EP1676929B2 - Verfahren zum Herstellen von Kompaktgraphit aufweisendem Gusseisen - Google Patents

Verfahren zum Herstellen von Kompaktgraphit aufweisendem Gusseisen Download PDF

Info

Publication number
EP1676929B2
EP1676929B2 EP05017261A EP05017261A EP1676929B2 EP 1676929 B2 EP1676929 B2 EP 1676929B2 EP 05017261 A EP05017261 A EP 05017261A EP 05017261 A EP05017261 A EP 05017261A EP 1676929 B2 EP1676929 B2 EP 1676929B2
Authority
EP
European Patent Office
Prior art keywords
iron
melt
cast
cast iron
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05017261A
Other languages
English (en)
French (fr)
Other versions
EP1676929A1 (de
EP1676929B1 (de
Inventor
Horst Dr.-Ing. Meurer
Carl Dinser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Winter Eisengiesserei GmbH and Co KG
Original Assignee
Fritz Winter Eisengiesserei GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34937945&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1676929(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fritz Winter Eisengiesserei GmbH and Co KG filed Critical Fritz Winter Eisengiesserei GmbH and Co KG
Publication of EP1676929A1 publication Critical patent/EP1676929A1/de
Publication of EP1676929B1 publication Critical patent/EP1676929B1/de
Application granted granted Critical
Publication of EP1676929B2 publication Critical patent/EP1676929B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides

