EP1670625A2 - Method of moulding a part in a hydraulically-setting matrix and part thus produced - Google Patents

Method of moulding a part in a hydraulically-setting matrix and part thus produced

Info

Publication number
EP1670625A2
EP1670625A2 EP04805722A EP04805722A EP1670625A2 EP 1670625 A2 EP1670625 A2 EP 1670625A2 EP 04805722 A EP04805722 A EP 04805722A EP 04805722 A EP04805722 A EP 04805722A EP 1670625 A2 EP1670625 A2 EP 1670625A2
Authority
EP
European Patent Office
Prior art keywords
molding
manufacturing
fibers
matrix
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04805722A
Other languages
German (de)
French (fr)
Inventor
Pablo Ignacio Comino Almenara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Adfors SAS
Original Assignee
Saint Gobain Vetrotex France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Vetrotex France SA filed Critical Saint Gobain Vetrotex France SA
Publication of EP1670625A2 publication Critical patent/EP1670625A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2907Staple length fiber with coating or impregnation

Definitions

  • the present patent application relates to a manufacturing process by molding a matrix part with hydraulic setting and a part obtained by this process.
  • glass fiber reinforced cement panels (better known by its acronym in English, GRC for glassfibre reinforced surround) are widely used for covering facades instead of traditional concrete panels, to take advantage of their high mechanical performance, with reduced thicknesses and therefore greater lightness.
  • cladding fin panels and architectural elements
  • they lend themselves to other applications, such as sanitary (shower trays and related elements) as well as interior elements.
  • the first object of the invention is to overcome these drawbacks by proposing a method of manufacturing by molding a matrix part with hydraulic grip which is efficient.
  • the invention provides a method of manufacturing a part in a matrix with hydraulic setting by molding comprising the following steps: a) injection of a paste containing a hydraulic binder and so-called mixing water in a mold, b) extraction of kneading water by vacuum, c) demolding of the fresh part.
  • the process according to the invention is more compatible with industrial requirements than the processes of the prior art in which demolding takes place dry. In fact, vacuum extraction considerably reduces the occupation time of the mold. This process therefore makes it possible to reduce the quantity of material used as well as the time spent on manufacturing the parts.
  • the method according to the invention is simple to implement and can be easily automated.
  • a first step in the process according to the present invention may consist in mixing the dough.
  • the components of the latter are introduced, for example, into a mixer equipped with a stirring system, and stirring is continued until a homogeneous mixture is obtained.
  • the occluded air produced during mixing can be removed inside the pressure tank.
  • the dough can be transferred to a tank equipped for example with suitable locking systems which allow the interior to be pressurized.
  • the tank can integrate an internal bubble removal system, based on a vacuum process, possibly with the production of vibrations from the outside, if necessary, so that the occluded air is not introduced into the mold with the injected dough.
  • the paste is injected into the mo ile, preferably by pressurizing the above-mentioned reservoir.
  • the injection can take place at low pressure or at high pressure.
  • the operating pressure, for low pressure injection is preferably between 1.5 and 4 bars, while the high pressure is preferably between 4 and 30 bars, depending on the case and taking this pressure into account in the mold design. .
  • This injection can also take place by any other conventional means, such as a peristaltic pump or compressed air (in the case of low pressure injection).
  • the vacuum is preferably produced by a vacuum pump. Extract the excess water so that the room has the desired humidity levels.
  • the final percentage of water represents a compromise which allows problem-free handling of the part while avoiding cracking due to lack of water.
  • the water / cement ratio after the vacuum extraction step can be preferably between 0.25 and 0.5.
  • the duration of the vacuum extraction step of the process according to the present invention is less than 1 hour, which in particular makes it possible to significantly increase the yield compared to existing processes.
  • the process makes it possible to obtain parts - for example for floors - having a thickness for example between 0.2 cm and 5 cm without harming their physical or mechanical properties, which contributes to reducing the quantity of material used, by reducing costs and obtaining lighter parts, which facilitates their handling and installation.
  • the manufacturing method according to the invention can comprise the hardening of the part obtained.
  • hardening preferably takes place under conditions of humidity and temperature which allow the part to regain the levels of hydration necessary after the loss of water undergone during the vacuum extraction step.
  • the relative humidity during hardening can be between 90% and 100%, and the total hardening time can be between 1 and 7 days.
  • Other curing systems can be selected, such as steam, autoclave, etc.
  • reinforcing fibers cut into the paste are mixed before injection and / or reinforcing fibers are placed in the mold before injection.
  • a support element is placed in the mold before injection and the fresh part placed on said support is removed using said support.
  • this support can be a metal part, of rigidity adapted to the size of the part and in addition to the shape desired for the part, for example for manufacturing a panel with rounded zones in the form of tiles.
  • vacuum extraction can start during the injection of dough.
  • the injection and / or extraction can be carried out by one face and / or both sides of a closed molding system comprising a mold and a counter mold. It is possible, for example, to extract the water from the upper face (of the counter mold) and turn the mold over for extraction from the lower face (of the mold).
  • the injection and / or extraction can be carried out by one or more separate orifices or not provided in the mold and / or against the mold.
  • a mold for implementing the method according to the invention may consist of a closed mold system (mold-countermold) and comprise at least one inlet orifice, through which the paste, preferably homogenized beforehand, is injected and at least a second orifice, separate or not from the first orifice for said extraction.
  • the mold In order to avoid system failure, provision may be made for the inclusion in the mold of one or more dough outlet or overflow openings, themselves fitted with locks which make it possible to close them to prevent a fall of pressure during vacuum water extraction.
  • the mold is also preferably equipped with a plurality of orifices of diameter less than or equal to 1 cm, which are connected, directly or indirectly, to the extraction system by the empty.
