese können sich während des Geschirrspülvorgangs an der Glasoberfläche anlagern und verhindern dort das in Lösung gehen von Metallionen aus dem Glasnetzwerk sowie die Hydrolyse der Silikate. Zusätzlich verhindern diese unlöslichen Zinksalze auch die Ablagerung von Silikat auf der Glasoberfläche, so daß das Glas vor den vorstehend geschilderten Folgen geschützt ist.
Unlösliche Zinksalze im Sinne dieser bevorzugten Ausführungsform sind Zinksalze, die eine Löslichkeit von maximal 10 Gramm Zinksalz pro Liter Wasser bei 20°C besitzen. Beispiele für erfindungsgemäß besonders bevorzugte unlösliche Zinksalze sind Zinksilikat, Zinkcarbonat, Zinkoxid, basisches Zinkcarbonat (Zn2(OH)2C03), Zinkhydroxid, Zinkoxalat, Zinkmonophosphat (Zn3(P04)2), und Zinkpyrophosphat (Zn2(P207)).
Die genannten Zinkverbindungen werden in den erfindungsgemäßen Mitteln vorzugsweise in Mengen eingesetzt, die einen Gehalt der Mittel an Zinkionen zwischen 0,02 und 10 Gew.-%, vorzugsweise zwischen 0,1 und 5,0 Gew.-% und insbesondere zwischen 0,2 und 1 ,0 Gew.-%, jeweils bezogen auf das Mittel, bewirken. Der exakte Gehalt der Mittel am Zinksalz bzw. den Zinksalzen ist naturgemäß abhängig von der Art der Zinksalze - je weniger löslich das eingesetzte Zinksalz ist, umso höher sollte dessen Konzentration in den erfindungsgemäßen Mitteln sein.
Da die unlöslichen Zinksalze während des Geschirreinigungsvorgangs größtenteils unverändert bleiben, ist die Partikelgröße der Salze ein zu beachtendes Kriterium, damit die Salze nicht auf Glaswaren oder Maschinenteilen anhaften. Hier sind erfindungsgemäße flüssige wäßrige maschinelle Geschirrspülmittel bevorzugt, bei denen die unlöslichen Zinksalze eine Partikelgröße unterhalb 1 ,7 Millimeter aufweisen.
Wenn die maximale Partikelgröße der unlöslichen Zinksalze unterhalb 1,7 mm liegt, sind unlösliche Rückstände in der Geschirrspülmaschine nicht zu befürchten. Vorzugsweise hat das unlösliche Zinksalz eine mittlere Partikelgröße, die deutlich unterhalb dieses Wertes liegt, um die Gefahr unlöslicher Rückstände weiter zu minimieren, beispielsweise eine mittlere Partikelgröße kleiner 250 μm. Dies gilt wiederum umso mehr, je weniger das Zinksalz löslich ist. Zudem steigt die glaskorrosionsinhibierende Effektivität mit sinkender Partikelgröße. Bei sehr schlecht löslichen Zinksalzen liegt die mittlere Partikelgröße vorzugsweise unterhalb von 100 μm. Für noch schlechter lösliche Salze kann sie noch niedriger liegen; beispielsweise sind für das sehr schlecht lösliche Zinkoxid mittlere Partikelgrößen unterhalb von 100 μm bevorzugt.
Eine weitere bevorzugte Klasse von Verbindungen sind Magnesium- und/oder Zinksalz(e) mindestens einer monomeren und/oder polymeren organischen Säure. Diese bewirken, daß auch bei wiederholter Benutzung die Oberflächen gläsernen Spülguts nicht korrosiv verändert, insbesondere keine Trübungen, Schlieren oder Kratzer aber auch kein Irisieren der Glasoberflächen verursacht werden.
Obwohl erfindungsgemäß alle Magnesium- und/oder Zinksalz(e) monomerer und/oder polymerer organischer Säuren in den beanspruchten Mitteln enthalten sein können, werden doch, wie vorstehend beschrieben, die Magnesium- und/oder Zinksalze monomerer und/oder polymerer organischer Säuren aus den Gruppen der unverzweigten gesättigten oder ungesättigten Monocarbonsäuren, der verzweigten gesättigten oder ungesättigten Monocarbonsäuren, der gesättigten und ungesättigten Dicarbonsäuren, der aromatischen Mono-, Di- und Tricarbonsäuren, der Zuckersäuren, der Hydroxysäuren, der Oxosäuren, der Aminosäuren und/oder der polymeren Carbonsäuren bevorzugt. Innerhalb dieser Gruppen werden im Rahmen der vorliegenden Erfindung wiederum die in der Folge genannten Säuren bevorzugt:
Aus der Gruppe der unverzweigten gesättigten oder ungesättigten Monocarbonsäuren: Methansäure (Ameisensäure), Ethansäure (Essigsäure), Propansäure (Propionsäure), Pentansäure (Valeriansäure), Hexansäure (Capronsäure), Heptansäure (Önanthsäure), Octansäure (Caprylsäure), Nonansäure (Pelargonsäure), Decansäure (Caprinsäure), Undecansäure, Dodecansäure (Laurinsäure), Tridecansäure, Tetradecansäure (Myristinsäure), Pentadecansäure, Hexadecansäure (Palmitinsäure), Heptadecansäure (Margarinsäure), Octadecansäure (Stearinsäure), Eicosansäure (Arachinsäure), Docosansäure (Behensäure), Tetracosansäure (Lignocerinsäure), Hexacosansäure (Cerotinsäure), Triacotansäure (Melissinsäure), 9c-Hexadecensäure (Palmitoleinsäure), 6c-Octadecensäure (Petroselinsäure), 6t-Octadecensäure (Petroselaidinsäure), 9c-Octadecensäure (Ölsäure), 9t-Octadecensäure (Elaidinsäure), 9c,12c-Octadecadiensäure (Linolsäure), 9t,12t-Octadecadiensäure
