EP1904717B1 - Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz - Google Patents

Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz Download PDF

Info

Publication number
EP1904717B1
EP1904717B1 EP06764031A EP06764031A EP1904717B1 EP 1904717 B1 EP1904717 B1 EP 1904717B1 EP 06764031 A EP06764031 A EP 06764031A EP 06764031 A EP06764031 A EP 06764031A EP 1904717 B1 EP1904717 B1 EP 1904717B1
Authority
EP
European Patent Office
Prior art keywords
inner housing
turbine
gas
cooling fluid
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06764031A
Other languages
German (de)
English (en)
Other versions
EP1904717A2 (fr
Inventor
Gerhard Bohrenkämper
Milan Schmahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06764031A priority Critical patent/EP1904717B1/fr
Publication of EP1904717A2 publication Critical patent/EP1904717A2/fr
Application granted granted Critical
Publication of EP1904717B1 publication Critical patent/EP1904717B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/231Three-dimensional prismatic cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the present invention relates to a hot gas-carrying housing element for a hot gas-carrying housing, which can be arranged in particular in a gas turbine plant around a turbine rotor of the gas turbine plant around and serves to guide a hot gas to a turbine part of the gas turbine plant. Moreover, the present invention relates to a wave protection jacket of the hot gas-carrying housing, which is designed to surround the turbine rotor of the gas turbine plant. Finally, the present invention relates to the hot gas-carrying housing itself and a gas turbine plant with a hot gas-carrying housing.
  • a gas turbine plant 1 essentially comprises one or more combustion chambers 3 (cf. Fig. 1 ), in which a fuel is burned, a turbine 5, which are supplied to the hot and pressurized combustion exhaust gases from the combustion chambers 3 and in which the exhaust work under cooling and relaxation work and so put the turbine 5 in rotation, and a compressor 7, which is coupled to the turbine 5 via a shaft 12 and through which the necessary air for combustion is sucked and compressed to a higher pressure.
  • FIG. 1 shows such a gas turbine plant in a schematic view, wherein 1a a horizontal and Fig. 1b show a vertical section through the plant. From these Silobrennhuntn 3, the combustion gases 2 flow in a direction which is substantially perpendicular to the axis of rotation A. the turbine 5 runs. Between the outlet 18 of the silo separation chambers and the turbine 5, a mixing housing 8 is arranged, which is adjoined on the turbine side by an inner housing 9 arranged in the interior of the gas turbine housing 2.
  • the inner housing 9 has the task to protect the surrounding components from heat and to redirect the emerging from the mixing housing 8 hot gases in the direction of the turbine.
  • the combustion exhaust gases When exiting the inner housing 9, that is to say when entering the turbine 5 of the gas turbine plant 1, the combustion exhaust gases then flow essentially parallel to the axis of rotation A of the turbine shaft 12.
  • Hot gas-carrying housing, and in particular the described inner housing in gas turbine plants with Silobrennhuntn represent thermally highly stressed components. For this reason, measures are taken for cooling the hot gas bearing surfaces of the housing. These measures include the cooling of the particularly stressed areas by means of a cooling fluid which flows along the outside of the walls of these areas in order to absorb and dissipate the heat transferred to the hot gas-conducting surfaces.
  • the inner housing hub 101 surrounds a shaft protection casing 115 (FIG. Fig. 7a ), which in turn surrounds the shaft 12.
  • the housing interior facing surface 109 of the inner housing hub 101 forms the guide and guide surface for the combustion gases 2, while the housing interior facing away from surface 104 of the inner housing hub 101 surrounds the wave protection jacket 115.
  • the inner housing hub 101 is fixed to the shaft protection casing 115 by means of an annular rib 103, which is arranged centrally in the axial direction and protrudes toward the wave protection casing 115.