  • a support element is placed in the mold, the latter may preferably comprise one or more orifices facing the mold or the counter mold. If the extraction and the injection are carried out via the counter-mold, an element can then be provided, for example magnetic contact with the counter-mold and provided with orifices facing those of the counter-mold.
  • the present invention also relates to a matrix part with hydraulic setting obtained by the method described above.
  • Its composition includes a weight percentage of hydraulic binder between 2% and 98% of the total mass, a weight percentage of sand between 0.1% and 95% of the total mass, a weight percentage of water between 5% and 75% of the total mass, a weight percentage of reinforcing fibers between 0% and 50% of the total mass (preferably in glass and between 2.5% and 7%), a weight percentage of other fibers between 0% and 50 % of the total mass, a weight percentage of polymers between 0% and 75% of the total mass, a weight percentage of superplasticizer between 0% and 20% of the total mass, a weight percentage of metakaolin between 0% and 50% of the total mass, and possibly other additives selected so as to give the part the required characteristics.
  • this part Due to its composition, this part has a high temperature resistance.
  • the composition also makes it possible to improve its mechanical properties and to lighten conventional concrete parts. Said parts can be used for the recovery s facades and buildings requiring a high level of fire resistance.
  • the process according to the present invention does not only relate to the injection and manufacture of elements based on cement (cement used as a hydraulic binder), and does not envisage only these; it is also considering the possibility of using other hydraulic binders such as gypsum, plaster, lime, calcium silicate. Several binders can also be mixed.
  • the matrix can also be made of cement mixed with other agglomerates, gypsum, plaster, lime, synthetic resins, polymers, plastics of various types, thermoplastics, etc.
  • the cement used may preferably be quick-setting, with high initial strength, a traditional Portland cement of any strength, aluminous, low in alkali content, and in general any type. cement, the choice of which must be taken into account when designing the part, to always retain its characteristic of hydraulic binder.
  • the polymers can be for example of acrylic or synthetic type, resins of various typologies, or any other polymer usable to modify the matrix and to give to the manufactured part a greater capacity according to various aspects of the design and performances than the 'we are waiting for the room.
  • the polymers may possibly be added only when the final GRC part is not intended for high temperature applications and will be used only in facade panels and cladding, or in other applications which do not require resistance. peculiar to fire or high temperatures.
  • the other additives can be, inter alia, accelerators, retarders, emulsifiers, aerators, air entrainers, stabilizers, antioxidants, thinning or thickening agents, such as cellulose, fiber cellulose, cellulosic hydroxides of any type and other chemical thickeners, in addition to starches or natural products which can be used to improve the cohesion and stability of the injected pulp, and in general any additive intended to modify the matrix according to the n design and performance requirements expected from the part, as well as possible production requirements.
  • accelerators such as cellulose, fiber cellulose, cellulosic hydroxides of any type and other chemical thickeners
  • the reinforcing fibers can be cut fibers, whole, a mat of any class of cut reinforcing fibers, a mat of continuous fibers, such as Cem-FIL® sold by the company SAINT GOBAIN, woven grids.
  • the reinforcing fibers can be synthetic fibers, such as polyamide, rayon, nylon, PVA, polypropylene and, in general, any organic, natural fiber (such as coconut fibers, fibers based on treated plant, cellulose fibers, sysal fibers) or synthetic fibers of any class; mineral fibers, such as carbon fiber, basalt fibers and, in general, any mineral fiber of any class; glass fibers of type E, Z, C, or resistant to alkalis or AR and, in general, any glass fiber of any composition; metallic fibers, such as copper, steel, stainless steel, iron, cast iron, ductile iron and, in general, any metallic type fiber.
  • the other fibers can be insulation fibers, for example rock wool or glass fibers.
  • Table 1 below presents some examples of compositions for parts, for example in GRC according to the present invention, by comparison with the parts in conventional GRC.
  • the proportions of the different types of fibers are adjusted so as to allow good performance of the application and obtaining different levels of mechanical strength.
  • the combination of different types of fibers are studied for an adjustment compatible with the other components of the matrix, in order to allow an injection of the mixture without major problems.
  • the materials constituting the reinforcement (fibers) can be used in any proportion depending on the advantages or the performances which it is desired to obtain with the injected part.
  • Preferably, 12 mm long AR glass fibers are used, between 2 and 3% of the total mass.
  • a preferred embodiment is described below; note however that it does not limit the invention.
  • the tank incorporates an internal bubble removal system, based on a vacuum process, possibly producing vibrations from the outside, if necessary, so that the occluded air is not introduced into the mold with the injected dough.
  • the mold is prepared for injection.
  • filter paper or any other conventional filtration system can be interposed between said orifices and the paste.
  • filter paper or special films are placed over a support or lower jacket arranged on the mold and intended for easy removal of the fresh part.
  • a woven reinforcement grid for example of fiberglass of suitable shape, is preferably placed. in the mold.
  • the mold consists for example of a closed mold system (mold-countermold) and comprises for example nine orifices on the mold and the counter mold preferably uniformly distributed and facing each other, through which the homogenized dough is injected and / or extracted. is carried out.
  • a closed mold system mold-countermold
  • the reservoir is filled via the orifices with the paste obtained previously, it is closed and pressurized. After having obtained a pressure of 2.5-3 bars, the outlet slurry outlet valves are opened, so that the material flows to the mold.
  • the vacuum source is connected and the injection stopped.
  • one or more orifices have a diameter less than or equal to 1 cm and are connected, directly or indirectly, to the vacuum extraction system.
  • the total vacuuming time is 15 minutes, which produces a final water / cement ratio which varies between 0.35 and 0.40.
  • open the mold unmold the part and introduce this part into the hardening chamber to obtain the required level of hydration and hardening of the part. Hardening takes place at room temperature and at humidity relative greater than 95% for 7 days.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The invention relates to a method of producing a part by means of moulding. The inventive method consists of the following steps comprising: injection moulding in a mould, vacuum extraction of water and the stripping of the green part. The invention also relates to the part thus produced.

