EP1680380A2 - Gas generating compositions - Google Patents
Gas generating compositionsInfo
- Publication number
- EP1680380A2 EP1680380A2 EP04795004A EP04795004A EP1680380A2 EP 1680380 A2 EP1680380 A2 EP 1680380A2 EP 04795004 A EP04795004 A EP 04795004A EP 04795004 A EP04795004 A EP 04795004A EP 1680380 A2 EP1680380 A2 EP 1680380A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- tetrazole
- salt
- vinyl
- gas generating
- poly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 91
- 239000000446 fuel Substances 0.000 claims abstract description 45
- 150000003536 tetrazoles Chemical class 0.000 claims abstract description 34
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 31
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000007800 oxidant agent Substances 0.000 claims abstract description 22
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 claims abstract description 7
- IEBXDIVQNHFHQG-UHFFFAOYSA-N 1-ethenyltetrazol-5-amine Chemical compound NC1=NN=NN1C=C IEBXDIVQNHFHQG-UHFFFAOYSA-N 0.000 claims abstract description 5
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims description 33
- -1 poly(5-vinyltetrazole) Polymers 0.000 claims description 24
- 229910052755 nonmetal Inorganic materials 0.000 claims description 21
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 claims description 16
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 13
- 239000000470 constituent Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims description 12
- 229910001964 alkaline earth metal nitrate Inorganic materials 0.000 claims description 9
- KAESVJOAVNADME-UHFFFAOYSA-N 1H-pyrrole Natural products C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000004323 potassium nitrate Substances 0.000 claims description 6
- 235000010333 potassium nitrate Nutrition 0.000 claims description 6
- 229910001963 alkali metal nitrate Inorganic materials 0.000 claims description 5
- KUEFXPHXHHANKS-UHFFFAOYSA-N 5-nitro-1h-1,2,4-triazole Chemical compound [O-][N+](=O)C1=NC=NN1 KUEFXPHXHHANKS-UHFFFAOYSA-N 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- HAMNKKUPIHEESI-UHFFFAOYSA-N aminoguanidine Chemical class NNC(N)=N HAMNKKUPIHEESI-UHFFFAOYSA-N 0.000 claims description 3
- 125000000524 functional group Chemical group 0.000 claims description 3
- 150000002823 nitrates Chemical class 0.000 claims description 3
- SXMBECNFEHPCNP-UHFFFAOYSA-N 3,5-dinitro-1h-1,2,4-triazole Chemical compound [O-][N+](=O)C1=NNC([N+]([O-])=O)=N1 SXMBECNFEHPCNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000009835 boiling Methods 0.000 claims description 2
- FQQQSNAVVZSYMB-UHFFFAOYSA-O diamino(diaminomethylidene)azanium Chemical class N[NH+](N)C(N)=N FQQQSNAVVZSYMB-UHFFFAOYSA-O 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims 3
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 claims 1
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims 1
- 238000010411 cooking Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 229910052809 inorganic oxide Inorganic materials 0.000 claims 1
- 229910001960 metal nitrate Inorganic materials 0.000 claims 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims 1
- 239000002002 slurry Substances 0.000 claims 1
- VTQMJCSAHXYXPJ-UHFFFAOYSA-N 5-ethenyl-2h-tetrazole Chemical compound C=CC1=NN=NN1 VTQMJCSAHXYXPJ-UHFFFAOYSA-N 0.000 abstract description 5
- BHRMHWAEINWAJS-UHFFFAOYSA-N 5-ethenyl-2-methyltetrazole Chemical compound CN1N=NC(C=C)=N1 BHRMHWAEINWAJS-UHFFFAOYSA-N 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 88
- 238000002485 combustion reaction Methods 0.000 description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 21
- 150000003852 triazoles Chemical class 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000007787 solid Substances 0.000 description 10
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 8
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical class C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 101150004822 PSAN gene Proteins 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Substances C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 239000003380 propellant Substances 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ULRPISSMEBPJLN-UHFFFAOYSA-N 2h-tetrazol-5-amine Chemical compound NC1=NN=NN1 ULRPISSMEBPJLN-UHFFFAOYSA-N 0.000 description 2
