EP1672017B1 - Rubber compositions - Google Patents

Rubber compositions Download PDF

Info

Publication number
EP1672017B1
EP1672017B1 EP05112090A EP05112090A EP1672017B1 EP 1672017 B1 EP1672017 B1 EP 1672017B1 EP 05112090 A EP05112090 A EP 05112090A EP 05112090 A EP05112090 A EP 05112090A EP 1672017 B1 EP1672017 B1 EP 1672017B1
Authority
EP
European Patent Office
Prior art keywords
rubber
eto
meo
general formula
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05112090A
Other languages
German (de)
French (fr)
Other versions
EP1672017A2 (en
EP1672017A3 (en
Inventor
Philipp Albert
Andre Hasse
Oliver Klockmann
Karsten Korth
Reimund Pieter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to SI200531368T priority Critical patent/SI1672017T1/en
Priority to PL05112090T priority patent/PL1672017T3/en
Publication of EP1672017A2 publication Critical patent/EP1672017A2/en
Publication of EP1672017A3 publication Critical patent/EP1672017A3/en
Application granted granted Critical
Publication of EP1672017B1 publication Critical patent/EP1672017B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the invention relates to rubber mixtures, a process for their preparation and their use.
  • hydrolyzable sulfur-containing organosilicon compounds are capable of reacting with hydroxyl group-containing fillers, such as natural and synthetic silicates, carbonates, glasses and metal oxides. They are used for surface modification and adhesion promotion. In the rubber processing industry, they are used as adhesion promoters between the reinforcing filler and the polymer used ( Angew. Chem. 98, (1986) 237-253 . DE2141159 . DE2212239 . DE19544469A1 . US3978103 . US4048206 . EP784072A1 ).
  • polysulfan alkyltrialkoxysilanes
  • polysulfan alkyltrialkoxysilanes
  • a disadvantage of using the trialkoxyfunctional silanes is the emission of volatile hydrocarbons, which in practice is mainly methanol and ethanol.
  • Dialkyl monoalkoxysilyl polysulfides are known. On reason The dialkylmonoalkoxy group has a lower emission of volatile hydrocarbons than trialkoxy compounds.
  • Dialkylmonoalkoxysilylpolysulfide Disadvantage of Dialkylmonoalkoxysilylpolysulfide is the poor abrasion and tear propagation resistance.
  • the object of the present invention is to provide rubber mixtures in whose production a low emission of volatile hydrocarbons occurs and the rubber mixtures have an improved tear propagation resistance compared to rubber mixtures with known silanes.
  • At least one of R 2 or R 3 may be an -O- (YO) m -X group.
  • R 4 may preferably be CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH 2 CH 2 CH 2 , CH (CH 3 ), CH 2 CH (CH 3 ), CH (CH 3 ) CH 2 , C (CH 3 ) 2 , CH (C 2 H 5 ), CH 2 CH 2 CH (CH 3 ) or CH 2 CH (CH 3 ) CH 2 .
  • the organosilane of the general formula I can consist of a mixture of compounds of organosilanes of the general formula I.
  • the mixtures may contain compounds of organosilanes having the same or different m.
  • the mixtures of organosilanes may contain compounds having the same or different Y groups.
  • the mixtures may contain compounds of organosilanes having the same or different R 1 , R 2 , R 3 or R 4 groups.
  • oligo- and polysiloxanes can be formed by addition of water.
  • the oligo- and polysiloxanes may be obtained by oligomerization or co-oligomerization of the corresponding alkoxysilane compounds of general formula I by addition of water and additive addition and procedure known to those skilled in the art.
  • the resulting oligo- or polymerization products can in the Organosilane compounds of general formula I may be included.
  • the organosilane of the general formula I may also be an oligo- or polymerization product of the organosilane compound of the general formula I.
  • the organosilane of general formula I may be a mixture of oligo- or polymerization products of the organosilane compound of general formula I and uncondensed organosilane compound of general formula I.
  • the organosilane of the general formula I can be added to the mixing process both in pure form and supported on an inert organic or inorganic carrier, as well as prereacted with an organic or inorganic carrier.
  • Preferred support materials may be precipitated or fumed silicas, waxes, thermoplastics, natural or synthetic silicates, natural or synthetic oxides, especially alumina, or carbon blacks.
  • the organosilanes of the general formula I can also be added to the mixing process in a pre-reacted form with the filler to be used.
  • Amorphous silicas prepared by precipitation of solutions of silicates having BET surface areas of from 20 to 400 m 2 / g in amounts of from 5 to 150 parts by weight, based in each case on 100 parts of rubber, may preferably be used.
  • the rubber raw mixtures and vulcanizates according to the invention may contain further rubber auxiliaries, such as reaction accelerators, aging inhibitors, heat stabilizers, light stabilizers, antiozonants, processing aids, plasticizers, tackifiers, blowing agents, dyes, pigments, waxes, extenders, organic acids, Retarder, metal oxides or activators, such as triethanolamine or hexanetriol.
  • rubber auxiliaries such as reaction accelerators, aging inhibitors, heat stabilizers, light stabilizers, antiozonants, processing aids, plasticizers, tackifiers, blowing agents, dyes, pigments, waxes, extenders, organic acids, Retarder, metal oxides or activators, such as triethanolamine or hexanetriol.
  • Polyalkylene glycols may be polyethylene glycols, polypropylene glycols and / or polybutylene glycols.
  • the polyalkylene glycols may have a molecular weight between 50 and 50,000 g / mol, preferably between 50 and 20,000 g / mol, more preferably between 200 and 10,000 g / mol, most preferably between 400 and 6,000 g / mol, most preferably between 500 and 3,000 g / mol, have.
  • the polypropylene glycols may be hydrocarbon-terminated polypropylene glycol Alk-O- (CH 2 -CH (CH 3 ) -O) yl -H or Alk-O- (CH 2 -CH (CH 3 ) -O) yl- alk, where y is I and Alk have the abovementioned meaning.
  • the polybutylene glycols may include hydrocarbon- terminated polybutylene glycol , Alk-O- (CH 2 -CH 2 -CH 2 -CH 2 -O) yl -H, Alk-O- (CH 2 -CH (CH 3 ) -CH 2 -O) yl -H , Alk-O- (CH 2 -CH 2 -CH 2 -CH 2 -O) yl -alk or Alk-O- (CH 2 -CH (CH 3 ) -CH 2 -O) yl- alk, where y I and Alk have the abovementioned meaning.
  • Polyalkylene glycols may be polyethylene glycol, polypropylene glycol, polybutylene glycol, or etherified with mixtures thereof neopentyl glycol HO-CH 2 -C (Me) 2 -CH 2 -OH, pentaerythritol C (CH 2 -OH) 4 or trimethylolpropane CH 3 -CH 2 - C (CH 2 -OH) 3 , where the repeat units of ethylene glycol, propylene glycol or / and butylene glycol in the etherified polyalcohols are between 2 and 100, preferably between 2 and 50, more preferably between 3 and 30, very particularly preferably between 3 and 15, are, be.
  • the rubber auxiliaries can be used in known amounts, which depend inter alia on the intended use. Usual amounts are, for example, amounts of 0.1 to 50 wt .-%, preferably 0.1 to 30 wt .-%, based on rubber. As crosslinkers sulfur or sulfur-donating substances can be used.
  • the rubber mixtures according to the invention may additionally contain vulcanization accelerators. For example, mercaptobenzothiazoles, sulfenamides, guanidines, thiurams, dithiocarbamates, thioureas and thiocarbonates can be used as suitable vulcanization accelerators.
  • the vulcanization accelerators and sulfur can be used in amounts of 0.1 to 10 wt .-%, preferably 0.1 to 5 wt .-%, based on rubber.
  • Another object of the invention is a process for the preparation of the rubber mixture according to the invention, which is characterized by mixing the rubber, filler, optionally further rubber auxiliaries and at least one organosilane of the general formula I.
  • the vulcanization of the rubber mixtures according to the invention can be carried out at temperatures of 100 to 200 ° C, preferably 130 to 180 ° C, optionally under pressure of 10 to 200 bar.
  • the blending of the rubbers with the filler, optionally rubber auxiliaries and the organosilane of the general formula I can be carried out in known mixing units, such as rollers, internal mixers and mixing extruders.
  • the rubber blends of the present invention may be used to make molded articles, for example, for the manufacture of pneumatic tires, tire treads, cable jackets, hoses, power belts, conveyor belts, roller coverings, tires, shoe soles, gaskets and damping elements.
  • the rubber mixtures according to the invention show an improved tear propagation resistance.
  • the resulting suspension is filtered and the filter cake washed with toluene.
  • the filtrate is freed from the solvent on a rotary evaporator.
  • the resulting suspension is filtered, the filter cake washed with toluene and the filtrate freed again from the toluene on a rotary evaporator.
  • the suspension is cooled, filtered and the residue washed with ethanol.
  • the filtrate is freed from the solvent on a rotary evaporator at 20-400 mbar and 60-90 ° C and filtered again. There are 769.2 g of an orange liquid isolated.
  • a Bruker DRX 500 NMR instrument is used according to the rules and operating instructions known to the person skilled in the art.
  • the measurement frequencies are 99.35 MHz for 29 Si cores and 500.13 MHz for 1 H cores.
  • the reference is tetramethylsilane (TMS).
  • the recipe used for the rubber compounds is given in Table 1 below.
  • the unit phr means parts by weight, based on 100 parts of the raw rubber used.
  • the silanes of the invention are metered in the same weight.
  • the general procedure for the preparation of rubber compounds and their vulcanizates is described in the book: Rubber Technology Handbook ", W. Hofmann, Hanser Verlag 1994 described.
  • the coupling reagents Si 69, a bis- (triethoxy-silylpropyl) tetrasulfide (TESPT), and VP Si 263, a 3-mercaptopropyl (triethoxysilane) (MPTES), are sales products of Degussa AG.
  • the coupling reagent VP Si 208, an octylsilyltriethoxysilane, is as Alkylsilane is a processing aid and is a sales product of Degussa AG.
  • the polymer VSL 5025-1 is a polymerized in solution SBR copolymer of Bayer AG, with a styrene content of 25 wt .-% and a butadiene content of 75 wt .-%.
  • the copolymer contains 37.5 phr of oil and has a Mooney viscosity (ML 1 + 4/100 ° C) of 50.
  • the polymer Buna CB 24 is a cis-1,4-polybutadiene (neodymium type) from Bayer AG, with a cis-1,4 content of at least 96% and a Mooney viscosity of 44 ⁇ 5.
  • Ultrasil 7000 GR is an easily dispersible silica from Degussa AG and has a BET surface area of 170 m 2 / g.
  • the aromatic oil used is Naftolen ZD from Chemetall, Vulkanox 4020 is PPD from Bayer AG and Protektor G3108 is an Ozontikwachs the Paramelt B.V ..
  • Vulkacit D (DPG) and Vulkacit CZ (CBS) are commercial products of Bayer AG.
  • Perkacit TBzTD tetrabenzyl thiuram tetrasulfide
  • the rubber mixtures are prepared in an internal mixer according to the mixing instructions in Table 2.
  • Table 2 step 1 Einstellunqen mixing unit Werner & Pfleiderer E type number of revolutions 60 min -1 stamp printing 5.5 bar void 1,58 l filling level 0.56 Flow temp. 70 ° C mixing process 0 to 1 min Buna VSL 5025-1 + Buna CB 24 1 to 2 min 1/2 silica, ZnO, stearic acid, naftoles ZD, silane 2 to 4 min 1/2 silica, Vulkanox, protector 4 min Clean 4 to 5 min Mix 5 min ventilate 5 to 6 min Mix and extend Batch temp.
  • Table 3 summarizes the rubber testing methods. Table 3: Physical testing Standard / Conditions Tensile test on the ring, 23 ° C DIN 53504, ISO 37 Tensile strength (MPa) Voltage values (MPa) Elongation at break (%) Tearing test after Graves DIN 53 515 DIN abrasion, 10 N force (mm 3 ) DIN 53 516 Ball Rebound, 60 ° C (%) ASTM D 5308
  • Table 4 shows the results of the rubber technical examination.
  • Table 4 vulcanizate unit Mixture 1 Mixture 2 Mixture 3 Mixture 4 (Ref.) (Ref.) (Ref.) (Ref.) (Ref.) tensile strenght [MPa] 12.8 15.2 12.2 15.2 Voltage value 100% [MPa] 1.2 1.2 1.3 1.2 Voltage value 300% [MPa] 5.8 6.2 6.1 6.7 Voltage value 300% / 100% [-] 4.8 5.2 4.7 5.6 elongation [%] 480 480 460 460 Tear cons-standing [N / mm] 53 63 45 74 Ball rebound (60 ° C) [%] 65.5 69.5 65.1 69.1 DIN abrasion [mm 3 ] 88 66 82 59
  • the dimethyl variant of mercaptosilane shows significant improvements in important properties.
  • the stress value at 300% elongation, the reinforcement factor (stress value 300% / 100%), the tear propagation resistance and the DIN abrasion are significantly better than with the corresponding triethoxy variant (MPTES) (mixture 2). They are also significantly better than TESPT (mixture 1) and the corresponding dimethyl variant DMESPT (mixture 3).
  • Example 7 HS-CH 2 -CH 2 -CH 2 -Si (Me) (OEt) [(O-CH (CH 3 ) -CH 2 ) 16 -OC 4 H 9 ]
  • Example 8 HS-CH 2 -CH 2 -CH 2 -Si (Me) (OEt) [(O-CH 2 -CH 2 ) 4 -O-CH 2 -CH (Et) -C 4 H 9 ]
  • HS-CH 2 -CH 2 -CH 2 -SiMe (OEt) 2 is based on EP 1 538 152 A1 Example 4 prepared.
  • the starting materials used are Cl-CH 2 -CH 2 -CH 2 -SiMe (OEt) 2 , Cl-CH 2 -CH 2 -CH 2 -SiMeCl 2 , NaSH (dried) and ethanol.
  • the suspension obtained is filtered, freed from the solvent and the silane purified by distillation.
  • the recipe used for the rubber compounds is given in Table 5 below.
  • the mixtures differ in the added coupling agent as indicated in Table 6.
  • the mixing instructions are listed in Table 2.
  • Table 5 substance Mixtures 5 to 13 [Phr] 1st stage Buna VSL 5025-1 96 Buna CB 24 30 Ultrasil 7000 GR 80 Silanes from Table 6 2 ZnO 3 stearic acid 2 Naftolen ZD 10 Vulcanox 4020 1.5 Protector G 3108 1 2nd stage Batch level 1 3rd stage Batch level 2 Vulkacit D 2 Vulkacit CZ 1.5 Perkacit TBzTD 0.2 sulfur 1.5 Mixture no.
  • silane 5 (Ref.) VP Si 263 6 (Ref.) Silane from Comparative Example 1 7 (Ref.) Silane from Comparative Example 3 8th Silane from Example 3 9 Silane from Example 4 10 Silane from Example 5 11 Silane from example 6 12 Silane from example 7 13 Silane from Example 8
  • Table 7 summarizes the methods for rubber testing. Table 7: Physical testing Standard / Conditions Vulcanization behavior, 130 ° C DIN 53523/4, ISO 667 Scorch time t 5 Scorch time t 35 Tear propagation THE A ASTM D 624 Tear propagation THE B ASTM D 624
  • Table 8 shows the results of the rubber testing.
  • the tear propagation resistances of the mixtures 8 to 13 are markedly better than those of the blends 5, 6, 7.
  • the mixtures with the long-chain alcohol silanes as substituents show an improved tear propagation behavior compared to the other mixtures. This applies both to unsubstituted mercaptosilane from mixture 5 (VP Si 263) and to the mercaptosilanes with a methyl group (mixture 7) and with two methyl groups (mixture 6).
  • Mixtures 8 through 13 also show improved Mooney Scorch data. This is associated with improved processing safety, for example in the extrusion of tire treads or injection molding.
  • the recipe used for the rubber compounds is given in Table 9 below.
  • the mixtures differ in the added coupling agent based on equimolar dosage as indicated in Table 10.
  • the mixing instructions are listed in Table 2.
  • Table 9 substance Mixtures 14 to 21 [Phr] 1st stage Buna VSL 5025-1 96 Buna CB 24 30 Ultrasil 7000 GR 80 Silanes from Table 10 equimolar ZnO 3 stearic acid 2 Naftolen ZD 10 Vulcanox 4020 1.5 Protector G 3108 1 2nd stage Batch level 1 3rd stage Batch level 2 Vulkacit D 2 Vulkacit CZ 1.5 Perkacit TBzTD 0.2 sulfur 1.5 Mixture no.
  • silane phr 14 (Ref.) VP Si 263 2.00 15 (Ref.) Silane from Comparative Example 3 1.75 16 Silane from Example 3 4.31 17 Silane from Example 4 9.68 18 Silane from Example 5 3.82 19 Silane from example 6 2.97 20 Silane from example 7 9.80 21 Silane from Example 8 3.94
  • Table 11 shows the results of the rubber testing.
  • the mixtures with the silanes from Examples 3 to 8 show advantages both in the tear propagation behavior and in the scorch behavior towards unsubstituted mercaptosilane and mercaptosilane having one methyl and two ethoxy groups.