Description

PROCÉDÉ DE FABRICATION PAR MOULAGE D'UNE PIÈCE EN MATRICE A PRISE HYDRAULIQUE, PIÈCE OBTENUE PAR CE PROCÉDÉ La présente demande de brevet vise un procédé de fabrication par moulage d'une pièce en matrice à prise hydraulique et une pièce obtenue par ce procédé. Actuellement, les panneaux de ciment renforcé par des fibres de verre (plus connu par son sigle en anglais, GRC pour glassfibre reinforced cernent) sont largement utilisés pour le recouvrement des façades à la place des panneaux de béton traditionnel, pour tirer parti de leurs hautes performances mécaniques, avec des épaisseurs réduites et donc une plus grande légèreté. En plus de leur utilisation pour le bardage (panneaux de façade et éléments architecturaux), ils se prêtent à d'autres applications, comme les sanitaires (bacs de douche et éléments connexes) ainsi que les éléments intérieurs. De même, en raison de leur haute résistance au feu, ils sont aussi mis en œuvre dans d'autres types de constructions nécessitant cette caractéristique, comme par exemple les fours utilisés pour cuire des aliments comme le pain, les pizzas, etc. On peut aussi les employer pour la fabrication de palettes de transport à la place du bois, qui est le matériau généralement utilisé à cette fin. Toutefois, le procédé actuel de fabrication de ces pièces est long et coûteux, car le moulage et le démoulage sont effectués entièrement à la main, et en particulier car la durée du séchage avant le démoulage n'est pas inférieure à 24 heures. L'invention a pour premier objet de palier ces inconvénients en proposant un procédé de fabrication par moulage d'une pièce en matrice à prise hydraulique qui soit performant. A cet effet, l'invention propose un procédé de fabrication d'une pièce en une matrice à prise hydraulique par moulage comprenant les étapes suivantes : a) injection d'une pâte contenant un liant hydraulique et de l'eau dite de malaxage dans un moule, b) extraction de l'eau de malaxage par mise sous vide, c) démoulage de la pièce fraîche. Le procédé selon l'invention est davantage compatible avec les exigences industrielles que les procédés de l'art antérieur dans lesquels le démoulage a lieu à sec. En effet, l'extraction sous vide réduit considérablement la durée d'occupation du moule. Ce procédé permet donc de réduire la quantité de matériau utilisé ainsi que le temps consacré à la fabrication des pièces. En outre, le procédé selon l'invention est simple à mettre en oeuvre et peut être aisément automatisé. Une première étape du procédé selon la présente invention peut consister à mélanger la pâte. Pour cela, on introduit les composants de celle-ci par exemple dans une melangeuse équipée d'un système d'agitation, et l'agitation est continuée jusqu'à l'obtention d'un mélange homogène. L'air occlus produit lors du malaxage peut être éliminé à l'intérieur du réservoir de pression. Ensuite, on peut transférer la pâte à un réservoir équipé par exemple de systèmes de verrouillage adaptés qui permettent de mettre l'intérieur sous pression. Le réservoir peut intégrer un système intérieur d'élimination des bulles, basé sur un processus de vide, avec éventuellement la production de vibrations à partir de l'extérieur, si nécessaire, de façon que l'air occlus ne soit pas introduit dans le moule avec la pâte injectée. Ensuite, on injecte la pâte dans le mo ile, préférablement par mise sous pression du réservoir susmentionné. De préférence, l'injection peut avoir lieu à basse pression ou à haute pression. La pression de fonctionnement, pour l'injection basse pression, est préférablement entre 1,5 et 4 bars, tandis que la haute pression est préférablement entre 4 et 30 bars, suivant le cas et en tenant compte de cette pression dans la conception du moule. Cette injection peut aussi avoir lieu par tout autre moyen conventionnel, comme une pompe péristaltique ou l'air comprimé (en cas d'injection basse pression). Le vide est préférablement produit par une pompe à vide. On extrait l'excès d'eau pour que la pièce présente les niveaux d'humidité désirés. Avantageusement, le pourcentage d'eau final représente un compromis qui permet une manutention sans problèmes de la pièce tout en évitant la fissuration par manque d'eau. Aussi, le rapport eau / ciment après l'étape d'extraction par le vide peut être préférablement entre 0,25 et 0,5. Avantageusement, la durée de l'étape d'extraction par le vide du procédé selon la présente invention est inférieure à 1 heure, ce qui permet notamment d'augmenter significativement le rendement par rapport aux procédés existants. De même, le procédé permet d'obtenir des pièces - par exemple pour sol - ayant une épaisseur par exemple entre 0,2 cm et 5 cm sans nuire à leurs propriétés physiques ni mécaniques, ce qui contribue à réduire la quantité de matériau utilisé, en permettant de réduire les coûts et d'obtenir des pièces plus légères, ce qui facilite leur manutention et leur pose. Pour l'obtention de la pièce finale, le procédé de fabrication selon l'invention peut comprendre le durcissement de la pièce obtenue. Pour réduire significativement les risques de microfissures et de déformations susceptibles d'entraîner la mise au rebut de la pièce obtenue, le durcissement a lieu de préférence dans des conditions d'humidité et de température qui permettent à la pièce de retrouver les niveaux d'hydratation nécessaires après la perte d'eau subie durant l'étape d'extraction par le vide. Aussi avantageusement, l'humidité relative pendant le durcissement peut être entre 90 % et 100 %, et le temps total de durcissement peut être entre 1 et 7 jours. On peut éventuellement sélectionner d'autres systèmes de durcissement comme la vapeur d'eau, l'autoclave, etc. Dans un mode de réalisation préféré, on mélange des fibres de renforcement coupées dans la pâte avant l'injection et/ou on place des fibres de renforcement dans le moule avant l'injection. Dans un mode de réalisation avantageux, on place un élément support dans le moule avant l'injection et on retire la pièce fraîche posée sur ledit support à l'aide dudit support. Par ailleurs ce support peut être une pièce métallique, de rigidité adaptée à la taille de la pièce et en outre à la forme souhaitée pour la pièce, par exemple pour fabriquer un panneau avec des zones arrondies en forme de tuiles. Selon une caractéristique, l'extraction sous vide peut débuter pendant l'injection de pâte. En outre, l'injection et/ou l'extraction peut être réalisée par une face et/ou les deux faces d'un système de moulage fermé comprenant un moule et un contre moule. On peut par exemple réaliser l'extraction de l'eau par la face supérieure (du contre-moule) et retourner le moule pour l'extraction par la face inférieure (du moule). L'injection et/ou l'extraction peut être réalisée par un ou plusieurs orifices distincts ou non prévus dans le moule et/ou le contre-moule. Par ailleurs l'injection et/ou l'extraction peut être répartie sur une partie ou sur toute la surface inférieure et/ou supérieure du système de moulage. En outre, on peut fabriquer une pièce comportant un ou des inserts métalliques pour la fixation finale de la pièce (panneaux de façade etc), par exemple sur un édifice, en disposant ces inserts dans le moule avant injection de la pâte. En outre, on peut éventuellement chauffer le moule pour accélérer la prise. Un moule pour la mise en oeuvre du procédé selon l'invention peut consister en un système de moule fermé (moule-contremoule) et comporter au moins un orifice d'entrée, par lequel la pâte de préférence homogénéisée au préalable est injectée et au moins un deuxième orifice, distinct ou non du premier orifice pou ladite extraction . Afin d'éviter une défaillance du système, on peut prévoir l'inclusion dans le moule d'un ou plusieurs orifices de sortie de pâte ou de trop-pleins, eux-mêmes équipés de verrouillages qui permettent de les fermer pour éviter une chute de pression pendant l'extraction d'eau par le vide. Pour permettre l'extraction d'eau par le vide, le moule est aussi équipé de préférence d'une pluralité d'orifices de diamètre inférieur ou égal à 1 cm, qui sont raccordés, directement ou indirectement, au système d'extraction par le vide. De même, pour éviter la perte de matériau pendant cette étape de mise sous vide, on peut interposer du papier filtre ou tout autre système conventionnel de filtration entre lesdits orifices et la pâte. Pendant cette étape, on peut éventuellement chauffer le moule pour accélérer la prise. Si l'on place un élément support dans le moule, ce dernier peut comprendre de préférence un ou des