(Linolaidinsäure) und 9c,12c,15c-Octadecatreinsäure (Linolensäure).
Aus der Gruppe der verzweigten gesättigten oder ungesättigten Monocarbonsäuren: 2- Methylpentansäure, 2-Ethylhexansäure, 2-Propylheptansäure, 2-Butyloctansäure, 2- Pentylnonansäure, 2-Hexyldecansäure, 2-Heptylundecansäure, 2-Octyldodecansäure, 2- Nonyltridecansäure, 2-Decyltetradecansäure, 2- Undecylpentadecansäure, 2-Dodecyl- hexadecansäure, 2-Tridecylheptadecansäure, 2-Tetradecyloctadecansäure, 2-Pentade- cylnonadecansäure, 2-Hexadecyleicosansäure, 2-Heptadecylheneicosansäure enthält.
Aus der Gruppe der unverzweigten gesättigten oder ungesättigten Di- oder Tricarbonsäuren: Propandisäure (Malonsäure), Butandisäure (Bernsteinsäure), Pentandisäure (Glutarsäure), Hexandisäure (Adipinsäure), Heptandisäure (Pimelinsäure), Octandisäure (Korksäure), Nonandisäure (Azelainsäure), Decandisäure (Sebacinsäure), 2c-Butendisäure (Maleinsäure), 2t- Butendisäure (Fumarsäure), 2-Butindicarbonsäure (Acetylendicarbonsäure).
Aus der Gruppe der aromatischen Mono-, Di- und Tricarbonsäuren: Benzoesäure, 2- Carboxybenzoesäure (Phthalsäure), 3-Carboxybenzoesäure (Isophthalsäure), 4-Carboxy- benzoesäure (Terephthalsäure), 3,4-Dicarboxybenzoesäure (Trimellithsäure), 3,5-Dicar- boxybenzoesäure (Trimesionsäure).
Aus der Gruppe der Zuckersäuren: Galactonsäure, Mannonsäure, Fructonsäure, Arabinonsäure, Xylonsäure, Ribonsäure, 2-Desoxy-ribonsäure, Alginsäure.
Aus der Gruppe der Hydroxysäuren: Hydroxyphenylessigsäure (Mandelsäure), 2-Hy- droxypropionsäure (Milchsäure), Hydroxybernsteinsäure (Äpfelsäure), 2,3-Dihydroxy- butandisäure (Weinsäure), 2-Hydroxy-1 ,2,3-propantricarbonsäure (Citronensäure),
Ascorbinsäure, 2-Hydroxybenzoesäure (Salicylsäure), 3,4,5-Trihydroxybenzoesäure (Gallussäure).
Aus der Gruppe der Oxosäuren: 2-Oxopropionsäure (Brenztraubensäure), 4-Oxo-pentansäure (Lävulinsäure).
Aus der Gruppe der Aminosäuren: Alanin, Valin, Leucin, Isoleucin, Prolin, Tryptophan, Phenylalanin, Methionin, Glycin, Serin, Tyrosin, Threonin, Cystein, Asparagin, Glutamin, Asparaginsäure, Glutaminsäure, Lysin, Arginin, Histidin. Aus der Gruppe der polymeren Carbonsäuren: Polyacrylsäure, Polymethacrylsäure, Alkylacrylamid/Acrylsäure-Copolymere, Alkylacrylamid/Methacrylsäure-Copolymere,
Alkylacrylamid/Methylmethacrylsäure-Copolymere, Copolymere aus ungesättigten Carbonsäuren, Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere.
Das Spektrum der erfindungsgemäß bevorzugten Zinksalze organischer Säuren, vorzugsweise organischer Carbonsäuren, reicht von Salzen die in Wasser schwer oder nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/L, vorzugsweise unterhalb 10 mg/L, insbesondere keine Löslichkeit aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/L, vorzugsweise oberhalb 500 mg/L, besonders bevorzugt oberhalb 1 g/L und insbesondere oberhalb 5 g/L aufweisen (alle Löslichkeiten bei 20°C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkeitrat, das Zinkoleat und das Zinkstearat, zu der Gruppe der löslichen Zinksalze gehören beispielsweise das Zinkformiat, das Zinkacetat, das Zinklactat und das Zinkgluconat:
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Dispersionen wenigstens ein Zinksalz, jedoch kein Magnesiumsalz einer organischen Säure, wobei es sich vorzugsweise um mindestens ein Zinksalz einer organischen Carbonsäure, besonders bevorzugt um ein Zinksalz aus der Gruppe Zinkstearat, Zinkoleat, Zinkgluconat, Zinkacetat, Zinklactat und/oder Zinkeitrat handelt. Auch Zinkricinoleat, Zinkabietat und Zinkoxalat sind bevorzugt.
Ein im Rahmen der vorliegenden Erfindung bevorzugtes Mittel enthält Zinksalz in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 4 Gew.-% und insbesondere von 0,4 bis 3 Gew.-%, bzw. Zink in oxidierter Form (berechnet als Zn2+) in Mengen von 0,01 bis 1 Gew.-%, vorzugsweise von 0,02 bis 0,5 Gew.-% und insbesondere von 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Dispersion.