  • the shaft protection casing 115 itself is fastened to the gas turbine casing 2 and has a web 105 with an annular groove 106 arranged therein into which the annular rib 103 engages.
  • inner housing hub 101 and shaft jacket 115 are installed together as a unit in the gas turbine plant.
  • the rib 103 experiences less heating during operation of the hot gas-carrying housing than the material regions located closer to the hot gas-carrying surface 109 of the cylindrical inner housing hub 101. This leads to a so-called barrel tire effect, which leads to stresses in the material regions of the inner housing hub 101 which adjoin the rib 103. In particular, at the designated by the reference numeral 111 locations may therefore cause cracks in the material.
  • the rib has been moved into the area of the turbine-side opening of the inner housing, so that it is located in a thermally less heavily loaded area of the inner housing.
  • the EP 1 512 844 A2 describes an exhaust gas diffuser for a gas turbine plant. This comprises an inlet opening, which faces the turbine section of a gas turbine and represents the inlet opening for the exhaust gases. It has a rib, via which it is connected to an inner housing, to which also a bearing housing surrounding the rotor of the gas turbine is fixed (see paragraphs 14 and 15).
  • the US 4,497,610 describes a wall cladding element (shroud), which is a wall cladding of the hot gas channel in a turbine section. This wall cladding is located in the area of a turbine blade (see reference numeral 20 in FIGS. 1 and 2 and abstract).
  • the EP 1 143 107 A2 describes a transfer duct of a gas turbine through which hot combustion gases are passed from a burner to the first turbine stage (see paragraph 9).
  • a transfer duct around a shell is arranged, which has openings which allow an impingement cooling of the transfer channel.
  • the end of the shell, which is located in the direction of the first turbine stage, is fixed via a radial rib on the transfer channel. This rib is inserted into a slot located in a thickened end of the transfer channel.
  • Another object of the present invention is to provide an improved gas turbine plant.
  • the first object is achieved by an arrangement according to claim 1, and the second object by a gas turbine plant according to claim 9.
  • the dependent claims contain advantageous embodiments of the invention.
  • An arrangement according to the invention is designed for a gas turbine installation which has a compressor, two silo combustion chambers, a turbine and a turbine runner and comprises a wave protection jacket and an inner housing.
  • the shaft shield is adapted to be disposed between the compressor and the turbine around the turbine runner, and the inner housing is for placement between the silo combustion chambers and the turbine is formed, wherein the inner housing comprises two hot gas inlet openings, suitable for receiving the hot combustion exhaust gases of the silo combustion chambers, a turbine side arranged outlet opening and a hot gas-conducting housing element, which is designed to surround the wave protection jacket and a guide portion for guiding the hot gas from the hot gas inlet openings to the outlet opening wherein the guide portion comprises an inner housing hub formed to surround the antislip shell.
  • the inner housing hub extends up to the outlet opening and has, on a circumferential surface facing the shaft protection jacket, a rib which extends in the circumferential direction and projects over the peripheral surface. This is arranged in the area adjacent to the outlet opening region of the peripheral surface.
  • the rib is provided with cooling fluid channels. Additionally or alternatively, the inner housing hub is provided with cooling fluid channels.
  • the arrangement of the rib in the region of the peripheral surface of the inner housing hub, which adjoins the turbine-side opening, allows a largely undisturbed flow of a cooling fluid along the inner housing hub to the outlet opening, which already improves the possibilities for cooling the inner housing hub.