orifices en regard du moule ou du contre moule. Si l'extraction et l'injection sont réalisés via le contre-moule, on peut prévoir alors un élément en contact par exemple magnétique avec le contre-moule et dotés d'orifices en regard avec ceux du contre-moule. La présente invention a aussi pour objet une pièce en matrice à prise hydraulique obtenue par le procédé décrit auparavant. Sa composition comprend un pourcentage pondéral de liant hydraulique entre 2 % et 98 % de la masse totale, un pourcentage pondéral de sable entre 0,1 % et 95 % de la masse totale, un pourcentage pondéral d'eau entre 5 % et 75 % de la masse totale, un pourcentage pondéral de fibres de renforcement entre 0 % et 50 % de la masse totale (de préférence en verre et entre 2,5% et 7%), un pourcentage pondéral d'autres fibres entre 0 % et 50 % de la masse totale, un pourcentage pondéral de polymères entre 0 % et 75 % de la masse totale, un pourcentage pondéral de superplastifiant entre 0 % et 20 % de la masse totale, un pourcentage pondéral de métakaolin entre 0 % et 50 % de la masse totale, et éventuellement d'autres additifs sélectionnés de façon à donner à la pièce les caractéristiques requises. En raison de sa composition, cette pièce présente une haute résistance à la température. La composition permet aussi d'améliorer ses propriétés mécaniques et d'alléger les pièces de béton conventionnel. Lesdites pièces peuvent être utilisées pour lesrecouvrement de façades et de constructions nécessitant un haut niveau de résistance au feu. Le procédé selon la présente invention ne porte pas seulement sur l'injection et la fabrication d'éléments à base de ciment (ciment utilisé comme liant hydraulique), et n'envisage pas seulement ceux-ci ; il envisage aussi la possibilité d'emploi d'autres liants hydrauliques comme le gypse, le plâtre, la chaux, le silicate de calcium. On peut mélanger aussi plusieurs liants. La matrice peut être en outre constituée de ciment mélangé avec d'autres agglomérats, gypses, plâtres, chaux, résines synthétiques, polymères, plastiques de diverses typologies, thermoplastiques, etc. Lorsque le liant comprend un ciment, Le ciment utilisé peut être de préférence à prise rapide, à haute résistance initiale, un ciment Portland traditionnel de n'importe quelle résistance, alumineux, à faible teneur en alcalis, et en général n'importe quel type de ciment, dont le choix doit être pris en compte lors de la conception de la pièce, pour toujours conserver sa caractéristique de liant hydraulique. Les polymères peuvent être par exemple de type acrylique ou synthétique, des résines de diverses typologies, ou tout autre polymère utilisable pour modifier la matrice et donner à la pièce fabriquée une plus grande capacité en fonction de divers aspects de la conception et des performances que l'on attend de la pièce. On peut éventuellement n'ajouter les polymères que lorsque la pièce finale de GRC n'est pas destinée à des applications à haute température et sera utilisée uniquement dans des panneaux de façade et des bardages, ou dans d'autres applications ne nécessitant pas de résistance particulière au feu ou à des températures élevées. Par ailleurs, les autres additifs peuvent être, entre autres, des accélérateurs, des retardateurs, des émulsifiants, des aérateurs, des introducteurs d'air occlus, des stabilisateurs, des antioxidants, des agents fluidifiants ou épaississants, comme la cellulose, les fibres de cellulose, des hydroxydes cellulosiques de n'importe quel type et d'autres épaississants chimiques, en plus d'amidons ou de produits naturels utilisables pour améliorer la cohésion et la stabilité de la pâte injectée, et en général tout additif visant à modifier la matrice en fonction desnexigences de conception et des performances que l'on attend de la pièce, ainsi que d'éventuelles exigences de production. Les fibres de renforcement peuvent être des fibres coupées, entières, un mat de n'importe quelle classe de fibres de renforcement coupées, un mat de fibres continues, comme le Cem-FIL ® vendu par la société SAINT GOBAIN, des grilles tissées. De même, les fibres de renforcement peuvent être des fibres synthétiques, comme le polyamide, la rayonne, le nylon, le PVA, le polypropylène et, en général, toute fibre organique, naturelle (comme les fibres de coco, les fibres à base de plante traitée, les fibres de cellulose, les fibres de sysal) ou synthétique de n'importe quelle classe ; des fibres minérales, comme la fibre de carbone, les fibres de basalte et, en général, toute fibre minérale de n'importe quelle classe ; des fibres de verre de type E, Z, C, ou résistantes aux alcalis ou AR et, en général, toute fibre de verre de n'importe quelle composition; des fibres métalliques, comme les fibres de cuivre, d'acier, d'acier inoxydable, de fer, de fonte, de fonte ductile et, en général, toute fibre de type métallique. On peut également citer les fibres de graphite, de bore, en céramique, de basalte. Les autres fibres peuvent être des fibres d'isolation par exemple en laine de roche ou fibres de verre. Le Tableau 1 ci-dessous présente quelques exemples de compositions pour les pièces par exemple en GRC selon la présente invention, par comparaison avec les pièces en GRC conventionnel.PROCESS FOR MANUFACTURING BY MOLDING A PART IN A HYDRAULIC GRIP DIE, A PART OBTAINED BY THIS PROCESS The present patent application relates to a manufacturing process by molding a matrix part with hydraulic setting and a part obtained by this process. Currently, glass fiber reinforced cement panels (better known by its acronym in English, GRC for glassfibre reinforced surround) are widely used for covering facades instead of traditional concrete panels, to take advantage of their high mechanical performance, with reduced thicknesses and therefore greater lightness. In addition to their use for cladding (facade panels and architectural elements), they lend themselves to other applications, such as sanitary (shower trays and related elements) as well as interior elements. Likewise, due to their high fire resistance, they are also used in other types of construction requiring this characteristic, such as, for example, ovens used to cook food such as bread, pizza, etc. They can also be used for the manufacture of transport pallets instead of wood, which is the material generally used for this purpose. However, the current method of manufacturing these parts is long and expensive, since molding and demolding are carried out entirely by hand, and in particular because the duration of the drying before demolding is not less than 24 hours. The first object of the invention is to overcome these drawbacks by proposing a method of manufacturing by molding a matrix part with hydraulic grip which is efficient. To this end, the invention provides a method of manufacturing a part in a matrix with hydraulic setting by molding comprising the following steps: a) injection of a paste containing a hydraulic binder and so-called mixing water in a mold, b) extraction of kneading water by vacuum, c) demolding of the fresh part. The process according to the invention is more compatible with industrial requirements than the processes of the prior art in which demolding takes place dry. In fact, vacuum extraction considerably reduces the occupation time of the mold. This process therefore makes it possible to reduce the quantity of material used as well as the time spent on manufacturing the parts. In addition, the method according to the invention is simple to implement and can be easily automated. A first step in the process according to the present invention may consist in mixing the dough. For this, the components of the latter are introduced, for example, into a mixer equipped with a stirring system, and stirring is continued until a homogeneous mixture is obtained. The occluded air produced during mixing can be removed inside the pressure tank. Then, the dough can be transferred to a tank equipped for example with suitable locking systems which allow the interior to be pressurized. The tank can integrate an internal bubble removal system, based on a vacuum process, possibly with the production of vibrations from the outside, if necessary, so that the occluded air is not introduced into the mold with the injected dough. Then, the paste is injected into the mo ile, preferably by pressurizing the above-mentioned reservoir. Preferably, the injection can take place at low pressure or at high pressure. The operating pressure, for low pressure injection, is preferably between 1.5 and 4 bars, while the