Definitions

  • the invention relates to a method for producing compact graphite-containing cast iron with strengths in the range of 350 to 500 MPa from a molten cast iron.
  • compact graphite cast iron When classifying the different types of cast iron according to their strength properties, compact graphite cast iron, commonly referred to by the abbreviation "GJV”, having strengths in the range of 350 to 500 MPa between cast iron with lamellar graphite, commonly referred to as “GJL”, and Having strengths in the range of 150 to 350 MPa, and ductile iron, which is commonly referred to as “GJS” and has strengths of 350 to 1000 MPa.
  • GJV compact graphite cast iron
  • GJL lamellar graphite
  • GJS ductile iron
  • magnesium treatment of the cast iron melt to be cast is usually carried out to produce magnesium silicates in the cast iron.
  • These magnesium silicates have proven to be particularly effective nucleating agents.
  • the addition of magnesium to the molten iron also deoxidizes the melt. Since, however, the effectiveness of the magnesium silicates as nucleating agents depends on the oxygen present in the melt, precise control of the oxygen content of the melt is therefore of particular importance.
  • the information required to accurately determine the oxygen content of a molten iron melt can be obtained, for example, from thermal analyzes, EMF measurements, or other analysis techniques related to nucleation and germination events. So is in the EP 1 068 365 B1 It has been proposed, for the purpose of setting an optimum oxygen content in a melt intended for the production of compact graphite cast iron, first to produce a starting melt with a low sulfur content, as is conventional practice in the production of nodular cast iron. In this case, the silicon content is set lower than a desired final value such that the SiO 2 content which is saturated based on the C contents is close to, for example, 1400 ° C.
  • the actual melt temperature "TM” is subsequently set to a value slightly below the temperature "TB" at which bubbles form due to the exit of CO gas from the melt.
  • the now obtained oxygen content of the melt is measured by a standard thermal analysis method. In addition to the oxygen content, this must also provide information regarding the types of crystallization behavior of the melt and its oxide inclusions.
  • silicon is added until the respectively calculated temperature "TE” is now only about 20 ° C. below the actual temperature "TM" of the melt.
  • the object of the invention was to provide a method which allows high reliability and low cost, the safe production of cast iron with compact graphite.
  • This object is achieved by a method for producing compact graphite having cast iron with strengths in the range of 350 to 500 MPa from a molten cast iron, with the operations specified in claim 1.
  • the invention provides to add a rare earth metal to the cast iron according to the procedure which is already known per se, with which the formation of compact graphite in the cast iron is specifically supported.
  • the rare earth metal is preferably already successful for this purpose used cerium.
  • the added amount of rare earth metal according to the invention measured on the basis of the sulfur content of the cast iron melt, which is present after their melting. This sulfur content is dependent on the sulfur content of the materials from which the molten iron to be cast is melted, and is detected by default as part of the melting.
  • a base melt is melted, which contains, for example (in% by weight) 3.50-3.90% C, 1.10-2.20% Si, 0.30-0.50% Mn, O, 05-0.07% Cr, 0.005-0.025% S, 0.40-0.90% Cu, 0.09-0.10% Sn, up to 0.01% Ti and the remainder iron and unavoidable impurities , Basically, the melting can be carried out in a cupola with downstream desulfurization. Preferably, however, the molten iron is produced in the electric furnace in order to achieve the lowest possible sulfur contents of the molten iron.
  • These are preferably in the range of 0.005 to 0.020 wt .-%, with optimized properties of the resulting cast iron set when the S content of the molten iron 0.007 to 0.020 wt .-%.
  • the typical C content of molten iron cast to compacted graphite cast iron is in the range of 3.65-3.80 wt%.
  • the Si content of such iron melts is typically from 1.10 to 2.00 wt%.
  • the iron casting melt is then added to the amount of rare earth metal determined in accordance with the invention.