Werden die erfindungsgemäßen Tabletten als Geschirrspülmittel eingesetzt, so können dieser Reinigungsmittel zum Schütze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Als Beispiele der erfindungsgemäß bevorzugt einzusetzenden 3-Amino-5-alkyl-1 ,2,4-triazole können genannt werden.: 5,- -Propyl-, -Butyl-, - Pentyl-, -Heptyl-, -Octyl-, -Nonyl-, -Decyl-, -Undecyl-, -Dodecyl-, -Isononyl-, -Versatic-10- säurealkyl-, -Phenyl-, -p-Tolyl-, -(4-tert. Butylphenyl)-, -(4-Methoxyphenyl)-, -(2-, -3-, -4-Pyridyl)-, - (2-Thienyl)-, -(5-Methyl-2-furyl)-, -(5-Oxo-2-pyrrolidinyl)-, -3-amino-1 ,2,4-triazol. In Geschirrspülmitteln werden die Alkyl-amino-1 ,2,4-triazole bzw. ihre physiologisch verträglichen Salze in einer Konzentration von 0,001 bis 10 Gew.-%, vorzugsweise 0,0025 bis 2 Gew.-%, besonders bevorzugt 0,01 bis 0,04 Gew.-% eingesetzt. Bevorzugte Säuren für die Salzbildung sind Salzsäure, Schwefelsäure, Phosphorsäure, Kohlensäure, schweflige Säure, organische Carbonsäuren wie Essig-, Glykol-, Citronen-, Bernsteinsäure. Ganz besonders wirksam sind 5- Pentyl-, 5-Heptyl-, 5-Nonyl-, 5-Undecyl-, 5-lsononyl-, 5-Versatic-10-säurealkyl-3-amino-1 ,2,4- triazole sowie Mischungen dieser Substanzen.
Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Anstelle von oder zusätzlich zu den vorstehend beschriebenen Silberschutzmitteln, beispielsweise den Benzotriazolen, können in den erfindungsgemäßen Mitteln redoxaktive Substanzen eingesetzt werden. Diese Substanzen sind vorzugsweise anorganische redoxaktive Substanzen aus der Gruppe der Mangan-, Titian-, Zirkonium-, Hafnium-, Vanadium-, Cobalt- und Cer-Salze und/oder -Komplexe enthält, wobei die Metalle vorzugsweise in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen.
Die verwendeten Metallsalze bzw. Metallkomplexe sollen zumindest teilweise in Wasser löslich sein. Die zur Salzbildung geeigneten Gegenionen umfassen alle üblichen ein-, zwei-, oder dreifach negativ geladenen anorganischen Anionen, z. B. Oxid, Sulfat, Nitrat, Fluorid, aber auch organische Anionen wie z. B. Stearat.
Metallkomplexe im Sinne der Erfindung sind Verbindungen, die aus einem Zentralatom und einem oder mehreren Liganden sowie gegebenenfalls zusätzlich einem oder mehreren der o.g. Anionen bestehen. Das Zentralatom ist eines der o.g. Metalle in einer der o.g. Oxidationsstufen. Die Liganden sind neutrale Moleküle oder Anionen, die ein- oder mehrzähnig sind; der Begriff "Liganden" im Sinne der Erfindung ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart New York, 9. Auflage, 1990, Seite 2507" näher erläutert. Ergänzen sich in einem Metallkomplex die Ladung des Zentralatoms und die Ladung des/der Liganden nicht auf Null, so sorgt, je nachdem, ob ein kationischer oder ein anionischer Ladungsüberschuß vorliegt, entweder eines oder mehrere der o.g. Anionen oder ein oder mehrere Kationen, z. B. Natrium-, Kalium-, Ammoniumionen, für den Ladungsausgleich. Geeignete Komplexbildner sind z.B. Citrat, Acetylacetonat oder 1-Hydroxyethan-1 ,1-diphosphonat.
Die in der Chemie geläufige Definition für "Oxidationsstufe" ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart/New York, 9. Auflage, 1991 , Seite 3168" wiedergegeben.
Besonders bevorzugte Metallsalze und/oder Metallkomplexe sind ausgewählt aus der Gruppe MnS04, Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(ll)-[1-Hydroxyethan-1 ,1- diphosphonat], V205, V204, V02, TiOS04, K2TiF6, K2ZrF6, CoS04, Co(N03)2, Ce(N03)3 sowie deren Gemische., so daß bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel dadurch gekennzeichnet sind, daß die Metallsalze und/oder Metallkomplexe ausgewählt sind aus der Gruppe MnS04, Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(ll)-[1-Hydroxyethan-
1 ,1-diphosphonat], V205, V204, V02, TiOS04, K2TiF6, K2ZrF6, CoS04, Co(N03)2, Ce(N03)3.
Bei diesen Metallsalzen bzw. Metallkomplexen handelt es sich im allgemeinen um handelsübliche Substanzen, die zum Zwecke des Silberkorrosions-Schutzes ohne vorherige Reinigung in den erfindungsgemäßen Mitteln eingesetzt werden können. So ist z.B. das aus der S03-Herstellung
(Kontaktverfahren) bekannte Gemisch aus fünf- und vierwertigem Vanadium (V205, V02, V204) geeignet, ebenso wie das durch Verdünnen einer Ti(S04)2-Lösung entstehende Titanylsulfat,
TiOS04.
Die anorganischen redoxaktiven Substanzen, insbesondere Metallsalze bzw. Metallkomplexe sind vorzugsweise gecoatet, d.h. vollständig mit einem wasserdichten, bei den Reinigungstemperaturen aber leichtlöslichen Material überzogen, um ihre vorzeitige Zersetzung oder Oxidation bei der Lagerung zu verhindern. Bevorzugte Coatingmaterialien, die nach bekannten Verfahren, etwa Schmelzcoatingverfahren nach Sandwik aus der Lebensmittelindustrie, aufgebracht werden, sind Paraffine, Mikrowachse, Wachse natürlichen Ursprungs wie Carnaubawachs, Candellilawachs, Bienenwachs, höherschmelzende Alkohole wie beispielsweise Hexadecanol, Seifen oder Fettsäuren. Dabei wird das bei Raumtemperatur feste Coatingmaterial in geschmolzenem Zustand auf das zu coatende Material aufgebracht, z.B. indem feinteiliges zu coatendes Material in kontinuierlichem Strom durch eine ebenfalls kontinuierlich erzeugte Sprühnebelzone des geschmolzenen Coatingmaterials geschleudert wird. Der Schmelzpunkt muß so gewählt sein, daß sich das Coatingmaterial während der Silberbehandlung leicht löst bzw. schnell aufschmilzt. Der Schmelzpunkt sollte idealerweise im Bereich zwischen 45°C und 65°C und bevorzugt im Bereich 50°C bis 60°C liegen.
