EP1674689B1 - Thermostatic valve for controlling a fluid and cooling circuit with such a valve - Google Patents

Thermostatic valve for controlling a fluid and cooling circuit with such a valve Download PDF

Info

Publication number
EP1674689B1
EP1674689B1 EP05356218.7A EP05356218A EP1674689B1 EP 1674689 B1 EP1674689 B1 EP 1674689B1 EP 05356218 A EP05356218 A EP 05356218A EP 1674689 B1 EP1674689 B1 EP 1674689B1
Authority
EP
European Patent Office
Prior art keywords
fluid
valve
thermostatic
inlet
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05356218.7A
Other languages
German (de)
French (fr)
Other versions
EP1674689A3 (en
EP1674689A2 (en
Inventor
Nicolas Pottie
Alain Bernard Armand Bouloy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vernet SA
Original Assignee
Vernet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vernet SA filed Critical Vernet SA
Publication of EP1674689A2 publication Critical patent/EP1674689A2/en
Publication of EP1674689A3 publication Critical patent/EP1674689A3/en
Application granted granted Critical
Publication of EP1674689B1 publication Critical patent/EP1674689B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers

Definitions

  • the present invention relates to a thermostatic valve for regulating a fluid, as well as a cooling circuit for a heat engine and a system for recirculating the exhaust gases coming from this engine, comprising such a valve.
  • this type of valve is used to distribute the fluid entering the valve to different output channels, depending on the temperature of the incoming fluid.
  • a valve can be used to simultaneously control the cooling, by the radiator, fluid entering the valve when the fluid is heated and control greater cooling of the fluid by the radiator when the temperature of the incoming fluid increases as it exceeds a threshold value prefixed.
  • the valve is provided with a thermostatic element containing an expandable material such as wax.
  • EGR exhaust gas recirculation system
  • Exhaust Gas Recirculation system an exhaust gas recirculation system
  • This system is an antipollution device that injects a portion of the exhaust gas, from the engine into the intake manifold of the engine, to reduce the peaks of combustion temperature and thus the formation of nitrogen oxides.
  • a cooling fluid which advantageously circulates in the same circuit as the cooling circuit of the engine, in particular at the level of the radiator responsible for removing excess heat from the fluid cooling.
  • the presence of two separate valves just upstream of the radiator namely the fluid control valve vis-à-vis the engine and the fluid control valve vis-à-vis the EGR system, poses problems of congestion.
  • it generally leads to over-sizing of the radiator which, in practice, has a first part dedicated to the heat exchange of the fluid from the engine and a second part dedicated to the heat exchange of the fluid from the EGR system, each radiator portion being dimensioned independently of one another, according to the maximum cooling requirements for the engine to be cooled on the one hand and for the EGR system on the other hand.
  • the object of the present invention is to propose a thermostatic valve intended to regulate the circulation of a cooling fluid both with respect to a heat engine to be cooled and from an EGR system to be cooled, limiting as much as possible the dimentionning of a common radiator to which is sent the fluid at the valve outlet.
  • the invention relates to a thermostatic valve for regulating a fluid, as defined in claim 1.
  • valve according to the invention can indeed act both on a first fluid path flowing freely between the first inlet and the first outlet delimited by the valve housing and on a second fluid path flowing between the second inlet and the second inlet. exit from the case.
  • the value of the temperature of the fluid to be regulated by the valve is mitigated, that is to say, more precisely, when the value of the temperature of the fluid flowing in the first channel is greater than the first predetermined threshold value and that the value of the temperature of the fluid flowing in the second channel is less than the second predetermined threshold value, the two fluid paths circulate distinctly from one another through the valve, without mixing.
  • the temperature of the fluid of the first channel is lower than the first threshold value, or when the temperature of the fluid of the second channel is greater than the second threshold value, that is to say, in practice, when a heat engine to be cooled by a cooling circuit equipped with the valve according to the invention is either in a temperature rise phase just after starting, or is stressed under a heavy load, the two fluid channels mentioned above are mixed and the fluid leaving the valve is evacuated at the two outputs of the housing regardless of their route of origin.
  • the heat exchange with the fluid at the radiator is increased both at low temperature, that is to say in the engine startup phase during which the engine exhaust gases are advantageously cooled more intensely at a system EGR swept by the fluid, either at high temperature, that is to say when the engine to cool by the fluid operates under a heavy load.
  • the invention also relates to a cooling circuit of a heat engine and a system for recirculating the exhaust gases from this engine, as defined in claim 9.
  • a circuit 1 for circulating a cooling fluid comprising a radiator 2 responsible for discharging the excess heat of the cooling fluid therethrough and a pump 3 for circulating the fluid in the circuit.
  • the circuit 1 is associated with a heat engine 4 to cool and a system 5, to cool, recirculation of the exhaust gas.
  • the system 5 commonly called the EGR system, is an antipollution device that injects a portion of the exhaust gas from the engine 4 into the intake manifold of this engine, to reduce the combustion temperature peaks. hence the formation of nitrogen oxides.
  • the pump 3 delivers cooling fluid to both the EGR system 5 and the motor 4, to cool them.
  • the circuit 1 After having circulated at the level of the system 5, the circuit 1 sends the fluid to the radiator 2, to an inlet 6 of this radiator.
  • the fluid is sent by the circuit 1 to a regulating valve 7 which sends back directly to the pump 3 the fluid entering this valve and / or which sends the fluid towards the radiator 2, until to an inlet 8 distinct from the inlet 6.
  • the valve 7 controls the regulation of the fluid supplying it as a function of the temperature of the latter, the fluid being sent to the radiator only when it presents a temperature too high to ensure effective cooling of the engine 4.
  • the valve 7 sends the fluid from the engine 4 to the radiator 2 when its temperature exceeds about 80 to 90 ° C.
  • the fluid admitted at the inlets 6 and 8 of the radiator 2 feeds two separate compartments 2A and 2B delimited inside the cooling body 2C.
  • this radiator and separated from each other by a 2D heat exchange bulkhead with the outside.
  • the radiator 2 is equipped with a valve 10 intended to regulate the flow of the fluid between, on the one hand, the inlets 6 and 8 and, on the other hand, the compartments 2A and 2B, as explained herein. -Dessous. Downstream of each compartment, the fluid is discharged to the outside of the body 2C of the radiator 2, at a common suction outlet 9, connected to the pump 3.
  • the valve 10 arranged between the inlets 6, 8 and the compartments 2A, 2B of the radiator 2.
  • the valve 10 comprises an outer casing 12 generally tubular longitudinal axis XX and having, for example, a cross section in the general U-shape open towards the reader observing the figure 2 .
  • the housing 12 is completely integrated inside the body 2C of the radiator 2, extending through the 2D partition, the side of the inputs 6 and 8 of the radiator.
  • the housing 12 thus delimits internally, at its current portion, an elongate fluid flow chamber 14 between its longitudinal ends 16 and 18 which open freely into respectively the compartments 2A and 2B and which thus form, for the valve 10, outlets fluid connected to these compartments.
  • the current part of the chamber 14 is designed to be supplied with fluid at two inputs 20 and 22, arranged one behind the other along the axis XX and connected respectively to the inputs 6 and 8 of the radiator 2.
  • the housing 12 is arranged in a sealed manner inside the body 2C of the radiator 2 so that, upstream of the compartments 2A and 2B, the fluid circulation between these compartments within the radiator is only possible through the room 14, to possible leaks near.
  • the housing 12 is integral with the partition wall 2D, and with the tubing of the body 2C delimiting the inputs 6 and 8.
  • thermostatic assembly 24 The regulation of the flow of the fluid through the chamber 14 is provided by a thermostatic assembly 24 detailed below.
  • This assembly as a function of the temperature values of the fluid admitted into the chamber through the inlets 20 and 22, acts on the flow of the fluid at the axial portion of the chamber 14 situated between the inlets 20 and 22.
  • the configuration of this assembly has no influence on, on the one hand, a flow of fluid between the inlet 20 and the outlet 16 and, on the other hand, a flow of fluid between the inlet 22 and the outlet 18, each of these inputs 20, 22 being in free fluid communication with its corresponding output 16, 18, via the longitudinal end portions of the chamber 14.
  • the thermostatic assembly 24 comprises two thermostatic elements 26 and 28 held in relation to the housing 12 by a rigid stirrup 30, for example of metal, rigidly connected to the wall of the housing delimiting the chamber 14.
  • Each element 26, 28 is provided with a body 26A, 28A containing an expandable material, such as a wax, and a piston 26B, 28B movable relative to the body under the effect of the expansion of the material.
  • the thermostatic elements 26 and 28 extend in length along the axis XX, being coaxial with each other, their piston 26B, 28B being directed towards one another and essentially located, according to the XX axis, between the inputs 20 and 22 of the housing 12.
  • thermosensitive part of the body 26A of the element 6 is disposed on the flow path of the fluid between the inlet 20 and the outlet 16 while the thermosensitive portion of the 28A body of the element 28 is disposed in the flow path of the fluid between the inlet 22 and the outlet 18.
  • the body 26A of the thermostatic element 26 is immobilized with respect to the housing 12, being for example force-fitted into a fixed annular ring 30A of the stirrup 30, which constitutes the free end of a pair of rigid arms 30B of the stirrup, made of material, in a direction parallel to the axis XX, from a transverse plate 30C of the immobilized stirrup, along the axis XX, relative to the housing 12 being received in slides 36 or the like integrally with the wall of the housing delimiting the chamber 14.
  • the plate 30C is introduced into the slides 36 in the direction of observation of the figure 2 , that is to say in a direction both perpendicular to the axis XX and belonging to the longitudinal plane of symmetry of the U-shaped housing 12; once positioned as figures 2 and 3A , the plate 30C axially blocks the rest of the rigid yoke 30 relative to the housing 12 while it can further be provided to retain the plate relative to the housing in its aforementioned introduction direction, for example, by a cover or other similar means.
  • the plate 30C has, seen along the axis XX, a U-shaped peripheral contour, substantially complementary to the internal contour of the cross-section of the housing 12, so that, in operation, the plate 30C hermetically divides the chamber 14 in two distinct subvolumes respectively associated with the thermostatic element 26 and the element 28.
  • the piston 26B of the element 26 carries a tubular sleeve 32 centered, in length, on the axis XX and extending between the arms 30B of the stirrup.
  • the sleeve 32 is sized to bear radially, at its outer face, against a seat 34 delimited by a opening which passes right through the plate 30C of the stirrup 30 being centered on the axis XX.
  • the sleeve 32 is provided to slide axially along the axis XX so as to extend axially distant from the seat 34 to allow free flow of fluid through the seat, around the sleeve 32, as in FIG. figure 3A , or close this seat by radial support, as in Figure 4A .
  • the translational movement of the sleeve 32 is controlled by the piston 26B of the thermostatic element 26.
  • the sleeve 32 is internally integrally with a bridge 38 bearing the free end of the piston 26B. More specifically, this support bridge delimits a blind housing 38A for receiving and supporting the free end of the piston 26B.
  • the support bridge 38 delimits a second blind housing 38B receiving the free end of the piston 28B of the second thermostatic element 28.
  • the body 28A of this element 28 is rigidly connected to a valve 40, in being for example force-fitted into a central opening of this valve.
  • the outer ring of the valve 40 is shaped to bear tightly against the free end edge 32A of the sleeve 32, directed towards the inlet 22, forming a seat. In operation, when the valve 40 is axially remote from the edge 32A, as in FIG.
  • fluid can freely flow through the chamber 14 between the outlets 16 and 18 passing inside the tubular sleeve 32, the wall of the sleeve being perforated in several areas 32B at portions of the sleeve which does not are not intended, in operation, to abut against the seat 34.
  • the valve 40 When the valve 40 is in abutment against the edge 32A, the aforementioned fluid flow is prevented, as on the Figure 5A .
  • the thermostatic assembly 24 further comprises a compression spring 44 axially interposed between the valve 40 and an annular ring 30D of the stirrup 30, which is arranged at the free end of a pair of arms 30E of the stirrup , between which extends the body 28A of the element 28 and made of material, in a direction parallel to the axis XX and generally in the axial extension of the arms 30E, from the transverse plate 30C.
  • This ring 30D is provided to support the thrust force of the spring 44 to the arms 30E, which then work in tension, as the thermostatic assembly 24 is not assembled to the housing 12.
  • the ring 30D is axially supported against bearing pieces 46 secured to the housing 12, for example integral with the inner wall of the housing.
  • the ring 30D and these support pieces 46 and cooperate to cash the efforts of the spring 44, the support parts discharging the arms 30E to support, in compression, most of these efforts.
  • the spring 44 is sized to return each body 26A, 28A and each piston 26B, 28B of the elements 26 and 28, after this body and this piston have moved away from each other. under the effect of the dilation of the material contained in the body.
  • the spring 44 is further adapted to maintain the valve 40 in sealing engagement against the end edge 32A of the sleeve 32 as the piston 28B of the element 28 is not sufficiently deployed with respect to its body 28A to push this body against the thrust of the spring.
  • valve 10 is in the configuration of the figure 3A , that is to say with the pistons 26B and 28B retracted to the maximum inside their associated body 26A, 28A.
  • the pump 3 draws the fluid at the outlet 9 of the radiator 2 and circulates it in the circuit 1, sending it, on the one hand, to the EGR system 5 and, d On the other hand, towards the engine 4.
  • the engine is "cold", that is to say that it has a temperature relatively close to the ambient temperature
  • the cooling fluid at the output of the engine 4 is returned directly to the engine.
  • the exhaust gases injected into the engine 4 by the EGR system 5 have the lowest temperature possible to avoid the generation of thermal stresses between the intake manifold. hot exhaust gases and the remainder of the engine 4 relatively cold.
  • the cooling fluid circulating in the EGR system 5 must be as cold as possible. For this purpose, after passing through the system 5, cooling fluid is sent to the radiator 2, at its inlet 6, as indicated by the arrow 50 to Figures 3A and 3B .
  • ⁇ 1 a first threshold temperature value, hereinafter referred to as ⁇ 1 , at which the flow of fluid, through the chamber 14, between the inlet 20 and the outlet 18 is interrupted by the sleeve 32.
  • ⁇ 1 is equal to 36 ° C. More specifically, as represented in Figures 4A and 4B when the fluid admitted into the chamber 14 through the inlet 20 heats up, it causes the expansion of the material contained in the body 26A of the thermostatic element 26, which causes the deployment of the piston 26B towards the outlet 18.
  • This operating state corresponds to a lower cooling requirement for the EGR system 5, the engine 4 having a sufficiently high temperature so that a more moderate cooling of the exhaust gases is preferable.
  • the energy consumption at the radiator 2 is thus reduced compared to that corresponding to the Figures 3A and 3B .
  • valve 7 controls the intake of fluid from the engine, at the inlet 8 of the radiator 8.
  • This fluid thus feeds the valve 10 at its inlet 22, as indicated by the arrow 60 to Figures 5A and 5B .
  • This fluid flows freely to the outlet 18 of the valve 10, as indicated by the arrow 61, and supplies the compartment 2B of the radiator 2, as indicated by the arrow 62, where it is cooled.
  • Figures 4A and 5A the temperature value of the fluid admitted into the valve 10 through the inlet 6 has increased, so that the piston 26B of the thermostatic element 26 has continued to deploy vis-à-vis the body 26A.
  • ⁇ 2 is equal to about 93 ° C.
  • This flow bypasses the valve 40 radially and penetrates inside the sleeve 32, from where it is evacuated via the perforated zones 32B of the sleeve, to join the outlet 16
  • This fluid then mixes with that admitted at the inlet 6 (arrow 50) and feeds the other compartment 2A of the radiator 2 (arrow 51) to be cooled.
  • the fluid supplying the valve 10 at its inlet 8 is sent to the two compartments 2A and 2B of the radiator 2, which thus makes it possible to use the maximum cooling capacity of this radiator.
  • the flow rate of fluid circulating inside the sleeve 32 on the Figure 6A is significantly greater, for example by a factor of 10, than that of the flow around this sleeve on the figure 3A .
  • the internal arrangement of the valve 10 is designed to take account of the significantly different fluid flows that flow through the engine 4, on the one hand, and through the EGR system 5 on the other hand.
  • the spring 44 recalls successively the body 28A of the thermostatic element 28 with respect to its piston 28B, then, if the temperature further decreases and the valve 40 comes back against the sleeve 32, the piston 26B of the thermostatic element 26 towards its body 26A, until reaching the configuration of the figure 3A when the engine 4 is stopped and is completely cooled.
  • the use of the stirrup 30 makes it possible to maintain the thermostatic assembly 24, that is to say the thermostatic elements 26 and 28 and the spring 44, in its configuration. figures 2 and 3A before assembly to the housing 12.
  • This assembly consists, in essence, in bringing the caliper provided with this assembly, by inserting the plate 30C in the slideways 36 of the housing 12, as explained above.
  • the thermostatic assembly 24 is directly attached to the chamber 14 of the housing 12, the wall delimiting this chamber then being at the same time provided with means for immobilizing the body 26A of the thermostatic element 26, which is similar. to the ring 30A, and delimiting a seat to be closed by the sleeve 32, similar to the seat 34 defined by the through opening in the plate 30C.
  • the arrangement of the inlets 20, 22 and outputs 16, 18 of the valve 10 can be modified, in particular as a function of the geometry of the radiator 2 and the implantation of this valve within this radiator.