  • the commercially available commercial treatment agents which have already proven themselves in practice can be used.
  • Such treating agents typically comprise (in wt%) 47-55% Ce, 24-35% La, 8-15% Nd and 3-8% Pr.
  • the addition of the treatment agent is preferably carried out immediately before the magnesium treatment.
  • cerium When cerium is used in accordance with the invention as a rare earth element for the preconditioning of the molten iron, the free enthalpies of formation between cerium, oxygen and sulfur are greater than the free Gibbs enthalpies between silicon and oxygen. Therefore, it can be assumed that complete conversion of the cerium to cerium oxysulfides, cerium sulfides and cerium oxides occurs. These particles promote the homogeneous nucleation catalysis, so that the result is a cast iron with an optimum for the desired property spectrum expression of the graphite is obtained.
  • the quantity M REM added factor k can be varied between 2.5 and 3.5. Studies have shown that the success of the invention with the use of cerium-containing treatment agents is particularly secure when the factor k is in the range of 3.0 to 3.3, in particular equal to 3.2.
  • the preconditioning carried out in accordance with the invention can be followed, in a manner known per se, by a magnesium treatment in which an Mg-containing inoculant is added in order to adjust the Mg content in the resulting casting to from 0.008% by weight to 0.014% by weight. is. Due to the higher cooling rate of thinner walled castings, the Mg content of such parts should be in the lower portion of this range, while thicker walled castings should have Mg levels up to the upper limit of that range.
  • the invention enables a very simple procedure in the preconditioning of a cast iron melt.
  • the foundry which is concerned with the treatment of the melt, requires only an indication of the amount of molten iron contained in the respective amount of molten iron melt M S. Based on this quantity, he can then determine, for example, based on a simple diagram, the amount required in each case on each provided rare earth metal. An example of such a diagram is attached.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen von Kompaktgraphit aufweisendem Gusseisen mit Festigkeiten im Bereich von 350 bis 500 MPa aus einer Gusseisenschmelze.
  • Bei der Einteilung der verschiedenen Arten von Gusseisen nach ihren Festigkeitseigenschaften liegt Gusseisen mit Kompaktgraphit, das üblicherweise mit der Kurzbezeichnung "GJV" bezeichnet wird, mit Festigkeiten im Bereich von 350 bis 500 MPa zwischen Gusseisen mit Lamellengraphit, das üblicherweise als "GJL" bezeichnet wird und Festigkeiten im Bereich von 150 bis 350 MPa besitzt, und Gusseisen mit Kugelgraphit, das üblicherweise unter der Bezeichnung "GJS" geführt wird und Festigkeiten von 350 bis 1000 MPa aufweist. Der besondere Vorteil von Gusseisen mit Kompaktgraphit besteht dabei in einer günstigen Kombination von hoher Festigkeit und guter Wärmeleitfähigkeit sowie gutem Dämpfungsverhalten.
  • Eine beispielsweise im Artikel "Kolbenringe aus Gußeisen mit Vermiculargraphit" von Wolfgang Knothe und Otto Liesenberg, in Gießereitechnik, 26. Jahrgang, Heft 10/1980, Seiten 297 - 298 beschriebene, verfahrenstechnisch einfach zu beherrschende Möglichkeit der Herstellung von Gusseisen mit Kompaktgraphit besteht darin, der zu vergießenden Eisenschmelze ein Seltenerdmetall, beispielsweise Cer in einer Menge zuzugeben, die in Abhängigkeit vom Schwefelgehalt eingestellt wird. Eine Überdosierung muss dabei jedoch vermieden werden, um die Bildung unerwünschten Gefüges und die so genannte "Weißerstarrung" zu vermeiden (Gießerei-Lexikon Ausgabe 2001, 18. Aufl., Seite 573).
  • Wie im Einzelnen aus der Europäischen Patentschrift EP 1 068 365 B1 hervorgeht, wird des Weiteren neben der Behandlung mit Cer oder anderen Seltenerdmetallen üblicherweise eine Magnesiumbehandlung der zu vergießenden Eisengussschmelze durchgeführt, um Magnesiumsilikate im Gusseisen zu erzeugen. Diese Magnesiumsilikate haben sich als besonders wirkungsvolle Keimbildner herausgestellt. Allerdings wird durch die Zugabe von Magnesium zu der Eisenschmelze die Schmelze auch desoxidiert. Da die Wirksamkeit der Magnesiumsilikate als Keimbildner jedoch abhängig ist vom in der Schmelze vorhandenen Sauerstoff, ist demzufolge eine genaue Kontrolle des Sauerstoffgehaltes der Schmelze von besonderer Bedeutung.