  • the arrangement according to the invention of the cooling fluid channels now also makes it possible to improve the possibility of cooling in the region of the rib by reducing the barrier effect of the rib or improving the guidance of the cooling fluid in the region of the rib.
  • the rib is provided with cooling fluid passages which allow passage of the cooling fluid through the rib, the barrier effect for cooling fluid flow can be reduced.
  • the flow of the cooling fluid is particularly little disturbed when these cooling fluid passages are arranged in the rib so that they run near the peripheral surface of the inner housing hub adjacent parallel to its axial direction.
  • the inner housing hub is provided with cooling fluid channels.
  • These can, for example, in each case have a protective shaft-side opening, that is to say an opening in the peripheral surface facing the wave protection jacket, and a hot-gas-side opening, that is to say an opening in the surface guiding the hot gas.
  • a protective shaft-side opening that is to say an opening in the peripheral surface facing the wave protection jacket
  • a hot-gas-side opening that is to say an opening in the surface guiding the hot gas.
  • cooling fluid ducts may also be present which run parallel to the hot gas-conducting surface of the inner housing hub between an inlet opening for the inlet of the cooling fluid and an outlet opening for outlet of the cooling fluid.
  • Such cooling fluid channels allow a particularly effective cooling of the inner housing hub.
  • a hot gas-conducting surface and in particular the inner housing hub can be provided with a heat-insulating and / or corrosion-inhibiting and / or oxidation-inhibiting coating.
  • the wave protection jacket of the arrangement according to the invention has a circumferentially extending recess which is designed to receive the rib, and which is located in a radially over the peripheral surface protruding fully closed, ie no cooling fluid channels having, which is located in a turbine side arranged portion of the wave protection jacket is located.
  • a hot gas-carrying housing element can be fixed by inserting the rib in the recess of the wave protection jacket.
  • the web can act, for example, as a spacer between the wave protection jacket and the inner housing hub of a hot gas-conducting housing element, so that a gap remains between the inner housing hub and the wave protection jacket, through which a cooling fluid can flow.
  • a gas turbine plant according to the invention comprises two Siolbrennhuntn, a turbine part and arranged between the two Silobrennhuntn and the turbine part arrangement for guiding the originating from the at least one combustion chamber hot gas to the turbine part.
  • FIGS. 1a and 1b An example of a gas turbine plant 1 is in the FIGS. 1a and 1b shown in a highly schematic representation.
  • the gas turbine plant 1 comprises two silo combustion chambers 3, a turbine 5, a compressor 7, two mixing housings 8 and an inner housing 9.
  • the silo combustion chambers 3 serve to burn a fuel, the hot exhaust gases 2 under high pressure being supplied via the mixing housings 8 and the inner housing 9 of the turbine 7 are supplied to drive them.
  • the turbine 5 comprises stationary guide vanes 10 and rotor blades 11 fixedly connected to a shaft 12 rotatably mounted about an axis A.
  • the hot exhaust gas 2 expanding in the turbine 5 transmits impulse to the shaft 12 via the rotor blades 11, causing them to rotate becomes.
  • the shaft 12 can be roughly divided into three sections, namely a section carrying the rotor blades 11 of the turbine 5, a rotor blade of the compressor 7 (not shown) and a shaft section 13 arranged between these two sections, in which no rotor blades are arranged.
  • the shaft 12 and the attached blades 11 form the so-called. Turbine rotor.
  • the shaft 12 extends through the entire gas turbine plant (not fully shown) and drives the compressor 7 and a generator, not shown.
  • the compressor 7 serves to compress air, which is then fed to the silo combustion chambers 3 for combustion.