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- MTAYYBKXNAEQOK-UHFFFAOYSA-N 5-(2h-tetrazol-5-yl)-2h-tetrazole Chemical compound N1N=NC(C2=NNN=N2)=N1 MTAYYBKXNAEQOK-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- BSPUVYFGURDFHE-UHFFFAOYSA-N Nitramine Natural products CC1C(O)CCC2CCCNC12 BSPUVYFGURDFHE-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 229960003328 benzoyl peroxide Drugs 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- POCJOGNVFHPZNS-UHFFFAOYSA-N isonitramine Natural products OC1CCCCC11CNCCC1 POCJOGNVFHPZNS-UHFFFAOYSA-N 0.000 description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 2
- HHQJWDKIRXRTLS-UHFFFAOYSA-N n'-bromobutanediamide Chemical compound NC(=O)CCC(=O)NBr HHQJWDKIRXRTLS-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000001149 thermolysis Methods 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 238000006886 vinylation reaction Methods 0.000 description 2
- ULUZGMIUTMRARO-UHFFFAOYSA-N (carbamoylamino)urea Chemical compound NC(=O)NNC(N)=O ULUZGMIUTMRARO-UHFFFAOYSA-N 0.000 description 1
- KPTSBKIDIWXFLF-UHFFFAOYSA-N 1,1,2-triaminoguanidine Chemical compound NN=C(N)N(N)N KPTSBKIDIWXFLF-UHFFFAOYSA-N 0.000 description 1
- FQQQSNAVVZSYMB-UHFFFAOYSA-N 1,1-diaminoguanidine Chemical compound NN(N)C(N)=N FQQQSNAVVZSYMB-UHFFFAOYSA-N 0.000 description 1
- CUDYUNNRMLWYTR-UHFFFAOYSA-N 1-amino-2,2-dimethylcyclopropane-1-carboxylic acid Chemical compound CC1(C)CC1(N)C(O)=O CUDYUNNRMLWYTR-UHFFFAOYSA-N 0.000 description 1
- IDCPFAYURAQKDZ-UHFFFAOYSA-N 1-nitroguanidine Chemical compound NC(=N)N[N+]([O-])=O IDCPFAYURAQKDZ-UHFFFAOYSA-N 0.000 description 1
- QLSWIGRIBOSFMV-UHFFFAOYSA-N 1h-pyrrol-2-amine Chemical class NC1=CC=CN1 QLSWIGRIBOSFMV-UHFFFAOYSA-N 0.000 description 1
- CEYAABCXMIRIGC-UHFFFAOYSA-N 3-nitro-1h-1,2,4-triazol-5-amine Chemical compound NC1=NC([N+]([O-])=O)=NN1 CEYAABCXMIRIGC-UHFFFAOYSA-N 0.000 description 1
- 239000004156 Azodicarbonamide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- YIKSCQDJHCMVMK-UHFFFAOYSA-N Oxamide Chemical compound NC(=O)C(N)=O YIKSCQDJHCMVMK-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- WRYNUJYAXVDTCB-UHFFFAOYSA-M acetyloxymercury Chemical compound CC(=O)O[Hg] WRYNUJYAXVDTCB-UHFFFAOYSA-M 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 1
- 235000019399 azodicarbonamide Nutrition 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- JGZAFSFVZSXXCJ-UHFFFAOYSA-N bis(2H-tetrazol-5-yl)diazene Chemical compound N=1N=NNC=1N=NC1=NN=NN1 JGZAFSFVZSXXCJ-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- XEVRDFDBXJMZFG-UHFFFAOYSA-N carbonyl dihydrazine Chemical compound NNC(=O)NN XEVRDFDBXJMZFG-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- ONCCWDRMOZMNSM-FBCQKBJTSA-N compound Z Chemical compound N1=C2C(=O)NC(N)=NC2=NC=C1C(=O)[C@H]1OP(O)(=O)OC[C@H]1O ONCCWDRMOZMNSM-FBCQKBJTSA-N 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- JKMRKVRTECEDPV-UHFFFAOYSA-N n-(1h-1,2,4-triazol-5-yl)nitramide Chemical compound [O-][N+](=O)NC1=NC=NN1 JKMRKVRTECEDPV-UHFFFAOYSA-N 0.000 description 1
- HURPOIVZCDCEEE-UHFFFAOYSA-N n-(2h-tetrazol-5-yl)nitramide Chemical compound [O-][N+](=O)NC=1N=NNN=1 HURPOIVZCDCEEE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06D—MEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
- C06D5/00—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
- C06D5/06—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B45/00—Compositions or products which are defined by structure or arrangement of component of product
- C06B45/04—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
- C06B45/06—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
- C06B45/10—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F226/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F226/06—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
Definitions
- the present invention relates generally to gas generating systems, and to gas generant compositions employed in gas generator devices for automotive restraint systems, for example.