Description

La présente invention concerne une vanne thermostatique de régulation d'un fluide, ainsi qu'un circuit de refroidissement d'un moteur thermique et d'un système de re-circulation des gaz d'échappement provenant de ce moteur, comportant une telle vanne.The present invention relates to a thermostatic valve for regulating a fluid, as well as a cooling circuit for a heat engine and a system for recirculating the exhaust gases coming from this engine, comprising such a valve.

Dans de nombreuses applications du domaine fluidique, notamment pour le refroidissement de moteurs thermiques de véhicules, ce type de vanne est utilisé pour répartir le fluide entrant dans la vanne vers différentes voies de sortie, en fonction de la température de ce fluide entrant. Ainsi, de manière classique, en amont d'un radiateur chargé d'évacuer la chaleur excédentaire d'un fluide de refroidissement provenant d'un moteur à refroidir, une vanne peut être utilisée pour, à la fois, commander le refroidissement, par le radiateur, du fluide entrant dans la vanne lorsque, ce fluide s'échauffe et commander un plus grand refroidissement du fluide par le radiateur lorsque la température du fluide entrant augmente tant qu'elle dépasse une valeur seuil préfixée. Pour commander la régulation de l'écoulement du fluide à travers la vanne, cette dernière est munie d'un élément thermostatique contenant une matière dilatable telle qu'une cire.In many applications of the fluidic field, particularly for the cooling of thermal engines of vehicles, this type of valve is used to distribute the fluid entering the valve to different output channels, depending on the temperature of the incoming fluid. Thus, conventionally, upstream of a radiator designed to evacuate the excess heat of a cooling fluid coming from a motor to be cooled, a valve can be used to simultaneously control the cooling, by the radiator, fluid entering the valve when the fluid is heated and control greater cooling of the fluid by the radiator when the temperature of the incoming fluid increases as it exceeds a threshold value prefixed. To control the flow of fluid through the valve, the valve is provided with a thermostatic element containing an expandable material such as wax.