  • the shaft portion 13 is of a wave protection jacket 15 (see. Fig. 2 ), which itself is surrounded by an inner housing hub 17 of a hot gas-carrying housing element 6 of the inner housing 9.
  • Inner housing 9 and shaft protection jacket 15 are installed together as a housing unit in the gas turbine plant.
  • the inner housing hub 17 and the shaft protection jacket 15 have substantially the shape of a hollow cylinder, wherein the shaft protection jacket 15 facing peripheral surface 14 of the inner housing hub 17 and the turbine rotor facing surface of the wave protection jacket 15 form the inner surfaces of the hollow cylinder.
  • the inner housing 9 serves to deflect the hot exhaust flowing from the mixing housings 8 into the inner housing 9 on the one hand and to distribute it as evenly as possible around the entire circumference of the turbine runner on the other hand.
  • the hot gas facing surface 20 of the inner housing 9 serves as a guide and guide surface for the hot gas.
  • This can in particular also be provided with a heat-insulating coating or a corrosion and / or oxidation-inhibiting coating.
  • a heat-insulating coating for example, so-called thermal barrier coatings, TBC for short, in question, which may be made of yttria stabilized zirconia about.
  • MCrAlY coatings As corrosion and / or oxidation-inhibiting coatings, for example, so-called MCrAlY coatings in question, where M for iron (Fe), cobalt (Co) or nickel (Ni) and Y for yttrium (Y) and / or silicon and / or a Rare earth elements, such as hafnium (Hf).
  • Such alloys include the following documents to which reference is made for suitable MCrAlY coatings: EP 0 486 489 B1 . EP 0 786 017 B1 . EP 0 412 397 B1 and EP 1 306 454 A1 ,
  • the thermal barrier coating TBC can in this case be applied in particular to the MCrAlY coating.
  • Fig. 2 shows a section Fig. 1b in which the inner housing hub 17 of the inner housing 9 and a part of the wave protection jacket 15 can be seen.
  • a guide vane 10 of the turbine 5 can be seen, which is opposite to the turbine-side opening 19 of the inner housing 9.
  • the inner housing hub 17 of the inner housing 9 has in the region of the turbine-side opening 19 a radially projecting in the direction of the wave protection jacket 15 annular rib 22 which extends over its entire circumference.
  • the wave protection jacket 15 comprises an annular web 23 which extends in the region of the outlet opening 19 of the inner housing 9 over the entire circumference of the wave protection jacket 15.
  • the web 23 has a groove 26 which serves to receive the rib 22 of the inner housing hub 17.
  • the wave protection jacket 15 also has a radiation protection 16, which surrounds him at a distance. Between the radiation protection 16 and the wave protection jacket 15, a flow channel is thus formed. A further flow channel is formed between the radiation protection 16 and the inner housing hub 17 of the hot gas-conducting housing element 6.
  • the radiation shield 16 has passage openings 21 for the passage of the cooling fluid in the direction of the inner housing hub 17, which serve for supplying a cooling fluid F, for example ambient air, into the flow channel between the radiation shield 16 and the inner housing hub 17 (see Fig. 3 ).
  • the cooling fluid passing through the openings 21 is used for impingement cooling of the inner housing hub 17 and forwarded to the turbine 5 via the flow channel 24 formed between the radiation protection 16 and the inner housing hub 17, in which case a convective cooling of the inner housing hub 17 takes place.
  • impingement cooling is here to be understood the supply of cooling fluid, which has such a flow direction that it bounces against the hub side surface 14 of the inner housing hub 17 and is deflected by this.
  • FIG. 3 an inner housing 9 described in the prior art, in which the rib of the hot gas-conducting housing element 6 in the region of the turbine-side opening of the inner housing 9 is located.
  • Inner housing 9 described with three different embodiments of the hot gas-conducting housing element 6 according to the invention.