- the present invention relates to nontoxic gas generating compositions that upon combustion rapidly generate gases that are useful for inflating occupant safety restraints in motor vehicles and specifically, the invention relates to thermally stable nonazide gas generants having not only acceptable burn rates, but that also, upon combustion, exhibit a relatively high gas volume to solid paniculate ratio at acceptable flame temperatures.
- pyrotechnic nonazide gas generants contain ingredients such as oxidizers to provide the required oxygen for rapid combustion and reduce the quantity of toxic gases generated, a catalyst to promote the conversion of toxic oxides of carbon and nitrogen to innocuous gases, and a slag forming constituent to cause the solid and liquid products formed during and immediately after combustion to agglomerate into filterable clinker-like particulates.
- Other optional additives such as burning rate enhancers or ballistic modifiers and ignition aids, are used to control the ignitability and combustion properties of the gas generant.
- One of the disadvantages of known nonazide gas generant compositions is the amount and physical nature of the solid residues formed during combustion.
- compositions that produce a minimum of solid particulates while still providing adequate quantities of a nontoxic gas to inflate the safety device at a high rate.
- phase stabilized ammonium nitrate as an oxidizer, for example, is desirable because it generates abundant nontoxic gases and minimal solids upon combustion.
- gas generants for automotive applications must be thermally stable when aged for 400 hours or more at 107. degree. C.
- the compositions must also retain structural integrity when cycled between -40. degree. C. and 107. degree. C.
- gas generant compositions incorporating phase stabilized or pure ammonium nitrate sometimes exhibit poor thermal stability, and produce unacceptably high levels of toxic gases, CO and NO.sub.x for example, depending on the composition of the associated additives such as plasticizers and binders.
- U.S. U.S.
- gas generant composition containing an extrudable polyvinylazole fuel such as a polyvinyltetrazole, polyvinyltriazole, or polyvinyldiazole.
- Preferred oxidizers include nonmetal oxidizers such as ammonium nitrate and ammonium perchlorate.
- Other oxidizers include alkali and alkaline earth metal nitrates.
- the fuel is selected from the group of polyvinyltetrazoles, polyvinyltriazoles, polyvinyldiazoles or polyvinylfurazans, and mixtures thereof.
- a preferred group of fuels includes polymeric tetrazoles, triazoles, and oxadiazoles (furazans), having functional groups on the azole pendants.
- compositions containing NH 3 linkages and carbon/hydrogen content are generally useful, preferred compositions will not contain NH 3 linkages due to handling concerns, and the carbon and hydrogen content will be minimized to inhibit the formation of carbon dioxide and water.
- Preferred vinyl tetrazoles include 5-Amino-1 -vinyltetrazole and poly( ⁇ -vinyltetrazole), both exhibiting self-propagating thermolysis or thermal decomposition.
- the fuel preferably constitutes 10-40% by weight of the gas generant composition.
- An oxidizer is preferably selected from the group of nonmetal, and alkali and alkaline earth metal nitrates, and mixtures thereof.
- Nonmetal nitrates include ammonium nitrate and phase stabilized ammonium nitrate, stabilized as known in the art.
- Alkali and alkaline earth metal nitrates include potassium nitrate and strontium nitrate.
- Other oxidizers known for their utility in air bag gas generating compositions are also contemplated.
- the oxidizer preferably constitutes 60-90% by weight of the gas generant composition.
- Other gas generant constituents known for their utility in air bag gas generant compositions may be employed in effective amounts in the compositions of the present invention. These include, but are not limited to, coolants, slag formers, and ballistic modifiers known in the art.
- the present invention includes gas generant compositions that maximize gas combustion products and minimize solid combustion products while retaining other design requirements such as thermal stability.
- a pyrotechnic composition includes extrudable fuels such as polyvinyltetrazoles (PVT) for use within a gas generating system, such as that exemplified by a high gas yield automotive airbag propellant in a vehicle occupant protection system.
- PVT polyvinyltetrazoles
- the fuel also functions as a binder.
- Preferred oxidizers include nonmetal oxidizers such as ammonium nitrate and ammonium perchlorate. Other oxidizers include alkali and alkaline earth metal nitrates.
- the fuel is selected from the group of polyvinyltetrazoles, polyvinyltriazoles, polyvinyldiazoles or polyvinylfurazans, and mixtures thereof.