high pressure is preferably between 4 and 30 bars, depending on the case and taking this pressure into account in the mold design. . This injection can also take place by any other conventional means, such as a peristaltic pump or compressed air (in the case of low pressure injection). The vacuum is preferably produced by a vacuum pump. Extract the excess water so that the room has the desired humidity levels. Advantageously, the final percentage of water represents a compromise which allows problem-free handling of the part while avoiding cracking due to lack of water. Also, the water / cement ratio after the vacuum extraction step can be preferably between 0.25 and 0.5. Advantageously, the duration of the vacuum extraction step of the process according to the present invention is less than 1 hour, which in particular makes it possible to significantly increase the yield compared to existing processes. Likewise, the process makes it possible to obtain parts - for example for floors - having a thickness for example between 0.2 cm and 5 cm without harming their physical or mechanical properties, which contributes to reducing the quantity of material used, by reducing costs and obtaining lighter parts, which facilitates their handling and installation. To obtain the final part, the manufacturing method according to the invention can comprise the hardening of the part obtained. To significantly reduce the risk of microcracks and deformations likely to lead to the scrapping of the part obtained, hardening preferably takes place under conditions of humidity and temperature which allow the part to regain the levels of hydration necessary after the loss of water undergone during the vacuum extraction step. Also advantageously, the relative humidity during hardening can be between 90% and 100%, and the total hardening time can be between 1 and 7 days. Other curing systems can be selected, such as steam, autoclave, etc. In a preferred embodiment, reinforcing fibers cut into the paste are mixed before injection and / or reinforcing fibers are placed in the mold before injection. In an advantageous embodiment, a support element is placed in the mold before injection and the fresh part placed on said support is removed using said support. Furthermore, this support can be a metal part, of rigidity adapted to the size of the part and in addition to the shape desired for the part, for example for manufacturing a panel with rounded zones in the form of tiles. According to one characteristic, vacuum extraction can start during the injection of dough. In addition, the injection and / or extraction can be carried out by one face and / or both sides of a closed molding system comprising a mold and a counter mold. It is possible, for example, to extract the water from the upper face (of the counter mold) and turn the mold over for extraction from the lower face (of the mold). The injection and / or extraction can be carried out by one or more separate orifices or not provided in the mold and / or against the mold. Furthermore, the injection and / or extraction can be distributed over a part or over the entire lower and / or upper surface of the molding system. In addition, it is possible to manufacture a part comprising one or more metal inserts for the final fixing of the part (front panels etc.), for example on a building, by placing these inserts in the mold before injection of the paste. In addition, the mold can optionally be heated to speed up setting. A mold for implementing the method according to the invention may consist of a closed mold system (mold-countermold) and comprise at least one inlet orifice, through which the paste, preferably homogenized beforehand, is injected and at least a second orifice, separate or not from the first orifice for said extraction. In order to avoid system failure, provision may be made for the inclusion in the mold of one or more dough outlet or overflow openings, themselves fitted with locks which make it possible to close them to prevent a fall of pressure during vacuum water extraction. To allow the extraction of water by vacuum, the mold is also preferably equipped with a plurality of orifices of diameter less than or equal to 1 cm, which are connected, directly or indirectly, to the extraction system by the empty. Similarly, to avoid the loss of material during this vacuuming step, it is possible to interpose filter paper or any other conventional filtration system between said orifices and the paste. During this step, you can optionally heat the mold to speed up setting. If a support element is placed in the mold, the latter may preferably comprise one or more orifices facing the mold or the counter mold. If the extraction and the injection are carried out via the counter-mold, an element can then be provided, for example magnetic contact with the counter-mold and provided with orifices facing those of the counter-mold. The present invention also relates to a matrix part with hydraulic setting obtained by the method described above. Its composition includes a weight percentage of hydraulic binder between 2% and 98% of the total mass, a weight percentage of sand between 0.1% and 95% of the total mass, a weight percentage of water between 5% and 75% of the total mass, a weight percentage of reinforcing fibers between 0% and 50% of the total mass (preferably in glass and between 2.5% and 7%), a weight percentage of other fibers between 0% and 50 % of the total mass, a weight percentage of polymers between 0% and 75% of the total mass, a weight percentage of superplasticizer between 0% and 20% of the total mass, a weight percentage of metakaolin between 0% and 50% of the total mass, and possibly other additives selected so as to give the part the required characteristics. Due to its composition, this part has a high temperature resistance. The composition also makes it possible to improve its mechanical properties and to lighten conventional concrete parts. Said parts can be used for the recovery s facades and buildings requiring a high level of fire resistance. The process according to the present invention does not only relate to the injection and manufacture of elements based on cement (cement used as a hydraulic binder), and does not envisage only these; it is also considering the possibility of using other hydraulic binders such as gypsum, plaster, lime, calcium silicate. Several binders can also be mixed. The matrix can also be made of cement mixed with other agglomerates, gypsum, plaster, lime, synthetic resins, polymers, plastics of various types, thermoplastics, etc. When the binder comprises a cement, the cement used may preferably be quick-setting, with high initial strength, a traditional Portland cement of any strength, aluminous, low in alkali content, and in general any type. cement, the choice of which must be taken into account when designing the part, to always retain its characteristic of hydraulic binder. The polymers can be for example of acrylic or synthetic type, resins of various typologies, or any other polymer usable to modify the matrix and to give to the manufactured part a greater capacity according to various aspects of the design and performances than the 'we are waiting for the room. The polymers may possibly be added only when the final GRC part is not intended for high temperature applications and will be used only in facade panels and cladding, or in other applications which do not require resistance. peculiar to fire or high temperatures. Furthermore, the other additives can be, inter alia, accelerators, retarders, emulsifiers, aerators, air entrainers, stabilizers, antioxidants, thinning or thickening agents, such as cellulose, fiber cellulose, cellulosic hydroxides of any type and other chemical thickeners, in addition to starches or natural products which can be used to improve the cohesion and stability of the injected pulp, and in general any additive intended to modify the matrix according to the n design and performance requirements expected from the part, as well as possible production requirements. The reinforcing fibers can be cut fibers, whole, a mat of any class of cut reinforcing fibers, a mat of continuous fibers, such as Cem-FIL® sold by the company SAINT GOBAIN, woven grids. Likewise, the reinforcing fibers can be synthetic fibers, such as polyamide, rayon, nylon, PVA, polypropylene and, in general, any organic, natural fiber (such as coconut fibers, fibers based on treated plant, cellulose fibers, sysal fibers) or synthetic fibers of any class; mineral fibers, such as carbon fiber, basalt fibers and, in general, any mineral fiber of any class; glass fibers of type E, Z, C, or resistant to alkalis or AR and, in general, any glass fiber of any composition; metallic fibers, such as copper, steel, stainless steel, iron, cast iron, ductile iron and, in general, any metallic type fiber. Mention may also be made of graphite, boron, ceramic and basalt fibers. The other fibers can be insulation fibers, for example rock wool or glass fibers. Table 1 below presents some examples of compositions for parts, for example in GRC according to the present invention, by comparison with the parts in conventional GRC.
