EP1674670B1 - Turbine et procédé de refroidissement du carter extérieur d'une turbine - Google Patents

Turbine et procédé de refroidissement du carter extérieur d'une turbine Download PDF

Info

Publication number
EP1674670B1
EP1674670B1 EP04030825.6A EP04030825A EP1674670B1 EP 1674670 B1 EP1674670 B1 EP 1674670B1 EP 04030825 A EP04030825 A EP 04030825A EP 1674670 B1 EP1674670 B1 EP 1674670B1
Authority
EP
European Patent Office
Prior art keywords
turbine
baffle
coolant
inner space
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04030825.6A
Other languages
German (de)
English (en)
Other versions
EP1674670A1 (fr
Inventor
Kai Dr. Wieghardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP04030825.6A priority Critical patent/EP1674670B1/fr
Publication of EP1674670A1 publication Critical patent/EP1674670A1/fr
Application granted granted Critical
Publication of EP1674670B1 publication Critical patent/EP1674670B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the invention relates to a turbine having an outer housing, which has an inner space, an inner side facing the inner space and an outer side facing away from the interior, and in which a flow passage from the outside to the inside to the inlet of cooling medium is arranged, wherein in the interior, from the inside spaced apart and the flow passage immediately opposite a baffle body is arranged to act on the cooling medium such that upon exposure to the cooling medium is deflected in a changed direction.
  • the invention relates to a method for cooling an outer housing of a turbine with an outer housing, which has an interior and an interior facing the interior, an outer side facing away from the interior and in which is fed into the outer housing from the outside to the inside of cooling medium, wherein in the interior an impact body with the cooling medium is acted upon, wherein the cooling medium is deflected in a changed direction.
  • a turbine for driving a turbine rotor provided with a blading conventionally provides a working medium which is under high temperature and pressure and which flows against the blading and above this emits its kinetic energy to the turbine rotor, whereby the working medium expands.
  • a steam turbine is used as a working medium steam, which can generally go through the following cycle: Behind the output of the turbine and before the introduction of the working medium in a condenser, the expanded working fluid is fed to a diffuser to the necessary pressure and temperature conditions for a capacitor in the working medium.
  • the condensate is fed to a steam generator, which brings the working medium in the form of steam in a superheater to pressures in the range of 300 bar and temperatures in the range of 600 ° C to then supply the working fluid in this form again the steam turbine.
  • an outer casing generally has an inner space directly adjacent to the inner side of the outer casing, which has an insulating effect against the working medium temperatures, heating of the outer casing or adjacent parts may be effected mainly by thermal radiation of the components of the turbine housed in the outer casing as well through leaks, penetrates through the relatively hot working fluid into the interior.
  • a cooling option for a steam turbine steam generator for this purpose, a cooling medium is guided into the interior of the steam turbine via a bore through the outer housing, wherein the cooling medium is directed in the direction of the inside of the outer housing.
  • a problem explained above regarding excessive heating of an outer housing or of adjacent parts can occur especially in steam turbines, for example in a high-pressure, medium-pressure or low-pressure steam turbine, in particular in an inflow region of a single-flow steam turbine. In the inflow area comparatively hot working fluid can escape despite a shaft seal. Particularly serious are such problems in sub-turbines.
  • this relates to a sub-turbine, which is designed in terms of the design of their blading and a blade channel, in a first region of the rotor for acting on working medium in the medium pressure region and in a second region of the same rotor in the low pressure region. It is a sub-turbine, which is practically a combination of a medium-pressure turbine and a low-pressure turbine.
  • this may relate to a sub-turbine, which is realized by a corresponding combination of a high-pressure and medium-pressure turbine or realized by a corresponding combination of a high-pressure and low-pressure turbine.
  • the invention whose object is to provide an apparatus and a method for cooling a shaft of a turbine, which ensure an equally simple and effective and safe cooling.
  • the object is achieved by a method according to claim 16.