Par ailleurs, pour des raisons liées à la protection de l'environnement, de plus en plus de moteurs thermiques sont associés à un système de re-circulation des gaz d'échappement, communément appelé système « EGR », le sigle précité reprenant les initiales du nom de ce système en langue anglaise, à savoir système « Exhaust Gas Recirculation ». Ce système est un dispositif antipollution qui injecte une partie des gaz d'échappement, provenant du moteur, dans la tubulure d'admission de ce moteur, pour réduire les crêtes de température de combustion et donc, la formation d'oxydes d'azote. Avant d'injecter les gaz d'échappement dans la tubulure d'admission du moteur, il est nécessaire de les refroidir au moyen d'un fluide de refroidissement qui circule avantageusement dans le même circuit que le circuit de refroidissement du moteur, en particulier au niveau du radiateur chargé d'évacuer la chaleur excédentaire du fluide de refroidissement. Lors du démarrage du moteur, pour éviter d'injecter dans la tubulure d'admission du moteur des gaz d'échappement nettement plus chauds que cette tubulure et permettre ainsi une montée plus homogène en température du moteur, il est souhaitable de refroidir plus intensément, que durant le reste de la durée de fonctionnement du moteur, le fluide de refroidissement afin que les gaz d'échappement injectés soit les plus refroidis possibles. Cette régulation du fluide de refroidissement vis-à-vis du système EGR peut être assurée par une vanne thermostatique, agencée en amont du radiateur précité.Moreover, for reasons related to the protection of the environment, more and more heat engines are associated with an exhaust gas recirculation system, commonly known as "EGR" system, the aforementioned abbreviation containing the initials the name of this system in English, namely "Exhaust Gas Recirculation" system. This system is an antipollution device that injects a portion of the exhaust gas, from the engine into the intake manifold of the engine, to reduce the peaks of combustion temperature and thus the formation of nitrogen oxides. Before injecting the exhaust gases into the tubing intake of the engine, it is necessary to cool them by means of a cooling fluid which advantageously circulates in the same circuit as the cooling circuit of the engine, in particular at the level of the radiator responsible for removing excess heat from the fluid cooling. When starting the engine, to avoid injecting into the intake manifold of the engine much hotter exhaust gases than this manifold and thus allow a more homogeneous increase in engine temperature, it is desirable to cool more intensely, during the remainder of the engine running time, the coolant so that the injected exhaust gas is as cool as possible. This regulation of the cooling fluid vis-à-vis the EGR system can be provided by a thermostatic valve, arranged upstream of the aforementioned radiator.

Cependant, la présence de deux vannes distinctes juste en amont du radiateur, à savoir la vanne de régulation de fluide vis-à-vis du moteur thermique et la vanne de régulation du fluide vis-à-vis du système EGR, pose des problèmes d'encombrement. En outre, elle conduit généralement à un sur-dimensionnement du radiateur qui, en pratique, présente une première partie dédiée à l'échange thermique du fluide provenant du moteur et une seconde partie dédiée à l'échange thermique du fluide provenant du système EGR, chaque partie de radiateur étant dimensionnée indépendamment l'une de l'autre, en fonction des besoins maximaux de refroidissement pour le moteur à refroidir d'une part et pour le système EGR d'autre part.However, the presence of two separate valves just upstream of the radiator, namely the fluid control valve vis-à-vis the engine and the fluid control valve vis-à-vis the EGR system, poses problems of congestion. In addition, it generally leads to over-sizing of the radiator which, in practice, has a first part dedicated to the heat exchange of the fluid from the engine and a second part dedicated to the heat exchange of the fluid from the EGR system, each radiator portion being dimensioned independently of one another, according to the maximum cooling requirements for the engine to be cooled on the one hand and for the EGR system on the other hand.

L'utilisation d'un vanne unique commandée est connu de US 5 353 757 .The use of a single controlled valve is known to US 5,353,757 .

Le but de la présente invention est de proposer une vanne thermostatique destinée à réguler la circulation d'un fluide de refroidissement tant vis-à-vis d'un moteur thermique à refroidir que d'un système EGR à refroidir, en limitant autant que possible le dimentionnement d'un radiateur commun vers lequel est envoyé le fluide en sortie de vanne.The object of the present invention is to propose a thermostatic valve intended to regulate the circulation of a cooling fluid both with respect to a heat engine to be cooled and from an EGR system to be cooled, limiting as much as possible the dimentionning of a common radiator to which is sent the fluid at the valve outlet.

A cet effet, l'invention a pour objet une vanne thermostatique de régulation d'un fluide, telle que définie à la revendication 1.For this purpose, the invention relates to a thermostatic valve for regulating a fluid, as defined in claim 1.

Grâce à l'invention, on réunit au niveau d'une seule vanne thermostatique les fonctions de deux vannes prévues séparées dans l'art antérieur. La vanne selon l'invention peut en effet agir à la fois sur une première voie de fluide circulant librement entre la première entrée et la première sortie délimitées par le boîtier de vanne et sur une seconde voie de fluide circulant entre la deuxième entrée et la deuxième sortie du boîtier. Tant que la valeur de la température du fluide à réguler par la vanne est mitigée, c'est-à-dire, plus précisément, lorsque la valeur de la température du fluide circulant dans la première voie est supérieure à la première valeur seuil prédéterminée et que la valeur de la température du fluide circulant dans la seconde voie est inférieure à la seconde valeur seuil prédéterminée, les deux voies de fluide circulent distinctement l'une de l'autre à travers la vanne, sans se mélanger. En revanche, lorsque la température du fluide de la première voie est inférieure à la première valeur seuil, ou bien lorsque la température du fluide de la seconde voie est supérieure à la seconde valeur seuil, c'est-à-dire, en pratique, lorsqu'un moteur thermique à refroidir par un circuit de refroidissement équipé de la vanne selon l'invention est soit en phase de montée en température juste après démarrage, soit sollicité sous une forte charge, les deux voies de fluide précitées se mélangent et le fluide sortant de la vanne est évacué au niveau des deux sorties du boîtier indépendamment de leur voie de provenance. Autrement dit, en agençant un radiateur en sortie de la vanne selon l'invention, l'échange thermique avec le fluide au niveau du radiateur est accru à la fois en basse température, c'est-à-dire en phase de démarrage du moteur durant laquelle les gaz d'échappement du moteur sont avantageusement à refroidir plus intensément au niveau d'un système EGR balayé par le fluide, soit en haute température, c'est-à-dire lorsque le moteur à refroidir par le fluide fonctionne sous une forte charge.Thanks to the invention, the functions of two separate valves provided in the prior art are combined at a single thermostatic valve. The valve according to the invention can indeed act both on a first fluid path flowing freely between the first inlet and the first outlet delimited by the valve housing and on a second fluid path flowing between the second inlet and the second inlet. exit from the case. As long as the value of the temperature of the fluid to be regulated by the valve is mitigated, that is to say, more precisely, when the value of the temperature of the fluid flowing in the first channel is greater than the first predetermined threshold value and that the value of the temperature of the fluid flowing in the second channel is less than the second predetermined threshold value, the two fluid paths circulate distinctly from one another through the valve, without mixing. On the other hand, when the temperature of the fluid of the first channel is lower than the first threshold value, or when the temperature of the fluid of the second channel is greater than the second threshold value, that is to say, in practice, when a heat engine to be cooled by a cooling circuit equipped with the valve according to the invention is either in a temperature rise phase just after starting, or is stressed under a heavy load, the two fluid channels mentioned above are mixed and the fluid leaving the valve is evacuated at the two outputs of the housing regardless of their route of origin. In other words, by arranging a radiator at the outlet of the valve according to the invention, the heat exchange with the fluid at the radiator is increased both at low temperature, that is to say in the engine startup phase during which the engine exhaust gases are advantageously cooled more intensely at a system EGR swept by the fluid, either at high temperature, that is to say when the engine to cool by the fluid operates under a heavy load.

D'autres caractéristiques de cette vanne, prises isolément ou selon toutes les combinaisons techniquement possibles, sont énoncées aux revendications dépendantes 2 à 8.Other features of this valve, taken alone or in any technically possible combination, are set forth in dependent claims 2 to 8.

L'invention a également pour objet un circuit de refroidissement d'un moteur thermique et d'un système de re-circulation des gaz d'échappement provenant de ce moteur, tel que défini à la revendication 9.The invention also relates to a cooling circuit of a heat engine and a system for recirculating the exhaust gases from this engine, as defined in claim 9.

Une caractéristique avantageuse de ce circuit de refroidissement est énoncée à la revendication 10.An advantageous feature of this cooling circuit is set forth in claim 10.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins sur lesquels :

  • la figure 1 est une vue schématique d'un circuit de refroidissement selon l'invention ;
  • la figure 2 est une vue en élévation d'une vanne selon l'invention, équipant le circuit de la figure 1 ;
  • les figures 3A, 4A, 5A et 6A sont des coupes selon le plan A-A de la figure 2, illustrant différents états de fonctionnement de la vanne ; et
  • les figures 3B, 4B, 5B et 6B sont des vues schématiques analogues à la figure 1, d'une partie du circuit de la figure 1, illustrant la circulation du fluide correspondant respectivement aux figures 3A, 4A, 5A et 6A.
The invention will be better understood on reading the description which follows, given solely by way of example and with reference to the drawings in which:
  • the figure 1 is a schematic view of a cooling circuit according to the invention;
  • the figure 2 is an elevational view of a valve according to the invention, equipping the circuit of the figure 1 ;
  • the Figures 3A, 4A , 5A and 6A are cuts according to the AA plan of the figure 2 , illustrating different operating states of the valve; and
  • the Figures 3B, 4B , 5B and 6B are schematic views analogous to the figure 1 , part of the circuit of the figure 1 , illustrating the circulation of the fluid corresponding respectively to Figures 3A, 4A , 5A and 6A .