  • the state of the art and all Embodiment variants have an inner housing hub 17, 17a, 17b, 17c, which are each provided with a rib 22, 22a, 22b, 22c projecting beyond the protective shaft-side circumferential surface 14, 14a, 14b, 14c in the region of the turbine-side opening.
  • FIG. 3 An embodiment of the inner housing hub 17, the radiation protection 16 and the wave protection jacket 15 in the region of the rib 22 and the web 23 according to the prior art is in Fig. 3 shown.
  • the prior art in the web 23 below the groove 26 through holes 25 in the form of holes available, which allow passage of the cooling fluid (indicated by arrows) through the web 23.
  • the output end of the through hole 25 in the flow direction opposite a guide rib 38 is arranged on the shaft protection casing 15, which leads to a deflection of the cooling fluid flow in the direction of the gas flowing through the gas turbine plant hot exhaust gas.
  • FIG. 1 A first embodiment of the inner housing 9 is shown in FIG.
  • the figure shows the inner housing hub 17a, the radiation protection 16a and the wave protection jacket 15a in the region of the web 23a.
  • the web 23a of the wave protection jacket 15a Fig. 4 differs from the web 23 of the wave protection jacket 15 Fig. 3 in that it is wider and does not protrude so far beyond the surface 20a of the wave protection jacket 15a.
  • it has no through hole for the passage of a cooling fluid.
  • a passage opening in the form of a bore 25a is arranged in the rib 22a of the inner housing hub 17a, which allows the passage of the cooling fluid through the rib 22a.
  • the through hole is arranged in the immediate vicinity of the shaft protection jacket 15a facing peripheral surface 14a of the inner housing hub 17a. Corresponding through holes are spaced apart from one another in the circumferential direction over the entire annular rib 22a.
  • FIG. 5 A second embodiment variant for the embodiment of the inner housing 9 is in Fig. 5 shown.
  • the figure shows the inner housing hub 17b, the radiation protection 16 and the wave protection jacket 15 in the region of the web 23.
  • the wave protection jacket 15 and the radiation protection 16 have the same configuration as the corresponding parts of FIG Fig. 3 described embodiment.
  • the inner housing hub 17 b in the second embodiment through holes in the form of through holes 28 with wave protection shell side openings 29 and hot gas side openings 30.
  • the hot gas side openings 30 are thereby displaced in the flow direction of the hot gas in comparison to the wave protection jacket side openings 29.
  • the openings 29 have an inclination in the flow direction of the hot exhaust gases, viewed from the circumferential surface 14b of the protective shaft on the side of the protective shaft.
  • cooling fluid enters through the through-holes 28 from the flow channel 24 into the region of the inner housing 9 carrying the hot exhaust gas and forms a cooling fluid film over the hot-gas-side surface 20b of the inner housing hub 17b, in particular in the region of the rib 22b.
  • This embodiment of the inner housing hub 17b allows a highly effective cooling of the surface 20b.
  • a third embodiment of the inner housing 9 is in Fig. 6 shown.
  • the figure shows the inner housing hub 17c, the radiation protection 16 and the wave protection jacket 15 in the region of the web 23.
  • the inner housing hub 17c has passage openings in the form of bores 28c. These bores 28c each have a protective shaft side opening 29c and an opening 30c arranged in the end face of the inner housing hub 17c. Between the protective shaft-side opening 29c and the front-side opening 30c, each through-hole 28c extends largely parallel to the hot-gas-conducting surface 20c of the inner housing hub 17c.
  • Cooling fluid F entering through the protective shaft side opening 29c is conducted through the interior of the inner housing hub 17c in the region of the rib 22c by means of the bores 28c, thus cooling the inner housing hub 17c before it exits the frontal opening 30c.
  • the web of the wave protection jacket is provided with through holes for the passage of cooling fluid.