Die genannten Metallsalze und/oder Metallkomplexe sind in den erfindungsgemäßen Mitteln, insbesondere maschinellen Geschirrspülmitteln, vorzugsweise in einer Menge von 0,05 bis 6 Gew.-%, vorzugsweise 0,2 bis 2,5 Gew.-%, bezogen auf das Gesamtgewicht der Mittel enthalten.
Erfindungsgemäße Mittel können zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung Enzyme enthalten, wobei prinzipiell alle im Stand der Technik für diese Zwecke etablierten Enzyme einsetzbar sind. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Erfindungsgemäße Mittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 x 10"6 bis 5 Gewichts-Prozent bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.
Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase® von der Firma Novozymes A/S, Bagsvaerd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase®, beziehungsweise Savinase® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP® geführten Varianten ab.
Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® und Ovozymes® von der Firma Novozymes, die unter den Handelsnamen, Purafect®, Purafect®OxP und Properase® von der Firma Genencor, das unter dem Handelsnamen Protosol® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather® und Protease P® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.
Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus ß. amyloliquefaciens oder aus ß. stearothermophilus sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus ß. licheniformis ist von der Firma Novozymes unter dem Namen Termamyl® und von der Firma Genencor unter dem Namen Purastar®ST erhältlich. Weiterentwicklungsprodukte dieser α- Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl® und Termamyl®ultra, von der Firma Genencor unter dem Namen Purastar®OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase® erhältlich. Die α-Amylase von ß. amyloliquefaciens wird von der Firma Novozymes unter dem Namen BAN® vertrieben, und abgeleitete Varianten von der α- Amylase aus B. stearothermophilus unter den Namen BSG® und Novamyl®, ebenfalls von der Firma Novozymes.
Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus ß. agaradherens (DSM 9948) hervorzuheben.
Darüber hinaus sind die unter den Handelsnamen Fungamyl® von der Firma Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. oryzae geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT®.
Erfindungsgemäße Mittel können Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid- spaltenden Aktivitäten enthalten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE®, Lipase P®, Lipase B®, beziehungsweise Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® und Lipase AML® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF und Lipase PL vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Genencor.
Erfindungsgemäße Mittel können weitere Enzyme enthalten, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und ß-Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase® und Pektinex AR® von der Firma Novozymes, unter dem Namen Rohapec® B1 L von der Firma AB Enzymes und unter dem Namen Pyrolase® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Die aus ß. subtilis gewonnene ß-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich.
Zur Erhöhung der bleichenden Wirkung können erfindungsgemäße Wasch- und Reinigungsmittelzusammensetzungen Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) enthalten. Als geeignete Handelsprodukte sind Denilite® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluß zu gewährleisten (Mediatoren).
Die in erfindungsgemäßen Mitteln eingesetzten Enzyme stammen entweder ursprünglich aus Mikroorganismen, etwa der Gattungen Bacillus, Streptomyces, Humicola, oder Pseudomonas, Und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen Bacillus oder filamentöse Fungi.
Die Aufreinigung der betreffenden Enzyme erfolgt günstigerweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombinationen dieser Schritte.
Erfindungsgemäßen Mitteln können die Enzyme in jeder nach dem Stand der Technik etablierten Form zugesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem, vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so daß ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