Abstract

Rubber mixture (A) comprises rubber, fillers, optionally rubber auxiliary agent and at least an organosilane compound (I). Rubber mixture (A) comprises rubber, fillers, optionally rubber auxiliary agent and at least an organosilane compound (I) of formula (R 1>R 2>R 3>SiR 4>-SH). R 1>methyl or ethyl; R 2>ethoxy, ethoxy or -O-(Y 1>-O) m-X; Y 1>optionally saturated double bonded hydrocarbon group; X : 1-9 alkyl group; R 3>methyl, ethyl or R 2>; R 4>optionally saturated, aliphatic and/or aromatic double bonded 1-12C hydrocarbon group; and m : 1-40.

Description

Die Erfindung betrifft Kautschukmischungen, ein Verfahren zu ihrer Herstellung und ihrer Verwendung.The invention relates to rubber mixtures, a process for their preparation and their use.

Es ist bekannt, daß hydrolysierbare schwefelhaltige Organosiliciumverbindungen in der Lage sind, mit Hydroxylgruppen enthaltenden Füllstoffen, wie natürlichen und synthetischen Silicaten, Carbonaten, Gläsern und Metalloxiden, zu reagieren. Sie werden dabei zur Oberflächenmodifizierung und Haftvermittlung verwendet. In der kautschukverarbeitenden Industrie werden sie als Haftvermittler zwischen dem verstärkenden Füllstoff und dem eingesetzten Polymer eingesetzt ( Angew. Chem. 98, (1986) 237-253 , DE2141159 , DE2212239 , DE19544469A1 , US3978103 , US4048206 , EP784072A1 ). Zu den bekanntesten Vertretern dieser Substanzklasse gehören die Polysulfan(alkyltrialkoxysilane), wie zum Beispiel Bis[3-triethoxysilylpropyl]tetrasulfan oder Bis[3-triethoxysilylpropyl]disulfan.It is known that hydrolyzable sulfur-containing organosilicon compounds are capable of reacting with hydroxyl group-containing fillers, such as natural and synthetic silicates, carbonates, glasses and metal oxides. They are used for surface modification and adhesion promotion. In the rubber processing industry, they are used as adhesion promoters between the reinforcing filler and the polymer used ( Angew. Chem. 98, (1986) 237-253 . DE2141159 . DE2212239 . DE19544469A1 . US3978103 . US4048206 . EP784072A1 ). Among the best known representatives of this class of substances are the polysulfan (alkyltrialkoxysilanes), such as bis [3-triethoxysilylpropyl] tetrasulfan or bis [3-triethoxysilylpropyl] disulfane.

Desweiteren ist die Verwendung von mercaptofunktionalisierten Organosilanen in Kautschukmischungen bekannt ( US3350345 , FR2.094.859 ). Ebenso ist die Verwendung von Alkylsilanen zur Absenkung der Viskosität von Kautschukmischungen ( EP795577A1 , EP864605A2 ) und die Kombination mercaptofunktioneller Silane mit längerkettigen Alkylsilanen ( DE10015309A1 ) bekannt.Furthermore, the use of mercapto-functionalized organosilanes in rubber mixtures is known (US Pat. US3350345 . FR2.094.859 ). Likewise, the use of alkylsilanes for lowering the viscosity of rubber mixtures ( EP795577A1 . EP864605A2 ) and the combination of mercapto-functional silanes with longer-chain alkyl silanes ( DE10015309A1 ) known.

Ein Nachteil der Verwendung der trialkoxyfunktionellen Silane ist die Emission flüchtiger Kohlenwasserstoffe, wobei es sich in der Praxis hauptsächlich um Methanol und Ethanol handelt.A disadvantage of using the trialkoxyfunctional silanes is the emission of volatile hydrocarbons, which in practice is mainly methanol and ethanol.

Aus US 6331605 und US 6140 393 sind Kautschukmischungen enthaltend Kautschuk, Füullstoff und ein oligomerisiertes Mercaptoalkyl monodialkyl di/monoalkoxysilan bekannt. Ferner ist aus WO 02/31040 A eine Kautschukmischung enthaltend Kantschuk, Füullstoff und ein Mercaptoalkyl mono/dialkyl di/monoalkoxysilan bekannt.Out US 6331605 and US 6140 393 rubber mixtures containing rubber, filler and an oligomerized mercaptoalkyl monodialkyl di / monoalkoxysilane are known. Furthermore, it is off WO 02/31040 A a rubber mixture containing Kantschuk, Full and a mercaptoalkyl mono / dialkyl di / monoalkoxysilane known.

Aus DE1043357A1 und EP1244676B1 sind Dialkylmonoalkoxysilylpolysulfide bekannt. Auf Grund der Dialkylmonoalkoxygruppe ist die Emission flüchtiger Kohlenwasserstoffe geringer als bei Trialkoxyverbindungen.Out DE1043357A1 and EP1244676B1 Dialkyl monoalkoxysilyl polysulfides are known. On reason The dialkylmonoalkoxy group has a lower emission of volatile hydrocarbons than trialkoxy compounds.

Nachteil der Dialkylmonoalkoxysilylpolysulfide ist der schlechte Abrieb und Weiterreißwiderstand.Disadvantage of Dialkylmonoalkoxysilylpolysulfide is the poor abrasion and tear propagation resistance.

Aufgabe der vorliegenden Erfindung ist es, Kautschukmischungen zur Verfügung zu stellen, bei deren Herstellung eine geringe Emission flüchtiger Kohlenwasserstoffe auftritt und die Kautschukmischungen einen verbesserten Weiterreißwiderstand gegenüber Kautschukmischungen mit bekannten Silanen aufweisen.The object of the present invention is to provide rubber mixtures in whose production a low emission of volatile hydrocarbons occurs and the rubber mixtures have an improved tear propagation resistance compared to rubber mixtures with known silanes.

Gegenstand der Erfindung sind Kautschukmischungen, enthaltend Kautschuk, Füllstoffe, gegebenenfalls weitere Kautschukhilfsmittel und mindestens ein Organosilan der allgemeinen Formel I,

        R1R2R3SiR4-SH     (I)

wobei R1 Methyl oder Ethyl ist,
R2 -O-(Y-O)m-X ist, mit Y= verzweigte oder unverzweigte, gesättigte oder ungesättigte zweibindige Kohlenwasserstoffgruppe, vorzugsweise CH2, CH2CH2, CH2CH(CH3) oder CH(CH3)CH2, X eine C1- bis C9-Alkylgruppe, vorzugsweise Methyl oder Ethyl, und m=1-40, bevorzugt 2-30, besonders bevorzugt 3 bis 25, ganz besonders bevorzugt 4 bis 20, außerordentlich bevorzugt 10 bis 20, ist,
R3 Methyl, Ethyl, Methoxy, Ethoxy oder R2 ist,
und R4 eine verzweigte oder unverzweigte, gesättigte oder ungesättigte, aliphatische, aromatische oder gemischt aliphatische /aromatische zweibindige C1-C12 Kohlenwasserstoffgruppe ist.
The invention relates to rubber mixtures containing rubber, fillers, optionally further rubber auxiliaries and at least one organosilane of the general formula I,

R 1 R 2 R 3 SiR 4 -SH (I)

where R 1 is methyl or ethyl,
R 2 is -O- (YO) m -X, with Y = branched or unbranched, saturated or unsaturated divalent hydrocarbon group, preferably CH 2 , CH 2 CH 2 , CH 2 CH (CH 3 ) or CH (CH 3 ) CH 2 , X is a C 1 - to C 9 -alkyl group, preferably methyl or ethyl, and m = 1-40, preferably 2-30, more preferably 3 to 25, very particularly preferably 4 to 20, most preferably 10 to 20,
R 3 is methyl, ethyl, methoxy, ethoxy or R 2 ,
and R 4 is a branched or unbranched, saturated or unsaturated, aliphatic, aromatic or mixed aliphatic / aromatic C 1 -C 12 hydrocarbyl group.

Vorzugsweise kann mindestens eine der Gruppen R2 oder R3 eine -O-(Y-O)m-X Gruppe sein.Preferably, at least one of R 2 or R 3 may be an -O- (YO) m -X group.

R4 kann bevorzugt CH2, CH2CH2, CH2CH2CH2, CH2CH2CH2CH2, CH(CH3), CH2CH(CH3), CH(CH3)CH2, C(CH3)2, CH(C2H5), CH2CH2CH(CH3) oder CH2CH(CH3)CH2 sein.R 4 may preferably be CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH 2 CH 2 CH 2 , CH (CH 3 ), CH 2 CH (CH 3 ), CH (CH 3 ) CH 2 , C (CH 3 ) 2 , CH (C 2 H 5 ), CH 2 CH 2 CH (CH 3 ) or CH 2 CH (CH 3 ) CH 2 .

Verbindungen der Formel I können sein:



  •         [(C4H9O-(CH2-CH2O)2] (Me)2Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)3] (Me)2Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)4] (Me)2Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)5] (Me)2Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)6] (Me)2Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)2] (Me)2Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)3] (Me)2Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)4] (Me)2Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)5] (Me)2Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)6] (Me)2Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)2] (Me)2Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)3] (Me)2Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)4] (Me)2Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)5] (Me)2Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)6] (Me)2Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)2] (Me)2Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)3] (Me)2Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)4] (Me)2Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)5] (Me)2Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)6] (Me)2Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)2] (Me)2Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)3] (Me)2Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)4] (Me)2Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)5] (Me)2Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)6] (Me)2Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)2](Me)2Si(CH)3SH,



  •         [(C9H19O-(CH2-CH2O)3](Me)2Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)4](Me)2Si(CH)3SH,



  •         [(C9H19O-(CH2-CH2O)5](Me)2Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)6](Me)2Si(CH)3SH,



  •         [(C4H9O-(CH2-CH2O)2]2(Me)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)3]2(Me)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2)4]2(Me)Si(CH2)3SH,



  •         [(C9H9O-(CH2-CH2O)5]2(Me)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)6]2(Me)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)2]2(Me)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)3]2(Me)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)4]2(Me)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)5]2(Me)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)6]2(Me)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)2]2(Me)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)3]2(Me)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)4]2(Me)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)5]2(Me)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)6]2(Me)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)2]2(Me)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)3]2(Me)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)4]2(Me)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)5]2(Me)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)6]2(Me)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)2]2(Me)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)3]2(Me)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)4]2(Me)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)5]2(Me)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)6]2(Me)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)2]2(Me)Si(CH2)3SH,

  •         [(C9H19O-(CH2-CH2O)3]2(Me)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)4]2(Me)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)5]2(Me)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)6]2(Me)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)2](Me)(EtO)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)3](Me)(EtO)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)4](Me)(EtO)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)5](Me)(EtO)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)6](Me)(EtO)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)2](Me)(EtO)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)3](Me)(EtO)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)4](Me)(EtO)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)5](Me)(EtO)Si(CH2)3SH,