  • Die zur treffsicheren Bestimmung des Sauerstoffgehalts einer Eisengussschmelze erforderlichen Informationen lassen sich beispielsweise aus Thermoanalysen, EMK-Messungen oder anderen Analyseverfahren gewinnen, die im Zusammenhang mit Keimbildungs- und Keimwachstumsvorgängen stehen. So ist in der EP 1 068 365 B1 vorgeschlagen worden, zur Einstellung eines optimalen Sauerstoffgehaltes in einer für die Erzeugung von Kompaktgraphitguss bestimmten Schmelze zunächst eine Ausgangsschmelze mit einem niedrigen Schwefelgehalt herzustellen, wie es herkömmliche Praxis bei der Herstellung von nodularen Gusseisen ist. Der Siliziumgehalt wird dabei niedriger als ein gewünschter Endwert eingestellt, so dass die auf Basis der C-Gehalte gesättigtem SiO2 führt, in der Nähe von beispielsweise 1.400 °C liegt. Die tatsächliche Schmelztemperatur "TM" wird nachfolgend auf einen Wert etwas unterhalb von der Temperatur "TB" eingestellt, bei der sich Bläschen aufgrund des Austritts von CO-Gas aus der Schmelze bilden. Nach einer gewissen Zeit bei einer spezifischen Temperatur, während der die Schmelze Sauerstoff aus der Umgebung aufnimmt, wird der nun erhaltene Sauerstoffgehalt der Schmelze mit einem thermischen Standardanalyseverfahren gemessen. Dieses muss neben dem Sauerstoffgehalt auch Informationen bezüglich der Arten des Kristallisationsverhaltens der Schmelze und deren Oxideinschlüsse liefern. Wenn der Gehalt an Sauerstoff einen Wert von 50 - 100 ppm erreicht hat, wird Silizium zugegeben, bis die jeweils berechnete Temperatur "TE" nun nur noch ca. 20 °C unter der tatsächlichen Temperatur "TM" der Schmelze liegt.
  • Neben dem voranstehend erläuterten Stand der Technik ist es aus der Veröffentlichung "Development and Application of Enhanced Compacted Graphite Iron for the Bedplate of the New Chrysler 4.7 Liter V-8 Engine", SAE Paper 1999-01-0325, bekannt, dass durch die kombinierte Zugabe von Magnesium und Seltenen Erden, wie beispielsweise Cer, die Bildung von Kompaktgraphit bei gleichzeitiger Anwesenheit von Kugelgraphit gesteuert werden kann.
  • In der praktischen Umsetzung erweisen sich die bekannten Wege der Bestimmung der Mengen an Sauerstoff und Mischoxiden als schwierig handhabbar, die einer Eisenschmelze zuzugeben sind, um die gewünschte Graphitbildung zu erzielen. Darüber hinaus setzen sie einen hohen apparativen Aufwand voraus, der nicht nur kostenaufwändig ist, sondern unter den in der Praxis bestehenden harten Betriebsdingungen auch störungsanfällig ist.
  • Ausgehend von dem voranstehend erläuterten Stand der Technik bestand daher die Aufgabe der Erfindung darin, ein Verfahren zu schaffen, das bei hoher Betriebssicherheit und geringem Aufwand die sichere Erzeugung von Eisenguss mit Kompaktgraphit ermöglicht.
  • Diese Aufgabe ist durch ein Verfahren zum Herstellen von Kompaktgraphit aufweisendem Gusseisen mit Festigkeiten im Bereich von 350 bis 500 MPa aus einer Gusseisenschmelze, mit den in Anspruch 1 angegebenen Arbeitsschritten gelöst werden.
  • Die Erfindung sieht vor, dem Gusseisen entsprechend der an sich bereits bekannten Vorgehensweise ein Seltenerdmetall zuzusetzen, mit dem gezielt die Entstehung von Kompaktgraphit im Gusseisen unterstützt wird. Bei dem Seltenerdmetall handelt es sich bevorzugt um das für diesen Zweck bereits erfolgreich eingesetzte Cer.
  • Anders als bisher im Stand der Technik vorgesehen bemisst sich die zugegebene Menge an Seltenerdmetall erfindungsgemäß auf Grundlage des Schwefelgehaltes der Eisengussschmelze, der nach deren Erschmelzung vorhanden ist. Dieser Schwefelgehalt ist abhängig vom Schwefelgehalt der Materialien, aus denen die zu vergießende Eisenschmelze erschmolzen wird, und wird standardmäßig im Zuge der Erschmelzung erfasst.
  • Es hat sich herausgestellt, dass der auf einfache Weise routinemäßig erfassbare Schwefelgehalt der Schmelze in einem direkten linearen Zusammenhang mit der Menge an Seltenerdmetall steht, die für die Vorkonditionierung der Schmelze zur Entstehung des Kompaktgraphits im Gusseisen erforderlich ist. Anders als von der Fachwelt bisher angenommen, bedarf es bei der erfindungsgemäßen Vorgehensweise somit keiner aufwändigen Mess- und Regelvorgänge, um die jeweils erforderliche Menge an Mghaltiger Vorlegierung zu bestimmen, die der Schmelze zugegeben werden muss, um den gewünschten Graphit im Eisenguss zu bilden.