  • the invention is based on the consideration that for equally effective and safe cooling of the outer housing as reliable as possible admission to be cooled Parts, in particular of the outer housing as such and adjacent parts such as the shaft or the piston, should be achieved. This was not guaranteed by the previous measures of mere introduction of auxiliary steam or a mere ventilation of an interior.
  • the essential finding of the invention is that an outer housing and / or adjacent parts, such as a shaft or a piston, can be selectively cooled by cooling medium is deflected in a changed direction, for example, directly on the inside of the outer housing and / or directly on a surface of a shaft and / or is passed directly to a surface of a piston.
  • the cooling proves to be particularly advantageous, in particular in an inflow region, since, due to its diameter, it is subjected to centrifugal acceleration and thus high stresses in combination with high temperature loads, which can lead to strength problems.
  • the piston is subject to considerable force from the shaft and is also exposed to high stresses in combination with high temperature stresses, which can lead to strength problems.
  • the work medium-free or filled with comparatively cool vapor interior space is thus deliberately subjected to cooling medium in contrast to previously customary measures, in such a way that the cooling medium is in particular deflected in one direction along the inside of the outer housing and / or in one direction on a surface of a Shaft and / or is directed in one direction on a surface of a piston.
  • this advantageously leads to the inside of the outer housing or a surface of a shaft or a piston to form a cooling film, which not only cools the outer housing or the corresponding adjacent part itself, but also prevents the free convection of heat radiation and thus an unwanted Heating of the outer housing or the shaft or the housing prevents.
  • a changed direction of the cooling medium caused by a baffle body thus leads to a particularly advantageous cooling, in particular of the outer housing and / or the shaft and / or the piston of a steam turbine.
  • the present concept can be equipped with advantageous possibilities for cooling, different types of housing of a steam turbine, optionally with a suitable dimensioning of the cooling mass flows.
  • the cooling mass flows can be dimensioned differently, depending on what type or stage of a turbine, for. As an initial stage or an output stage turbine, it is.
  • the above-described concept can be realized in both single-engine and dual-engine turbines.
  • the described concept proves to be particularly advantageous for turbines which have a work-medium-free interior, which has a first shell and a second shell of the outer housing is formed.
  • This double-shell design of the outer ⁇ engeophuses finds particular application in the so-called "straight-flow design" of steam turbines, ie a construction with the same axial direction of medium pressure and low pressure expansion in a combined medium-pressure low-pressure turbine. This primarily concerns steam turbines in the power range between 90 MW and 400 MW.
  • an interior can be free of working medium or be filled with comparatively cool steam, which does no work.
  • the described concept also proves to be expedient in the case of a turbine in which an inner housing for receiving a flow channel which can be acted upon by working medium is arranged within the outer housing for driving a turbine rotor, the inner space being formed between the outer housing and the inner housing.
  • an interior can be free of working medium or be filled with comparatively cool steam, which does no work.
  • the flow passage and the baffle body are arranged on an end face of the turbine transverse to a turbine axis and in the interior, between the baffle and the inside an annular space is formed around the turbine axis, wherein the annulus is open on an inner ring side and / or an outer ring side.
  • the turbine is provided in such an embodiment that the cooling medium initially distributed in the annular space when acted upon and then emerges symmetrically on the inner ring side and the outer ring side.
  • the cooling medium initially distributed in the annular space when acted upon and then emerges symmetrically on the inner ring side and the outer ring side.
  • a symmetrical outlet of the cooling medium so it is mainly assumed that ademediumaustritt in terms of a comparison of the exit on the outer ring and the inner ring takes place in the same way.
  • equal amounts of cooling medium should exit on the inner ring and on the outer ring at the same circumferential area.
  • an outlet of the cooling medium on the inner ring and on the outer ring can also be dimensioned independently and separately from one another.
  • a gap is formed on the inner ring side and / or a gap on the outer ring side, wherein a gap dimension between the inside and baffle body with a defined variable clearance is adjustable.