            [(C5H11O-(CH2-CH2O)6](Me)(EtO)Si(CH2)3SH,



  •         [(C9H13O-(CH2-CH2O)2](Me)(EtO)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)3](Me)(EtO)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)4](Me)(EtO)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)5](Me)(EtO)Si(CH2)3SH,



  •         [(C5H13O-(CH2-CH2O)6](Me)(EtO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)2](Me)(EtO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)3](Me)(EtO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)4](Me)(EtO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)5](Me)(EtO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)6](Me)(EtO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)2](Me)(EtO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)3](Me)(EtO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)4](Me)(EtO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)5](Me)(EtO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)6](Me)(EtO)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)2](Me)(EtO)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)3](Me)(EtO)Si(CH2)3SH,

  •         [(C9H19O-(CH2-CH2O)4](Me)(EtO)Si(CH2)3SH,



  •         [(C9H19O-(CH2CH2O)5](Me)(EtO)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)6](Me)(EtO)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)2](Me)(MeO)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)3](Me)(MeO)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)4](Me)(MeO)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2O)5](Me)(MeO)Si(CH2)3SH,



  •         [(C4H9O-(CH2-CH2)6](Me)(MeO)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)2](Me)(MeO)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)3](Me)(MeO)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)4](Me)(MeO)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)5](Me)(MeO)Si(CH2)3SH,



  •         [(C5H11O-(CH2-CH2O)6](Me)(MeO)Si(CH2)3SH,



  •         [(C5H13O-(CH2-CH2O)2](Me)(MeO)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)3](Me)(MeO)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)4](Me)(MeO)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)5](Me)(MeO)Si(CH2)3SH,



  •         [(C6H13O-(CH2-CH2O)6](Me)(MeO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)2](Me)(MeO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)3](Me)(MeO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)4](Me)(MeO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)5](Me)(MeO)Si(CH2)3SH,



  •         [(C7H15O-(CH2-CH2O)6](Me)(MeO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)2](Me)(MeO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)3](Me)(MeO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)4](Me)(MeO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)5](Me)(MeO)Si(CH2)3SH,



  •         [(C8H17O-(CH2-CH2O)6](Me)(MeO)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)2](Me)(MeO)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)3](Me)(MeO)Si(CH2)3SH,



  •         [(C9H19O-(CH2-CH2O)4](Me)(MeO)Si(CH2)3SH,

  •         [(C9H19O-(CH2-CH2O)5](Me)(MeO)Si(CH2)3SH oder



  •         [(C9H19O-(CH2-CH2O)6](Me)(MeO)Si(CH2)3SH, mit Me = CH3 und Et = CH2CH3.

Compounds of the formula I may be:


  • [(C 4 H 9 O- (CH 2 -CH 2 O) 2 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 3 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 4 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 5 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 6 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 2 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 3 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 4 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 5 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 6 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 2 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 3 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 4 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 5 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 6 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 2 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 3 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 4 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 5 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 6 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 2 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 3 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 4 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 5 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 6 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 2 ] (Me) 2 Si (CH) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 3 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 4 ] (Me) 2 Si (CH) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 5 ] (Me) 2 Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 6 ] (Me) 2 Si (CH) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 2 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 3 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 ) 4 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 9 H 9 O- (CH 2 -CH 2 O) 5 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 6 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 2 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2O) 3] 2 (Me) Si (CH 2) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 4 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 5 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 6 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 2 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 3 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 4 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 5 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 6 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 2 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 3 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 4 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 5 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 6 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 2 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 3 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 4 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 5 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 6 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 2 ] 2 (Me) Si (CH 2 ) 3 SH,

  • [(C 9 H 19 O- (CH 2 -CH 2 O) 3 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 4 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 5 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 6 ] 2 (Me) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 2 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 3 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 4 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 5 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 6 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 2 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 3 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 4 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 5 ] (Me) (EtO) Si (CH 2 ) 3 SH,

    [(C 5 H 11 O- (CH 2 -CH 2 O) 6 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 9 H 13 O- (CH 2 -CH 2 O) 2 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2O) 3] (Me) (EtO) Si (CH 2) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 4 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 5 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 5 H 13 O- (CH 2 -CH 2 O) 6 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 2 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 3 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 4 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 5 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 6 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2O) 2] (Me) (EtO) Si (CH 2) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 3 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 4 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 5 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 6 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 2 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 3 ] (Me) (EtO) Si (CH 2 ) 3 SH,

  • [(C 9 H 19 O- (CH 2 -CH 2 O) 4 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 CH 2 O) 5 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 6 ] (Me) (EtO) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 2 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 3 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 4 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 O) 5 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 4 H 9 O- (CH 2 -CH 2 ) 6 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 2 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 3 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 4 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 5 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 5 H 11 O- (CH 2 -CH 2 O) 6 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 5 H 13 O- (CH 2 -CH 2 O) 2 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 3 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 4 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 5 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 6 H 13 O- (CH 2 -CH 2 O) 6 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 2 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 3 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 4 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 5 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 7 H 15 O- (CH 2 -CH 2 O) 6 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 2 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 3 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 4 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2O) 5] (Me) (MeO) Si (CH 2) 3 SH,



  • [(C 8 H 17 O- (CH 2 -CH 2 O) 6 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 2 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 3 ] (Me) (MeO) Si (CH 2 ) 3 SH,



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 4 ] (Me) (MeO) Si (CH 2 ) 3 SH,

  • [(C 9 H 19 O- (CH 2 -CH 2 O) 5 ] (Me) (MeO) Si (CH 2 ) 3 SH or



  • [(C 9 H 19 O- (CH 2 -CH 2 O) 6 ] (Me) (MeO) Si (CH 2 ) 3 SH, with Me = CH 3 and Et = CH 2 CH 3 .

Verbindungen der Formel I mit X= C3H7, C4H9, C5H11, C6H13, C7H15, C8H17 oder C9H19 können sein:

        [(X-O-(CH2-CH(CH3)O-)2](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)3](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)4](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)5](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)6](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)7](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)8](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)9](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)10](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)11](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)12](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)13](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)14](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)15](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)16](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)17](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)18](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)19](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)20](Me)(MeO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)2](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)3](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)4](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)5](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)6](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)7](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)8](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)9](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)10](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)11](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)12](Me)(EtO)Si(CH2)3SH,

        [ (X-O- (CH2-CH (CH3) O-) 13] (Me) (EtO) Si (CH2) 3SH,

        [(X-O-(CH2-CH(CH3)O-)14] (Me)(EtO) Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-) 15] (Me)(EtO) Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)16](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)17](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)18](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)19](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)20](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)19](Me)(EtO) Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)20](Me)(EtO)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)2]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)3]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)4]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)5]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)6]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)7]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)8]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)9]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)10] 2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)11]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)12]2(Me)Si(CH)3SH,

        [(X-O-(CH2-CH(CH3)O-)13]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)14]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)15]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)16]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)17]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)18]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)19]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)20]2(Me)Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)2](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)3](Me)2Si(CH)3SH,

        [(X-O-(CH2-CH(CH3)O-)4](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)5](Me)2Si(CH)3SH,

        [(X-O-(CH2-CH(CH3)O-)6](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)7](Me)2Si(CH)3SH,

        [(X-O-(CH2-CH(CH3)O-)8](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)9](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)10](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)11](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)0-)12](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)13](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)14](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)15](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)16](Me) 2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)17](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)18](Me)2Si(CH2)3SH,

        [(X-O-(CH2-CH(CH3)O-)19](Me)2Si(CH2)3SHoder

        [(X-O-(CH2-CH(CH3)O-)20](Me)2Si(CH2)3SH.

Compounds of the formula I where X =C 3 H 7 , C 4 H 9 , C 5 H 11 , C 6 H 13 , C 7 H 15 , C 8 H 17 or C 9 H 19 may be:

[(XO- (CH 2 -CH (CH 3 ) O-) 2 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 3 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 4 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 5 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 6 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 7 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 8 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 9 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 10 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 11 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 12 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 13 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 14 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 15 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 16 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 17 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 18 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 19 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 20 ] (Me) (MeO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 2 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 3 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 4 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 5 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 6 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 7 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 8 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 9 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 10 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 11 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 12 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 13 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 14 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 15 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 16 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 17 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 18 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 19 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 20 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 19 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 20 ] (Me) (EtO) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 2 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 3 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 4 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 5 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 6 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 7 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 8 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 9 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 10 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 11 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 12 ] 2 (Me) Si (CH) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 13 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 14 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 15 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 16 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 17 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 18 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 19 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 20 ] 2 (Me) Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 2 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 3 ] (Me) 2 Si (CH) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 4 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 5 ] (Me) 2 Si (CH) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 6 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 7 ] (Me) 2 Si (CH) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 8 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 9 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 10 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 11 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 12 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 13 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 14 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 15 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 16 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 17 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 18 ] (Me) 2 Si (CH 2 ) 3 SH,

[(XO- (CH 2 -CH (CH 3 ) O-) 19 ] (Me) 2 Si (CH 2 ) 3 SH or

[(XO- (CH 2 -CH (CH 3 ) O-) 20 ] (Me) 2 Si (CH 2 ) 3 SH.

Das Organosilan der allgemeinen Formel I kann aus einem Gemisch von Verbindungen von Organosilanen der allgemeinen Formel I bestehen. Die Gemische können Verbindungen von Organosilanen mit denselben oder unterschiedlichen m enthalten. Die Gemische von Organosilanen können Verbindungen mit denselben oder unterschiedlichen Y-Gruppen enthalten. Die Gemische können Verbindungen von Organosilanen mit denselben oder unterschiedlichen R1-, R2- , R3- oder R4-Gruppen enthalten.The organosilane of the general formula I can consist of a mixture of compounds of organosilanes of the general formula I. The mixtures may contain compounds of organosilanes having the same or different m. The mixtures of organosilanes may contain compounds having the same or different Y groups. The mixtures may contain compounds of organosilanes having the same or different R 1 , R 2 , R 3 or R 4 groups.

Aus den Organosilanen der allgemeinen Formel I können durch Wasserzugabe Kondensationsprodukte, das heisst Oligo- und Polysiloxane gebildet werden. Die Oligo- und Polysiloxane können durch Oligomerisierung oder Cooligomerisierung der entsprechenden Alkoxysilanverbindungen der allgemeinen Formel I durch Wasserzugabe und dem Fachmann auf diesem Gebiet bekannte Additivzugabe und Verfahrensweise erhalten werden. Die so entstandenen Oligo- bzw. Polymerisierungsprodukte können in den Organsilanverbindungen der allgemeinen Formel I enthalten sein.From the organosilanes of the general formula I condensation products, ie oligo- and polysiloxanes can be formed by addition of water. The oligo- and polysiloxanes may be obtained by oligomerization or co-oligomerization of the corresponding alkoxysilane compounds of general formula I by addition of water and additive addition and procedure known to those skilled in the art. The resulting oligo- or polymerization products can in the Organosilane compounds of general formula I may be included.

Das Organosilan der allgemeinen Formel I kann auch ein Oligo- oder Polymerisierungsprodukt der Organosilanverbindung der allgemeinen Formel I sein. Das Organosilan der allgemeinen Formel I kann ein Gemisch aus Oligo- oder Polymerisierungsprodukten der Organosilanverbindung der allgemeinen Formel I und unkondensierter Organosilanverbindung der allgemeinen Formel I sein.The organosilane of the general formula I may also be an oligo- or polymerization product of the organosilane compound of the general formula I. The organosilane of general formula I may be a mixture of oligo- or polymerization products of the organosilane compound of general formula I and uncondensed organosilane compound of general formula I.

Das Organosilan der allgemeinen Formel I kann sowohl in reiner Form als auch aufgezogen auf einen inerten organischen oder anorganischen Träger, sowie vorreagiert mit einem organischen oder anorganischen Träger dem Mischprozeß zugegeben werden. Bevorzugte Trägermaterialien können gefällte oder pyrogene Kieselsäuren, Wachse, Thermoplaste, natürliche oder synthetische Silikate, natürliche oder synthetische Oxide, speziell Aluminiumoxid, oder Ruße sein. Desweiteren können die Organosilane der allgemeinen Formel I auch vorreagiert mit dem einzusetzenden Füllstoff dem Mischprozeß zugegeben werden.The organosilane of the general formula I can be added to the mixing process both in pure form and supported on an inert organic or inorganic carrier, as well as prereacted with an organic or inorganic carrier. Preferred support materials may be precipitated or fumed silicas, waxes, thermoplastics, natural or synthetic silicates, natural or synthetic oxides, especially alumina, or carbon blacks. Furthermore, the organosilanes of the general formula I can also be added to the mixing process in a pre-reacted form with the filler to be used.

Als Füllstoffe können für die erfindungsgemäßen Kautschukmischungen die folgenden Füllstoffe eingesetzt werden:

  • Ruße: Die hierbei zu verwendenden Ruße sind nach dem Flammruß-, Furnace-, Gasruß oder Thermal-Verfahren hergestellt und besitzen BET-Oberflächen von 20 bis 200 m2/g. Die Ruße können gegebenenfalls auch Heteroatome, wie zum Beispiel Si, enthalten.
  • Amorphe Kieselsäuren, hergestellt zum Beispiel durch Fällung von Lösungen von Silikaten oder Flammenhydrolyse von Siliciumhalogeniden mit spezifischen Oberflächen von 5 bis 1000 m2/g, vorzugsweise 20 bis 400 m2/g (BET-Oberfläche) und mit Primärteilchengrößen von 10 bis 400 nm. Die Kieselsäuren können gegebenenfalls auch als Mischoxide mit anderen Metalloxiden, wie Al-, Mg-, Ca-, Ba-, Zn- und Titanoxiden, vorliegen.
  • Synthetische Silikate, wie Aluminiumsilikat, Erdalkalisilikate, wie Magnesiumsilikat oder Calciumsilikat, mit BET-Oberflächen von 20 bis 400 m2/g und Primärteilchendurchmessern von 10 bis 400 nm.
  • Synthetische oder natürliche Aluminiumoxide und - hydroxide.
  • Natürliche Silikate, wie Kaolin und andere natürlich vorkommende Kieselsäuren.
  • Glasfaser und Glasfaserprodukte (Matten, Stränge) oder Mikroglaskugeln.
As fillers, the following fillers can be used for the rubber mixtures according to the invention:
  • Carbon blacks: The carbon blacks to be used in this case are produced by the flame black, furnace, gas black or thermal process and have BET surface areas of from 20 to 200 m 2 / g. Optionally, the carbon blacks may also contain heteroatoms, such as Si.
  • Amorphous silicas prepared, for example, by precipitation of solutions of silicates or flame hydrolysis of silicon halides specific surface areas of from 5 to 1000 m 2 / g, preferably from 20 to 400 m 2 / g (BET surface area) and with primary particle sizes of from 10 to 400 nm. The silicas may also be used as mixed oxides with other metal oxides such as Al, Mg and , Ca, Ba, Zn and titanium oxides.
  • Synthetic silicates, such as aluminum silicate, alkaline earth silicates, such as magnesium silicate or calcium silicate, with BET surface areas of 20 to 400 m 2 / g and primary particle diameters of 10 to 400 nm.
  • Synthetic or natural aluminas and hydroxides.
  • Natural silicates, such as kaolin and other naturally occurring silicas.
  • Glass fiber and glass fiber products (mats, strands) or glass microspheres.