Sur la figure 1 est représenté un circuit 1 de circulation d'un fluide de refroidissement, comportant un radiateur 2 chargé d'évacuer la chaleur excédentaire du fluide de refroidissement le traversant et une pompe 3 chargée de faire circuler le fluide dans le circuit. Le circuit 1 est associé à un moteur thermique 4 à refroidir et à un système 5, à refroidir, de re-circulation des gaz d'échappement. Comme expliqué plus haut, le système 5, couramment appelé système EGR, est un dispositif antipollution qui injecte une partie des gaz d'échappement provenant du moteur 4 dans la tubulure d'admission de ce moteur, pour réduire les crêtes de température de combustion et, par là, la formation d'oxydes d'azote.On the figure 1 is shown a circuit 1 for circulating a cooling fluid, comprising a radiator 2 responsible for discharging the excess heat of the cooling fluid therethrough and a pump 3 for circulating the fluid in the circuit. The circuit 1 is associated with a heat engine 4 to cool and a system 5, to cool, recirculation of the exhaust gas. As explained above, the system 5, commonly called the EGR system, is an antipollution device that injects a portion of the exhaust gas from the engine 4 into the intake manifold of this engine, to reduce the combustion temperature peaks. hence the formation of nitrogen oxides.

En fonctionnement, la pompe 3 refoule du fluide de refroidissement à la fois vers le système EGR 5 et vers le moteur 4, pour les refroidir. Après avoir circulé au niveau du système 5, le circuit 1 envoie le fluide vers le radiateur 2, jusqu'à une entrée 6 de ce radiateur. De même, après avoir refroidi le moteur 4, le fluide est envoyé par le circuit 1 vers une vanne de régulation 7 qui renvoie directement vers la pompe 3 le fluide entrant dans cette vanne et/ou qui envoie le fluide vers le radiateur 2, jusqu'à une entrée 8 distincte de l'entrée 6. De manière classique, la vanne 7 commande la régulation du fluide l'alimentant en fonction de la température de ce dernier, le fluide n'étant envoyé au radiateur que lorsqu'il présente une température trop importante pour garantir un refroidissement efficace du moteur 4. Pour un moteur thermique de véhicule automobile, la vanne 7 envoie le fluide provenant du moteur 4 jusqu'au radiateur 2 lorsque sa température dépasse environ 80 à 90°C.In operation, the pump 3 delivers cooling fluid to both the EGR system 5 and the motor 4, to cool them. After having circulated at the level of the system 5, the circuit 1 sends the fluid to the radiator 2, to an inlet 6 of this radiator. Similarly, after having cooled the motor 4, the fluid is sent by the circuit 1 to a regulating valve 7 which sends back directly to the pump 3 the fluid entering this valve and / or which sends the fluid towards the radiator 2, until to an inlet 8 distinct from the inlet 6. In a conventional manner, the valve 7 controls the regulation of the fluid supplying it as a function of the temperature of the latter, the fluid being sent to the radiator only when it presents a temperature too high to ensure effective cooling of the engine 4. For a motor vehicle engine, the valve 7 sends the fluid from the engine 4 to the radiator 2 when its temperature exceeds about 80 to 90 ° C.

Le fluide admis au niveau des entrées 6 et 8 du radiateur 2 alimente deux compartiments distincts 2A et 2B délimités à l'intérieur du corps de refroidissement 2C de ce radiateur et séparés l'un de l'autre par une cloison étanche 2D d'échange thermique avec l'extérieur. A cet effet, le radiateur 2 est équipé d'une vanne 10 destinée à réguler l'écoulement du fluide entre, d'une part, les entrées 6 et 8 et, d'autre part, les compartiments 2A et 2B, comme expliqué ci-dessous. En aval de chaque compartiment, le fluide est évacué vers l'extérieur du corps 2C du radiateur 2, au niveau d'une sortie d'aspiration 9 commune, raccordée à la pompe 3.The fluid admitted at the inlets 6 and 8 of the radiator 2 feeds two separate compartments 2A and 2B delimited inside the cooling body 2C. this radiator and separated from each other by a 2D heat exchange bulkhead with the outside. For this purpose, the radiator 2 is equipped with a valve 10 intended to regulate the flow of the fluid between, on the one hand, the inlets 6 and 8 and, on the other hand, the compartments 2A and 2B, as explained herein. -Dessous. Downstream of each compartment, the fluid is discharged to the outside of the body 2C of the radiator 2, at a common suction outlet 9, connected to the pump 3.

Sur les figures 2, 3A, 4A, 5A, et 6A est représentée en détail la vanne de régulation 10 agencée entre les entrées 6, 8 et les compartiments 2A, 2B du radiateur 2. La vanne 10 comporte un boîtier externe 12 globalement tubulaire d'axe longitudinal X-X et présentant, par exemple, une section transversale en forme générale de U ouvert en direction du lecteur observant la figure 2. Le boîtier 12 est intégré en totalité à l'intérieur du corps 2C du radiateur 2, en s'étendant au travers de la cloison 2D, du côté des entrées 6 et 8 du radiateur. Le boîtier 12 délimite ainsi intérieurement, au niveau de sa partie courante, une chambre allongée 14 de circulation fluidique entre ses extrémités longitudinales 16 et 18 qui débouchent librement dans respectivement les compartiments 2A et 2B et qui forment ainsi, pour la vanne 10, des sorties de fluide raccordées à ces compartiments. La partie courante de la chambre 14 est prévue pour être alimentée en fluide au niveau de deux entrées 20 et 22, disposées l'une derrière l'autre suivant l'axe X-X et raccordées respectivement aux entrées 6 et 8 du radiateur 2.On the figures 2 , 3A , 4A , 5A, and 6A is shown in detail the control valve 10 arranged between the inlets 6, 8 and the compartments 2A, 2B of the radiator 2. The valve 10 comprises an outer casing 12 generally tubular longitudinal axis XX and having, for example, a cross section in the general U-shape open towards the reader observing the figure 2 . The housing 12 is completely integrated inside the body 2C of the radiator 2, extending through the 2D partition, the side of the inputs 6 and 8 of the radiator. The housing 12 thus delimits internally, at its current portion, an elongate fluid flow chamber 14 between its longitudinal ends 16 and 18 which open freely into respectively the compartments 2A and 2B and which thus form, for the valve 10, outlets fluid connected to these compartments. The current part of the chamber 14 is designed to be supplied with fluid at two inputs 20 and 22, arranged one behind the other along the axis XX and connected respectively to the inputs 6 and 8 of the radiator 2.

Le boîtier 12 est agencé de manière étanche à l'intérieur du corps 2C du radiateur 2 de sorte que, en amont des compartiments 2A et 2B, la circulation de fluide entre ces compartiments au sein du radiateur n'est possible qu'à travers la chambre 14, à d'éventuelles fuites près. A titre d'exemple, le boîtier 12 est venu de matière avec la cloison de séparation 2D, ainsi qu'avec les tubulures du corps 2C délimitant les entrées 6 et 8.The housing 12 is arranged in a sealed manner inside the body 2C of the radiator 2 so that, upstream of the compartments 2A and 2B, the fluid circulation between these compartments within the radiator is only possible through the room 14, to possible leaks near. AT For example, the housing 12 is integral with the partition wall 2D, and with the tubing of the body 2C delimiting the inputs 6 and 8.

La régulation de l'écoulement du fluide à travers la chambre 14 est assurée par un ensemble thermostatique 24 détaillé ci-après. Cet ensemble agit, en fonction des valeurs de température du fluide admis dans la chambre par les entrées 20 et 22, sur l'écoulement du fluide au niveau de la partie axiale de la chambre 14 située entre les entrées 20 et 22. Autrement dit, la configuration de cet ensemble est sans influence sur, d'une part, un écoulement de fluide entre l'entrée 20 et la sortie 16 et, d'autre part, un écoulement de fluide entre l'entrée 22 et la sortie 18, chacune de ces entrées 20, 22 étant en libre communication fluidique avec sa sortie correspondante 16, 18, via les parties d'extrémité longitudinale de la chambre 14.The regulation of the flow of the fluid through the chamber 14 is provided by a thermostatic assembly 24 detailed below. This assembly, as a function of the temperature values of the fluid admitted into the chamber through the inlets 20 and 22, acts on the flow of the fluid at the axial portion of the chamber 14 situated between the inlets 20 and 22. In other words, the configuration of this assembly has no influence on, on the one hand, a flow of fluid between the inlet 20 and the outlet 16 and, on the other hand, a flow of fluid between the inlet 22 and the outlet 18, each of these inputs 20, 22 being in free fluid communication with its corresponding output 16, 18, via the longitudinal end portions of the chamber 14.