  • a game between 1 mm to 20 mm adjustable.
  • the baffle body can - in the context of this game - so defined - depending on the ambient condition - so variable - align, resulting in a self-aligned particularly optimized cooling of the outer casing on its inside and / or adjacent parts.
  • an entire gap area is less than a cross-sectional area of the annulus.
  • the baffle body is preferably attached to the inside.
  • a baffle has a number of joints.
  • it does not need to be made in one piece as an integral baffle, but may be composed of a plurality of part bodies, leaving a number of joints.
  • the baffle in the form of a plate, which is preferably flat.
  • Particularly useful is a circular-shaped baffle body, since it, when arranged on the front side of the turbine, particularly advantageous adapted to the turbine shape.
  • the flow passage preferably has a neck, which may be formed both in the individual case to the interior, as well as in the opposite direction, d. H. may be formed to an outer side of the outer case.
  • the flow passage in the form of a number of openings preferably in the form of a number of nozzles may be formed. This has the advantage that the cooling medium can be optimized depending on the cooling effort and fed particularly defined.
  • the flow passage connects to a housing exhaust or, additionally or alternatively, to a derivative of a blade cooling.
  • the outer housing 9 is designed clamshell, wherein the working medium-free inner space 3 is formed by a first shell 15 and a second shell 17 of the outer housing 9.
  • a baffle member 19 in the form of a planar, annular-shaped baffle plate at a distance 21 from the inner side 5 is spaced and arranged directly opposite the flow passage 11.
  • the annular flat baffle plate is acted upon by cooling medium 13, so that the cooling medium 13, as indicated by arrows in FIG. 1, is deflected in a direction along the inner side 5. Furthermore, the cooling medium is deflected in one direction onto a surface 51 of a shaft 53 and a surface 47 of a piston 45.
  • the annular planar impact body 19 in the form of a baffle plate shown only in the upper part and as a section has an outer ring side 23 and an inner ring side 25.
  • An opening on the outer ring side 23 is formed in the form of a gap 27.
  • An opening on the inner ring side 25 is formed in the form of a further gap 29.
  • a gap dimension of the gap 27 and a gap dimension of the gap 29 is subject to a certain clearance between 1 mm to 20 mm, which defines itself depending on the application of cooling medium 13 in the mentioned limits, but otherwise variably adjusted by the flow.
  • the cooling medium supplied in the form of wet steam is first conducted into the annulus 31 formed between baffle plate 19 and inner side 5, is distributed there and emerges symmetrically at those points at which a gap 27, 29 is arranged.
  • a cooling film not shown on the inside 5 of the outer housing 9 is generated and on the surfaces 51 and 47 of the shaft 53 and the piston 45, which in particular prevents the free convection of heat radiation.
  • Such thermal radiation is based on an inflow region 33 and flow channel 35 arranged in the outer housing 9, and in particular within the second shell 17, which can be acted upon by working medium for driving a turbine rotor 37.
  • the drive of the turbine rotor 37 is effected by a radially extending into the flow channel 35 blading 39 which is fixed to the turbine rotor 37.
  • an end face 43 of the second shell 17 is cooled.
  • a local curvature of the second shell 17, which in another embodiment also in the form of an inner housing can be formed avoided.
  • the symmetrical dimensioning of the gaps 27, 29 moreover ensures that an otherwise uniform and symmetrical flow takes place both on the inside 5 of the outer housing and on the inner shell 17, so that a locally concentrated one-sided cooling medium is applied to the first shell 15 and the second shell 17 is avoided and thus a local curvature of these shells is avoided due to any temperature and voltage gradients.
  • the interior without the concept of an impact body 19 shown here in particular the second shell 17, only locally applied with cooling medium and would warp at this point.
  • a uniform loading of all housing parts is mainly ensured by the defined variable clearance of the column 27, 29.
  • a baffle 19 for acting with the cooling medium 13 is arranged, such that upon application of the cooling medium 13 in a changed direction, in particular along the inner side 5, is deflected.
  • the concept provides a corresponding method for cooling an outer housing 9 or adjacent parts such. B. the shaft 53 or the piston 45 of a turbine 1 before.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (18)