Bevorzugt können amorphe Kieselsäuren, hergestellt durch Fällung von Lösungen von Silikaten, mit BET-Oberflächen von 20 bis 400 m2/g in Mengen von 5 bis 150 Gew.-Teilen, jeweils bezogen auf 100 Teile Kautschuk, eingesetzt werden.Amorphous silicas prepared by precipitation of solutions of silicates having BET surface areas of from 20 to 400 m 2 / g in amounts of from 5 to 150 parts by weight, based in each case on 100 parts of rubber, may preferably be used.

Für die Herstellung der erfindungsgemäßen Kautschukmischungen können neben Naturkautschuk auch Synthesekautschuke eingesetzt werden. Bevorzugte Synthesekautschuke sind beispielsweise bei W. Hofmann, Kautschuktechnologie, Genter Verlag, Stuttgart 1980 , beschrieben. Sie umfassen unter anderem

  • Polybutadien (BR),
  • Polyisopren (IR),
  • Styrol/Butadien-Copolymerisate, beispielsweise Emulsions-SBR (E-SBR) oder Lösungs-SBR (L-SBR), bevorzugt mit Styrolgehalten von 1 bis 60, besonders bevorzugt 5 bis 50 Gew.-% (SBR),
  • Chloropren (CR),
  • Isobutylen/Isopren-Copolymerisate (IIR),
  • Butadien/Acrylnitril-Copolymere mit Acrylnitrilgehalten von 5 bis 60, vorzugsweise 10 bis 50 Gew.-% (NBR),
  • teilhydrierter oder vollständig hydrierter NBR-Kautschuk (HNBR),
  • Ethylen/Propylen/Dien-Copolymerisate (EPDM),
  • oben genannte Kautschuke, die zusätzlich funktionelle Gruppen besitzen, wie z.B. Carboxy- , Silanol- oder Epoxygruppen, beispielsweise Epoxidierter NR, Carboxy-funktionalisierter NBR oder Silanol- (-SiOH) bzw. Siloxyfunktionalisierter (-Si-OR) SBR,
sowie Mischungen dieser Kautschuke. Für die Herstellung von PKW-Reifenlaufflächen können insbesondere anionisch polymerisierte L-SBR-Kautschuke (Lösungs-SBR) mit einer Glastemperatur oberhalb von -50 °C sowie deren Mischungen mit Dienkautschuken eingesetzt werden.Synthetic rubbers can be used in addition to natural rubber for the preparation of the rubber mixtures according to the invention. Preferred synthetic rubbers are for example at W. Hofmann, Rubber Technology, Genter Verlag, Stuttgart 1980 , described. They include, among others
  • Polybutadiene (BR),
  • Polyisoprene (IR),
  • Styrene / butadiene copolymers, for example emulsion SBR (E-SBR) or solution SBR (L-SBR), preferably with styrene contents of 1 to 60, more preferably 5 to 50 wt.% (SBR),
  • Chloroprene (CR),
  • Isobutylene / isoprene copolymers (IIR),
  • Butadiene / acrylonitrile copolymers having acrylonitrile contents of 5 to 60, preferably 10 to 50 wt .-% (NBR),
  • partially hydrogenated or fully hydrogenated NBR rubber (HNBR),
  • Ethylene / propylene / diene copolymers (EPDM),
  • abovementioned rubbers which additionally have functional groups, for example carboxy, silanol or epoxy groups, for example epoxidized NR, carboxy-functionalized NBR or silanol (-SiOH) or siloxy-functionalized (-Si-OR) SBR,
and mixtures of these rubbers. In particular, anionically polymerized L-SBR rubbers (solution SBR) having a glass transition temperature above -50 ° C. and mixtures thereof with diene rubbers can be used for the production of automobile tire treads.

Die erfindungsgemäßen Kautschukrohmischungen und - vulkanisate können weitere Kautschukhilfsmittel, wie Reaktionsbeschleuniger, Alterungsschutzmittel, Wärmestabilisatoren, Lichtschutzmittel, Ozonschutzmittel, Verarbeitungshilfsmittel, Weichmacher, Tackifier, Treibmittel, Farbstoffe, Pigmente, Wachse, Streckmittel, organische Säuren, Verzögerer, Metalloxide oder Aktivatoren, wie Triethanolamin oder Hexantriol, enthalten.The rubber raw mixtures and vulcanizates according to the invention may contain further rubber auxiliaries, such as reaction accelerators, aging inhibitors, heat stabilizers, light stabilizers, antiozonants, processing aids, plasticizers, tackifiers, blowing agents, dyes, pigments, waxes, extenders, organic acids, Retarder, metal oxides or activators, such as triethanolamine or hexanetriol.

Weitere Kautschukhilfsmittel können Polyalkylenglykole sein. Polyalkylenglykole können Polyethylenglykole, Polypropylenglykole oder/und Polybutylenglykole sein.Other rubber auxiliaries may be polyalkylene glycols. Polyalkylene glycols may be polyethylene glycols, polypropylene glycols and / or polybutylene glycols.

Die Polyalkylenglykole können ein Molekulargewicht zwischen 50 und 50.000 g/mol, bevorzugt zwischen 50 und 20.000 g/mol, besonders bevorzugt zwischen 200 und 10.000 g/mol, ganz besonders bevorzugt zwischen 400 und 6.000 g/mol, außerordentlich bevorzugt zwischen 500 und 3.000 g/mol, haben.The polyalkylene glycols may have a molecular weight between 50 and 50,000 g / mol, preferably between 50 and 20,000 g / mol, more preferably between 200 and 10,000 g / mol, most preferably between 400 and 6,000 g / mol, most preferably between 500 and 3,000 g / mol, have.

Die Polyethylenglykole können kohlenwasserstoffterminiertes Polyethylenglykol Alk-O-(CH2-CH2-O)yI-H bzw. Alk-(CH2-CH2-O)yI-Alk sein, mit yI = 2-25, bevorzugt yI = 2-15, besonders bevorzugt yI = 3-8 und 10-14, ganz besonders bevorzugt yI = 3-6 und 10-13, und Alk gleich ein verzweigter oder unverzweigter, unsubstituierter oder substituierter, gesättigter oder ungesättigter Kohlenwasserstoff mit 1 bis 35, bevorzugt 4 bis 25, besonders bevorzugt 6 bis 20, ganz besonders bevorzugt 10 bis 20, außerordentlich bevorzugt 11 bis 14, Kohlenstoffatomen.The polyethylene glycols may be hydrocarbon-terminated polyethylene glycol Alk-O- (CH 2 -CH 2 -O) yl -H or alk- (CH 2 -CH 2 -O) yl- alk, with y I = 2-25, preferably y I = 2-15, more preferably y I = 3-8 and 10-14, most preferably y I = 3-6 and 10-13, and Alk is a branched or unbranched, unsubstituted or substituted, saturated or unsaturated hydrocarbon with 1 to 35, preferably 4 to 25, more preferably 6 to 20, most preferably 10 to 20, most preferably 11 to 14, carbon atoms.

Die Polypropylenglykole können kohlenwasserstoffterminiertes Polypropylenglykol Alk-O-(CH2-CH(CH3)-O)yI-H bzw. Alk-O-(CH2-CH(CH3)-O)yI-Alk sein, wobei yI und Alk die oben genannte Bedeutung haben.The polypropylene glycols may be hydrocarbon-terminated polypropylene glycol Alk-O- (CH 2 -CH (CH 3 ) -O) yl -H or Alk-O- (CH 2 -CH (CH 3 ) -O) yl- alk, where y is I and Alk have the abovementioned meaning.

Die Polybutylenglykole können kohlenwasserstoffterminiertes Polybutylenglykol Alk-O-(CH2-CH2-CH2-CH2-O)yI-H, Alk-O- (CH2-CH (CH3) -CH2-O)yI-H, Alk-O-(CH2-CH2-CH2-CH2-O)yI-Alk oder Alk-O-(CH2-CH (CH3)-CH2-O)yI-Alk sein, wobei yI und Alk die oben genannte Bedeutung haben.The polybutylene glycols may include hydrocarbon- terminated polybutylene glycol , Alk-O- (CH 2 -CH 2 -CH 2 -CH 2 -O) yl -H, Alk-O- (CH 2 -CH (CH 3 ) -CH 2 -O) yl -H , Alk-O- (CH 2 -CH 2 -CH 2 -CH 2 -O) yl -alk or Alk-O- (CH 2 -CH (CH 3 ) -CH 2 -O) yl- alk, where y I and Alk have the abovementioned meaning.

Polyalkylenglykole können polyethylenglykol-, polypropylenglykol-, polybutylenglykol-, oder mit Mischungen davon verethertes Neopentylglykol HO-CH2-C(Me)2-CH2-OH, Pentaerythrit C(CH2-OH)4 oder Trimethylolpropan CH3-CH2-C(CH2-OH)3, wobei die Wiederholeinheiten von Ethylenglykol, Propylenglykol oder/und Butylenglykol in den veretherten Polyalkoholen zwischen 2 und 100, bevorzugt zwischen 2 und 50, besonders bevorzugt zwischen 3 und 30, ganz besonders bevorzugt zwischen 3 und 15, sind, sein.Polyalkylene glycols may be polyethylene glycol, polypropylene glycol, polybutylene glycol, or etherified with mixtures thereof neopentyl glycol HO-CH 2 -C (Me) 2 -CH 2 -OH, pentaerythritol C (CH 2 -OH) 4 or trimethylolpropane CH 3 -CH 2 - C (CH 2 -OH) 3 , where the repeat units of ethylene glycol, propylene glycol or / and butylene glycol in the etherified polyalcohols are between 2 and 100, preferably between 2 and 50, more preferably between 3 and 30, very particularly preferably between 3 and 15, are, be.

Die Kautschukhilfsmittel können in bekannten Mengen, die sich unter anderem nach dem Verwendungszweck richten, eingesetzt werden. Übliche Mengen sind zum Beispiel Mengen von 0,1 bis 50 Gew.-%, vorzugsweise 0,1 bis 30 Gew.-%, bezogen auf Kautschuk. Als Vernetzer können Schwefel oder schwefelspendende Substanzen eingesetzt werden. Die erfindungsgemäßen Kautschukmischungen können darüber hinaus Vulkanisationsbeschleuniger enthalten. Beispielsweise können als geeignete Vulkanisationsbeschleuniger Mercaptobenzthiazole, Sulfenamide, Guanidine, Thiurame, Dithiocarbamate, Thioharnstoffe und Thiocarbonate eingesetzt werden. Die Vulkanisationsbeschleuniger und Schwefel können in Mengen von 0,1 bis 10 Gew.-%, bevorzugt 0.1 bis 5 Gew.-%, bezogen auf Kautschuk, eingesetzt werden.The rubber auxiliaries can be used in known amounts, which depend inter alia on the intended use. Usual amounts are, for example, amounts of 0.1 to 50 wt .-%, preferably 0.1 to 30 wt .-%, based on rubber. As crosslinkers sulfur or sulfur-donating substances can be used. The rubber mixtures according to the invention may additionally contain vulcanization accelerators. For example, mercaptobenzothiazoles, sulfenamides, guanidines, thiurams, dithiocarbamates, thioureas and thiocarbonates can be used as suitable vulcanization accelerators. The vulcanization accelerators and sulfur can be used in amounts of 0.1 to 10 wt .-%, preferably 0.1 to 5 wt .-%, based on rubber.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Kautschukmischung, welches dadurch gekennzeichnet ist, daß man den Kautschuk, Füllstoff, gegebenenfalls weitere Kautschukhilfsmittel und mindestens ein Organosilan der allgemeinen Formel I mischt.Another object of the invention is a process for the preparation of the rubber mixture according to the invention, which is characterized by mixing the rubber, filler, optionally further rubber auxiliaries and at least one organosilane of the general formula I.

Die Vulkanisation der erfindungsgemäßen Kautschukmischungen kann bei Temperaturen von 100 bis 200°C, bevorzugt 130 bis 180 °C, gegebenenfalls unter Druck von 10 bis 200 bar erfolgen. Die Abmischung der Kautschuke mit dem Füllstoff, gegebenenfalls Kautschukhilfsmitteln und dem Organosilan der allgemeinen Formel I kann in bekannten Mischaggregaten, wie Walzen, Innenmischern und Mischextrudern, durchgeführt werden.The vulcanization of the rubber mixtures according to the invention can be carried out at temperatures of 100 to 200 ° C, preferably 130 to 180 ° C, optionally under pressure of 10 to 200 bar. The blending of the rubbers with the filler, optionally rubber auxiliaries and the organosilane of the general formula I can be carried out in known mixing units, such as rollers, internal mixers and mixing extruders.

Die erfindungsgemäßen Kautschukmischungen können zur Herstellung von Formkörpern, zum Beispiel für die Herstellung von Luftreifen, Reifenlaufflächen, Kabelmänteln, Schläuchen, Treibriemen, Förderbändern, Walzenbelägen, Reifen, Schuhsohlen, Dichtungsringen und Dämpfungselementen, verwendet werden.The rubber blends of the present invention may be used to make molded articles, for example, for the manufacture of pneumatic tires, tire treads, cable jackets, hoses, power belts, conveyor belts, roller coverings, tires, shoe soles, gaskets and damping elements.