Ein in einem erfindungsgemäßen Mittel enthaltenes Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Erfindungsgemäße Mittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.
Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin- Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-substituierte, meta-substituierte und para-substituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Als peptidische Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren.
Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C12, wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind geeignet. Bestimmte als Builder eingesetzte organische Säuren vermögen zusätzlich ein enthaltenes Enzym zu stabilisieren. Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calciumacetat oder Calcium-Formiat, und Magnesiumsalze.
Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N- Oxid-enthaltende Polymere wirken als Enzymstabilisatoren. Andere polymere Stabilisatoren sind die linearen C8-C18 Polyoxyalkylene. Alkylpolyglycoside können die enzymatischen Komponenten des erfindungsgemäßen Mittels stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N- haltige Verbindungen wirken ebenfalls als Enzym-Stabilisatoren.
Reduktionsmittel und Antioxidantien erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall. Ein schwefelhaltiges Reduktionsmittel ist beispielsweise Natrium-Sulfit.
Bevorzugt werden Kombinatonen von Stabilisatoren verwendet, beispielsweise aus Polyolen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid- Aldehyd-Stabilisatoren wird durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-Ionen weiter verstärkt.
Bevorzugte erfindungsgemäße Tabletten sind dadurch gekennzeichnet, daß sie zusätzlich ein oder mehrere Enzyme und/oder Enzymzubereitungen, vorzugsweise feste Protease- Zubereitungen und/oder Amylase-Zubereitungen, in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 4,5 und insbesondere von 0,4 bis 4 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
Erfindungsgemäß bevorzugte Mittel sind dadurch gekennzeichnet, daß sie, bezogen auf ihr Gesamtgewicht, mindestens 20 Gew.%, vorzugsweise mindestens 30 Gew.-%, besonders bevorzugt mindestens 40 Gew.-% und insbesondere mindestens 50 Gew.-% Gerüststoffe und/oder Bleichmittel und/oder Bleichaktivatoren und/oder wasch-oder reinigungsaktive Polymere und/oder Glaskorrosionsschutzmittel und/oder Silberschutzmittel und/oder Enzyme enthalten. Besonders bevorzugte erfindungsgemäße Mittel bestehen zu mindestens 90 Gew.-%, vorzugsweise mindestens 92 Gew.-%, bevorzugt zu mindestens 94 Gew.-%, besonders bevorzugt zu mindestens 96 Gew.-%, insbesondere bevorzugt zu mindestens 98 Gew.-% und am meisten bevorzugt zu mindestens 99,5 Gew.-% ausschließlich aus Gerüststoffen und/oder Bleichmitteln und/oder Bleichaktivatoren und/oder wasch-oder reinigungsaktive Polymeren und/oder Glaskorrosionsschutzmitteln und/oder Silberschutzmitteln und/oder Enzymen.
Besonders bevorzugt sind erfindungsgemäße Wasch- oder Reinigungsmittel, die, bezogen auf ihr Gesamtgewicht, zwischen 0,04 und 18 Gew.-%, vorzugsweise zwischen 0,08 und 16 Gew.-% und insbesondere zwischen 0,2 und 14 Gew.-% einer oder mehrerer Substanzen aus der Gruppe der Silberschutzmittel, Glasschutzmittel oder Enzyme enthalten.
Zusätzlich können die Wasch- und Reinigungsmittelformkörper auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäß hergestellten Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Die Formkörper können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino- 1 ,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-MethoxyethyIaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)- diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder
4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Färb- und Duftstoffe werden den erfindungsgemäß hergestellten Wasch- und Reinigungsmittelformkörpern zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Weichheitsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-lsomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl. Üblicherweise liegt der Gehalt der erfindungsgemäß hergestellten Wasch- und Reinigungsmittelformkörper an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-% der gesamten Formulierung ausmachen können.
Die Duftstoffe können direkt in die erfindungsgemäß hergestellten Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck der erfindungsgemäß hergestellten Mittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.