Tableau 1.Table 1.
Dans la combinaison, les proportions des différents types de fibres sont ajustées de façon à permettre de bonnes performances de l'application et l'obtention de différents niveaux de résistance mécanique. La combinaison des différents types de fibres est étudiée pour un ajustement compatible avec les autres composants de la matrice, afin de permettre une injection du mélange sans problèmes majeurs. Les matériaux constituant le renforcement (fibres) peuvent être utilisés dans n'importe quelle proportion en fonction des avantages ou des performances que l'on désire obtenir avec la pièce injectée. On utilise de préférence des fibres de verre AR longues de 12 mm, entre 2 et 3% de la masse totale. Une réalisation préférée est décrite ci-dessous; on notera cependant qu'elle ne limite pas l'invention. Après avoir pesé les matériaux, on passe au mélange, selon la procédure suivante : on ajoute progressivement à la quantité d'eau requise le ciment et le sable, en obtenant un rapport sable / ciment de 0,8 et un rapport eau / ciment de 0,45. On malaxe jusqu'à l'obtention d'un mélange homogène. On ajoute les fibres de renforcement coupées (par exemple de verre) et les additifs, puis on mélange jusqu'à l'obtention d'une pâte homogène. Pour cela, on introduit les composants de la pâte dans une melangeuse équipée d'un système d'agitation, et l'agitation est continuée jusqu'à l'obtention d'un mélange homogène. L'air occlus produit lors du malaxage est éliminé à l'intérieur d'un réservoir de pression. * Ensuite, on transfère la pâte à un réservoir équipé par exemple de systèmes de verrouillage adaptés qui permettent de mettre l'intérieur sous pression. Le réservoir intègre un système intérieur d'élimination des bulles, basé sur un processus de vide, avec éventuellement la production de vibrations à partir de l'extérieur, si nécessaire, de façon que l'air occlus ne soit pas introduit dans le moule avec la pâte injectée. Ensuite, on prépare le moule en vue de l'injection. Pour éviter la perte de matériau pendant l'étape de mise sous vide, on peut interposer du papier filtre ou tout autre système conventionnel de filtration entre lesdits orifices et la pâte. On place par exemple un papier filtre ou les films spéciaux par-dessus un support ou chemiseinférieure disposée sur le moule et prévu pour retirer aisément la pièce fraîche On place en outre de préférence une grille tissée de renforcement par exemple en fibre de verre de forme adéquate dans le moule. Le moule consiste par exemple en un système de moule fermé (moule- contremoule) et comporte par exemple neuf orifices sur le moule et le contre moule de préférence uniformément distribués et en regard , par lesquels la pâte homogénéisée est injectée et/ ou l'extraction est réalisée. Afin d'éviter une défaillance du système, on peut prévoir l'inclusion dans le moule d'un ou plusieurs orifices de sortie de pâte ou de trop-pleins, eux-mêmes équipés de verrouillages qui permettent de les fermer pour éviter une chute de pression pendant l'extraction d'eau par le vide. On remplit le réservoir via les orifices avec la pâte obtenue auparavant, on ferme et on met sous pression. Après avoir obtenu une pression de 2,5-3 bars, on ouvre les vannes de sortie du coulis du réservoir, pour que le matériau s'écoule vers le moule. Quand les trop-pleins indiquent que le moule est plein, on branche la source de vide et on stoppe l'injection. Pour permettre l'extraction d'eau par le vide, un ou des orifices ont un diamètre inférieur ou égal à 1 cm et sont raccordés, directement ou indirectement, au système d'extraction par le vide. Le temps total de mise sous vide est de 15 minutes, lequel produit un rapport eau / ciment final qui varie entre 0,35 et 0,40. Pendant cette étape, on peut éventuellement chauffer le moule pour accélérer la prise. iX"< Ensuite, on ouvre le moule, on démoule la pièce et on introduit cette pièce dans la chambre de durcissement pour obtenir le niveau requis d'hydratation et de durcissement de la pièce. Le durcissement a lieu à température ambiante et à une humidité relative supérieure à 95 % pendant 7 jours. In the combination, the proportions of the different types of fibers are adjusted so as to allow good performance of the application and obtaining different levels of mechanical strength. The combination of different types of fibers are studied for an adjustment compatible with the other components of the matrix, in order to allow an injection of the mixture without major problems. The materials constituting the reinforcement (fibers) can be used in any proportion depending on the advantages or the performances which it is desired to obtain with the injected part. Preferably, 12 mm long AR glass fibers are used, between 2 and 3% of the total mass. A preferred embodiment is described below; note however that it does not limit the invention. After weighing the materials, we pass to the mixture, according to the following procedure: we gradually add to the quantity of water required the cement and the sand, obtaining a sand / cement ratio of 0.8 and a water / cement ratio of 0.45. Mix until a homogeneous mixture is obtained. The cut reinforcing fibers (for example glass) and the additives are added, then mixed until a homogeneous paste is obtained. To do this, the dough components are introduced into a mixer equipped with a stirring system, and stirring is continued until a homogeneous mixture is obtained. The occluded air produced during mixing is removed inside a pressure tank. * Then, the dough is transferred to a tank equipped for example with suitable locking systems which allow the interior to be pressurized. The tank incorporates an internal bubble removal system, based on a vacuum process, possibly producing vibrations from the outside, if necessary, so that the occluded air is not introduced into the mold with the injected dough. Next, the mold is prepared for injection. To avoid the loss of material during the vacuuming step, filter paper or any other conventional filtration system can be interposed between said orifices and the paste. For example, filter paper or special films are placed over a support or lower jacket arranged on the mold and intended for easy removal of the fresh part. In addition, a woven reinforcement grid, for example of fiberglass of suitable shape, is preferably placed. in the mold. The mold consists for example of a closed mold system (mold-countermold) and comprises for example nine orifices on the mold and the counter mold preferably uniformly distributed and facing each other, through which the homogenized dough is injected and / or extracted. is carried out. In order to avoid system failure, provision may be made for the inclusion in the mold of one or more dough outlet or overflow openings, themselves fitted with locks which make it possible to close them to prevent a fall of pressure during vacuum water extraction. The reservoir is filled via the orifices with the paste obtained previously, it is closed and pressurized. After having obtained a pressure of 2.5-3 bars, the outlet slurry outlet valves are opened, so that the material flows to the mold. When the overflows indicate that the mold is full, the vacuum source is connected and the injection stopped. To allow the extraction of water by vacuum, one or more orifices have a diameter less than or equal to 1 cm and are connected, directly or indirectly, to the vacuum extraction system. The total vacuuming time is 15 minutes, which produces a final water / cement ratio which varies between 0.35 and 0.40. During this step, you can optionally heat the mold to speed up setting. iX "< Next, open the mold, unmold the part and introduce this part into the hardening chamber to obtain the required level of hydration and hardening of the part. Hardening takes place at room temperature and at humidity relative greater than 95% for 7 days.