Die erfindungsgemäßen Kautschukmischungen zeigen einen verbesserten Weiterreißwiderstand.The rubber mixtures according to the invention show an improved tear propagation resistance.

Beispiele:Examples: Vergleichsbeispiel 1: 3-Mercaptopropyl(dimethylethoxysilan) (MPDMES)Comparative Example 1: 3-mercaptopropyl (dimethylethoxysilane) (MPDMES)

In einem Autoklaven mit Glasdoppelmantel und Hastelloy C22 Deckel + Armaturen (Buechi AG) werden bei Raumtemperatur 37,5 g getrocknetes NaSH und 600 ml trockenes Ethanol vorgelegt. Die Suspension wird erwärmt und 20 min bei 50°C gerührt. Es wird eine Mischung aus 100 g 3-Chlorpropyl(dimethylethoxysilan) und 5 g 3-Chlorpropyl(dimethylchlorsilan) mit einer Druckbürette zu der Suspension gegeben. Zu der Mischung werden weitere 200 ml Ethanol gegeben und unter Rühren auf 93-96°C erwärmt. Die Temperatur wird für 180 min gehalten. Die Mischung wird anschließend auf Raumtemperatur abgekühlt.37.5 g of dried NaSH and 600 ml of dry ethanol are initially charged at room temperature in an autoclave with glass double jacket and Hastelloy C22 lid + fittings (Buechi AG). The suspension is heated and stirred at 50 ° C for 20 min. A mixture of 100 g of 3-chloropropyl (dimethylethoxysilane) and 5 g of 3-chloropropyl (dimethylchlorosilane) is added to the suspension using a pressure burette. Another 200 ml of ethanol are added to the mixture and heated to 93-96 ° C. with stirring. The temperature is held for 180 min. The mixture is then cooled to room temperature.

Die entstandene Suspension wird filtriert und der Filterkuchen mit Toluol gewaschen. Das Filtrat wird am Rotationsverdampfer vom Lösungsmittel befreit. Die erhaltene Suspension wird filtriert, der Filterkuchen mit Toluol gewaschen und das Filtrat nochmals am Rotationsverdampfer vom Toluol befreit.The resulting suspension is filtered and the filter cake washed with toluene. The filtrate is freed from the solvent on a rotary evaporator. The resulting suspension is filtered, the filter cake washed with toluene and the filtrate freed again from the toluene on a rotary evaporator.

Es werden 88,3 g flüssiges, farbloses Produkt erhalten.There are obtained 88.3 g of liquid, colorless product.

Vergleichsbeispiel 2: [(EtO)Me2Si-CH2-CH2-CH2-]2S3,66 Comparative Example 2: [(EtO) Me 2 Si-CH 2 -CH 2 -CH 2 -] 2 S 3.66

In einen 2000 ml Vierhalskolben werden 700 ml Ethanol mit 337 g getrocknetem Na2S4 (1,94 mol) und 700 g 3-Chlorpropyl(dimethylethoxysilan) (3,88 mol) eingewogen und unter Rühren zum Sieden erhitzt. Die Reaktionslösung wird für 270 min unter Rückfluß gekocht. Der Suspension werden 3 g 3-Chlorpropyl(dimethylethoxysilan) zugesetzt und für weitere 30 min auf Rückfluß erhitzt.In a 2000 ml four-necked flask, 700 ml of ethanol with 337 g of dried Na 2 S 4 (1.94 mol) and 700 g of 3-chloropropyl (dimethylethoxysilane) (3.88 mol) weighed and heated to boiling with stirring. The reaction solution is refluxed for 270 minutes. 3 g of 3-chloropropyl (dimethylethoxysilane) are added to the suspension and heated to reflux for a further 30 min.

Die Suspension wird abgekühlt, filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird am Rotationsverdampfer bei 20-400 mbar und 60-90°C vom Lösungsmittel befreit und nochmals filtriert. Es werden 769,2 g einer orangen Flüssigkeit isoliert.The suspension is cooled, filtered and the residue washed with ethanol. The filtrate is freed from the solvent on a rotary evaporator at 20-400 mbar and 60-90 ° C and filtered again. There are 769.2 g of an orange liquid isolated.

Analytik:analytics:


1. 1H-NMR Gehalt an
3-Chlorpropyl(dimethyl-ethoxysilan)
Gehalt an [(EtO)Me2Si-CH2-CH2-CH2-]2Sx
x = 2 x = 3 x = 4
mol.-% mol- % mol- % mol- % 2,8 17,1 28,0 25,2
Die mittlere Kettenlänge -Sx-, basierend auf den NMR-Daten (S1-S10), beträgt 3, 66.
2. 29Si-NMR
Das Vergleichsbeispiel 2 enthält 1,6 mol-% dimerisiertes [(EtO)Me2Si-CH2-CH2-CH2-]2Sx .

1. 1 H NMR Salary
3-chloropropyl (dimethyl-ethoxysilane)
Content of [(EtO) Me 2 Si-CH 2 -CH 2 -CH 2 -] 2 S x
x = 2 x = 3 x = 4
mol .-% mol% mol% mol% 2.8 17.1 28.0 25.2
The mean chain length -S x -, based on the NMR data (S 1 -S 10 ), is 3.66.
2. 29 Si NMR
Comparative Example 2 contains 1.6 mol% of dimerized [(EtO) Me 2 Si-CH 2 -CH 2 -CH 2 -] 2 S x .

Für die Analyse des Vergleichsproduktes wird ein DRX 500 NMR-Gerät der Firma Bruker gemäß den dem Fachmann bekannten Regeln und Bedienvorschriften verwendet. Die Messfrequenzen sind 99,35 MHz für 29Si-Kerne und 500,13 MHz für 1H-Kerne. Als Referenz dient Tetramethylsilan (TMS).For the analysis of the comparison product, a Bruker DRX 500 NMR instrument is used according to the rules and operating instructions known to the person skilled in the art. The measurement frequencies are 99.35 MHz for 29 Si cores and 500.13 MHz for 1 H cores. The reference is tetramethylsilane (TMS).

Die Analyse von Bis(alkoxysilylorganyl)polysulfiden und Mercaptoorganyl(alkoxysilanen) und deren Gemischen wird beispielsweise beschrieben in U. Görl, J. Münzenberg, D. Luginsland, A. Müller Kautschuk Gummi Kunststoffe 1999, 52(9), 588ff , D. Luginsland Kautschuk Gummi Kunststoffe 2000, 53(1-2), 10ff oder M. W. Backer et al, Polymer Preprints 2003, 44(1), 245ff .The analysis of bis (alkoxysilylorganyl) polysulfides and mercaptoorganyl (alkoxysilanes) and their mixtures is described, for example, in U. Görl, J. Münzenberg, D. Luginsland, A. Müller Rubber Rubber Plastics 1999, 52 (9), 588ff . D. Luginsland Rubber Rubber Plastics 2000, 53 (1-2), 10ff or MW Backer et al, Polymer Preprints 2003, 44 (1), 245ff ,

Beispiel 2: Gummitechnische UntersuchungenExample 2: Rubber Engineering Studies

Die für die Kautschukmischungen verwendete Rezeptur ist in der folgenden Tabelle 1 angegeben. Dabei bedeutet die Einheit phr Gewichtsanteile, bezogen auf 100 Teile des eingesetzten Rohkautschuks. Die erfindungsgemäßen Silane werden gewichtsgleich dosiert. Das allgemeine Verfahren zur Herstellung von Kautschukmischungen und deren Vulkanisate ist in dem Buch: " Rubber Technology Handbook", W. Hofmann, Hanser Verlag 1994 beschrieben.The recipe used for the rubber compounds is given in Table 1 below. The unit phr means parts by weight, based on 100 parts of the raw rubber used. The silanes of the invention are metered in the same weight. The general procedure for the preparation of rubber compounds and their vulcanizates is described in the book: Rubber Technology Handbook ", W. Hofmann, Hanser Verlag 1994 described.

Die Kopplungsreagenzien Si 69, ein Bis-(triethoxy-silylpropyl)tetrasulfid (TESPT), und VP Si 263, ein 3-Mercaptopropyl(triethoxysilan) (MPTES), sind Verkaufsprodukte der Degussa AG. Das Kopplungsreagenz VP Si 208, ein Octylsilyltriethoxysilan, ist als Alkylsilan ein Verarbeitungshilfsmittel und ist ein Verkaufsprodukt der Degussa AG. Tabelle 1: Substanz Mischung 1 Mischung 2 Mischung 3 Mischung 4 Referenz [phr] Referenz [phr] Referenz [phr] Referenz [phr] 1. Stufe Buna VSL 5025-1 96 96 96 96 Buna CB 24 30 30 30 30 Ultrasil 7000 GR 80 80 80 80 Si 69 (TESPT) 2 - - - VP Si 263 (MPTES) - 2 - - Silan aus Vergleichsbeispiel 2 (DMESPT) - - 2 - Silan aus Vergleichsbeispiel 1 (MPDMES) - - - 2 VP Si 208 2,5 2,5 2,5 2,5 ZnO 3 3 3 3 Stearinsäure 2 2 2 2 Naftolen ZD 10 10 10 10 Vulkanox 4020 1,5 1,5 1,5 1,5 Protektor G 3108 1 1 1 1 2. Stufe Batch Stufe 1 3. Stufe Batch Stufe 2 Vulkacit D 2 2 2 2 Vulkacit CZ 1,5 1,5 1,5 1,5 Perkacit TBzTD 0,2 0,2 0,2 0,2 Schwefel 1,5 1,5 1,5 1,5 The coupling reagents Si 69, a bis- (triethoxy-silylpropyl) tetrasulfide (TESPT), and VP Si 263, a 3-mercaptopropyl (triethoxysilane) (MPTES), are sales products of Degussa AG. The coupling reagent VP Si 208, an octylsilyltriethoxysilane, is as Alkylsilane is a processing aid and is a sales product of Degussa AG. Table 1: substance Mixture 1 Mixture 2 Mixture 3 Mixture 4 Reference [phr] Reference [phr] Reference [phr] Reference [phr] 1st stage Buna VSL 5025-1 96 96 96 96 Buna CB 24 30 30 30 30 Ultrasil 7000 GR 80 80 80 80 Si 69 (TESPT) 2 - - - VP Si 263 (MPTES) - 2 - - Silane from Comparative Example 2 (DMESPT) - - 2 - Silane from Comparative Example 1 (MPDMES) - - - 2 VP Si 208 2.5 2.5 2.5 2.5 ZnO 3 3 3 3 stearic acid 2 2 2 2 Naftolen ZD 10 10 10 10 Vulcanox 4020 1.5 1.5 1.5 1.5 Protector G 3108 1 1 1 1 2nd stage Batch level 1 3rd stage Batch level 2 Vulkacit D 2 2 2 2 Vulkacit CZ 1.5 1.5 1.5 1.5 Perkacit TBzTD 0.2 0.2 0.2 0.2 sulfur 1.5 1.5 1.5 1.5

Bei dem Polymer VSL 5025-1 handelt es sich um ein in Lösung polymerisiertes SBR-Copolymer der Bayer AG, mit einem Styrolgehalt von 25 Gew.-% und einem Butadiengehalt von 75 Gew.-%. Das Copolymer enthält 37,5 phr Öl und weist eine Mooney-Viskosität (ML 1+4/100°C) von 50 auf.The polymer VSL 5025-1 is a polymerized in solution SBR copolymer of Bayer AG, with a styrene content of 25 wt .-% and a butadiene content of 75 wt .-%. The copolymer contains 37.5 phr of oil and has a Mooney viscosity (ML 1 + 4/100 ° C) of 50.

Bei dem Polymer Buna CB 24 handelt es sich um ein cis-1,4-Polybutadien (Neodymtyp) der Bayer AG, mit cis-1,4-Gehalt von mindestens 96 % und einer Mooney-Viskosität von 44±5.The polymer Buna CB 24 is a cis-1,4-polybutadiene (neodymium type) from Bayer AG, with a cis-1,4 content of at least 96% and a Mooney viscosity of 44 ± 5.

Ultrasil 7000 GR ist eine leicht dispergierbare Kieselsäure der Degussa AG und besitzt eine BET-Oberfläche von 170 m2/g.Ultrasil 7000 GR is an easily dispersible silica from Degussa AG and has a BET surface area of 170 m 2 / g.

Als aromatisches öl wird Naftolen ZD der Chemetall verwendet, bei Vulkanox 4020 handelt es sich um PPD der Bayer AG und Protektor G3108 ist ein Ozonschutzwachs der Paramelt B.V.. Vulkacit D (DPG) und Vulkacit CZ (CBS) sind Handelsprodukte der Bayer AG. Perkacit TBzTD (Tetrabenzylthiuramtetrasulfid) ist ein Produkt von Flexsys N.V..The aromatic oil used is Naftolen ZD from Chemetall, Vulkanox 4020 is PPD from Bayer AG and Protektor G3108 is an Ozonschutzwachs the Paramelt B.V .. Vulkacit D (DPG) and Vulkacit CZ (CBS) are commercial products of Bayer AG. Perkacit TBzTD (tetrabenzyl thiuram tetrasulfide) is a product of Flexsys N.V.