  1. Turbine ( 1 ) comprenant une carcasse ( 9 ) extérieure, qui a un espace ( 3 ) intérieur, une face ( 5 ) intérieure tournée vers l'espace ( 3 ) intérieur et une face ( 7 ) extérieure éloignée de l'espace ( 3 ) intérieur, et dans laquelle un passage ( 11 ) pour un écoulement va, pour l'apport de fluide ( 13 ) de refroidissement, de la face ( 7 ) extérieure à la face ( 5 ) intérieure,
    dans laquelle, dans l'espace ( 3 ) intérieur, est disposé, à distance de la face ( 5 ) intérieure et opposé directement au passage ( 11 ) pour un écoulement, un corps ( 19 ) de rebondissement, de manière à pouvoir dévier, lors d'une alimentation, le fluide ( 13 ) de refroidissement dans une direction modifiée,
    caractérisée en ce que
    le fluide ( 13 ) de refroidissement peut être dévié dans une direction sur une surface ( 51 ) d'un arbre ( 53 ).
  2. Turbine ( 1 ) suivant la revendication 1,
    caractérisée en ce que
    le fluide ( 13 ) de refroidissement peut être dévié dans une direction sur une surface ( 47 ) d'un piston ( 45 ).
  3. Turbine ( 1 ) suivant la revendication 1 ou 2,
    caractérisée en ce que
    l'espace ( 3 ) intérieur est formé par une première coque ( 15 ) et par une deuxième coque ( 17 ) de la carcasse ( 9 ) extérieure.
  4. Turbine ( 1 ) suivant l'une des revendications 1 à 3,
    caractérisée en ce que
    il est disposé, pour l'entraînement d'un rotor ( 37 ) de la turbine, à l'intérieur de la carcasse ( 9 ) extérieure, une carcasse intérieure de réception d'un canal ( 35 ) d'écoulement pouvant être alimenté en un fluide ( 13 ) de travail, l'espace ( 3 ) intérieur étant formé entre la carcasse ( 9 ) extérieure et la carcasse intérieure.
  5. Turbine ( 1 ) suivant l'une des revendications 1 à 4,
    caractérisée en ce que
    le passage ( 11 ) pour un écoulement et le corps ( 19 ) de rebondissement sont disposés sur une face frontale de la turbine ( 1 ) transversalement à l'axe ( 41 ) de la turbine et un espace ( 31 ) annulaire est formé autour de l'axe ( 41 ) de la turbine entre le corps ( 19 ) de rebondissement et la face ( 5 ) intérieure, l'espace ( 31 ) annulaire étant ouvert sur un côté ( 25 ) annulaire intérieur et/ou un côté ( 23 ) annulaire extérieur.
  6. Turbine ( 1 ) suivant la revendication 5,
    caractérisée en ce que
    un intervalle ( 29 ) est formé sur le côté ( 25 ) annulaire intérieur et/ou un intervalle ( 27 ) est formé sur le côté ( 23 ) annulaire extérieur, la dimension de l'intervalle entre la face ( 5 ) intérieure et le corps ( 19 ) de rebondissement pouvant être réglée à un jeu variable défini.
  7. Turbine ( 1 ) suivant la revendication 6,
    caractérisée en ce que
    une surface totale de l'intervalle est plus petite qu'une surface de la section transversale de l'espace ( 31 ) annulaire.
  8. Turbine ( 1 ) suivant l'une des revendications 1 à 7,
    caractérisée en ce que
    le corps ( 19 ) de rebondissement est mis sur la face ( 5 ) intérieure.
  9. Turbine ( 1 ) suivant l'une des revendications 1 à 8,
    caractérisée en ce que
    le corps ( 19 ) de rebondissement a un certain nombre de joints.
  10. Turbine ( 1 ) suivant l'une des revendications 1 à 9,
    caractérisée en ce que
    le corps ( 19 ) de rebondissement est constitué sous la forme d'une plaque.
  11. Turbine ( 1 ) suivant l'une des revendications 1 à 10,
    caractérisée en ce que
    le corps ( 19 ) de rebondissement est en forme d'anneau circulaire.
  12. Turbine ( 1 ) suivant l'une des revendications 1 à 11,
    caractérisée en ce que
    le passage ( 11 ) pour un écoulement a un manchon.
  13. Turbine ( 1 ) suivant l'une des revendications 1 à 12,
    caractérisée en ce que
    le passage ( 11 ) pour un écoulement est formé d'un certain nombre d'ouvertures.
  14. Turbine ( 1 ) suivant l'une des revendications 1 à 13,
    caractérisée en ce que
    le passage ( 11 ) pour un écoulement se raccorde à une aspiration de la carcasse.
  15. Turbine ( 1 ) suivant l'une des revendications 1 à 14,
    caractérisée en ce que
    le passage ( 11 ) pour un écoulement se raccorde à une évacuation d'un refroidissement d'aube.
  16. Procédé de refroidissement d'une carcasse ( 9 ) extérieure d'une turbine ( 1 ), comprenant une carcasse ( 9 ) extérieure, qui a un espace ( 3 ) intérieur, une face ( 5 ) intérieure tournée vers l'espace ( 3 ) intérieur et une face ( 7 ) extérieure éloignée de l'espace ( 3 ) intérieur,
    dans lequel on apporte du fluide ( 13 ) de refroidissement de la face ( 7 ) extérieure à la face ( 5 ) intérieure dans la carcasse ( 9 ) extérieure,
    dans lequel on soumet, dans l'espace ( 3 ) intérieur, un corps ( 19 ) de rebondissement au fluide ( 13 ) de refroidissement, le fluide ( 13 ) de refroidissement étant dévié dans une direction modifiée,
    caractérisé en ce que
    on dévie le fluide ( 13 ) de refroidissement dans une direction sur une surface ( 51 ) d'un arbre ( 53 ).
  17. Procédé suivant la revendication 16,
    caractérisé en ce que
    on dévie le fluide ( 13 ) de refroidissement dans une direction sur une surface ( 47 ) d' un piston ( 45 ).
  18. Procédé suivant la revendication 16 ou 17,
    caractérisé en ce que
    il est formé, dans l'espace ( 3 ) intérieur, entre le corps ( 19 ) de rebondissement et la face ( 5 ) intérieure, un espace ( 31 ) annulaire autour de l'axe ( 41 ) de la turbine, l'espace ( 31 ) annulaire étant ouvert sur un côté ( 25 ) annulaire intérieur et sur un côté ( 23 ) annulaire extérieur, le fluide ( 13 ) de refroidissement étant, lors de l'alimentation, réparti d'abord dans l'espace ( 3 ) annulaire et sortant ensuite symétriquement sur le côté ( 25 ) annulaire intérieur et sur le côté ( 23 ) annulaire extérieur.
EP04030825.6A 2004-12-27 2004-12-27 Turbine et procédé de refroidissement du carter extérieur d'une turbine Not-in-force EP1674670B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04030825.6A EP1674670B1 (fr) 2004-12-27 2004-12-27 Turbine et procédé de refroidissement du carter extérieur d'une turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04030825.6A EP1674670B1 (fr) 2004-12-27 2004-12-27 Turbine et procédé de refroidissement du carter extérieur d'une turbine