- a preferred group of fuels includes polymeric tetrazoles, triazoles, and oxadiazoles (furazans), having functional groups on the azole pendants.
- Preferred vinyl tetrazoles include 5-Amino-1 -vinyltetrazoIe and poly( ⁇ -vinyltetrazole), both exhibiting self-propagating thermolysis or thermal decomposition.
- Other fuels include poly(2-methyl-5-vinyl) tetrazole, polyd -vinyl) tetrazole, poly(3-vinyl) 1 ,2,5- oxadiazole, and poly(3-vinyl) 1 ,2,4-triazole. These and other possible fuels are exemplified by, but not limited to, the structures shown below.
- compositions resulting in difficult cold-start ignitions that necessitate more powerful ignition trains and boosters are avoided.
- Poly(5-amino-1 -vinyl) tetrazole for example, has no endothermic process before exothermic decomposition begins. Therefore, the heat-consuming step normally attendant prior to the energy releasing steps of combustion (that acts as an energy barrier) is not present in the present compositions. It is believed that other polymeric azoles functioning as fuels in the present invention have the same benefit.
- the polyvinylazole fuel preferably constitutes 5-40% by weight of the gas generant composition.
- An oxidizer is preferably selected from the group of nonmetal, and alkali and alkaline earth metal nitrates, and mixtures thereof.
- Nonmetal nitrates include ammonium nitrate and phase stabilized ammonium nitrate, stabilized as known in the art.
- Alkali and alkaline earth metal nitrates include potassium nitrate and strontium nitrate.
- Other oxidizers known for their utility in air bag gas generating compositions are also contemplated.
- the oxidizer preferably constitutes 60-95% by weight of the gas generant composition.
- Other gas generant constituents known for their utility in air bag gas generant compositions may be employed in effective amounts in the compositions of the present invention.
- gas generant constituents of the present invention are supplied by suppliers known in the art and are preferably blended by a wet method.
- a solvent chosen with regard to the group(s) substituted on the polymeric fuel is heated to a temperature sufficient to dissolve the fuel but below boiling, for example just below 100°C, but low enough to prevent autoignition of any of the constituents as they are added and then later precipitate.
- Hydrophilic groups for example, may be more efficiently dissolved by the use of water as a solvent. Other groups may be more efficiently dissolved in an acidic solution, nitric acid for example.
- Other solvents include alcohols and plasticizers such as polyethylene glycol.
- the fuel is slowly added and dissolved.
- the oxidizer is then slowly added and also dissolved. Any other desirable constituents are likewise dissolved.
- the solution is heated and continually stirred. As the solvent is cooked off over time, the fuel and oxidizer, and any other constituents, are co-precipitated in a homogeneous solid solution.
- the precipitate is removed from the heat once the solvent has been at least substantially volatilized, but more preferably completely volatilized.
- the composition may then be extruded into pellets or any other useful shape.
- the polymeric fuels may be manufactured by known processes.
- Reaction 1 illustrates how polyvinyldiazoles may be formed.
- Reaction 2 illustrates how polyvinyltriazoles may be formed.
- Reaction 3 exemplifies how polyvinyltetrazoles may be formed.
- Reaction 1 This synthesis is for a poly(vinyl-1 ,2,5-oxadiazole) and exemplifies or blueprints a general method of forming polyvinyldiazoles.
- Reaction 2 This synthesis is for an ionic polymer version of poly(vinyl-1 ,2,4- triazole) and exemplifies or blueprints a method of forming other polyvinyltriazoles.
- R CH,, NH ? , etc,
- Reaction 3 This synthesis is for a substituted polyvinyltetrazole and exemplifies or blueprints a method of forming other polyvinyltetrazoles.
- a generic polyvinylazole or a structure that generically represents the polyvinyltetrazoles, polyvinyltriazoles, and polyvinyldiazoles of the present invention, may be represented by an aromatic ring having five cites that contains,
- the aromatic ring will contain from zero to a single oxygen atom, will contain at least two nitrogen atoms, and will contain at least one carbon atom.
- a gas generant composition of the present invention will contain a polymeric azole and phase stabilized ammonium nitrate. The advantages are high gas yield and low solids production, a high energy fuel/binder, and a low-cost oxidizer thereby obviating the need for filtration of the gas given that little if any solids are produced upon combustion.
- the compositions of the present invention may be extruded given the pliant nature of the polymeric fuels.