Die Kautschukmischungen werden in einem Innenmischer entsprechend der Mischvorschrift in Tabelle 2 hergestellt. Tabelle 2: Stufe 1 Einstellunqen Mischaggregat Werner & Pfleiderer E-Typ Drehzahl 60 min-1 Stempeldruck 5,5 bar Leervolumen 1,58 L Füllgrad 0,56 Durchflußtemp. 70°C Mischvorgang 0 bis 1 min Buna VSL 5025-1 + Buna CB 24 1 bis 2 min 1/2 Kieselsäure, ZnO, Stearinsäure, Naftolen ZD, Silan 2 bis 4 min 1/2 Kieselsäure, Vulkanox, Protektor 4 min Säubern 4 bis 5 min Mischen 5 min Lüften 5 bis 6 min Mischen und ausfahren Batch-Temp. 145-155°C Lagerung 24 h bei Raumtemperatur Stufe 2 Einstellunqen Mischaggregat Wie in Stufe 1 bis auf: Drehzahl 70 min-1 Durchflußtemp. 80°C Füllgrad 0,54 Mischvorgang 0 bis 2 min Batch Stufe 1 aufbrechen 2 bis 5 min Batchtemperatur 150°C durch
Drehzahlvariation halten
5 min Ausfahren Batch-Temp. 145-155°C Lagerung 4 h bei Raumtemperatur
Stufe 3 Einstellunqen Mischaggregat wie in Stufe 1 bis auf Drehzahl 40 min-1 Füllgrad 0,52 Durchflußtemp. 50°C Mischvorgang 0 bis 2 min Batch Stufe 2, Beschleuniger, Schwefel 2 min ausfahren und auf Labormischwalzwerk Fell bilden (Durchmesser 200 mm, Länge 450 mm, Durchflußtemperatur 50°C) Homogenisieren:
5* links, 5* rechts einschneiden und 6* bei weitem Walzenspalt (6 mm) und 3* bei engem Walzenspalt (3 mm)
Fell ausziehen.
Batch-Temp. < 110°C
The rubber mixtures are prepared in an internal mixer according to the mixing instructions in Table 2. Table 2: step 1 Einstellunqen mixing unit Werner & Pfleiderer E type number of revolutions 60 min -1 stamp printing 5.5 bar void 1,58 l filling level 0.56 Flow temp. 70 ° C mixing process 0 to 1 min Buna VSL 5025-1 + Buna CB 24 1 to 2 min 1/2 silica, ZnO, stearic acid, naftoles ZD, silane 2 to 4 min 1/2 silica, Vulkanox, protector 4 min Clean 4 to 5 min Mix 5 min ventilate 5 to 6 min Mix and extend Batch temp. 145-155 ° C storage 24 h at room temperature Level 2 Einstellunqen mixing unit As in step 1 up to: number of revolutions 70 min -1 Flow temp. 80 ° C filling level 0.54 mixing process 0 to 2 min Break up batch level 1 2 to 5 min Batch temperature 150 ° C through
Keep the speed variation
5 min extend Batch temp. 145-155 ° C storage 4 h at room temperature
level 3 Einstellunqen mixing unit as in step 1 up to number of revolutions 40 min -1 filling level 0.52 Flow temp. 50 ° C mixing process 0 to 2 min Batch level 2, accelerator, sulfur 2 min extend and form skin on laboratory mixer (diameter 200 mm, length 450 mm, flow temperature 50 ° C) Homogenize:
5 * left, 5 * right cut and 6 * wide nip (6 mm) and 3 * narrow nip (3 mm)
Take off the coat.
Batch temp. <110 ° C

In Tabelle 3 sind die Methoden für die Gummitestung zusammengestellt. Tabelle 3: Physikalische Testung Norm/Bedingungen Zugversuch am Ring, 23°C DIN 53504, ISO 37 Zugfestigkeit (MPa) Spannungswerte (MPa) Bruchdehnung (%) Weiterreißversuch nach Graves DIN 53 515 DIN-Abrieb, 10 N Kraft (mm3) DIN 53 516 Ball Rebound, 60°C (%) ASTM D 5308 Table 3 summarizes the rubber testing methods. Table 3: Physical testing Standard / Conditions Tensile test on the ring, 23 ° C DIN 53504, ISO 37 Tensile strength (MPa) Voltage values (MPa) Elongation at break (%) Tearing test after Graves DIN 53 515 DIN abrasion, 10 N force (mm 3 ) DIN 53 516 Ball Rebound, 60 ° C (%) ASTM D 5308

Die Tabelle 4 zeigt die Ergebnisse der gummitechnischen Prüfung. Tabelle 4: Vulkanisatdaten Einheit Mischung 1 Mischung 2 Mischung 3 Mischung 4 (Ref.) (Ref.) (Ref.) (Ref.) Zugfestigkeit [MPa] 12,8 15,2 12,2 15,2 Spannungswert 100% [MPa] 1,2 1,2 1,3 1,2 Spannungswert 300% [MPa] 5,8 6,2 6,1 6,7 Spannungswert 300 % / 100 % [-] 4,8 5,2 4,7 5,6 Bruchdehnung [%] 480 480 460 460 Weiterreißwider-stand [N/mm] 53 63 45 74 Ball-Rebound (60°C) [%] 65,5 69,5 65,1 69,1 DIN-Abrieb [mm3] 88 66 82 59 Table 4 shows the results of the rubber technical examination. Table 4: vulcanizate unit Mixture 1 Mixture 2 Mixture 3 Mixture 4 (Ref.) (Ref.) (Ref.) (Ref.) tensile strenght [MPa] 12.8 15.2 12.2 15.2 Voltage value 100% [MPa] 1.2 1.2 1.3 1.2 Voltage value 300% [MPa] 5.8 6.2 6.1 6.7 Voltage value 300% / 100% [-] 4.8 5.2 4.7 5.6 elongation [%] 480 480 460 460 Tear cons-standing [N / mm] 53 63 45 74 Ball rebound (60 ° C) [%] 65.5 69.5 65.1 69.1 DIN abrasion [mm 3 ] 88 66 82 59

Daß Mercaptosilane eine höhere Kopplungsausbeute und damit Verstärkung als ein Polysulfid besitzen, ist aus DE10015309A1 bekannt. Dies wird durch den Vergleich von Mischung 2 zu Mischung 1 durch den höheren Verstärkungsfaktor (Spannungswert 300% / 100%), den höheren Ball-Rebound-Wert und den verbesserten (niedrigeren) DIN-Abrieb bestätigt.That mercaptosilanes have a higher coupling yield and thus gain than a polysulfide is out DE10015309A1 known. This is done by comparing Mixture 2 to Mixture 1 by the higher gain factor (voltage value 300% / 100%), the higher ball rebound value and the improved (lower) DIN abrasion.

In EP 1043357 A1 wird für das Triethoxysilylpropyldisulfid, (Beispiel 1) gezeigt, daß durch die Substitution von je zwei Ethoxygruppen pro Siliciumatom durch Methylgruppen (Beispiel 2) keine Verschlechterung der gummitechnischen Eigenschaften, wie beispielsweise statische Daten, wie Zugfestigkeit und Spannungswerte, und dynamische Daten, wie Ball-Rebound, Dynamische Moduli und tan δ, gegenüber der Triethoxy-Variante zu verzeichnen ist.In EP 1043357 A1 For the triethoxysilylpropyl disulphide, (Example 1) it is shown that the substitution of two ethoxy groups per silicon atom by methyl groups (Example 2) does not impair the rubber properties, such as static data such as tensile strength and stress values, and dynamic data such as ballistic properties. Rebound, dynamic moduli and tan δ, compared to the triethoxy variant is recorded.

Im Gegensatz zu den vorgenannten Beobachtungen bei den Polysulfiden aus EP 1043357 , zeigt die Dimethylvariante des Mercaptosilans (Mischung 4) signifikante Verbesserungen wichtiger Eigenschaften. So sind der Spannungswert bei 300 % Dehnung, der Verstärkungsfaktor (Spannungswert 300 % / 100 %), der Weiterreißwiderstand und der DIN-Abrieb deutlich besser als bei der entsprechenden Triethoxyvariante (MPTES) (Mischung 2). Sie sind ebenfalls deutlich besser als bei TESPT (Mischung 1) und der entsprechenden Dimethylvariante DMESPT (Mischung 3).In contrast to the above observations in the case of polysulfides EP 1043357 , the dimethyl variant of mercaptosilane (Mixture 4) shows significant improvements in important properties. Thus, the stress value at 300% elongation, the reinforcement factor (stress value 300% / 100%), the tear propagation resistance and the DIN abrasion are significantly better than with the corresponding triethoxy variant (MPTES) (mixture 2). They are also significantly better than TESPT (mixture 1) and the corresponding dimethyl variant DMESPT (mixture 3).

Beispiel 3: HS-CH2-CH2CH2Si (Me) (OMe) [(O-CH (CH3) -CH2)5-O-C4H9]Example 3: HS-CH 2 -CH 2 CH 2 Si (Me) (OMe) [(O-CH (CH 3 ) -CH 2 ) 5 -OC 4 H 9 ]

In einem Rundkolben werden 86,64 g HS-CH2-CH2-CH2-Si(Me)(OMe)2, 163,29 g Polypropylenglykolmonobutylether (CAS 9003-13-8, Firma Aldrich, Mw = 340 g/mol) und 0,23 g p-Toluolsulfonsäure gemischt. Die Mischung wird am Rotationsverdampfer bei 150-155°C Ölbadtemperatur und 100-400 mbar für 6,5 h behandelt. Der freiwerdende, flüchtige Alkohol wird abdestilliert. Die isolierte Auswaage des Produktes beträgt 236 g.In a round bottomed flask, 86.64 g of HS-CH 2 -CH 2 -CH 2 -Si (Me) (OMe) 2 , 163.29 g of polypropylene glycol monobutyl ether (CAS 9003-13-8, Aldrich, M w = 340 g / mol) and 0.23 g of p-toluenesulfonic acid. The mixture is treated on a rotary evaporator at 150-155 ° C oil bath temperature and 100-400 mbar for 6.5 h. The liberated, volatile alcohol is distilled off. The isolated weight of the product is 236 g.

Beispiel 4: HS-CH2-CH2-CH2-Si (Me) (OMe) [(O-CH(CH3)-CH2)16-O-C4H9]Example 4: HS-CH 2 -CH 2 -CH 2 -Si (Me) (OMe) [(O-CH (CH 3 ) -CH 2 ) 16 -OC 4 H 9 ]

In einem Rundkolben werden 86,64 g HS-CH2-CH2-CH2-Si(Me)(OMe)2 , 480,03 g Polypropylenglykolmonobutylether (CAS 9003-13-8, Firma Aldrich, Mw= 1000 g/mol) und 0,23 g p-Toluolsulfonsäure gemischt. Die Mischung wird am Rotationsverdampfer bei 145-155°C Ölbadtemperatur und 100-400 mbar für 4,5 h behandelt. Der freiwerdende, flüchtige Alkohol wird abdestilliert. Die isolierte Auswaage des Produktes beträgt 552 g.86.64 g of HS-CH 2 -CH 2 -CH 2 -Si (Me) (OMe) 2 , 480.03 g of polypropylene glycol monobutyl ether (CAS 9003-13-8, Aldrich, M w = 1000 g / mol) and 0.23 g of p-toluenesulfonic acid. The mixture is treated on a rotary evaporator at 145-155 ° C oil bath temperature and 100-400 mbar for 4.5 h. The liberated, volatile alcohol is distilled off. The isolated weight of the product is 552 g.

Beispiel 5: HS-CH2-CH2-CH2-Si (Me) (OMe) [(O-CH2-CH2)4-O-CH2-CH(Et)-C9H9]Example 5: HS-CH 2 -CH 2 -CH 2 -Si (Me) (OMe) [(O-CH 2 -CH 2 ) 4 -O-CH 2 -CH (Et) -C 9 H 9 ]

In einem Rundkolben werden 86,62 g HS-CH2-CH2-CH2-Si(Me) (OMe)2, 147 g Polyethylenglykol-mono-2-ethylhexyl-ether (Aduxol HEX-04, CAS 26468-86-0, Firma Schärer & Schläpfer AG) und 0,5 g Ti(OBu)4 gemischt. Die Mischung wird am Rotationsverdampfer bei 125-135°C Ölbadtemperatur und 150-300 mbar für 4,5 h behandelt. Der freiwerdende, flüchtige Alkohol wird abdestilliert. Die isolierte Auswaage des Produktes beträgt 214 g.86.62 g of HS-CH 2 -CH 2 -CH 2 -Si (Me) (OMe) 2 , 147 g of polyethylene glycol mono-2-ethylhexyl ether (aduxol HEX-04, CAS 26468-86- 0, Schärer & Schläpfer AG) and 0.5 g of Ti (OBu) 4 mixed. The mixture is treated on a rotary evaporator at 125-135 ° C oil bath temperature and 150-300 mbar for 4.5 h. The liberated, volatile alcohol is distilled off. The isolated weight of the product is 214 g.

Beispiel 6: HS-CH2-CH2-CH2-Si (Me) (OEt) [(O-CH2-CH2)2-O-C6H13]Example 6: HS-CH 2 -CH 2 -CH 2 -Si (Me) (OEt) [(O-CH 2 -CH 2 ) 2 -OC 6 H 13 ]

In einem Rundkolben werden 50 g HS-CH2-CH2-CH2-Si(Me) (OEt)2 , 45,7 g Diethylenglykol-monohexyl-ether (CAS 112-59-4, bezogen über Merck/VWR International) und 0,23 g Ti(OBu)4 gemischt. Die Mischung wird am Rotationsverdampfer bei 130-135°C Ölbadtemperatur und 100-300 mbar für 6 h behandelt. Der freiwerdende, flüchtige Alkohol wird abdestilliert. Die Menge an isoliertem Produkt beträgt 80 g.In a round-bottom flask, 50 g of HS-CH 2 -CH 2 -CH 2 -Si (Me) (OEt) 2 , 45.7 g of diethylene glycol monohexyl ether (CAS 112-59-4, obtained from Merck / VWR International) and 0.23 g of Ti (OBu) 4 mixed. The mixture is treated on a rotary evaporator at 130-135 ° C oil bath temperature and 100-300 mbar for 6 h. The liberated, volatile alcohol is distilled off. The amount of isolated product is 80 g.