L'ensemble thermostatique 24 comporte deux éléments thermostatiques 26 et 28 maintenus par rapport au boîtier 12 par un étrier rigide 30, par exemple en métal, lié rigidement à la paroi du boîtier délimitant la chambre 14. Chaque élément 26, 28 est muni d'un corps 26A, 28A contenant une matière dilatable, telle qu'une cire, et d'un piston 26B, 28B mobile par rapport au corps sous l'effet de la dilatation de la matière. Les éléments thermostatiques 26 et 28 s'étendent en longueur suivant l'axe X-X, en étant co-axiaux l'un à l'autre, leur piston 26B, 28B étant dirigés l'un vers l'autre et essentiellement situés, suivant l'axe X-X, entre les entrées 20 et 22 du boîtier 12. La partie thermosensible du corps 26A de l'élément 6 est disposée sur le trajet d'écoulement du fluide entre l'entrée 20 et la sortie 16 tandis que la partie thermosensible du corps 28A de l'élément 28 est disposée sur le trajet d'écoulement du fluide entre l'entrée 22 et la sortie 18.The thermostatic assembly 24 comprises two thermostatic elements 26 and 28 held in relation to the housing 12 by a rigid stirrup 30, for example of metal, rigidly connected to the wall of the housing delimiting the chamber 14. Each element 26, 28 is provided with a body 26A, 28A containing an expandable material, such as a wax, and a piston 26B, 28B movable relative to the body under the effect of the expansion of the material. The thermostatic elements 26 and 28 extend in length along the axis XX, being coaxial with each other, their piston 26B, 28B being directed towards one another and essentially located, according to the XX axis, between the inputs 20 and 22 of the housing 12. The thermosensitive part of the body 26A of the element 6 is disposed on the flow path of the fluid between the inlet 20 and the outlet 16 while the thermosensitive portion of the 28A body of the element 28 is disposed in the flow path of the fluid between the inlet 22 and the outlet 18.

Le corps 26A de l'élément thermostatique 26 est immobilisé par rapport au boîtier 12, en étant par exemple emmanché à force dans une couronne annulaire fixe 30A de l'étrier 30, qui constitue l'extrémité libre d'une paire de bras rigides 30B de l'étrier, venus de matière, dans une direction parallèle à l'axe X-X, depuis une plaque transversale 30C de l'étrier immobilisée, suivant l'axe X-X, par rapport au boîtier 12 en étant reçue dans des glissières 36 ou analogues venues de matière avec la paroi du boîtier délimitant la chambre 14. En pratique, lors de l'assemblage de la vanne 10, la plaque 30C est introduite dans les glissières 36 suivant la direction d'observation de la figure 2, c'est-à-dire suivant une direction à la fois perpendiculaire à l'axe X-X et appartenant au plan de symétrie longitudinale du boîtier en U 12 ; une fois positionnée comme aux figures 2 et 3A, la plaque 30C bloque axialement le reste de l'étrier rigide 30 par rapport au boîtier 12 tandis qu'il peut en outre être prévu de retenir la plaque par rapport au boîtier selon sa direction d'introduction précitée, par exemple, par un couvercle ou d'autres moyens analogues. La plaque 30C présente, vue suivant l'axe X-X, un contour périphérique en forme de U, sensiblement complémentaire du contour interne de la section transversale du boîtier 12, de sorte que, en fonctionnement, la plaque 30C divise hermétiquement la chambre 14 en deux sous-volumes distincts respectivement associés à l'élément thermostatique 26 et à l'élément 28.The body 26A of the thermostatic element 26 is immobilized with respect to the housing 12, being for example force-fitted into a fixed annular ring 30A of the stirrup 30, which constitutes the free end of a pair of rigid arms 30B of the stirrup, made of material, in a direction parallel to the axis XX, from a transverse plate 30C of the immobilized stirrup, along the axis XX, relative to the housing 12 being received in slides 36 or the like integrally with the wall of the housing delimiting the chamber 14. In practice, during the assembly of the valve 10, the plate 30C is introduced into the slides 36 in the direction of observation of the figure 2 , that is to say in a direction both perpendicular to the axis XX and belonging to the longitudinal plane of symmetry of the U-shaped housing 12; once positioned as figures 2 and 3A , the plate 30C axially blocks the rest of the rigid yoke 30 relative to the housing 12 while it can further be provided to retain the plate relative to the housing in its aforementioned introduction direction, for example, by a cover or other similar means. The plate 30C has, seen along the axis XX, a U-shaped peripheral contour, substantially complementary to the internal contour of the cross-section of the housing 12, so that, in operation, the plate 30C hermetically divides the chamber 14 in two distinct subvolumes respectively associated with the thermostatic element 26 and the element 28.

Le piston 26B de l'élément 26 porte un manchon tubulaire 32 centré, en longueur, sur l'axe X-X et s'étendant entre les bras 30B de l'étrier. Le manchon 32 est dimensionné pour venir s'appuyer radialement, au niveau de sa face extérieure, contre un siège 34 délimité par une ouverture qui traverse de part en part la plaque 30C de l'étrier 30 en étant centrée sur l'axe X-X. En fonctionnement, le manchon 32 est prévu pour coulisser axialement selon l'axe X-X de manière à soit s'étendre de façon axialement distante du siège 34 pour permettre une libre circulation de fluide à travers le siège, autour du manchon 32, comme à la figure 3A, soit obturer ce siège par appui radial, comme à la figure 4A.The piston 26B of the element 26 carries a tubular sleeve 32 centered, in length, on the axis XX and extending between the arms 30B of the stirrup. The sleeve 32 is sized to bear radially, at its outer face, against a seat 34 delimited by a opening which passes right through the plate 30C of the stirrup 30 being centered on the axis XX. In operation, the sleeve 32 is provided to slide axially along the axis XX so as to extend axially distant from the seat 34 to allow free flow of fluid through the seat, around the sleeve 32, as in FIG. figure 3A , or close this seat by radial support, as in Figure 4A .

Le déplacement en translation du manchon 32 est commandé par le piston 26B de l'élément thermostatique 26. A cet effet, le manchon 32 est intérieurement venu de matière avec un pontet 38 d'appui de l'extrémité libre du piston 26B. Plus précisément, ce pontet d'appui délimite un logement borgne 38A de réception et d'appui de l'extrémité libre du piston 26B.The translational movement of the sleeve 32 is controlled by the piston 26B of the thermostatic element 26. For this purpose, the sleeve 32 is internally integrally with a bridge 38 bearing the free end of the piston 26B. More specifically, this support bridge delimits a blind housing 38A for receiving and supporting the free end of the piston 26B.

Du côté axialement opposé au piston 26B, le pontet d'appui 38 délimite un second logement borgne 38B recevant l'extrémité libre du piston 28B du second élément thermostatique 28. Le corps 28A de cet élément 28 est lié rigidement à un clapet 40, en étant par exemple emmanché à force dans une ouverture centrale de ce clapet. La couronne extérieure du clapet 40 est conformée pour venir s'appuyer de manière étanche contre le chant d'extrémité libre 32A du manchon 32, dirigé vers l'entrée 22, formant siège. En fonctionnement, lorsque le clapet 40 est axialement distant du chant 32A, comme à la figure 6A, du fluide peut librement s'écouler, à travers la chambre 14, entre les sorties 16 et 18 en passant à l'intérieur du manchon tubulaire 32, la paroi du manchon étant ajourée en plusieurs zones 32B au niveau de parties du manchon qui ne sont pas destinées, en fonctionnement, à venir s'appuyer contre le siège 34. Lorsque le clapet 40 est en appui contre le chant 32A, l'écoulement de fluide précité est empêché, comme sur la figure 5A.On the axially opposite side of the piston 26B, the support bridge 38 delimits a second blind housing 38B receiving the free end of the piston 28B of the second thermostatic element 28. The body 28A of this element 28 is rigidly connected to a valve 40, in being for example force-fitted into a central opening of this valve. The outer ring of the valve 40 is shaped to bear tightly against the free end edge 32A of the sleeve 32, directed towards the inlet 22, forming a seat. In operation, when the valve 40 is axially remote from the edge 32A, as in FIG. Figure 6A , fluid can freely flow through the chamber 14 between the outlets 16 and 18 passing inside the tubular sleeve 32, the wall of the sleeve being perforated in several areas 32B at portions of the sleeve which does not are not intended, in operation, to abut against the seat 34. When the valve 40 is in abutment against the edge 32A, the aforementioned fluid flow is prevented, as on the Figure 5A .

Comme représenté aux figures 2 et 3A, l'ensemble thermostatique 24 comporte en outre un ressort de compression 44 axialement interposé entre le clapet 40 et une couronne annulaire 30D de l'étrier 30, qui est agencée à l'extrémité libre d'une paire de bras 30E de l'étrier, entre lesquels s'étend en longueur le corps 28A de l'élément 28 et venus de matière, dans une direction parallèle à l'axe X-X et globalement dans le prolongement axial des bras 30E, depuis la plaque transversale 30C. Cette couronne 30D est prévue pour faire supporter l'effort de poussée du ressort 44 aux bras 30E, qui travaillent alors en traction, tant que l'ensemble thermostatique 24 n'est pas assemblé au boîtier 12. Une fois que cet assemblage est réalisé, la couronne 30D est axialement appuyée contre des pièces d'appui 46 solidaires du boîtier 12, par exemple venues de matière avec la paroi intérieure du boîtier. En fonctionnement, la couronne 30D et ces pièces d'appui 46 coopèrent ainsi pour encaisser les efforts du ressort 44, les pièces d'appui déchargeant les bras 30E pour supporter, en compression, l'essentiel de ces efforts.As represented in figures 2 and 3A , the thermostatic assembly 24 further comprises a compression spring 44 axially interposed between the valve 40 and an annular ring 30D of the stirrup 30, which is arranged at the free end of a pair of arms 30E of the stirrup , between which extends the body 28A of the element 28 and made of material, in a direction parallel to the axis XX and generally in the axial extension of the arms 30E, from the transverse plate 30C. This ring 30D is provided to support the thrust force of the spring 44 to the arms 30E, which then work in tension, as the thermostatic assembly 24 is not assembled to the housing 12. Once this assembly is made, the ring 30D is axially supported against bearing pieces 46 secured to the housing 12, for example integral with the inner wall of the housing. In operation, the ring 30D and these support pieces 46 and cooperate to cash the efforts of the spring 44, the support parts discharging the arms 30E to support, in compression, most of these efforts.