- the gas generant compositions of the present invention may also contain a secondary fuel formed from amine salts of tetrazoles and triazoles. These are described and exemplified in coowned U.S. Patent Nos. 5,872,329, 6,074,502, 6,21 0,505, and 6,306,232, each herein incorporated by reference.
- the total weight percent of both the first and second fuels, or the fuel component of the present compositions is about 10 to 40 weight% of the total gas generant composition.
- nonmetal salts of tetrazoles include in particular, amine, amino, and amide salts of tetrazole and triazole selected from the group including monoguanidinium salt of 5,5'-Bis-1 H-tetrazole (BHT-1 GAD), diguanidinium salt of 5,5'-Bis-1 H-tetrazole (BHT-2GAD), monoaminoguanidinium salt of 5,5'-Bis-1 H-tetrazole (BHT-1AGAD), diaminoguanidinium salt of 5,5'-Bis- 1 H-tetrazole (BHT-2AGAD), monohydrazinium salt of 5,5'-Bis-1 H-tetrazole (BHT-1 HH), dihydrazinium salt of 5,5'-Bis-1 H-tetrazole (BHT-2HH), monoammonium salt of 5,5'-bis-1 H-tetrazole (BHT-1 NH 3 ), diammonium salt of 5,5'
- Amine salts of triazoles include monoammonium salt of 3-nitro- 1 ,2,4-triazole (NTA-1 NH 3 ), monoguanidinium salt of 3-nitro-1 ,2,4-triazole (NTA-1 GAD), diammonium salt of dinitrobitriazole (DNBTR-2NH 3 ), diguanidinium salt of dinitrobitriazole (DNBTR-2GAD), and monoammonium salt of 3,5-dinitro- 1 ,2,4-triazole (DNTR-1 NH 3 ).
- a generic nonmetal salt of tetrazole as shown in Formula I includes a cationic nitrogen containing component, Z, and an anionic component comprising a tetrazole ring and an R group substituted on the 5-position of the tetrazole ring.
- a generic nonmetal salt of triazole as shown in Formula II includes a cationic nitrogen containing component, Z, and an anionic component comprising a triazole ring and two R groups substituted on the 3- and 5- positions of the triazole ring, wherein R ⁇ may or may not be structurally synonymous with R 2 .
- An R component is selected from a group including hydrogen or any nitrogen-containing compound such as an amino, nitro, nitramino, or a tetrazolyl or triazolyl group as shown in Formula I or II, respectively, substituted directly or via amine, diazo, or triazo groups.
- the compound Z is substituted at the 1 -position of either formula, and is formed from a member of the group comprising amines, aminos, and amides including ammonia, carbohydrazide, oxamic hydrazide, and hydrazine; guanidine compounds such as guanidine, aminoguanidine, diaminoguanidine, triaminoguanidine, dicyandiamide and nitroguanidine; nitrogen substituted carbonyl compounds or amides such as urea, oxamide, bis-(carbonamide) amine, azodicarbonamide, and hydrazodicarbonamide; and, amino azoles such as 3-amino-1 ,2,4-triazole, 3-amino-5-nitro-1 ,2,4-triazole, 5-aminotetrazole, 3- nitramino-1 ,2,4-triazole, 5-nitraminotetrazole, and melamine.
- guanidine compounds such as guanidine,
- a gas generant composition of the present invention is formed by first synthesizing a polyvinyltetrazole.
- a generic substituted tetrazole and vinyl acetate are combined to vinylate the tetrazole.
- the vinylated tetrazole is added to a molar equivalent of mercury acetate and boron trifluoride-etherate for polymerization thereof.
- the resulting products may then be separated by oil distillation for example.
- the polyvinyltetrazoles illustrated in the drawings may be formed in the same way. Reaction 3 exemplifies the process described above.
- a gas generant composition of the present invention is formed by first synthesizing a polyvinyltriazole.
- a generic substituted triazole metal or nonmetal salt is added to a molar equivalent amount of a free radical brominating reagent such as n-bromo-succinamide and to a benzoyl-peroxide free radical initiator to form a brominated triazole.
- the brominated triazole is then added to triphenyl phosphine to form a Wittig salt group on the substituted triazole salt.
- the triazole salt is then added to a metal or nonmetal organic or inorganic base, and also to formaldehyde to form a vinylated triazole salt.