Claims

Patentansprüche:
1. Tablette aus verpreßtem teilchenförmigen Wasch- oder Reinigungsmittel, dadurch gekennzeichnet, daß sie auf ihrer Oberseite mindestens zwei Verstärkungsvertiefungen aufweist, deren horizontale Ausdehnung auf der Ebene der Tablettenoberfläche größer ist als deren Tiefe.
2. Tablette nach Anspruch 1 , dadurch gekennzeichnet, daß die horizontale Ausdehnung der Verstärkungsvertiefungen auf der Ebene der Tablettenoberfläche das 1 ,01 -fache bis 5- fache, vorzugsweise das 1 ,02-fache bis 4-fache, besonders bevorzugt das 1 ,04-fache bis 3- fache und insbesondere das 1 ,05-fache bis 2-fache der Tiefe der Verstärkungsvertiefungen beträgt.
3. Tablette nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Tiefe der Verstärkungsvertiefungen das 0,05-fache bis 0, 5-fache, vorzugsweise das 0,1 -fache bis 0,4-fache und insbesondere das 0,15-fache bis 0,3-fache der Tablettenhöhe beträgt.
4. Tablette nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie mindestens 3, vorzugsweise mindestens 4, besonders bevorzugt mindestens 5, weiter bevorzugt mindestens 6, weiter bevorzugt mindestens 7, weiter bevorzugt mindestens 8, weiter bevorzugt mindestens 9 und insbesondere mindestens 10 Verstärkungsvertiefungen aufweist.
5. Tablette nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Verstärkungsvertiefungen strahlenförmig von einem gemeinsamen Mittelpunkt ausgehen.
6. Tablette nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Verstärkungsvertiefungen parallel zueinander und zur Tablettenbreite verlaufen, wobei eine äquidistante Anordnung der Verstärkungsvertiefungen bevorzugt ist.
7. Tablette nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Verstärkungsvertiefungen parallel zur Tablettenbreite und weitere Verstärkungsvertiefungen parallel zur Tablettenlänge verlaufen, wobei eine äquidistante Anordnung der Verstärkungsvertiefungen bevorzugt ist.
8. Tablette nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Verstärkungsvertiefungen die Form konzentrisch ineinander gestellter Kreise oder Ellipsen aufweisen.
9. Tablette nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Querschnitt der Verstärkungsvertiefungen dreiecks- oder halbkreisförmig ist.
10. Tablette nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Höhe der Tablette 5 bis 25 mm, vorzugsweise 7 bis 22 mm und insbesondere 10 bis 20 mm beträgt.
11. Tablette nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Tiefe der Verstärkungsvertiefungen 0,5 bis 10 mm, vorzugsweise 0,75 bis 8 mm und insbesondere 1 bis 5 mm beträgt.
12. Verfahren zur Herstellung von Tabletten aus verpreßtem teilchenförmigen Wasch- oder Reinigungsmittel, dadurch gekennzeichnet, daß zur Verpressung ein Oberstempel eingesetzt wird, der auf seiner Preßfläche mindestens zwei Erhebungen zum Pressen von Verstärkungsvertiefungen aufweist, deren horizontale Ausdehnung auf der Ebene der Preßfläche größer ist als deren Höhe.
EP04765165A 2003-11-13 2004-09-14 Stossbelastungsresistente tablette Expired - Lifetime EP1682649B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04765165T PL1682649T3 (pl) 2003-11-13 2004-09-14 Tabletka odporna na obciążenie uderzeniowe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352961A DE10352961A1 (de) 2003-11-13 2003-11-13 Stoßbelastungsresistente Tablette
PCT/EP2004/010251 WO2005047446A1 (de) 2003-11-13 2004-09-14 Stossbelastungsresistente tablette