Publications (2)

Publication Number Publication Date
EP1674670A1 EP1674670A1 (fr) 2006-06-28
EP1674670B1 true EP1674670B1 (fr) 2015-06-17

Family

ID=34928010

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04030825.6A Not-in-force EP1674670B1 (fr) 2004-12-27 2004-12-27 Turbine et procédé de refroidissement du carter extérieur d'une turbine

Country Status (1)

Country Link
EP (1) EP1674670B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065568A1 (fr) * 2007-11-28 2009-06-03 Siemens Aktiengesellschaft Refroidissement d'une turbine à vapeur
CN109057889B (zh) * 2018-09-25 2023-07-14 西安热工研究院有限公司 超临界工质透平壳体轴向环面冲击外冷装置及工作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212307A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Damping device for thermal stress on casing
JPS58140408A (ja) * 1982-02-17 1983-08-20 Hitachi Ltd 蒸気タ−ビンの冷却装置
JPH06173712A (ja) * 1992-12-14 1994-06-21 Toshiba Corp ガスタービンケーシングの冷却装置

Also Published As

Publication number Publication date
EP1674670A1 (fr) 2006-06-28

Similar Documents

Publication Publication Date Title
EP1774140B1 (fr) Turbine a vapeur et procede pour faire fonctionner une turbine a vapeur
EP1945911B1 (fr) Turbine à gaz
DE69934846T2 (de) Dampfturbine mit Bürstendichtung
EP1505254B1 (fr) Turbine à gaz et méthode pour la refroidir
DE69831109T2 (de) Kühlluftzufuhrsystem für die Schaufeln einer Gasturbine
EP0957237B1 (fr) Refroidissement d'un joint à nid d'abeille dans une turbine à gaz
EP1904717B1 (fr) Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz
EP1744017A1 (fr) Turbine combinée à vapeur et procédé de fonctionnement d'une turbine combinée à vapeur
DE1601561A1 (de) Gekuehlte Schaufel fuer mit hohen Temperaturen arbeitendes Turbinentriebwerk
CH702232B1 (de) Dampfturbine mit einer Vorrichtung zum Leiten von Fluid in der Dampfturbine.
EP2078137B1 (fr) Rotor pour une turbomachine
EP3130748A1 (fr) Refroidissement de rotor pour une turbine a vapeur
EP2410128A1 (fr) Refroidissement interne pour un turbomachine
WO2005019621A1 (fr) Diffuseur place entre le compresseur et la chambre de combustion d'une turbine a gaz
WO2001016467A1 (fr) Turbine et procede pour evacuer du fluide de fuite
DE10392802B4 (de) Dampfturbine
DE102013219771B4 (de) Dampfturbine
EP3155226B1 (fr) Turbine à vapeur et procédé de fonctionnement d'une turbine à vapeur
EP1674670B1 (fr) Turbine et procédé de refroidissement du carter extérieur d'une turbine
DE60224746T2 (de) Dampfrohrleitungsstruktur einer Gasturbine
EP1165942A1 (fr) Turbomachine avec un systeme d'elements de paroi pouvant etre refroidi et procede de refroidissement d'un systeme d'elements de paroi
EP2347100B1 (fr) Turbine à gaz avec insert de refroidissement
EP1788191B1 (fr) Turbine à vapeur et procédé pour le refroidissement d'une turbine à vapeur
EP3488083B1 (fr) Carter d'éjection d'une turbine à vapeur
DE102006010863B4 (de) Turbomaschine, insbesondere Verdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060724

17Q First examination report despatched

Effective date: 20061106

AKX Designation fees paid

Designated state(s): CH DE GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014929

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151209

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014929

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151228

Year of fee payment: 12

Ref country code: CH

Payment date: 20160302

Year of fee payment: 12

Ref country code: DE

Payment date: 20160219

Year of fee payment: 12

26N No opposition filed

Effective date: 20160318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004014929

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161227

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161227

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701