- the vinylated triazole salt is next added to a free radical polymerization reagent such as azoisobutyronitrile and a catalytic amount of a cationic polmerizer or Ziegler-Natta catalyst such as a metal or titanium complex.
- Reaction 2 exemplifies the process described above wherein the synthesis of poly(vinyl-1 ,2,4-triazole) is described.
- Example 3 A gas generant composition of the present invention is formed by first synthesizing a polyvinyldiazole. An alkenol containing two -OH groups is added to acetic anhydride to form a substituted diazole. The substituted diazole is then added to a molar equivalent amount of a free radical brominating reagent such as n-bromo-succinamide and to a free radical initiator such as benzoyl-peroxide to form a brominated diazole. The substituted diazole is then added to triphenyl phosphine to form a Wittig salt group on the substituted diazole salt.
- a free radical brominating reagent such as n-bromo-succinamide
- a free radical initiator such as benzoyl-peroxide
- the diazole salt is then added to a metal or nonmetal organic or inorganic base, and also to formaldehyde to form a vinylated diazole salt.
- the vinylated diazole salt is next added to a free radical polymerization reagent such as azoisobutyronitrile and a catalytic amount of a cationic polymerizer or Ziegler-Natta reagent such as a metal complex.
- Reaction 1 exemplifies the process described above wherein the synthesis of poly(vinyl-1 ,2,5-oxadiazole) is described.
- Example 4 is a representative gas generant composition formed from 5-aminotetrazole and strontium nitrate, in accordance with U.S. Patent No. 5,035,757 herein incorporated by reference.
- Example 5 is a representative gas generant composition formed from an amine salt of tetrazole such as diammonium salt of 5,5'-bi-1 H-tetrazole, phase stabilized ammonium nitrate, strontium nitrate, and clay in accordance with U.S. Patent No. 6,210,505 herein incorporated by reference.
- Example 6 is a representative gas generant composition formed from an amine salt of tetrazole such as diammonium salt of 5, 5'-bi-1 H-tetrazole and phase stabilized ammonium nitrate in accordance with U.S. Patent No. 5,872,329 herein incorporated by reference.
- Example 7 is a representative gas generant composition formed from ammonium nitramine tetrazole and phase stabilized ammonium nitrate in accordance with U.S. Patent No. 5,872,329 herein incorporated by reference.
- Example 8 is a representative gas generant composition formed from ammonium nitramine tetrazole, phase stabilized ammonium nitrate, and a slag former in accordance with U.S.
- Example 9 is a representative composition formed in accordance with the present invention containing ammonium polyvinyl tetrazole and phase stabilized ammonium nitrate (ammonium nitrate coprecipitated with 10% potassium nitrate).
- Table 1 details the relative amounts produced (ppm) of carbon monoxide (CO), ammonia (NH3), nitrogen monoxide (NO), and nitrogen dioxide (NO2) with regard to each example and the amount of gas generant in grams (Gg). All examples were combusted in a gas generator of substantially the same design.
- compositions of Example 9 result in far less ammonia than the other examples, well below the industry standard of 35 ppm. It has been discovered that compositions of the present invention result in substantially less amounts of ammonia as compared to other known gas generants. In many known gas generant compositions, it is often difficult to reduce the total amount of ammonia produced upon combustion, even though other performance criteria remain favorable.
- Examples 10-14 Theoretical examples 10-14 are tabulated below and provide a comparative view of the different amounts and types of gas produced with regard to several gas generant compositions formed in accordance with the present invention.
- All phase stabilized ammonium nitrate (PSAN10) referred to in Table 2 has been stabilized with 10% by weight potassium nitrate of the total PSAN.
- All examples employ ammonium poly(C-vinyltetrazole) (APV) as the primary fuel.
- Certain examples employ nonmetal diammonium salt of 5, 5'-Bis-1 H-tetrazole (BHT.2NH3) as a secondary fuel. All examples reflect results generated by combustion of the gas generant constituents (propellant composition) within a similarly designed inflator or gas generator with equivalent heat sink design.
- Example 10 has been found to be thermally stable at 105 degrees
- Example 10 exemplifies the unexpected thermal stability of gas generant compositions of the present invention, particularly those incorporating a polyvinylazole as defined herein and phase stabilized ammonium nitrate (stabilized with 10% potassium nitrate). It should be emphasized that other phase stabilizers are also contemplated as known or recognized in the art.