Publications (2)

Publication Number Publication Date
EP1682649A1 true EP1682649A1 (de) 2006-07-26
EP1682649B1 EP1682649B1 (de) 2007-10-31

Family

ID=34585036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04765165A Expired - Lifetime EP1682649B1 (de) 2003-11-13 2004-09-14 Stossbelastungsresistente tablette

Country Status (7)

Country Link
US (1) US20070009561A1 (de)
EP (1) EP1682649B1 (de)
AT (1) ATE377070T1 (de)
DE (2) DE10352961A1 (de)
ES (1) ES2295912T3 (de)
PL (1) PL1682649T3 (de)
WO (1) WO2005047446A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2416072T3 (es) * 2006-09-15 2013-07-30 Capsugel Belgium Nv Forma de dosificación de disgregación rápida
DE102008060470A1 (de) * 2008-12-05 2010-06-10 Henkel Ag & Co. Kgaa Reinigungsmittel
FR2964012B1 (fr) * 2010-08-31 2017-07-21 Rockwool Int Culture de plantes dans un substrat a base de laine minerale comprenant un liant
DE102016109795A1 (de) * 2016-05-27 2017-11-30 Budich International Gmbh Reinigungs- und/oder Klarspülmittelformkörper
US10808205B1 (en) * 2020-02-27 2020-10-20 Magnus Procurement and Logistic Solutions, Inc. Solid oven cleaning composition and methods for the preparation and use thereof
DE102021203328A1 (de) 2021-04-01 2022-10-06 Henkel Ag & Co. Kgaa Waschmittelportionseinheit
WO2023205379A1 (en) * 2022-04-21 2023-10-26 First Time Us Generics Llc Tablet press compression tooling assembly for the formation of soft-chew tablets and related methods

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234258A (en) * 1963-06-20 1966-02-08 Procter & Gamble Sulfation of alpha olefins
US3557003A (en) * 1967-06-21 1971-01-19 Procter & Gamble Detergent tablet
ATE84963T1 (de) * 1987-12-17 1993-02-15 Upjohn Co Dreifach gekerbte arzneimitteltablette.
US5198140A (en) * 1988-11-02 1993-03-30 Colgate-Palmolive Company Dual composition soap or detergent bar containing convoluted surfaces and tongue and groove interlock
DE4420735C2 (de) * 1994-06-15 1996-09-05 Allphamed Arzneimittel Gmbh Verfahren zur Herstellung mechanisch stabiler, sich mit hoher Auflösegeschwindigkeit auszeichnender Brausetabletten
DE19709411A1 (de) * 1997-03-07 1998-09-10 Henkel Kgaa Waschmittelformkörper
ATE276350T1 (de) * 1997-11-26 2004-10-15 Procter & Gamble Verfahren zur herstellung einer waschmitteltablette
US6992056B1 (en) * 1997-12-30 2006-01-31 Henkel Kgaa Process for preparing detergent tablets having two or more regions
DE29807840U1 (de) * 1998-04-30 1998-09-03 Notter GmbH Werkzeugbau, 75248 Ölbronn-Dürrn Tablettierwerkzeug, insbesondere Tablettierstempel oder Tablettiermatritze
ES2188196T3 (es) * 1998-07-15 2003-06-16 Henkel Kgaa Procedimiento para la obtencion de cuerpos moldeados de agentes de lavado y limpieza polifasicos.
DE19856214C1 (de) * 1998-12-05 2000-03-09 Henkel Kgaa Punkttablette
DE19860189C1 (de) * 1998-12-24 2000-03-30 Henkel Kgaa Formoptimierter Waschmittelformkörper
DE19922578C2 (de) * 1999-05-17 2003-12-24 Benckiser Nv Verfahren zur Herstellung einer mehrschichtigen Tablette, insbesondere Reinigungsmitteltablette, sowie danach herstellbares Produkt
DE19930932A1 (de) * 1999-06-19 2000-12-21 Henkel Kgaa Preßverfahren für Wasch- und Reinigungsmitteltabletten
DE19930771A1 (de) * 1999-07-03 2001-01-04 Henkel Kgaa Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
DE50011759D1 (de) * 1999-07-09 2006-01-05 Henkel Kgaa Wasch- oder reinigungsmittel-portion
DE19963569B4 (de) * 1999-12-29 2006-11-16 Reckitt Benckiser N.V. Zusammensetzung zur Verwendung in einer Geschirrspülmaschine
DE10010760A1 (de) * 2000-03-04 2001-09-20 Henkel Kgaa Mehrphasige Wasch- und Reinigungsmittelformkörper mit nicht-gepreßten Anteilen
DE10108153A1 (de) * 2000-09-28 2002-10-24 Henkel Kgaa Muldentabletten und Verfahren zu ihrer Herstellung
US6586386B2 (en) * 2001-10-26 2003-07-01 Isp Investments Inc. Tablet of compacted particulate cleaning composition
DE10209157A1 (de) * 2002-03-01 2003-09-18 Henkel Kgaa Parfümierte Reinigungsmittelformkörper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005047446A1 *