Claims

REVENDICATIONS
1.- Procédé de fabrication par moulage d'une pièce en une matrice à prise hydraulique, caractérisé en ce qu'il comprend les étapes suivantes a) injection d'une pâte contenant un liant hydraulique et de l'eau dite de malaxage dans un moule, b) extraction de l'eau de malaxage par mise sous vide c) démoulage de la pièce fraîche. 1.- A method of manufacturing by molding a part in a matrix with hydraulic setting, characterized in that it comprises the following stages a) injection of a paste containing a hydraulic binder and so-called mixing water in a mold, b) extraction of the kneading water by vacuum c) demolding of the fresh part.
2.- Procédé de fabrication par moulage d'une pièce selon la revendication2. A method of manufacturing by molding a part according to claim
1 , caractérisé en ce que l'injection de la pâte dans le moule a lieu par mise sous pression d'un réservoir d'injection. 1, characterized in that the injection of the dough into the mold takes place by pressurizing an injection tank.
3.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications 1 ou 2, caractérisé en ce que l'injection de la pâte dans le moule a lieu au moyen d'une pompe péristaltique. 3. A method of manufacturing by molding a part according to one of claims 1 or 2, characterized in that the injection of the dough into the mold takes place by means of a peristaltic pump.
4.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications 1 ou 2, caractérisé en ce que l'injection de la pâte dans le moule a lieu au moyen d'air comprimé. 5.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications 1 ou 2, caractérisé en ce que l'injection a lieu à basse pression à une pression entre 1 ,4. A method of manufacturing by molding a part according to one of claims 1 or 2, characterized in that the injection of the dough into the mold takes place by means of compressed air. 5. A method of manufacturing by molding a part according to one of claims 1 or 2, characterized in that the injection takes place at low pressure at a pressure between 1,
5 et 4 bars. 5 and 4 bars.
6.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications 1 ou 2, caractérisé en ce que l'injection a lieu à haute pression à une pression entre 4 et 30 bars. 6. A method of manufacturing by molding a part according to one of claims 1 or 2, characterized in that the injection takes place at high pressure at a pressure between 4 and 30 bars.
7.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications 1 à 6, caractérisé en ce que le rapport eau / ciment après l'étape d'extraction par le vide est entre 0,25 et 0,5. 7.- A method of manufacturing by molding a part according to one of claims 1 to 6, characterized in that the water / cement ratio after the vacuum extraction step is between 0.25 and 0.5 .
8.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications 1 à 7, caractérisé en ce qu'il permet d'obtenir des pièces ayant des épaisseurs entre 0,2 et 5 cm. 8.- A method of manufacturing by molding a part according to one of claims 1 to 7, characterized in that it allows to obtain parts having thicknesses between 0.2 and 5 cm.
9.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications 1 à 8, caractérisé en ce que la durée de l'étape d'extraction par le vide est inférieure à 1 heure. 9. A method of manufacturing by molding a part according to one of claims 1 to 8, characterized in that the duration of the vacuum extraction step is less than 1 hour.
10.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications 1 à 9, caractérisé en ce qu'il comprend une étape de durcissement de la pièce qui a lieu dans des conditions d'humidité relative entre 90 % et 100 %. 10.- A method of manufacturing by molding a part according to one of claims 1 to 9, characterized in that it comprises a step of curing the part which takes place under conditions of relative humidity between 90% and 100%.
11.- Procédé de fabrication par moulage d'une pièce selon la revendication 10, caractérisé en ce que la durée totale de l'étape de durcissement est entre 1 et 7 jours. 11. A method of manufacturing by molding a part according to claim 10, characterized in that the total duration of the curing step is between 1 and 7 days.
12.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications 10 ou 11 , caractérisé en ce que l'étape de durcissement a lieu en présence de vapeur d'eau. 12. A method of manufacturing by molding a part according to one of claims 10 or 11, characterized in that the curing step takes place in the presence of water vapor.
13.- Procédé de fabrication par moulage d'une pièce selon l'une des revendications à 10 ou 11 , caractérisé en ce que l'étape de durcissement a lieu dans un autoclave. 13.- A method of manufacturing by molding a part according to one of claims to 10 or 11, characterized in that the hardening step takes place in an autoclave.
14.- Pièce en matrice à prise hydraulique obtenue selon le procédé de l'une des revendications 1 à 13, caractérisée en ce que la composition de ladite pièce comprend un pourcentage pondéral de liant hydraulique entre 2 % et 98 % de la masse totale, un pourcentage pondéral de sable entre 0,1 % et 95 % de la masse totale, un pourcentage pondéral d'eau entre 5 % et 75 % de la masse totale, un pourcentage pondéral de fibres de renforcement entre 0 % et 50 % de la masse totale, un pourcentage pondéral d'autres fibres entre 0 % et 50 % de la masse totale un pourcentage pondéral de polymères entre 0 % et 75 % de la masse totale, un pourcentage pondéral de superplastifiant entre 0 % et 20 % de la masse totale, un pourcentage pondéral de métakaolin entre 0 % et 50 % de la masse totale. 14.- matrix part with hydraulic setting obtained according to the method of one of claims 1 to 13, characterized in that the composition of said part comprises a weight percentage of hydraulic binder between 2% and 98% of the total mass, a weight percentage of sand between 0.1% and 95% of the total mass, a weight percentage of water between 5% and 75% of the total mass, a weight percentage of reinforcing fibers between 0% and 50% of the total mass, a weight percentage of other fibers between 0% and 50% of the total mass a weight percentage of polymers between 0% and 75% of the total mass, a weight percentage of superplasticizer between 0% and 20% of the mass total, a weight percentage of metakaolin between 0% and 50% of the total mass.
15.- Pièce en matrice à prise hydraulique selon la revendication 14, caractérisée en ce que le liant hydraulique comprend un ciment, le ciment peut être à prise rapide, à haute résistance initiale, un ciment Portland traditionnel de n'importe quelle résistance, alumineux, à faible teneur en alcalis, et en général n'importe quel type de ciment, dont le choix doit être pris en compte lors de la conception de la pièce, pour toujours conserver sa caractéristique de liant hydraulique. 15.- matrix part with hydraulic setting according to claim 14, characterized in that the hydraulic binder comprises a cement, the cement can be quick setting, high initial strength, a traditional Portland cement of any strength, aluminous , with a low alkali content, and in general any type of cement, the choice of which must be taken into account when designing the part, in order to always retain its characteristic of hydraulic binder.
16.- Pièce en matrice à prise hydraulique selon la revendication 14 ou 15, caractérisée en ce que les polymères peuvent être de type acrylique ou synthétique, des résines de diverses typologies, ou tout autre polymère utilisable pour modifier la matrice et donner à la pièce fabriquée une plus grande capacité en fonction de divers aspects de la conception et des performances que l'on attend de la pièce. 16.- matrix part with hydraulic setting according to claim 14 or 15, characterized in that the polymers can be of acrylic or synthetic type, resins of various typologies, or any other usable polymer to modify the matrix and give the manufactured part greater capacity based on various aspects of the design and performance expected from the part.
17.- Pièce en matrice à prise hydraulique selon les revendications 14 à 16, caractérisée en ce qu'elle comprend des autres additifs qui peuvent être des accélérateurs, des retardateurs, des émulsifiants, des aérateurs, des introducteurs d'air occlus, des stabilisateurs, des antioxidants, des agents fluidifiants ou épaississants, comme la cellulose, les fibres de cellulose, des hydroxydes cellulosiques de n'importe quel type et d'autres épaississants chimiques, en plus d'amidons ou de produits naturels utilisables pour améliorer la cohésion et la stabilité de la pâte injectée, et en général tout additif visant à modifier la matrice en fonction des exigences de conception et des performances que l'on attend de la pièce, ainsi que d'éventuelles exigences de production. 17.- matrix part with hydraulic setting according to claims 14 to 16, characterized in that it comprises other additives which can be accelerators, retarders, emulsifiers, aerators, occluded air introducers, stabilizers , antioxidants, thinning or thickening agents, such as cellulose, cellulose fibers, cellulosic hydroxides of any type and other chemical thickeners, in addition to starches or natural products which can be used to improve cohesion and the stability of the injected paste, and in general any additive aimed at modifying the matrix as a function of the design requirements and the performance expected from the part, as well as possible production requirements.
18.- Pièce en matrice à prise hydraulique selon les revendications 14 à 17, caractérisée en ce que les fibres de renforcement peuvent être des fibres coupées, entières, un mat de n'importe quelle classe de fibres de renforcement coupées, un mat de fibres continues, comme le Cem-FIL ®, des grilles tissées. 18. A matrix part with hydraulic setting according to claims 14 to 17, characterized in that the reinforcing fibers can be cut fibers, whole, a mat of any class of cut reinforcing fibers, a fiber mat like Cem-FIL ®, woven grids.
19.- Pièce en matrice à prise hydraulique selon les revendications 14 à 18, caractérisée en^ee que les fibres de renforcement peuvent être des fibres synthétiques, comme le polyamide, la rayonne, le nylon, le PVA, le polypropylene et, en général, toute fibre organique ou synthétique de n'importe quelle classe; des fibres minérales, comme la fibre de carbone, les fibres de basalte et, en général, toute fibre minérale de n'importe quelle classe; des fibres de verre, comme E, Z, C, AR et, en général, toute fibre de verre de n'importe quelle composition ; des fibres métalliques, comme les fibres de cuivre, d'acier, d'acier inoxydable, de fer, de fonte, de fonte ductile et, en général, toute fibre de type métallique. 19. A matrix part with hydraulic setting according to claims 14 to 18, characterized in that the reinforcing fibers can be synthetic fibers, such as polyamide, rayon, nylon, PVA, polypropylene and, in general , any organic or synthetic fiber of any class; mineral fibers, such as carbon fiber, basalt fibers and, in general, any mineral fiber of any class; glass fibers, such as E, Z, C, AR and, in general, any glass fiber of any composition; metallic fibers, such as copper, steel, stainless steel, iron, cast iron, ductile iron and, in general, any metallic type fiber.
EP04805722A 2003-10-03 2004-10-01 Method of moulding a part in a hydraulically-setting matrix and part thus produced Withdrawn EP1670625A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200302301A ES2251857B1 (en) 2003-10-03 2003-10-03 PROCEDURE FOR OBTAINING REINFORCED CEMENT PARTS WITH GLASS FIBER AND PARTS AS OBTAINED.
PCT/FR2004/050479 WO2005032780A2 (en) 2003-10-03 2004-10-01 Method of moulding a part in a hydraulically-setting matrix and part thus produced