- Examples 1 1 through 13 exemplify the use of a polyvinylazole with metallic oxidizers. In certain applications, the use of a metallic oxidizer may be desired for optimization of ignitability, burn rate exponent, gas generant burn rate, and other design criteria. The examples illustrate that the more metallic oxidizer is used the less mols of gas produced upon combustion.
- Examples 10 and 14 illustrate that molar amounts of gas combustion products are maximized when nonmetal gas generant constituents are employed. Accordingly, preferred gas generant compositions of the present invention contain at least one polyvinylazole as a fuel component and a nonmetal oxidizer as an oxidizer component. Finally, with regard to Example 14, it has been found that the gas generant burn rate may be enhanced by adding another nonmetal fuel,
- Example 14 BHT.2NH3, to APV and PSAN10, thereby optimizing the combustion profile of the gas generant composition.
- the burn rate of Example 14 is recorded at 1 .2 inches per second at 5500 psi. It can be concluded therefore, that the addition of nonmetal amine salts of tetrazoles and/or nonmetal amine salts of triazoles as described in 5,872,329 may be advantageous with regard to burn rate and gas generation. Furthermore, the pliant nature of the APV provides extrudability of the propellant composition.
- Examples 15 and 16 exemplify the cold start advantage of gas generant compositions containing a polyvinylazole.
- DSR differential scanning calorimetry
- typical smokeless or nonmetal compositions may exhibit an endothermic trend prior to exothermic combustion.
- relatively greater amounts of energy must be available to ignite the gas generant and sustain combustion of the same.
- a more aggressive ignition train to include an aggressive booster composition perhaps, is required to attain the energy level necessary to ignite the gas generant and sustain combustion.
- Example 1 5 pertains to a composition containing 65% PSAN10 and about 35% BHT.2NH3. As shown in Figure 1 , an endotherm is maximized at
- Example 16 pertains to a composition containing about 15% poly(C-vinyltetrazole) and about 85% PSAN 10. Most unexpectedly, there is no endothermic process and accordingly, combustion proceeds in an uninhibited manner. As a result, less energy is required to combust the gas generant composition thereby reducing the ignition train or ignition and booster requirements.
- the present compositions may be employed within a gas generating system.
- a vehicle occupant protection system made in a known way contains crash sensors in electrical communication with an airbag inflator in the steering wheel, and also with a seatbelt assembly.
- the gas generating compositions of the present invention may be employed in both subassemblies within the broader vehicle occupant protection system or gas generating system. More specifically, each gas generator employed in the automotive gas generating system may contain a gas generating composition as described herein.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Air Bags (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US51005603P | 2003-10-09 | 2003-10-09 | |
| PCT/US2004/033783 WO2005035466A2 (en) | 2003-10-09 | 2004-10-12 | Gas generating compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1680380A2 true EP1680380A2 (en) | 2006-07-19 |
Family
ID=34435055
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP04795004A Withdrawn EP1680380A2 (en) | 2003-10-09 | 2004-10-12 | Gas generating compositions |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20050230017A1 (enExample) |
| EP (1) | EP1680380A2 (enExample) |
| JP (1) | JP2007508230A (enExample) |
| WO (1) | WO2005035466A2 (enExample) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050257866A1 (en) * | 2004-03-29 | 2005-11-24 | Williams Graylon K | Gas generant and manufacturing method thereof |
| US7686901B2 (en) * | 2004-10-12 | 2010-03-30 | Automotive Systems Laboratory, Inc. | Gas generant compositions |
| US7776169B2 (en) | 2005-06-01 | 2010-08-17 | Automotive Systems Laboratory, Inc. | Water-based synthesis of poly(tetrazoles) and articles formed therefrom |
| WO2008059318A2 (en) * | 2005-07-31 | 2008-05-22 | Automotive Systems Laboratory, Inc. | Water-based synthesis of poly(tetrazoles) and articles formed therefrom |