Claims (9)

  1. Agencement pour une installation ( 1 ) de turbine à gaz, qui a un compresseur ( 7 ), deux chambres de combustion ( 3 ) silo, une turbine ( 5 ) et un rotor ( 11, 12 ) de turbine, l'agencement comprenant une enveloppe ( 15, 15a ) de protection d'arbre et un carter ( 9 ) intérieur, l'enveloppe ( 15, 15a ) de protection d'arbre étant constituée pour être mise entre le compresseur ( 7 ) et la turbine ( 5 ) autour du rotor ( 11, 12 ) de turbine et le carter ( 9 ) intérieur étant constitué pour être mis entre les chambres de combustion ( 3 ) silo et la turbine ( 5 ), et le carter ( 9 ) intérieur comprenant deux ouvertures ( 18 ) d'entrée de gaz chaud propres à recevoir les gaz chauds d'échappement de la combustion des chambres de combustion ( 3 ) silo, une ouverture ( 19 ) de sortie pouvant être mise du côté de la turbine et un élément ( 6 ) de carter conduisant le gaz chaud, lequel élément est constitué pour entourer l'enveloppe ( 15, 15a ) de protection d'arbre, et un segment de guidage pour la conduite du gaz chaud des ouvertures ( 18 ) d'entrée du gaz chaud à l'ouverture ( 19 ) de sortie, le segment de guidage comprenant un moyeu ( 17a, 17b, 17c ) de carter intérieur, constitué pour entourer l'enveloppe ( 15, 15a ) de protection d'arbre, moyeu qui s'étend jusqu'à l'ouverture ( 19 ) de sortie et a sur une surface ( 14a, 14b, 14c ) périphérique, tournée vers l'enveloppe ( 15, 15a ) de protection d'arbre, une nervure ( 22a, 22b, 22c ) s'étendant dans la direction périphérique et en saillie de la surface périphérique, nervure qui est disposée dans la zone de la surface ( 14a, 14b, 14c ) périphérique voisine de l'ouverture ( 19 ) de sortie, la nervure ( 22a ) et/ou le moyeu ( 17b, 17c ) du carter intérieur étant pourvu de canaux ( 25a, 28b, 28c ) de fluide de refroidissement.
  2. Agencement suivant la revendication 1, caractérisé en ce que les canaux ( 25a ) de fluide de refroidissement s'étendent dans la nervure ( 22a ) et sont disposés dans la nervure ( 22a ) de manière à s'étendre près de la surface ( 14a ) périphérique du moyeu ( 17a ) du carter intérieur parallèlement à la directement axiale du moyeu ( 17a ) du carter intérieur.
  3. Agencement suivant la revendication 1 ou 2, caractérisé en ce que les canaux ( 28b ) de fluide de refroidissement s'étendent dans le moyeu ( 17b ) du carter intérieur et sont pourvus respectivement d'une ouverture ( 29b ) du côté de l'enveloppe de protection d'arbre et d'une ouverture ( 30b ) du côté du gaz chaud.
  4. Agencement suivant la revendication 3, caractérisé en ce que les canaux ( 28b ) de fluide de refroidissement ont, considérés dans leur tracé dans le moyeu ( 17b ) du carter intérieur à partir de l'ouverture ( 29b ) du côté de l'enveloppe de protection d'arbre, une inclinaison dans le sens du courant du gaz chaud à conduire.
  5. Agencement suivant l'une des revendications 1 à 4, caractérisé en ce qu'il y a dans le moyeu ( 17b ) du carter intérieur des canaux ( 28c ) du fluide de refroidissement, qui s'étendent, entre une ouverture ( 29c ) d'entrée à l'entrée d'un fluide ( F ) de refroidissement et l'ouverture ( 30c ) de sortie à la sortie d'un fluide ( F ) de refroidissement parallèlement à une surface ( 20c ) conduisant du gaz chaud du moyeu ( 17c ) du carter intérieur.
  6. Agencement suivant l'une des revendications 1 à 5, caractérisé en ce que le moyeu ( 17a, 17b, 17c ) du carter intérieur est au moins à peu près cylindrique.
  7. Agencement suivant l'une des revendications 1 à 6, caractérisé en ce que le moyeu ( 17a, 17b, 17c ) du carter intérieur comprend une surface ( 20a, 20b, 20c ) conduisant du gaz chaud, munie d'un revêtement calorifuge et/ou anticorrosion et/ou anti-oxydation.
  8. Agencement suivant l'une des revendications précédentes, caractérisé en ce que l'enveloppe ( 15a ) de protection d'arbre a une cavité ( 26a ), qui s'étend dans la direction périphérique, qui est conformée pour la réception de la nervure ( 22a ) et qui se trouve dans une aile ( 23a ) fermée complètement, dépassant radialement de la surface périphérique et se trouvant dans un segment de l'enveloppe ( 15a ) de protection d'arbre pouvant être disposé du côté de la turbine.
  9. Installation ( 1 ) de turbine à gaz, caractérisée par deux chambres de combustion ( 3 ) silo, une partie ( 5 ) de turbine et un agencement suivant l'une des revendications précédentes disposé entre les chambres de combustion ( 3 ) silo et la partie ( 5 ) de turbine.
EP06764031A 2005-07-11 2006-07-04 Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz Active EP1904717B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06764031A EP1904717B1 (fr) 2005-07-11 2006-07-04 Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05015001A EP1744016A1 (fr) 2005-07-11 2005-07-11 Elément de carénage pour gaz chauds, chemise de protection de l'arbre et turbine à gaz
PCT/EP2006/063825 WO2007006680A2 (fr) 2005-07-11 2006-07-04 Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz
EP06764031A EP1904717B1 (fr) 2005-07-11 2006-07-04 Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz

Publications (2)

Publication Number Publication Date
EP1904717A2 EP1904717A2 (fr) 2008-04-02
EP1904717B1 true EP1904717B1 (fr) 2013-03-06

Family

ID=35197780

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05015001A Withdrawn EP1744016A1 (fr) 2005-07-11 2005-07-11 Elément de carénage pour gaz chauds, chemise de protection de l'arbre et turbine à gaz
EP06764031A Active EP1904717B1 (fr) 2005-07-11 2006-07-04 Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05015001A Withdrawn EP1744016A1 (fr) 2005-07-11 2005-07-11 Elément de carénage pour gaz chauds, chemise de protection de l'arbre et turbine à gaz

Country Status (7)

Country Link
US (1) US8147179B2 (fr)
EP (2) EP1744016A1 (fr)
CN (1) CN101218416B (fr)
AU (1) AU2006268716B2 (fr)
RU (1) RU2425227C2 (fr)
WO (1) WO2007006680A2 (fr)
ZA (1) ZA200800182B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804872B2 (ja) * 2011-09-27 2015-11-04 三菱日立パワーシステムズ株式会社 燃焼器の尾筒、これを備えているガスタービン、及び尾筒の製造方法
DE102012100646B4 (de) * 2012-01-26 2017-03-16 Saxess Holding Gmbh Turbinen- und Generatorgehäuse
FR2991375A1 (fr) 2012-06-04 2013-12-06 Alstom Technology Ltd Ecran de protection thermique pour une conduite d'arrivee de vapeur dans une turbine basse pression
EP3008293B1 (fr) * 2013-09-27 2017-11-29 Siemens Aktiengesellschaft Moyeu de boîtier intérieur pour une turbine à gaz
US10041675B2 (en) * 2014-06-04 2018-08-07 Pratt & Whitney Canada Corp. Multiple ventilated rails for sealing of combustor heat shields
CN105401986B (zh) * 2015-11-30 2017-01-18 成都发动机(集团)有限公司 航空发动机高压涡轮冷却气流路布置结构
CN106437884A (zh) * 2016-12-24 2017-02-22 贵州黎阳航空动力有限公司 一种燃气轮机用长寿命涡轮支承结构
KR101872808B1 (ko) * 2017-04-28 2018-06-29 두산중공업 주식회사 길이조절구조를 포함하는 가스터빈 로터, 및 이를 포함하는 가스터빈
DE102017207392A1 (de) 2017-05-03 2018-11-08 Siemens Aktiengesellschaft Silobrennkammer und Verfahren zum Umrüsten einer solchen
CN114151150B (zh) * 2020-09-07 2023-07-25 中国航发商用航空发动机有限责任公司 涡轮外环连接组件、燃气涡轮发动机以及连接方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL70901C (fr) * 1945-01-23
GB2125111B (en) * 1982-03-23 1985-06-05 Rolls Royce Shroud assembly for a gas turbine engine
US4465284A (en) * 1983-09-19 1984-08-14 General Electric Company Scalloped cooling of gas turbine transition piece frame
US5081833A (en) 1988-04-21 1992-01-21 Nuovopignone-Industrie Meccaniche E Fonderia S.P.A. Device for keeping the annular outlet mouth of the gas volute always centered about the nozzle assembly in a gas turbine
FR2646466B1 (fr) 1989-04-26 1991-07-05 Alsthom Gec Stator interne hp-mp unique de turbine a vapeur avec climatisation controlee
DE58908611D1 (de) 1989-08-10 1994-12-08 Siemens Ag Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile.
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
RU2147624C1 (ru) 1994-10-14 2000-04-20 Сименс АГ Защитный слой для защиты детали от коррозии, окисления и термической перегрузки, а также способ его изготовления
EP1306454B1 (fr) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
GB9815611D0 (en) * 1998-07-18 1998-09-16 Rolls Royce Plc Improvements in or relating to turbine cooling
US6286317B1 (en) 1998-12-18 2001-09-11 General Electric Company Cooling nugget for a liner of a gas turbine engine combustor having trapped vortex cavity
JP4031590B2 (ja) * 1999-03-08 2008-01-09 三菱重工業株式会社 燃焼器の尾筒シール構造及びその構造を用いたガスタービン
US6412268B1 (en) * 2000-04-06 2002-07-02 General Electric Company Cooling air recycling for gas turbine transition duct end frame and related method
US6354795B1 (en) * 2000-07-27 2002-03-12 General Electric Company Shroud cooling segment and assembly
ITMI20022418A1 (it) * 2002-11-15 2004-05-16 Nuovo Pignone Spa Assieme migliorato di cassa interna a dispositivo di
US7152411B2 (en) 2003-06-27 2006-12-26 General Electric Company Rabbet mounted combuster
JP4040556B2 (ja) * 2003-09-04 2008-01-30 株式会社日立製作所 ガスタービン設備及び冷却空気供給方法