Le ressort 44 est dimensionné pour rappeler, l'un vers l'autre, chaque corps 26A, 28A et chaque piston 26B, 28B des éléments 26 et 28, après que ce corps et ce piston se soient éloignés l'un de l'autre sous l'effet de la dilatation de la matière contenue dans le corps. Le ressort 44 est en outre adapté pour maintenir le clapet 40 en appui étanche contre le chant d'extrémité 32A du manchon 32 tant que le piston 28B de l'élément 28 n'est pas suffisamment déployé vis-à-vis de son corps 28A pour pousser ce corps à l'encontre de la poussée du ressort.The spring 44 is sized to return each body 26A, 28A and each piston 26B, 28B of the elements 26 and 28, after this body and this piston have moved away from each other. under the effect of the dilation of the material contained in the body. The spring 44 is further adapted to maintain the valve 40 in sealing engagement against the end edge 32A of the sleeve 32 as the piston 28B of the element 28 is not sufficiently deployed with respect to its body 28A to push this body against the thrust of the spring.

Le fonctionnement du circuit 1 et de la vanne 10 va maintenant être décrit, en détaillant la circulation du fluide de refroidissement au sein de ce circuit et de cette vanne lors du démarrage du moteur 4 et de sa mise sous charge progressive.The operation of the circuit 1 and the valve 10 will now be described, detailing the circulation of the cooling fluid in this circuit and this valve when starting the engine 4 and its progressive loading.

Initialement, lorsque le moteur 4 est arrêté depuis un certain temps et que sa température correspond à la température ambiante, la vanne 10 est dans la configuration de la figure 3A, c'est-à-dire avec les pistons 26B et 28B escamotés au maximum à l'intérieur de leur corps associé 26A, 28A.Initially, when the engine 4 has been stopped for a certain time and its temperature corresponds to the ambient temperature, the valve 10 is in the configuration of the figure 3A , that is to say with the pistons 26B and 28B retracted to the maximum inside their associated body 26A, 28A.

Lors du démarrage du moteur 4, la pompe 3 aspire le fluide au niveau de la sortie 9 du radiateur 2 et le fait circuler au sein du circuit 1, en l'envoyant, d'une part, vers le système EGR 5 et, d'autre part, vers le moteur 4. Comme le moteur est « froid », c'est-à-dire qu'il présente une température relativement proche de la température ambiante, le fluide de refroidissement en sortie du moteur 4 est renvoyé directement à la pompe 3, via la vanne 7, sans alimenter l'entrée 8 du radiateur 2. Autrement dit, le débit de fluide au niveau de l'entrée 22 de la vanne 10 est nul.When starting the engine 4, the pump 3 draws the fluid at the outlet 9 of the radiator 2 and circulates it in the circuit 1, sending it, on the one hand, to the EGR system 5 and, d On the other hand, towards the engine 4. As the engine is "cold", that is to say that it has a temperature relatively close to the ambient temperature, the cooling fluid at the output of the engine 4 is returned directly to the engine. the pump 3, via the valve 7, without supplying the inlet 8 of the radiator 2. In other words, the flow of fluid at the inlet 22 of the valve 10 is zero.

Comme expliqué précédemment, lors du démarrage du moteur 4, il est souhaitable que les gaz d'échappement injectés dans le moteur 4 par le système EGR 5 présentent une température la plus basse possible pour éviter la génération de contraintes thermiques entre la tubulure d'admission des gaz d'échappement chauds et le reste du moteur 4 relativement froid. En pratique, durant cette phase de démarrage du moteur, le fluide de refroidissement circulant dans le système EGR 5 se doit d'être le plus froid possible. A cet effet, après avoir traversé le système 5, du fluide de refroidissement est envoyé vers le radiateur 2, au niveau de son entrée 6, comme indiqué par la flèche 50 aux figures 3A et 3B. Il pénètre dans la chambre 14 de la vanne 10 en empruntant l'entrée 20 et s'écoule, d'une part, vers la sortie 16 de manière libre, comme indiqué par la flèche 51, pour alimenter le compartiment 2A du radiateur (flèche 52) et, d'autre part, vers l'autre sortie 18 de la vanne 10 en longeant extérieurement le manchon 32 jusqu'à franchir axialement le siège 34 non obturé par le manchon, comme indiqué par la flèche 53. En aval de la sortie 18, le fluide alimente le compartiment 2B du radiateur 2 (flèche 54).As explained above, when starting the engine 4, it is desirable that the exhaust gases injected into the engine 4 by the EGR system 5 have the lowest temperature possible to avoid the generation of thermal stresses between the intake manifold. hot exhaust gases and the remainder of the engine 4 relatively cold. In practice, during this engine start-up phase, the cooling fluid circulating in the EGR system 5 must be as cold as possible. For this purpose, after passing through the system 5, cooling fluid is sent to the radiator 2, at its inlet 6, as indicated by the arrow 50 to Figures 3A and 3B . It enters the chamber 14 of the valve 10 through the inlet 20 and flows, on the one hand, to the outlet 16 freely, as indicated by the arrow 51, to supply the compartment 2A of the radiator (arrow 52) and, on the other hand, to the other outlet 18 of the valve 10 by going along the outside of the sleeve 32 to cross axially the seat 34 closed by the sleeve, as indicated by the arrow 53. Downstream of the outlet 18, the fluid feeds the compartment 2B of the radiator 2 (arrow 54).

Ainsi, durant la phase de démarrage du moteur 4, la totalité du fluide provenant du système EGR 5 est refroidi par les deux compartiments 2A et 2B du radiateur 2, la surface d'échange thermique avec le fluide au niveau du radiateur 2 étant ainsi maximale.Thus, during the starting phase of the engine 4, all the fluid coming from the EGR system 5 is cooled by the two compartments 2A and 2B of the radiator 2, the heat exchange surface with the fluid at the radiator 2 thus being maximum .

Progressivement, le moteur 4 s'échauffe et la valeur de température du fluide de refroidissement circulant dans le circuit 1 s'élève, jusqu'à atteindre une première valeur seuil de température, appelée par la suite θ1, à laquelle l'écoulement de fluide, à travers la chambre 14, entre l'entrée 20 et la sortie 18 est interrompue par le manchon 32. A titre d'exemple, θ1 est égale à 36°C environ. Plus précisément, comme représenté aux figures 4A et 4B, lorsque le fluide admis dans la chambre 14 par l'entrée 20 s'échauffe, il provoque la dilatation de la matière contenue dans le corps 26A de l'élément thermostatique 26, ce qui entraîne le déploiement du piston 26B en direction de la sortie 18. L'extrémité libre de ce piston 26B appuie alors axialement sur le pontet 38 et entraîne de manière correspondante le manchon 32 en translation axiale vers la sortie 18, jusqu'à ce que ce manchon vienne s'appuyer radialement contre le siège 34. Lorsque le fluide entrant ainsi dans la vanne 10 atteint la valeur de température θ1, le manchon 32 obture hermétiquement le siège 34 et l'écoulement indiqué par la flèche 53 aux figures 3A et 3B est interrompu. Dans cette configuration, le fluide admis par l'entrée 6 dans le radiateur (flèche 50) est envoyé en totalité, via successivement l'entrée 20, l'extrémité de la chambre 14 et la sortie 16, dans le compartiment 2A du radiateur 2, suivant l'écoulement indiqué par les flèches 51 et 52. Le compartiment 2B n'est plus sollicité. Cet état de fonctionnement correspond à un besoin de refroidissement moindre pour le système EGR 5, le moteur 4 présentant une température suffisamment importante pour qu'un refroidissement plus modéré des gaz d'échappement soit préférable. La consommation énergétique au niveau du radiateur 2 est ainsi réduite par rapport à celle correspondant aux figures 3A et 3B.Progressively, the motor 4 heats up and the temperature value of the cooling fluid circulating in the circuit 1 rises, until reaching a first threshold temperature value, hereinafter referred to as θ 1 , at which the flow of fluid, through the chamber 14, between the inlet 20 and the outlet 18 is interrupted by the sleeve 32. By way of example, θ 1 is equal to 36 ° C. More specifically, as represented in Figures 4A and 4B when the fluid admitted into the chamber 14 through the inlet 20 heats up, it causes the expansion of the material contained in the body 26A of the thermostatic element 26, which causes the deployment of the piston 26B towards the outlet 18. The free end of this piston 26B then bears axially on the bridge 38 and correspondingly drives the sleeve 32 in axial translation towards the outlet 18, until this sleeve comes to bear radially against the seat 34. When the fluid thus entering the valve 10 reaches the temperature value θ 1 , the sleeve 32 hermetically seals the seat 34 and the flow indicated by the arrow 53 to Figures 3A and 3B is interrupted. In this configuration, the fluid admitted the inlet 6 in the radiator (arrow 50) is sent in all, via successively the inlet 20, the end of the chamber 14 and the outlet 16, in the compartment 2A of the radiator 2, according to the flow indicated by arrows 51 and 52. The compartment 2B is no longer solicited. This operating state corresponds to a lower cooling requirement for the EGR system 5, the engine 4 having a sufficiently high temperature so that a more moderate cooling of the exhaust gases is preferable. The energy consumption at the radiator 2 is thus reduced compared to that corresponding to the Figures 3A and 3B .