Beispiel 7: HS-CH2-CH2-CH2-Si (Me) (OEt) [(O-CH (CH3) -CH2)16-O-C4H9]Example 7: HS-CH 2 -CH 2 -CH 2 -Si (Me) (OEt) [(O-CH (CH 3 ) -CH 2 ) 16 -OC 4 H 9 ]

In einem Rundkolben werden 80 g HS-CH2-CH2-CH2-Si(Me)(OEt)2, 384,07 g Polypropylenglykolmonobutylether (CAS 9003-13-8, Firma Aldrich, Mw = 1000 g/mol) und 0,2 g p-Toluolsulfonsäure gemischt. Die Mischung wird am Rotationsverdampfer bei 145-155°C Ölbadtemperatur und 100-300 mbar für 6 h behandelt. Der freiwerdende, flüchtige Alkohol wird abdestilliert. Die Auswaage des erhaltenen Produktes beträgt 448 g.In a round-bottom flask, 80 g of HS-CH 2 -CH 2 -CH 2 -Si (Me) (OEt) 2 , 384.07 g of polypropylene glycol monobutyl ether (CAS 9003-13-8, Aldrich, M w = 1000 g / mol) and 0.2 g of p-toluenesulfonic acid. The mixture is treated on a rotary evaporator at 145-155 ° C oil bath temperature and 100-300 mbar for 6 h. The liberated, volatile alcohol is distilled off. The weight of the product obtained is 448 g.

Beispiel 8: HS-CH2-CH2-CH2-Si (Me) (OEt) [(O-CH2-CH2)4-O-CH2-CH(Et)-C4H9]Example 8: HS-CH 2 -CH 2 -CH 2 -Si (Me) (OEt) [(O-CH 2 -CH 2 ) 4 -O-CH 2 -CH (Et) -C 4 H 9 ]

In einem Rundkolben werden 50 g HS-CH2-CH2-CH2-Si(Me) (OEt)2 , 73,5 g Polyethylenglykol-mono-2-ethylhexyl-ether (Aduxol HEX-04, CAS 26468-86-0, Firma Schärer & Schläpfer AG) und 0,3 g Ti(OBu)4 gemischt. Die Mischung wird am Rotationsverdampfer bei 125-135°C Ölbadtemperatur und 150-300 mbar für 4,5 h behandelt. Der freiwerdende, flüchtige Alkohol wird abdestilliert. Die Auswaage an erhaltenem Produkt beträgt 108 g.In a round-bottom flask, 50 g of HS-CH 2 -CH 2 -CH 2 -Si (Me) (OEt) 2 , 73.5 g of polyethylene glycol mono-2-ethylhexyl ether (Aduxol HEX-04, CAS 26468-86- 0, Schärer & Schläpfer AG) and 0.3 g of Ti (OBu) 4 mixed. The mixture is treated on a rotary evaporator at 125-135 ° C oil bath temperature and 150-300 mbar for 4.5 h. The liberated, volatile alcohol is distilled off. The weight of the product obtained is 108 g.

Vergleichsbeispiel 3 : Herstellung von HS-CH2-CH2-CH2-SiMe (OEt) 2 Comparative Example 3 Preparation of HS-CH 2 -CH 2 -CH 2 -SiMe (OEt) 2

HS-CH2-CH2-CH2-SiMe(OEt)2 wird in Anlehnung an EP 1 538 152 A1 Beispiel 4 hergestellt. Als Einsatzstoffe werden Cl-CH2-CH2-CH2-SiMe (OEt) 2, Cl-CH2-CH2-CH2-SiMeCl2, NaSH (getrocknet) und Ethanol eingesetzt. Die erhaltene Suspension wird filtriert, vom Lösungsmittel befreit und das Silan destillativ gereinigt.HS-CH 2 -CH 2 -CH 2 -SiMe (OEt) 2 is based on EP 1 538 152 A1 Example 4 prepared. The starting materials used are Cl-CH 2 -CH 2 -CH 2 -SiMe (OEt) 2 , Cl-CH 2 -CH 2 -CH 2 -SiMeCl 2 , NaSH (dried) and ethanol. The suspension obtained is filtered, freed from the solvent and the silane purified by distillation.

Beispiel 10: Gummitechnische UntersuchungenExample 10: Rubber Engineering Studies

Die für die Kautschukmischungen verwendete Rezeptur ist in der folgenden Tabelle 5 angegeben. Die Mischungen unterscheiden sich in dem zugegebenen Kopplungsagens wie in Tabelle 6 angegeben. Die Mischvorschrift ist in Tabelle 2 aufgeführt. Tabelle 5: Substanz Mischungen 5 bis 13 [phr] 1. Stufe Buna VSL 5025-1 96 Buna CB 24 30 Ultrasil 7000 GR 80 Silane aus Tabelle 6 2 ZnO 3 Stearinsäure 2 Naftolen ZD 10 Vulkanox 4020 1,5 Protektor G 3108 1 2. Stufe Batch Stufe 1 3. Stufe Batch Stufe 2 Vulkacit D 2 Vulkacit CZ 1,5 Perkacit TBzTD 0,2 Schwefel 1,5 Tabelle 6: Mischung Nr. Silan 5 (Ref.) VP Si 263 6 (Ref.) Silan aus Vergleichsbeispiel 1 7 (Ref.) Silan aus Vergleichsbeispiel 3 8 Silan aus Beispiel 3 9 Silan aus Beispiel 4 10 Silan aus Beispiel 5 11 Silan aus Beispiel 6 12 Silan aus Beispiel 7 13 Silan aus Beispiel 8 The recipe used for the rubber compounds is given in Table 5 below. The mixtures differ in the added coupling agent as indicated in Table 6. The mixing instructions are listed in Table 2. Table 5: substance Mixtures 5 to 13 [Phr] 1st stage Buna VSL 5025-1 96 Buna CB 24 30 Ultrasil 7000 GR 80 Silanes from Table 6 2 ZnO 3 stearic acid 2 Naftolen ZD 10 Vulcanox 4020 1.5 Protector G 3108 1 2nd stage Batch level 1 3rd stage Batch level 2 Vulkacit D 2 Vulkacit CZ 1.5 Perkacit TBzTD 0.2 sulfur 1.5 Mixture no. silane 5 (Ref.) VP Si 263 6 (Ref.) Silane from Comparative Example 1 7 (Ref.) Silane from Comparative Example 3 8th Silane from Example 3 9 Silane from Example 4 10 Silane from Example 5 11 Silane from example 6 12 Silane from example 7 13 Silane from Example 8

In Tabelle 7 sind die Methoden für die Gummitestung zusammengestellt. Tabelle 7: Physikalische Testung Norm/Bedingungen Anvulkanisationsverhalten, 130°C DIN 53523/4, ISO 667 Anvulkanisationszeit t5 Anvulkanisationszeit t35 Weiterreißversuch DIE A ASTM D 624 Weiterreißversuch DIE B ASTM D 624 Table 7 summarizes the methods for rubber testing. Table 7: Physical testing Standard / Conditions Vulcanization behavior, 130 ° C DIN 53523/4, ISO 667 Scorch time t 5 Scorch time t 35 Tear propagation THE A ASTM D 624 Tear propagation THE B ASTM D 624

Die Tabelle 8 zeigt die Ergebnisse der gummitechnischen Prüfung.

Figure imgb0001
Table 8 shows the results of the rubber testing.
Figure imgb0001

Wie man anhand der Vulkanisatergebnisse erkennen kann, sind die Weiterreißwiderstände der Mischungen 8 bis 13 deutlich besser als die der Mischungen 5, 6, 7. Die Mischungen mit den Silanen mit langkettigem Alkohol als Substituenten zeigen ein verbessertes Weiterreißverhalten gegenüber den anderen Mischungen. Dies gilt sowohl gegenüber unsubstituiertem Mercaptosilan aus Mischung 5 (VP Si 263) als auch gegenüber den Mercaptosilanen mit einer Methylgruppe (Mischung 7) und mit zwei Methylgruppen (Mischung 6). Die Mischungen 8 bis 13 zeigen zudem noch verbesserte Mooney-Scorch Daten. Damit verbunden ist eine verbesserte Verarbeitungssicherheit, z.B. bei der Extrusion von Reifenlaufflächen oder dem Spritzgießen.As can be seen from the results of the vulcanization, the tear propagation resistances of the mixtures 8 to 13 are markedly better than those of the blends 5, 6, 7. The mixtures with the long-chain alcohol silanes as substituents show an improved tear propagation behavior compared to the other mixtures. This applies both to unsubstituted mercaptosilane from mixture 5 (VP Si 263) and to the mercaptosilanes with a methyl group (mixture 7) and with two methyl groups (mixture 6). Mixtures 8 through 13 also show improved Mooney Scorch data. This is associated with improved processing safety, for example in the extrusion of tire treads or injection molding.

Beispiel 11: Gummitechnische UntersuchungenExample 11: Rubber Engineering Studies

Die für die kautschukmischungen verwendete Rezeptur ist in der folgenden Tabelle 9 angegeben. Die Mischungen unterscheiden sich in dem zugegebenen Kopplungsagens auf Basis equimolarer Dosierung wie in Tabelle 10 angegeben. Die Mischvorschrift ist in Tabelle 2 aufgeführt. Tabelle 9: Substanz Mischungen 14 bis 21 [phr] 1. Stufe Buna VSL 5025-1 96 Buna CB 24 30 Ultrasil 7000 GR 80 Silane aus Tabelle 10 equimolar ZnO 3 Stearinsäure 2 Naftolen ZD 10 Vulkanox 4020 1,5 Protektor G 3108 1 2. Stufe Batch Stufe 1 3. Stufe Batch Stufe 2 Vulkacit D 2 Vulkacit CZ 1,5 Perkacit TBzTD 0,2 Schwefel 1,5 Tabelle 10: Mischung Nr. Silan phr 14 (Ref.) VP Si 263 2,00 15 (Ref.) Silan aus Vergleichsbeispiel 3 1,75 16 Silan aus Beispiel 3 4,31 17 Silan aus Beispiel 4 9,68 18 Silan aus Beispiel 5 3,82 19 Silan aus Beispiel 6 2,97 20 Silan aus Beispiel 7 9,80 21 Silan aus Beispiel 8 3,94 The recipe used for the rubber compounds is given in Table 9 below. The mixtures differ in the added coupling agent based on equimolar dosage as indicated in Table 10. The mixing instructions are listed in Table 2. Table 9: substance Mixtures 14 to 21 [Phr] 1st stage Buna VSL 5025-1 96 Buna CB 24 30 Ultrasil 7000 GR 80 Silanes from Table 10 equimolar ZnO 3 stearic acid 2 Naftolen ZD 10 Vulcanox 4020 1.5 Protector G 3108 1 2nd stage Batch level 1 3rd stage Batch level 2 Vulkacit D 2 Vulkacit CZ 1.5 Perkacit TBzTD 0.2 sulfur 1.5 Mixture no. silane phr 14 (Ref.) VP Si 263 2.00 15 (Ref.) Silane from Comparative Example 3 1.75 16 Silane from Example 3 4.31 17 Silane from Example 4 9.68 18 Silane from Example 5 3.82 19 Silane from example 6 2.97 20 Silane from example 7 9.80 21 Silane from Example 8 3.94

Die durchgeführten Prüfungen sind in Tabelle 7 aufgelistet. Die Tabelle 11 zeigt die Ergebnisse der gummitechnischen Prüfung.

Figure imgb0002
The tests performed are listed in Table 7. Table 11 shows the results of the rubber testing.
Figure imgb0002

Auch bei equimolarer Dosierung zeigen die Mischungen mit den Silanen aus den Beispielen 3 bis 8 Vorteile sowohl im Weiterreißverhalten als auch im Scorch-Verhalten gegenüber unsubstituiertem Mercaptosilan und Mercaptosilan mit einer Methyl- und zwei Ethoxygruppen.Even with equimolar metering, the mixtures with the silanes from Examples 3 to 8 show advantages both in the tear propagation behavior and in the scorch behavior towards unsubstituted mercaptosilane and mercaptosilane having one methyl and two ethoxy groups.

Claims (6)

  1. Rubber mixtures comprising rubber, fillers, optionally further rubber auxiliaries and at least one organosilane of the general formula I,

            R1R2R3SiR4-SH     (I)

    where R1 is methyl or ethyl,
    R2 is -O-(Y-O)m-X, where Y is a branched or unbranched, saturated or unsaturated divalent hydrocarbon group, X is a C1- to C9-alkyl group and m is 1-40,
    R3 is methyl, ethyl, methoxy, ethoxy or R2
    and R4 is a branched or unbranched, saturated or unsaturated, aliphatic, aromatic or mixed aliphatic/aromatic divalent C1-C12 hydrocarbon group.
  2. Rubber mixtures according to Claim 1, characterized in that the organosilane of the general formula I comprises oligomerized or polymerized organosilanes of the general formula I.
  3. Rubber mixtures according to Claim 1, characterized in that the rubber auxiliary is a polyalkylene glycol.
  4. Process for the preparation of rubber mixtures according to Claim 1, characterized in that the rubber, filler, optionally further rubber auxiliaries and at least one organosilane of the general formula I are mixed.
  5. Use of the rubber mixture according to Claim 1 for the production of shaped articles.
  6. Use of the rubber mixture according to Claim 5 for the production of pneumatic tyres, tyre treads, cable sheathing, hoses, drive belts, conveyor belts, roller coverings, tyres, shoe soles, sealing rings and damping elements.
EP05112090A 2004-12-18 2005-12-14 Rubber compositions Active EP1672017B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200531368T SI1672017T1 (en) 2004-12-18 2005-12-14 Rubber compositions
PL05112090T PL1672017T3 (en) 2004-12-18 2005-12-14 Rubber compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004061014A DE102004061014A1 (en) 2004-12-18 2004-12-18 rubber compounds

Publications (3)

Publication Number Publication Date
EP1672017A2 EP1672017A2 (en) 2006-06-21
EP1672017A3 EP1672017A3 (en) 2007-05-09
EP1672017B1 true EP1672017B1 (en) 2011-07-13

Family

ID=36061580

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05112090A Active EP1672017B1 (en) 2004-12-18 2005-12-14 Rubber compositions

Country Status (17)