Also Published As

Publication number Publication date
CN101218416B (zh) 2011-12-14
US8147179B2 (en) 2012-04-03
ZA200800182B (en) 2010-09-29
AU2006268716B2 (en) 2011-05-19
WO2007006680A2 (fr) 2007-01-18
US20090035124A1 (en) 2009-02-05
RU2008104922A (ru) 2009-08-20
AU2006268716A1 (en) 2007-01-18
EP1744016A1 (fr) 2007-01-17
WO2007006680A3 (fr) 2007-04-26
CN101218416A (zh) 2008-07-09
EP1904717A2 (fr) 2008-04-02
RU2425227C2 (ru) 2011-07-27

Similar Documents

Publication Publication Date Title
EP1904717B1 (fr) Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz
EP2430315B1 (fr) Dispositif d'écoulement à refroidissement de cavités
DE69933601T2 (de) Gasturbine
DE10303088B4 (de) Abgasgehäuse einer Wärmekraftmaschine
DE102011054468B4 (de) Variables Turbinenleitapparatsystem
EP1443275B1 (fr) Chambre de combustion
EP2340397B1 (fr) Pièce du brûleur pour une chambre de combustion d'une turbine à gaz et turbine à gaz
EP2148977B1 (fr) Turbine à gaz
EP1505254B1 (fr) Turbine à gaz et méthode pour la refroidir
DE102011057077A1 (de) Strukturelle Turbinenmantelringvorrichtung geringer Duktilität
EP2711630A1 (fr) Dispositif de refroidissement d'une structure porteuse d'un bouclier thermique et bouclier thermique
EP2084368B1 (fr) Aube de turbine
EP1724526A1 (fr) Coquille de turbine à gaz, turbine à gaz et procédé de démarrage et d'arrêt d'une turbine à gaz
WO2014177371A1 (fr) Lance de brûleur dotée d'un bouclier thermique, pour brûleur d'une turbine à gaz
DE102014209544A1 (de) Turbinenanordnung
WO1998013584A1 (fr) Compensation de la perte de pression d'une conduite d'air de refroidissement dans une installation de turbine a gaz
DE102015205975A1 (de) Umführungs-Hitzeschildelement
EP1731715A1 (fr) Transition d'une chambre de combustion à une turbine
DE102012206090A1 (de) Axialverdichter einer Turbomaschine
EP2180148A1 (fr) Turbine à gaz avec noyau de refroidissement
DE102006010863B4 (de) Turbomaschine, insbesondere Verdichter
EP1422479B1 (fr) Chambre pour la combustion d' un mélange combustible fluide
EP3587748B1 (fr) Structure de boîtier pour une turbomachine, turbomachine et procédé de refroidissement d'une section de boîtier d'une structure de boîtier d'une turbomachine
DE102015207760A1 (de) Heißgasführendes Gehäuse
WO2008025583A1 (fr) Procédé de refroidissement d'aubes de turbine d'une couronne d'aubes et segment d'aubes de turbine destiné à une couronne d'aubes comportant au moins deux pales profilées aérodynamiquement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): IT

17Q First examination report despatched

Effective date: 20100127

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/60 20060101ALI20120830BHEP

Ipc: F01D 25/28 20060101ALI20120830BHEP

Ipc: F01D 25/14 20060101ALI20120830BHEP

Ipc: F01D 25/12 20060101ALI20120830BHEP

Ipc: F01D 5/08 20060101AFI20120830BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): IT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230721

Year of fee payment: 18