Ensuite, comme le moteur 4 continue de s'échauffer, il devient nécessaire de le refroidir. La vanne 7 commande alors l'admission de fluide provenant du moteur, au niveau de l'entrée 8 du radiateur 8. Ce fluide alimente ainsi la vanne 10 au niveau de son entrée 22, comme indiqué par la flèche 60 aux figures 5A et 5B. Ce fluide s'écoule librement jusqu'à la sortie 18 de la vanne 10, comme indiqué par la flèche 61, et alimente le compartiment 2B du radiateur 2, comme indiqué par la flèche 62, où il est refroidi. On notera qu'entre les figures 4A et 5A, la valeur de température du fluide admis dans la vanne 10 par l'entrée 6 a augmenté, de sorte que le piston 26B de l'élément thermostatique 26 a continué de se déployer vis-à-vis de son corps 26A.Then, as the motor 4 continues to heat up, it becomes necessary to cool it. The valve 7 then controls the intake of fluid from the engine, at the inlet 8 of the radiator 8. This fluid thus feeds the valve 10 at its inlet 22, as indicated by the arrow 60 to Figures 5A and 5B . This fluid flows freely to the outlet 18 of the valve 10, as indicated by the arrow 61, and supplies the compartment 2B of the radiator 2, as indicated by the arrow 62, where it is cooled. It should be noted that Figures 4A and 5A , the temperature value of the fluid admitted into the valve 10 through the inlet 6 has increased, so that the piston 26B of the thermostatic element 26 has continued to deploy vis-à-vis the body 26A.

Lorsque le moteur 4 est sollicité sous forte charge, c'est-à-dire par exemple en montagne ou dans une forte chaleur ambiante, la capacité de refroidissement du fluide au niveau du compartiment 2B peut s'avérer insuffisante pour refroidir efficacement le moteur. Dans ce cas, la température du fluide évacué du moteur augmente jusqu'à atteindre une seconde valeur seuil de température, appelée par la suite θ2, à laquelle la vanne 10 autorise l'écoulement de fluide entre l'entrée 22 et la sortie 16, via la chambre 14. A titre d'exemple, θ2 est égale à 93°C environ. Plus précisément, comme représenté aux figures 6A et 6B pour lesquelles la température du fluide entrant est supérieure à la valeur de température θ2, l'échauffement de la partie thermosensible du corps 28A de l'élément thermostatique 28 provoque le déploiement de son piston 28B, ce qui implique la translation axiale du corps 28B par rapport au pontet d'appui 38 et, par là, l'écartement axial du clapet 40 vis-à-vis du chant d'extrémité 32A du manchon 32. Du fluide s'écoule alors entre l'entrée 22 et la sortie 16, via la chambre 14, comme indiqué par la flèche 63. Cet écoulement contourne radialement le clapet 40 et pénètre à l'intérieur du manchon 32, d'où il s'évacue via les zones ajourées 32B du manchon, pour rèjoindre la sortie 16. Ce fluide se mélange alors à celui admis au niveau de l'entrée 6 (flèche 50) et alimente l'autre compartiment 2A du radiateur 2 (flèche 51), pour y être refroidi. Dans cette configuration, le fluide alimentant la vanne 10 au niveau de son entrée 8 est envoyé aux deux compartiments 2A et 2B du radiateur 2, ce qui permet d'utiliser ainsi la capacité maximale de refroidissement de ce radiateur.When the motor 4 is stressed under heavy load, that is to say for example in the mountains or in high ambient heat, the cooling capacity of the fluid at the compartment 2B may be insufficient to effectively cool the engine. In this case, the temperature of the fluid discharged from the engine increases until reaching a second temperature threshold value, hereinafter referred to as θ 2 , to which the valve 10 allows the flow of fluid between the inlet 22 and the outlet 16, via the chamber 14. By way of example, θ 2 is equal to about 93 ° C. More specifically, as represented in Figures 6A and 6B for which the temperature of the incoming fluid is greater than the temperature value θ 2 , the heating of the thermosensitive part of the body 28A of the thermostatic element 28 causes the deployment of its piston 28B, which implies the axial translation of the body 28B relative to the support bridge 38 and, thereby, the axial spacing of the valve 40 vis-à-vis the end edge 32A of the sleeve 32. Fluid then flows between the inlet 22 and the outlet 16 , via the chamber 14, as indicated by the arrow 63. This flow bypasses the valve 40 radially and penetrates inside the sleeve 32, from where it is evacuated via the perforated zones 32B of the sleeve, to join the outlet 16 This fluid then mixes with that admitted at the inlet 6 (arrow 50) and feeds the other compartment 2A of the radiator 2 (arrow 51) to be cooled. In this configuration, the fluid supplying the valve 10 at its inlet 8 is sent to the two compartments 2A and 2B of the radiator 2, which thus makes it possible to use the maximum cooling capacity of this radiator.

On notera que le débit de fluide circulant à l'intérieur du manchon 32 sur la figure 6A est nettement supérieur, par exemple d'un facteur 10, à celui de l'écoulement autour de ce manchon sur la figure 3A. De la sorte, l'agencement interne de la vanne 10 est prévu pour tenir compte des débits de fluide significativement différents qui circulent à travers le moteur 4, d'une part, et à travers le système EGR 5 d'autre part.It will be noted that the flow rate of fluid circulating inside the sleeve 32 on the Figure 6A is significantly greater, for example by a factor of 10, than that of the flow around this sleeve on the figure 3A . In this way, the internal arrangement of the valve 10 is designed to take account of the significantly different fluid flows that flow through the engine 4, on the one hand, and through the EGR system 5 on the other hand.

Par la suite, lorsque la température du fluide entrant dans la vanne 10 diminue, le ressort 44 rappelle successivement le corps 28A de l'élément thermostatique 28 vis-à-vis de son piston 28B, puis, si la température diminue davantage et que le clapet 40 revient en appui contre le manchon 32, le piston 26B de l'élément thermostatique 26 vers son corps 26A, jusqu'à atteindre la configuration de la figure 3A lorsque le moteur 4 est arrêté et est totalement refroidi.Subsequently, when the temperature of the fluid entering the valve 10 decreases, the spring 44 recalls successively the body 28A of the thermostatic element 28 with respect to its piston 28B, then, if the temperature further decreases and the valve 40 comes back against the sleeve 32, the piston 26B of the thermostatic element 26 towards its body 26A, until reaching the configuration of the figure 3A when the engine 4 is stopped and is completely cooled.

L'utilisation de l'étrier 30 permet de maintenir l'ensemble thermostatique 24, c'est-à-dire les éléments thermostatiques 26 et 28 et le ressort 44, dans sa configuration des figures 2 et 3A avant d'être assemblé au boîtier 12. Cet assemblage consiste, pour l'essentiel, à rapporter l'étrier muni de cet ensemble, en insérant la plaque 30C dans les glissières 36 du boîtier 12, comme expliqué précédemment. En variante non représentée, l'ensemble thermostatique 24 est directement rapporté dans la chambre 14 du boîtier 12, la paroi délimitant cette chambre étant alors à la fois munie d'un moyen d'immobilisation du corps 26A de l'élément thermostatique 26, similaire à la couronne 30A, et délimitant un siège à obturer par le manchon 32, similaire au siège 34 délimité par l'ouverture traversante ménagée dans la plaque 30C.The use of the stirrup 30 makes it possible to maintain the thermostatic assembly 24, that is to say the thermostatic elements 26 and 28 and the spring 44, in its configuration. figures 2 and 3A before assembly to the housing 12. This assembly consists, in essence, in bringing the caliper provided with this assembly, by inserting the plate 30C in the slideways 36 of the housing 12, as explained above. In a variant not shown, the thermostatic assembly 24 is directly attached to the chamber 14 of the housing 12, the wall delimiting this chamber then being at the same time provided with means for immobilizing the body 26A of the thermostatic element 26, which is similar. to the ring 30A, and delimiting a seat to be closed by the sleeve 32, similar to the seat 34 defined by the through opening in the plate 30C.

Divers aménagements et variantes au circuit et à la vanne décrits ci-dessus sont en outre envisageables. En particulier, la disposition des entrées 20, 22 et sorties 16, 18 de la vanne 10 peuvent être modifiées, notamment en fonction de la géométrie du radiateur 2 et de l'implantation de cette vanne au sein de ce radiateur.Various arrangements and variants of the circuit and the valve described above are furthermore possible. In particular, the arrangement of the inlets 20, 22 and outputs 16, 18 of the valve 10 can be modified, in particular as a function of the geometry of the radiator 2 and the implantation of this valve within this radiator.

Claims (10)