| US20070169863A1 (en) * | 2006-01-19 | 2007-07-26 | Hordos Deborah L | Autoignition main gas generant |
| US20100326575A1 (en) * | 2006-01-27 | 2010-12-30 | Miller Cory G | Synthesis of 2-nitroimino-5-nitrohexahydro-1,3,5-triazine |
| US7959749B2 (en) * | 2006-01-31 | 2011-06-14 | Tk Holdings, Inc. | Gas generating composition |
| EP2024328A2 (en) * | 2006-05-05 | 2009-02-18 | TK Holdings Inc. | Gas generant compositions |
| US20080271825A1 (en) * | 2006-09-29 | 2008-11-06 | Halpin Jeffrey W | Gas generant |
| US9556078B1 (en) | 2008-04-07 | 2017-01-31 | Tk Holdings Inc. | Gas generator |
| DE102012222424A1 (de) * | 2012-12-03 | 2014-06-18 | Ludwig-Maximilians-Universität München | 3,3'-Dinitro-5,5'-Bistriazol-1,1'-diol |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3004959A (en) * | 1959-09-30 | 1961-10-17 | William G Finnegan | Polymers of substituted tetrazoles |
| US3954528A (en) * | 1970-11-06 | 1976-05-04 | The United States Of America As Represented By The Secretary Of The Navy | Solid gas generating and gun propellant composition containing triaminoguanidine nitrate and synthetic polymer binder |
| USH367H (en) * | 1987-05-22 | 1987-11-03 | The United States Of America As Represented By The Secretary Of The Navy | In situ dye smoke |
| US5071630A (en) * | 1990-06-20 | 1991-12-10 | John H. Wickman | Phase-stabilization of ammonium nitrate by zinc diammine complexes |
| US5336343A (en) * | 1993-04-16 | 1994-08-09 | Thiokol Corporation | Vinyl ethers as nonammonia producing bonding agents in composite propellant formulations |
| US5545272A (en) * | 1995-03-03 | 1996-08-13 | Olin Corporation | Thermally stable gas generating composition |
| US5872329A (en) * | 1996-11-08 | 1999-02-16 | Automotive Systems Laboratory, Inc. | Nonazide gas generant compositions |
| JP2000154085A (ja) * | 1998-11-13 | 2000-06-06 | Daicel Chem Ind Ltd | ガス発生剤組成物 |
| JP3926140B2 (ja) * | 2001-11-15 | 2007-06-06 | ダイセル化学工業株式会社 | ガス発生剤組成物およびガス発生部材 |
| US7667045B2 (en) * | 2004-06-02 | 2010-02-23 | Automotive Systems Laboratory, Inc. | Gas generant and synthesis |
| US7686901B2 (en) * | 2004-10-12 | 2010-03-30 | Automotive Systems Laboratory, Inc. | Gas generant compositions |
| US7776169B2 (en) * | 2005-06-01 | 2010-08-17 | Automotive Systems Laboratory, Inc. | Water-based synthesis of poly(tetrazoles) and articles formed therefrom |
-
2004
- 2004-10-12 EP EP04795004A patent/EP1680380A2/en not_active Withdrawn
- 2004-10-12 US US10/964,052 patent/US20050230017A1/en not_active Abandoned
- 2004-10-12 JP JP2006534470A patent/JP2007508230A/ja active Pending
- 2004-10-12 WO PCT/US2004/033783 patent/WO2005035466A2/en not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2005035466A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2005035466A2 (en) | 2005-04-21 |
| JP2007508230A (ja) | 2007-04-05 |
| WO2005035466A3 (en) | 2006-05-04 |
| US20050230017A1 (en) | 2005-10-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20100269965A1 (en) | Gas generant and manufacturing method thereof | |
| US6074502A (en) | Smokeless gas generant compositions | |
| US6306232B1 (en) | Thermally stable nonazide automotive airbag propellants | |
| US5872329A (en) | Nonazide gas generant compositions | |
| JPH05213687A (ja) | 窒素含有ガスを発生させるための組成物、方法及び自動車用エアバッグ装置 | |
| US20050230017A1 (en) | Gas generant compositions | |
| US7776169B2 (en) | Water-based synthesis of poly(tetrazoles) and articles formed therefrom | |
| US7686901B2 (en) | Gas generant compositions | |
| WO2006050442A2 (en) | Gas generant compositions | |
| JP2002519278A (ja) | 高酸素バランス燃料を含んでなる着火式気体発生組成物 | |
| US20080099111A1 (en) | Water-based synthesis of poly(tetrazoles) | |
| US20070169863A1 (en) | Autoignition main gas generant | |
| CA2260144C (en) | Thermally stable nonazide automotive airbag propellants | |
| WO2008059318A2 (en) | Water-based synthesis of poly(tetrazoles) and articles formed therefrom | |
| US20140150935A1 (en) | Self-healing additive technology | |
| EP1062189A2 (en) | High gas yield non-azide gas generants |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20060407 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RBV | Designated contracting states (corrected) |
Designated state(s): DE GB |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20081022 |