Also Published As

Publication number Publication date
US20070009561A1 (en) 2007-01-11
DE502004005394D1 (de) 2007-12-13
EP1682649B1 (de) 2007-10-31
PL1682649T3 (pl) 2008-03-31
DE10352961A1 (de) 2005-06-23
WO2005047446A1 (de) 2005-05-26
ES2295912T3 (es) 2008-04-16
ATE377070T1 (de) 2007-11-15

Similar Documents

Publication Publication Date Title
EP2235153B1 (de) Reinigungsmittel
EP1711589B1 (de) Maschinelles geschirrspulmittel
WO2005108537A1 (de) REINIGUNGSMITTEL KLARSPÜLTENSID UND EINER SPEZIELLEN α-AMYLASE
DE10313172B4 (de) Gestaltsoptimierte Reinigungsmitteltabletten
EP1363986B1 (de) &#34;3 in 1&#34; GESCHIRRSPÜLMITTEL UND VERFAHREN ZUR HERSTELLUNG DERSELBEN
EP1740686A1 (de) REINIGUNGSMITTEL MIT KLARSPÜL-SULFOPOLYMER UND EINER SPEZIELLEN alpha-AMYLASE
EP1735419B1 (de) Maschinelles geschirrspülmittel
DE102007059968A1 (de) Reinigungsmittel
US20070009561A1 (en) Tablets resistant to shock loads
EP1651746B1 (de) Wasch- oder reinigungsmittel
EP1727884B1 (de) Maschinelles geschirrspülmittel
DE10253479A1 (de) Befüllte Muldentabletten und Verfahren zu ihrer Herstellung II
DE102010063625A1 (de) Geschirrspülmittelkompaktate
EP2097503A1 (de) Wasch- oder reinigungsmittelformkörper
EP3164478A1 (de) Geschirrspülmittel
DE102006051529A1 (de) Wasch- oder Reinigungsmittelformkörper
DE102010063626A1 (de) Geschirrspülmittelkompaktate
EP2097253A1 (de) Wasch- oder reinigungsmittelformkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PEGELOW, ULRICH

Inventor name: HOLDERBAUM, THOMAS

Inventor name: NITSCH, CHRISTIAN

Inventor name: STEFFEN-HOLDERBAUM, UTA

17Q First examination report despatched

Effective date: 20060814

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STEFFEN-HOLDERBAUM, UTA

Inventor name: NITSCH, CHRISTIAN

Inventor name: PEGELOW, ULRICH

Inventor name: HOLDERBAUM, THOMAS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOLDERBAUM, THOMAS

Inventor name: NITSCH, CHRISTIAN

Inventor name: PEGELOW, ULRICH

Inventor name: STEFFEN-HOLDERBAUM, UTA

17Q First examination report despatched

Effective date: 20060814

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004005394

Country of ref document: DE

Date of ref document: 20071213

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080206

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2295912

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080131

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HENKEL AG & CO. KGAA

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20140827

Year of fee payment: 11

Ref country code: PL

Payment date: 20140708

Year of fee payment: 11

Ref country code: AT

Payment date: 20140827

Year of fee payment: 11

Ref country code: GB

Payment date: 20140910

Year of fee payment: 11

Ref country code: LU

Payment date: 20141001

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150914

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 377070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150914

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150914

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160921

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160921

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160916

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005394

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170914

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915