  • Gemäß der Erfindung wird zunächst eine Basisschmelze erschmolzen, die beispielsweise (in Gew.-%) 3,50 - 3,90 % C, 1,10 - 2,20 % Si, 0,30 - 0,50 % Mn, 0,05 - 0,07 % Cr, 0,005 - 0,025 % S, 0,40 - 0,90 % Cu, 0,09 - 0,10 % Sn, bis zu 0,01 % Ti und als Rest Eisen sowie unvermeidbare Verunreinigungen enthalten kann. Grundsätzlich kann dabei die Erschmelzung in einem Kupolofen mit nachgelagerter Entschwefelung durchgeführt werden. Bevorzugt wird die Gusseisenschmelze jedoch im Elektroofen erzeugt, um möglichst geringe Schwefelgehalte der Eisenschmelze zu erzielen. Diese liegen vorzugsweise im Bereich von 0,005 bis 0,020 Gew.-%, wobei sich optimierte Eigenschaften des erhaltenen Gusseisens einstellen, wenn der S-Gehalt der Eisenschmelze 0,007 bis 0,020 Gew.-% beträgt. Der typische C-Gehalt von zu Gusseisen mit Kompaktgraphit vergossenen Eisenschmelzen liegt im Bereich von 3,65 - 3,80 Gew.-%. Der Si-Gehalt solcher Eisenschmelzen beträgt typischerweise 1,10 bis 2,00 Gew.-%.
  • Unmittelbar vor dem Behandeln mit Magnesium wird der Eisengussschmelze dann die in erfindungsgemäßer Weise ermittelte Menge an Seltenerdmetall zugegeben. Zu diesem Zweck können die in der Praxis bereits bewährten handelsüblichen Behandlungsmittel eingesetzt werden. Solche Behandlungsmittels weisen typischerweise (in Gew.-%) 47 - 55 % Ce, 24 - 35 % La, 8 - 15 % Nd und 3 - 8 % Pr auf. Die Zugabe des Behandlungsmittels erfolgt bevorzugt unmittelbar vor der Magnesiumbehandlung.
  • Wird Cer in erfindungsgemäßer Weise als Seltenerdmetall zur Vorkonditionierung der Eisenschmelze eingesetzt, so sind die Freien Bildungsenthalpien zwischen Cer, Sauerstoff und Schwefel größer als die Freien Gibbschen Enthalpien zwischen Silizium und Sauerstoff. Daher kann davon ausgegangen werden, dass es zu einer vollständigen Umsetzung des Cers zu Ceroxisulfiden, Cersulfiden und Ceroxiden kommt. Diese Partikel begünstigen die homogene Keimbildungskatalyse, so dass im Ergebnis ein Gusseisen mit einer für das angestrebte Eigenschaftsspektrum optimalen Ausprägung des Graphits erhalten wird.
  • Praktische Versuche haben ergeben, dass sich optimierte Eigenschaften des Gusseisens einstellen, wenn die erfindungsgemäße Zugabe an Seltenerdmetall derart vorgenommen wird, dass der im erhaltenen Gusseisen vorliegende Graphit nur zu 5 bis 30 % in Kugelgestalt vorliegt.
  • Die erfindungsgemäß vorgenommene Zugabe von Seltenerdmetall zu der jeweiligen Eisenschmelze führt überraschenderweise zur Entstehung von möglichst kleinen und in der Schmelze gut verteilten Seltenerdpartikeln. Praktische Versuche haben dabei gezeigt, dass sich bei Verwendung von Cerhaltigem Behandlungsmittel ein Gusseisen mit optimierten Eigenschaften erzeugen lässt, indem die Cer-Zugabe so vorgenommen wird, dass das erhaltene Gusseisen 10-2 bis 10-3 Atom-% Ceroxisulfide enthält.
  • Abhängig von der konkreten Zusammensetzung des jeweiligen Behandlungsmittels und der in Kombination mit dem jeweiligen Seltenerdmetall zugegebenen anderen der Keimbildung oder Oxidation wirksamen Elementen kann der zur Bestimmung der zugegebenen Menge MREM angewendete Faktor k zwischen 2,5 und 3,5 variiert werden. Untersuchungen haben gezeigt, dass sich der Erfolg der Erfindung bei Verwendung von Cer-haltigen Behandlungsmitteln besonders sicher einstellt, wenn der Faktor k im Bereich von 3,0 bis 3,3 liegt, insbesondere gleich 3,2 ist.
  • An die in erfindungsgemäßer Weise vorgenommene Vorkonditionierung kann sich in an sich bekannter Weise eine Magnesiumbehandlung anschließen, bei der ein Mg-haltiges Impfmittel zugegeben wird, um im erhaltenen Gussstück einen Mg-Gehalt einzustellen, der 0,008 Gew.-% bis 0,014 Gew.-% beträgt. Aufgrund der höheren Abkühlgeschwindigkeit dünnwandigerer Gussstücke sollte sich der Mg-Gehalt solcher Teile im unteren Abschnitt dieses Bereichs bewegen, während dickwandigere Gussstücke Mg-Gehalte aufweisen sollten, die bis zur Obergrenze des genannten Bereichs gehen.
  • Die Erfindung ermöglicht eine denkbar einfache Vorgehensweise bei der Vorkonditionierung einer Gusseisenschmelze. So benötigt der Gießer, der mit dem Behandeln der Schmelze befasst ist, lediglich eine Angabe über die in der jeweils vergossenen Menge an Eisengussschmelze enthaltene Schwefelmenge MS. Basierend auf dieser Mengenangabe kann er dann beispielsweise anhand eines einfachen Diagramms die jeweils benötigte Menge am jeweils vorgesehenen Seltenerdmetall bestimmen. Ein Beispiel für ein solches Diagramm ist beigefügt.
  • In diesem Diagramm ist der erfindungsgemäß auf Basis der Formel M REM = k x M S
    Figure imgb0001
    hergestellte Zusammenhang beispielhaft für ein Cer-haltiges Behandlungsmittel dargestellt, wobei der Faktor k gleich 3,2 gesetzt ist.