Country Link
US (1) US7384997B2 (en)
EP (1) EP1672017B1 (en)
JP (1) JP4420894B2 (en)
KR (1) KR101222258B1 (en)
CN (1) CN1789315B (en)
AT (1) ATE516326T1 (en)
BR (1) BRPI0506287B1 (en)
CA (1) CA2530346C (en)
DE (1) DE102004061014A1 (en)
ES (1) ES2368568T3 (en)
MX (1) MXPA05013860A (en)
MY (1) MY139418A (en)
PL (1) PL1672017T3 (en)
PT (1) PT1672017E (en)
RU (1) RU2404207C2 (en)
SI (1) SI1672017T1 (en)
TW (1) TWI389958B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030737A1 (en) * 2004-06-25 2006-01-12 Degussa Ag Method and device for extracting substances from silane-modified fillers
DE102005057801A1 (en) * 2005-01-20 2006-08-03 Degussa Ag mercaptosilanes
DE102005020535B3 (en) * 2005-05-03 2006-06-08 Degussa Ag Preparation of mercapto organyl(alkoxysilane) comprises reaction of bis(alkoxysilylorganyl)polysulfide with hydrogen in the presence of an alcohol and a doped metal catalyst (containing e.g. (iron) compound and a doping component)
DE102005038791A1 (en) * 2005-08-17 2007-02-22 Degussa Ag New organosilicon compounds based on triethanolamine, useful as components of rubber mixtures for making e.g. tires, tubes and cable coatings
DE102005060122A1 (en) * 2005-12-16 2007-06-21 Degussa Gmbh Process for the preparation of (mercaptoorganyl) alkyl polyether silanes
DE102006004062A1 (en) * 2006-01-28 2007-08-09 Degussa Gmbh rubber compounds
DE102006027235A1 (en) * 2006-06-09 2008-01-17 Evonik Degussa Gmbh rubber compounds
DE102006033310A1 (en) * 2006-07-17 2008-01-31 Evonik Degussa Gmbh Mixtures of silicon-containing coupling reagents
DE102006041356A1 (en) * 2006-09-01 2008-03-20 Evonik Degussa Gmbh Process for the preparation of organosilanes
US7550524B2 (en) * 2006-10-06 2009-06-23 Momentive Performance Materials Inc. Elastomer composition containing mercaptofunctional silane and process for making same
JP2008115326A (en) * 2006-11-07 2008-05-22 Sumitomo Rubber Ind Ltd Rubber composition and tire having tread using the same
JPWO2008123306A1 (en) 2007-03-27 2010-07-15 株式会社ブリヂストン Method for producing rubber composition for tire tread
ITTO20080053A1 (en) * 2008-01-24 2009-07-25 Bridgestone Corp MIXES INCLUDING TRIALCOSSIMERCAPTOALCHIL-SILANI
IT1394126B1 (en) * 2008-10-22 2012-05-25 Bridgestone Corp TREAD COMPOUND FOR WINTER TIRES
JP2012520830A (en) * 2009-03-20 2012-09-10 エボニック デグサ ゲーエムベーハー Method for producing organosilane
RU2496809C2 (en) * 2009-04-28 2013-10-27 Бриджстоун Корпорейшн Pneumatic tyre
CN102884111B (en) * 2009-12-03 2014-09-24 米其林集团总公司 Filler blending for rubber formulations
EP2517899A1 (en) * 2011-04-29 2012-10-31 Lanxess Deutschland GmbH Method for manufacturing rubber mixtures
WO2013058390A1 (en) 2011-10-21 2013-04-25 株式会社ブリヂストン Rubber composition and manufacturing method for same
DE102012205642A1 (en) * 2012-04-05 2013-10-10 Evonik Industries Ag Mercaptosilane Russ mix
EP2736049B1 (en) * 2012-11-23 2018-01-03 Nexans Storage-stable crosslinkable polymer mixture based on chlorinated polymer
US10011687B2 (en) * 2013-05-08 2018-07-03 Dow Silicones Corporation Hydrophilic organosilanes
CN104558010B (en) * 2015-01-27 2017-10-27 荆州市江汉精细化工有限公司 A kind of mercaptosilane coupling agents preparation method of low VOC emission
DE102015224450A1 (en) * 2015-12-07 2017-06-08 Evonik Degussa Gmbh rubber compounds
DE102017221277A1 (en) 2017-11-28 2019-05-29 Evonik Degussa Gmbh Silane mixtures and process for their preparation
DE102018213774A1 (en) * 2018-08-16 2020-02-20 Evonik Operations Gmbh rubber compounds
EP4023460A1 (en) * 2020-12-30 2022-07-06 The Goodyear Tire & Rubber Company Sulfur curable rubber formulation, tire component and silica
CN115850826A (en) * 2021-09-23 2023-03-28 中国石油化工股份有限公司 Rubber auxiliary agent, rubber composition, vulcanized rubber, and preparation method and application thereof
CN114395173A (en) * 2021-12-13 2022-04-26 东莞市瑞拓五金橡塑有限公司 Formula and preparation method of high-temperature-resistant rubber sealing ring

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL301721A (en) 1962-12-21 1900-01-01
US4076550A (en) 1971-08-17 1978-02-28 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Reinforcing additive
US3997356A (en) 1971-08-17 1976-12-14 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Reinforcing additive
US3978103A (en) 1971-08-17 1976-08-31 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Sulfur containing organosilicon compounds
BE787691A (en) 1971-08-17 1973-02-19 Degussa ORGANOSILICIC COMPOUNDS CONTAINING SULFUR
US3873489A (en) 1971-08-17 1975-03-25 Degussa Rubber compositions containing silica and an organosilane
US4048206A (en) 1975-04-22 1977-09-13 Mikhail Grigorievich Voronkov Process for the production of 1-organylsilatranes and carbofunctional derivatives thereof
DE2933345C2 (en) * 1979-08-17 1983-01-20 Degussa Ag, 6000 Frankfurt Vulcanizable rubber mixture based on halogen-free rubbers and process for vulcanizing these rubber mixtures
DE19512543C2 (en) * 1995-04-06 1999-02-25 Continental Ag Tread compound for pneumatic tires, process for their manufacture and their use
KR100473410B1 (en) * 1995-08-16 2005-09-02 오시 스페셜티스, 인코포레이티드 Stable Silane Composition Supported by Silica Carriers
DE19544469A1 (en) 1995-09-23 1997-03-27 Degussa Vulcanizable rubber compounds containing organosilane compounds and silica and process for producing them
FR2743564A1 (en) 1996-01-11 1997-07-18 Michelin & Cie RUBBER COMPOSITIONS FOR SILICA-BASED TIRE CASINGS CONTAINING A REINFORCING ADDITIVE BASED ON A FUNCTIONALIZED POLYORGANOSILOXANE AND AN ORGANOSILANE COMPOUND.
US5914364A (en) 1996-03-11 1999-06-22 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and tire with tread
US5780538A (en) 1996-03-11 1998-07-14 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and tire with tread
AR016766A1 (en) * 1997-07-11 2001-08-01 Rhodia Chimie Sa A PROCEDURE FOR THE PREPARATION OF POLYGANOSILOXANS (POS) WITH TIOL FUNCTIONS, AND THE POSSIBLE TO BE OBTAINED BY MEANS OF THIS PROCEDURE
PT958298E (en) * 1997-08-21 2003-09-30 Crompton Corp MERCAPTHOSILAN COUPLING AGENTS BLOCKED FOR REINFORCED RUBBER
JPH11286575A (en) * 1998-04-01 1999-10-19 Nippon Zeon Co Ltd Diene-based polymer composition
DE19825796A1 (en) * 1998-06-10 1999-12-16 Degussa New oligomeric organosilane polysulfanes, their use in rubber mixtures and for the production of moldings
US6342560B1 (en) * 1999-08-19 2002-01-29 Ppg Industries Ohio, Inc. Chemically modified fillers and polymeric compositions containing same
JP3530088B2 (en) * 1999-10-25 2004-05-24 住友ゴム工業株式会社 Rubber composition and method for producing the same
US6518335B2 (en) 2000-01-05 2003-02-11 Crompton Corporation Sulfur-containing silane coupling agents
DE10015309A1 (en) 2000-03-28 2001-10-18 Degussa Rubber compounds
US6433065B1 (en) * 2000-10-13 2002-08-13 Bridgestone Corporation Silica-reinforced rubber compounded with mercaptosilanes and alkyl alkoxysilanes
US6635700B2 (en) * 2000-12-15 2003-10-21 Crompton Corporation Mineral-filled elastomer compositions
JP4759150B2 (en) * 2001-02-16 2011-08-31 株式会社ブリヂストン tire
DE10132941A1 (en) * 2001-07-06 2003-01-23 Degussa Oligomeric organosilanes, process for their preparation and their use
ES2252606T3 (en) * 2001-08-06 2006-05-16 Degussa Ag ORGANOSILICIO COMPOUNDS.
JP2003183446A (en) * 2001-10-05 2003-07-03 Kao Corp Storage elastic modulus improver for rubber
DE10223658A1 (en) * 2002-05-28 2003-12-18 Degussa Organosilicon compounds, process for their preparation and their use
JP2004010689A (en) * 2002-06-05 2004-01-15 Bridgestone Corp Tire
US20040014840A1 (en) * 2002-07-11 2004-01-22 Uniroyal Chemical Company Rubber compositions and methods for improving scorch safety and hysteretic properties of the compositions

Also Published As

Publication number Publication date
DE102004061014A1 (en) 2006-06-29
BRPI0506287A (en) 2006-10-03
PT1672017E (en) 2011-09-22
JP4420894B2 (en) 2010-02-24
MXPA05013860A (en) 2006-06-19
ATE516326T1 (en) 2011-07-15
MY139418A (en) 2009-09-30
CN1789315A (en) 2006-06-21
ES2368568T3 (en) 2011-11-18
EP1672017A2 (en) 2006-06-21
TWI389958B (en) 2013-03-21
BRPI0506287B1 (en) 2016-07-26
JP2006169538A (en) 2006-06-29
KR101222258B1 (en) 2013-01-15
SI1672017T1 (en) 2011-10-28
EP1672017A3 (en) 2007-05-09
RU2404207C2 (en) 2010-11-20
KR20060069787A (en) 2006-06-22
RU2005139404A (en) 2007-06-27
CN1789315B (en) 2011-07-20
US20060160935A1 (en) 2006-07-20
CA2530346A1 (en) 2006-06-18
TW200634078A (en) 2006-10-01
US7384997B2 (en) 2008-06-10
PL1672017T3 (en) 2011-11-30
CA2530346C (en) 2010-05-18

Similar Documents

Publication Publication Date Title
EP1672017B1 (en) Rubber compositions
EP2026982B1 (en) Rubber mixtures
EP1829922B1 (en) Latex compositions
EP1285926B1 (en) Organosilicon compounds
EP1533336B1 (en) Rubber mixtures
EP1976926B1 (en) Rubber mixtures
DE10327624B3 (en) Organosilicon compounds, process for their preparation, and their use
EP2041146B1 (en) Mixtures of silicon-containing coupling reagents
EP1683801B1 (en) Mercaptosilanes
EP1754749B1 (en) Rubber mixtures
KR101125514B1 (en) Carbon black
EP0992505A2 (en) Sulfanyl silanes
DE19915281A1 (en) Rubber compounds
EP1367059B1 (en) Organosilicon compounds, their preparation and use
EP1394166B1 (en) Organosilicon Compounds
EP3094686B1 (en) Oligomeric organosilanes, the production thereof and the use thereof in rubber mixtures
CN112566971B (en) Rubber mixture
EP3830095B1 (en) Thioether silanes, method for the production thereof, and use thereof
DE10163941C1 (en) Organosilicon compounds with one or two long-chain alkoxy groups attached to silicon, used as coupling agents for fillers in rubber mixtures, e.g. for tires or tubing are new
DE10208590A1 (en) Rubber mixture used especially for production of tires and tire treads contains a silicate filler and a combination of mercaptoalkyl-silane and organoxy group-containing siloxane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051214

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20070712

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011611

Country of ref document: DE

Effective date: 20110908

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20110915

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 10043

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2368568

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111118

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E012268

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111014

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

26N No opposition filed

Effective date: 20120416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005011611

Country of ref document: DE

Effective date: 20120416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 516326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111013

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005011611

Country of ref document: DE

Owner name: EVONIK OPERATIONS GMBH, DE

Free format text: FORMER OWNER: EVONIK DEGUSSA GMBH, 45128 ESSEN, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: EVONIK OPERATIONS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: EVONIK DEGUSSA GMBH

Effective date: 20191122

REG Reference to a national code

Ref country code: SK

Ref legal event code: TC4A

Ref document number: E 10043

Country of ref document: SK

Owner name: EVONIK OPERATIONS GMBH, ESSEN, DE

Effective date: 20200525

REG Reference to a national code

Ref country code: LU

Ref legal event code: HC

Owner name: EVONIK OPERATIONS GMBH; DE

Free format text: FORMER OWNER: EVONIK DEGUSSA GMBH

Effective date: 20200505

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: EVONIK OPERATIONS GMBH

Effective date: 20200622

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: EVONIK OPERATIONS GMBH, DE

Free format text: FORMER OWNER(S): EVONIK DEGUSSA GMBH, DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: EVONIK OPERATIONS GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: EVONIK OPERATIONS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME

Effective date: 20200928

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: EVONIK OPERATIONS GMBH; DE

Effective date: 20201013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20201222

Year of fee payment: 16

Ref country code: DE

Payment date: 20201211

Year of fee payment: 16

Ref country code: FR

Payment date: 20201223

Year of fee payment: 16

Ref country code: GB

Payment date: 20201223

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201221

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201221

Year of fee payment: 16

Ref country code: LU

Payment date: 20201223

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201224

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20210117

Year of fee payment: 16

Ref country code: TR

Payment date: 20201211

Year of fee payment: 16

Ref country code: ES

Payment date: 20210219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20211202

Year of fee payment: 17

Ref country code: SK

Payment date: 20211221

Year of fee payment: 17

Ref country code: RO

Payment date: 20211202

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20211207

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20211203

Year of fee payment: 17

Ref country code: CZ

Payment date: 20211214

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005011611

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211215

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221214

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221214

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 10043

Country of ref document: SK

Effective date: 20221214

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20201013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221214

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221215