Publications (1)

Publication Number Publication Date
EP1670625A2 true EP1670625A2 (en) 2006-06-21

Family

ID=34400670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805722A Withdrawn EP1670625A2 (en) 2003-10-03 2004-10-01 Method of moulding a part in a hydraulically-setting matrix and part thus produced

Country Status (9)

Country Link
US (1) US20080113193A1 (en)
EP (1) EP1670625A2 (en)
JP (1) JP2007507371A (en)
CN (1) CN1890072A (en)
AR (1) AR047945A1 (en)
ES (1) ES2251857B1 (en)
IN (1) IN2006KO01132A (en)
TW (1) TW200523049A (en)
WO (1) WO2005032780A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2009000232A (en) 2006-07-07 2009-02-23 Valspar Sourcing Inc Coating systems for cement composite articles.
WO2009017503A1 (en) * 2007-08-01 2009-02-05 Valspar Sourcing, Inc. Coating system for cement composite articles
FR2948055B1 (en) 2009-07-17 2015-10-09 Rabot Dutilleul Investissement Rdi METHOD OF MANUFACTURING BY MOLDING A FORMED ELEMENT OF A HYDRAULIC RECEPTACLE MATRIX AND SYSTEM FOR IMPLEMENTING SAID METHOD
KR20150095176A (en) * 2014-01-14 2015-08-20 스키너스 주식회사 Maintenance reinforcement and its using the same maintenance reinforcement methode
CN104557107B (en) * 2014-12-16 2017-05-03 山东益丰生化环保股份有限公司盛源新型建材分公司 Light-weight autoclaved aerated concrete and preparation process thereof
US10300762B2 (en) * 2016-04-20 2019-05-28 Toledo Molding & Die, Inc. Method of making an acoustic automotive HVAC and AIS duct with a particle fiber slurry

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8607799A1 (en) * 1984-11-22 1986-06-01 Fibrotubo Fibrolit Sa Reinforced cement mixts. prodn.
JPH06198616A (en) * 1992-12-28 1994-07-19 Sekisui Chem Co Ltd Preparation of water-curable inorganic molded product
GB9400640D0 (en) * 1994-01-14 1994-03-09 Cape Durasteel Ltd Fire-resistant panel
JPH09193116A (en) * 1996-01-16 1997-07-29 Sekisui Chem Co Ltd Molding machine for hydraulic inorganic molding
AUPQ219699A0 (en) * 1999-08-13 1999-09-02 Ultimate Masonry Australia Ltd Method & apparatus for molding pastes & slurries
FR2804952B1 (en) * 2000-02-11 2002-07-26 Rhodia Chimie Sa ULTRA HIGH PERFORMANCE FIRE RESISTANT CONCRETE COMPOSITION
DE10131361B4 (en) * 2001-06-28 2006-07-27 Xella Dämmsysteme GmbH Process for the production of aerated concrete

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005032780A2 *

Also Published As

Publication number Publication date
WO2005032780A3 (en) 2005-06-02
TW200523049A (en) 2005-07-16
AR047945A1 (en) 2006-03-15
US20080113193A1 (en) 2008-05-15
IN2006KO01132A (en) 2007-04-27
WO2005032780A2 (en) 2005-04-14
JP2007507371A (en) 2007-03-29
CN1890072A (en) 2007-01-03
ES2251857A1 (en) 2006-05-01
ES2251857B1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
EP0706502B1 (en) Metal fiber concrete composition for casting a concrete element, elements obtained and method of thermal curing
Majumdar et al. Glass fibre reinforced cement
EP2401239B1 (en) Powder insulating mortar, and layered insulating mortar
EP2093201A2 (en) Lime foam composition for thermal insulation
CN103317596B (en) The manufacture method of the centrifugal corrosion resistant concrete hollow square pile of pretensioned prestressing
EP1670625A2 (en) Method of moulding a part in a hydraulically-setting matrix and part thus produced
EP1787967A1 (en) Moulding mixture for the production of a refractory lining
CN113443878A (en) Ultra-high performance concrete hollow slab and preparation method thereof
EP0887486A1 (en) Reinforced concrete composition with metal strips, method and building elements made thereof
CN112624690A (en) Manufacturing method of ceramsite aerated concrete light wall board
FR3004711B1 (en) BLOCK IN FIBERS VEGETALES AGGLOMEREES COMRESS
CN112936897A (en) Preparation process of integrally-formed soft stone brick
RU2473420C2 (en) Method of making decorative concrete panels
CN106242337A (en) A kind of preparation method of modified carbon fiber cement-base composite material
FR2643363A1 (en) PROCESS FOR TREATING CHENEVOTTE PRODUCED FROM A MONOIC HAM FOR THE OBTAINING OF HARDENED AGGREGATES USED AS INSULATION OR AS A LOAD IN THE PREPARATION OF A CONCRETE, AND CONCRETE OBTAINED THEREBY
RU2783452C1 (en) Curing agent for molded concrete products
SU1451023A1 (en) Method of moulding ferroconcrete articles
FR2479182A1 (en) Moulded facing for construction element - with skin produced from magnesium oxide and chloride binder
CN1155759C (en) Gypsum wall brick and its production technology
WO2023041483A1 (en) Insulating construction element
CN112225483A (en) Manufacturing method of pumping pipe pile
CN115613846A (en) Steel fiber textile reinforced mortar reinforced composite material with gradient interface and preparation method thereof
CN103936376A (en) Glass fiber air-entrapped brick
EP2912236B1 (en) Building brick incorporating an internal insulating layer
CN111075103A (en) Assembled building heat-insulation external wall panel and manufacturing method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060503

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110722

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111202