Claims (12)

  1. Verfahren zum Herstellen von Kompaktgraphit aufweisendem Gusseisen mit Festigkeiten im Bereich von 350 bis 500 MPa aus einer Gusseisenschmelze, bei dem der Gusseisenschmelze beim Vergießen ein Seltenerdmetall-haltiges Vorkonditionierungsmittel und ein Mg-haltiges Impfmittel zugegeben werden, dadurch gekennzeichnet, dass unmittelbar vor dem Behandeln mit Magnesium der Eisengussschmelze eine Menge MREM an Seltenerdmetall zugegeben wird und dass die zugegebene Menge MREM an Seltenerdmetall in Abhängigkeit von der Menge Ms des in der jeweils vergossenen Menge an Gusseisenschmelze enthaltenen Schwefels nach folgender Maßgabe bemessen wird: M REM = k x M S ;
    Figure imgb0002

    mit k = 2,8 - 3,5;
    MREM, Ms angegeben in kg pro Tonne Eisenschmelze.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der im erhaltenen Gusseisen vorliegende Graphit zu 5 bis 30 % in Kugelgestalt vorliegt.
  3. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass eine Gusseisenschmelze mit folgender Zusammensetzung vergossen wird (in Ges.-%): C: 3,50 - 3,90 % Si: 1,10 - 2,20 % Mn: 0,30 - 0,50 % Cr: 0,05 - 0,07 % S: 0,005 - 0,025 % Cu: 0,40 - 0,90 % Sn: 0,09 - 0,10 % Ti: ≤ 0,01 %
    Rest Eisen und unvermeidbare Verunreinigungen.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der C-Gehalt der Eisenschmelze 3,65 - 3,80 Gew.-% beträgt.
  5. Verfahren nach einem der Ansprüche 3 oder,4, dadurch gekennzeichnet, dass der Si-Gehalt der Eisenschmelze 1,10 bis 2,00 Gew.-% beträgt.
  6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der S-Gehalt der Eisenschmelze 0,005 bis 0,020 Gew.-% beträgt.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der S-Gehalt der Eisenschmelze 0,007 bis 0,020 Gew.-% beträgt.
  8. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der zur Bestimmung der zugegebenen Menge MREM angewendete Faktor k zwischen 3,0 und 3,3 liegt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der zur Bestimmung der zugegebenen Menge MREM angewendete Faktor k gleich 3,2 ist.
  10. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Eisengussschmelze nach der Vorkonditionierung ein Mg-haltiges Impfmittel zugegeben wird, um im erhaltenen Gussstück einen Mg-Gehalt einzustellen, der 0,008 bis 0,014 Gew.-% beträgt.
  11. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Seltenerdmetall Cer ist.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das erhaltene Gusseisen 10-2 bis 10-3 Atom-% Ceroxisulfide enthält.
EP05017261A 2004-11-12 2005-08-09 Verfahren zum Herstellen von Kompaktgraphit aufweisendem Gusseisen Active EP1676929B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004054858 2004-11-12

Publications (3)

Publication Number Publication Date
EP1676929A1 EP1676929A1 (de) 2006-07-05
EP1676929B1 EP1676929B1 (de) 2008-10-15
EP1676929B2 true EP1676929B2 (de) 2012-08-01

Family

ID=34937945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05017261A Active EP1676929B2 (de) 2004-11-12 2005-08-09 Verfahren zum Herstellen von Kompaktgraphit aufweisendem Gusseisen

Country Status (3)