  1. Thermostatic fluid regulation valve, characterized in that it comprises:
    - a housing (12) delimiting a fluid circulation chamber (14) inside the housing, in which a first fluid inlet (20) at a first temperature, a second fluid inlet (22) at a second temperature, and a first fluid outlet (16) and a second fluid outlet (18) open out, the first and second fluid outlets freely communicating with the first and second inlets respectively, independently of the first and second temperatures, and
    - thermostatic means (24) for controlling fluid circulation through the chamber, adapted firstly so that fluid can freely pass through the chamber (14) between the first inlet (20) and the second outlet (22) and between the second inlet and the first outlet when either the value of the first temperature (σ1) is less than a first predetermined threshold value, or the value of the second temperature is greater than a second predetermined threshold value (σ2) strictly greater than the first threshold value (σ1), and secondly to prevent fluid from circulating through the chamber between the first inlet and the second outlet and between the second inlet and the first outlet when the value of the first temperature is greater than the first threshold value and also the value of the second temperature is less than the second threshold value.
  2. Valve according to claim 1, characterized in that the thermostatic means (24) comprise two thermostatic elements (26, 28) each comprising a body (26A, 28A) that contains an expandable material and a piston (26B, 28B) free to move with respect to the body under the effect of expansion of the material contained in the body, the body of a first (26) of the two thermostatic elements being arranged on the flow path (arrow 51) of the fluid in the chamber (14) between the first inlet (20) and the first outlet (16), while the body of the second thermostatic element (28) is arranged on the flow path (arrow 61) of the fluid in the chamber between the second inlet (22) and the second outlet (18).
  3. Valve according to claim 2, characterized in that each thermostatic element (26, 28) carries a closer (32, 40) closing off the fluid passage through the chamber (14), the closer (32) of the first thermostatic element (26) being associated with a seat (34) rigidly connected to the housing (12) while the closer (40) of the second thermostatic element (28) is associated with another seat (32A) carried by the closer (32) of the first thermostatic element (26).
  4. Valve according to claim 3, characterized in that the closer of the first thermostatic element (26) comprises a tubular sleeve (32) around which fluid circulates (arrow 53) when the value of the first temperature is strictly less than the first threshold (σ1) value and inside which fluid circulates (arrow 63) when the value of the second temperature is greater than the second threshold value (σ2).
  5. Valve according to claim 4, characterized in that the closer of the second thermostatic element (28) comprises a valve disk (40) adapted to bear on one of the end edges (32A) of the tubular sleeve (32).
  6. Valve according to any one of claims 3 to 5, characterized in that the body (26A) of the first thermostatic element (26) is fixed with respect to the housing (12), the closer (32) carried by this first thermostatic element being moved by its piston (26B) and in that the closer (40) carried by the second thermostatic element (28) is fixed to the body (28A) of the second thermostatic element, the position of the piston (28B) of this second thermostat-controlled element with respect to the housing being controlled by the piston of the first thermostatic element.
  7. Valve according to claim 6, characterized in that the closer (32) of the first thermostatic element (26) is provided with a means (38) for supporting the free end of each piston (26B, 28B) of the first and second thermostatic elements (26, 28).
  8. Valve according to any one of claims 3 to 7, characterized in that it comprises a single elastic (44) device for pulling the body (26A, 28A) towards the piston (26B, 28B) of each thermostatic element (26, 28), this elastic device being adapted to force the closer (40) carried by the second thermostatic element (28) in contact with its associated seat (32A) when the value of the second temperature is less than the second threshold value (σ2).
  9. Cooling circuit for an internal combustion engine (4) and a recirculation system (5) for exhaust gases output from this engine, characterized in that it comprises a thermostatic fluid regulation valve (10) for the circuit, conforming with any one of the preceding claims, and a radiator (2) comprising a cooling body (2C) that delimits:
    - a first inlet (6) connected to the first inlet (20) of the valve (10) and adapted to be supplied with fluid from the exhaust gases recirculation system (5),
    - and a second inlet (8) connected to the second inlet (22) of the valve and adapted to be supplied with fluid from the thermal combustion engine (4),
    - a fluid exhaust outlet (9),
    - a first compartment (2A) for heat exchange with the fluid, opening up on the downstream side in the exhaust outlet and connected on the upstream side to the first outlet of the valve, and
    - a second compartment for heat exchange with the fluid, separated from the first compartment by a cooling partition, opening up on the downstream side in the exhaust outlet (9) and connected on the upstream side to the second outlet (18) of the valve (10).
  10. Circuit according to claim 9, characterized in that the housing (12) of the valve (10) is integrated inside the body (2C) of the radiator (2), and in particular is integral with at least a part of this body.
EP05356218.7A 2004-12-21 2005-12-20 Thermostatic valve for controlling a fluid and cooling circuit with such a valve Active EP1674689B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0413672A FR2879711B1 (en) 2004-12-21 2004-12-21 THERMOSTATIC VALVE FOR CONTROLLING A FLUID AND COOLING CIRCUIT INCORPORATING SUCH VALVE

Publications (3)

Publication Number Publication Date
EP1674689A2 EP1674689A2 (en) 2006-06-28
EP1674689A3 EP1674689A3 (en) 2011-12-14
EP1674689B1 true EP1674689B1 (en) 2013-09-11

Family

ID=34953798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05356218.7A Active EP1674689B1 (en) 2004-12-21 2005-12-20 Thermostatic valve for controlling a fluid and cooling circuit with such a valve

Country Status (3)

Country Link
US (1) US7249575B2 (en)
EP (1) EP1674689B1 (en)
FR (1) FR2879711B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037212B4 (en) * 2006-08-09 2008-06-12 Itw Automotive Products Gmbh & Co. Kg Heat exchanger for a cooling system of an internal combustion engine
DE102006052526A1 (en) * 2006-11-06 2008-05-08 Behr Gmbh & Co. Kg Heat exchanger, in particular for a motor vehicle
GB2452043C2 (en) * 2007-08-21 2023-07-26 Chalmor Ltd Thermostatic control device
EP2245389B1 (en) * 2008-02-22 2016-10-12 MAHLE Behr GmbH & Co. KG Rotating valve and heat pump
US8418931B2 (en) 2008-04-29 2013-04-16 Ford Global Technologies, Llc Heat exchanger with integral thermostats
US8109242B2 (en) * 2008-10-17 2012-02-07 Caterpillar Inc. Multi-thermostat engine cooling system
EP2495480B1 (en) * 2011-03-04 2018-10-03 Georg Fischer JRG AG Control valve
US10035404B2 (en) * 2012-10-15 2018-07-31 Ford Global Technologies, Llc Thermostatically-controlled multi-mode coolant loops
KR101371492B1 (en) * 2012-12-27 2014-03-10 현대자동차주식회사 Engine having thermostat and the system thereof
US10866603B2 (en) 2014-10-21 2020-12-15 Ford Global Technologies, Llc Wax thermostat
CN105003692B (en) * 2015-07-20 2017-06-06 恺霖卫浴科技(厦门)有限公司 A kind of hot and cold water switching valve
EP3721064A1 (en) * 2017-12-05 2020-10-14 Illinois Tool Works Inc. Coolant reservoir tank
US11002176B2 (en) * 2018-06-01 2021-05-11 Caterpillar Inc. Temperature regulator with a unitary housing, thermostatic valves and valve holders

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2755465C3 (en) * 1977-12-13 1980-07-24 Daimler-Benz Ag, 7000 Stuttgart Control thermostat for maintaining an essentially constant setpoint for the operating temperature of a liquid coolant of an internal combustion engine
US4520767A (en) * 1983-09-16 1985-06-04 Cummins Engine Company Low flow cooling system and apparatus
DE3433319A1 (en) * 1984-09-11 1986-03-20 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8500 Nürnberg CIRCUIT COOLING FOR INTERCOOLERED SHIP ENGINES
JP3422036B2 (en) * 1992-07-13 2003-06-30 株式会社デンソー Vehicle cooling system
SE500188C2 (en) * 1992-10-22 1994-05-02 Saab Automobile Thermomechanical control valve
DE10143091A1 (en) * 2001-09-03 2003-03-20 Att Automotivethermotech Gmbh Operation of vehicle heating and cooling circuit in conjunction with exhaust gas recycle system, controls exhaust enthalpy and coolant flow rates
FR2844041B1 (en) * 2002-08-28 2005-05-06 Valeo Thermique Moteur Sa HEAT EXCHANGE MODULE FOR A MOTOR VEHICLE AND SYSTEM COMPRISING SAID MODULE

Also Published As

Publication number Publication date
EP1674689A3 (en) 2011-12-14
EP1674689A2 (en) 2006-06-28
FR2879711B1 (en) 2007-02-09
US7249575B2 (en) 2007-07-31
FR2879711A1 (en) 2006-06-23
US20060130778A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
EP1674689B1 (en) Thermostatic valve for controlling a fluid and cooling circuit with such a valve
FR2916479A1 (en) MODULE FOR A COOLING CIRCUIT OF A MOTOR VEHICLE ENGINE.
EP2859200B1 (en) Heat recovery system in an exhaust system
FR2800125A1 (en) System for managing the flow of cooling liquid in cooling circuit in motor vehicle comprises control and distribution modules with temperature sensor and control flap to selectively allow the cooling fluid to enter one circuit or another
EP2935853B1 (en) Engine intake air thermal management device and associated thermal management method
FR3001199A1 (en) MOTOR COVER INCORPORATING AN EQUIPMENT VENTILATION CIRCUIT
EP1614873A2 (en) Valve for a fluid circulation circuit and the circuit in an engine with such a valve
EP3436671B1 (en) Improved casing of a propellant feed turbopump for a rocket engine
EP2748022B1 (en) Device for controlling the flow of a coolant, and circuit including such a device
FR3046200B1 (en) TURBOMACHINE COMPRISING AN OIL TANK AND AN AIR-OIL EXCHANGER
EP3555457B1 (en) Duct for the passage of liquid coolant for an internal combustion engine of a motor vehicle
FR2890697A1 (en) Vehicle engine has Exhaust Gas Recirculation (EGR) circuit equipped with supplementary cooler
EP2187016A1 (en) Engine cooling circuit
WO2008009822A2 (en) Thermostatic element, control valve comprising such element and cooling fluid circuit incorporating such valve
WO2018104506A1 (en) Heat exchanger, in particular a charge air heat exchanger for a motor vehicle
EP1892389B1 (en) Device making it possible to control a circuit for circulation of a coolant liquid and a circuit for circulation of lubrication oil of a heat engine of a vehicle
FR2725666A1 (en) HEATING DEVICE FOR MOTOR VEHICLES
EP1362169B1 (en) Device and method for cooling a heat engine control element
WO2023144175A1 (en) Thermostatic valve
EP3645922B1 (en) Assembly comprising a gas flow control valve attached to a container
FR3120898A1 (en) FLUID COOLING DEVICE FOR A TURBOMACHINE
EP3236041B1 (en) Cooling system of an internal combustion engine
EP1892398A1 (en) Device making it possible to control a circuit for circulation of a coolant liquid and a circuit for circulation of lubrication oil of a heat engine of a vehicle
WO2023006902A1 (en) Thermostatic valve
EP4198290A1 (en) Cylinder head of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 7/16 20060101AFI20111107BHEP

Ipc: G05D 23/13 20060101ALI20111107BHEP

17P Request for examination filed

Effective date: 20111222

AKX Designation fees paid

Designated state(s): FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20120822

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140612

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Effective date: 20171212

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231109

Year of fee payment: 19