Country Link
EP (1) EP1676929B2 (de)
AT (1) ATE411402T1 (de)
DE (1) DE502005005681D1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874576A (en) 1988-01-23 1989-10-17 Metallgesellschaft Aktiengesellschaft Method of producing nodular cast iron

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227924A (en) * 1978-05-18 1980-10-14 Microalloying International, Inc. Process for the production of vermicular cast iron
US4806157A (en) * 1983-06-23 1989-02-21 Subramanian Sundaresa V Process for producing compacted graphite iron castings
SE513956C2 (sv) 1998-03-27 2000-12-04 Cgi Promotion Ab Förfarande för framställning av föremål av gjutjärn med kompaktgrafit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874576A (en) 1988-01-23 1989-10-17 Metallgesellschaft Aktiengesellschaft Method of producing nodular cast iron

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Warrick, R. J. et al., "Development and Application of Enhanced Compacted Graphite Iron for the Bedplate of the New Chrysler 4.7 Liter V-8 Engine" SAE Paper 1999-01-0325, pages 1 -9

Also Published As

Publication number Publication date
EP1676929A1 (de) 2006-07-05
ATE411402T1 (de) 2008-10-15
DE502005005681D1 (de) 2008-11-27
EP1676929B1 (de) 2008-10-15

Similar Documents

Publication Publication Date Title
DE112014002442B4 (de) Gusseisen hoher Stärke und hoher Dämpfungsfähigkeit
DE102005027258A1 (de) Hochkohlenstoffhaltiger Stahl mit Superplastizität
DD143632A5 (de) Verfahren zur aufbereitung von eisenlegierungen
DE1533279A1 (de) Legiertes oder unlegiertes graues Gusseisen
DE68906489T2 (de) Verfahren zur herstellung von kugelgraphitgusseisen.
DE60127090T2 (de) Austenitischer, rostfreier Stahl, welcher weniger rissempfindlich während des Formens ist, und dessen Herstellungsverfahren
DE3934037C1 (de)
EP0141804B1 (de) Manganhartstahl und Verfahren zu seiner Herstellung
DE10309386B4 (de) Verfahren zur Herstellung eines Gusseisenwerkstoffes mit gezieltem Restkarbidanteil
DE3528537C2 (de)
DE112009001294B4 (de) Gusseisen mit hoher Festigkeit und hohem Dämpfungsvermögen
EP1676929B2 (de) Verfahren zum Herstellen von Kompaktgraphit aufweisendem Gusseisen
DE69311542T2 (de) Bestimmung des kohlenstoffequivalents in strukturmodifiziertem gusseisen
DD295195A5 (de) Verschleissfeste stahllegierung
DD202186A5 (de) Verfahren zur herstellung eines gusseisens mit vermiculargraphit und vorrichtung zur durchfuehrung des verfahrens
DE3312205A1 (de) Borhaltiger stahl und verfahren zu dessen herstellung
DE60007961T2 (de) Rostfreie stähle
DE3644106C1 (de) Aluminothermisches Gemisch
DE102011054930B3 (de) Gußeisenwerkstoff, Verfahren zum Herstellen eines Gußteils und Verwendung des Gußeisenwerkstoffs
DE2757114A1 (de) Verfahren zum herstellen hochfesten kugelgraphitgusses
DE69307031T2 (de) Für Bearbeitung geeigneter Gussstahl
DE1289322B (de) Vorlegierung zur Behandlung von Eisen- und Stahlschmelzen
EP0524444A1 (de) Mittel zur Behandlung von Gusseisenschmelzen
DE3033194A1 (de) Verfahren zur homogenisierung von gusseisenschmelzen und presslinge zu seiner durchfuehrung
DE102011051446A1 (de) Gusseisen mit Kugelgraphit, insbesondere für Hochtemperaturanwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061229

AKX Designation fees paid

Designated state(s): AT DE

17Q First examination report despatched

Effective date: 20070214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE

REF Corresponds to:

Ref document number: 502005005681

Country of ref document: DE

Date of ref document: 20081127

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: NOVACAST FOUNDRY SOLUTIONS AB

Effective date: 20090702

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20120801

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502005005681

Country of ref document: DE

Effective date: 20120801

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230825

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230823

Year of fee payment: 19