EP1664933A1 - Euv-projektionsobjektiv mit spiegeln aus materialien mit unterschiedlichem vorzeichen der steigung der temperaturabhängigkeit des wärmeausdehnungskoeffizienten nahe der nulldurchgangstemperatur - Google Patents
Euv-projektionsobjektiv mit spiegeln aus materialien mit unterschiedlichem vorzeichen der steigung der temperaturabhängigkeit des wärmeausdehnungskoeffizienten nahe der nulldurchgangstemperaturInfo
- Publication number
- EP1664933A1 EP1664933A1 EP03755564A EP03755564A EP1664933A1 EP 1664933 A1 EP1664933 A1 EP 1664933A1 EP 03755564 A EP03755564 A EP 03755564A EP 03755564 A EP03755564 A EP 03755564A EP 1664933 A1 EP1664933 A1 EP 1664933A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mirrors
- thermal expansion
- projection lens
- materials
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0891—Ultraviolet [UV] mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/181—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70883—Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
- G03F7/70891—Temperature
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
- G21K1/062—Devices having a multilayer structure
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K2201/00—Arrangements for handling radiation or particles
- G21K2201/06—Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
- G21K2201/065—Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements provided with cooling means
Definitions
- the invention relates to a projection objective for short wavelengths, in particular for wavelengths ⁇ ⁇ 157 nm, with a plurality of mirrors, which are arranged in an exact position with respect to an optical axis, and the mirrors have multilayer layers. Furthermore, the invention relates to a project exposure device for EUV lithography and an X-ray optical subsystem for X-rays of wavelength ⁇ R.
- Projection lenses which are used in the extreme ultraviolet range, are irradiated with soft X-rays.
- the wavelength range here is 10 to 30 nm.
- the materials previously used for optics are opaque, whereby the imaging rays are no longer guided through lenses by refraction, but only mirrors can be used.
- the mirrors used should have the highest possible reflectivity in the EUV area.
- Such mirrors comprise a substrate which is provided with a multilayer system, a so-called multilayer. This allows the realization of mirrors with high reflectivity in the X-ray range in the case of non-grazing incidence, that is, normal incidence mirrors (vertical incidence).
- a high reflectivity of the layer stack can be achieved by phase-appropriate superimposition and constructive interference of the partial wave fronts reflected on the individual layers.
- the layer thicknesses should typically be controlled in the sub-angstrom range ( ⁇ 0.1 nm).
- Multilayer-coated X-ray mirrors are operated near vertical incidence and are always preferred to mirrors with grazing incidence, which are covered with simpler layers, when high imaging quality due to low aberrations, preferably in imaging systems, is required.
- the reflectivity of grazing incidence mirrors can still be increased by applying a multilayer.
- mirrors in particular X-ray mirrors, of an EUVL projection objective or projection system
- the properties described below should be fulfilled at the same time, which guarantee a mask-true transfer of the structures to the wafer and enable a high contrast of the image and a high reflectivity of the mirror layer.
- the first property to be mentioned is a good fine pass (figure), i.e. errors in the low spatial frequency range.
- This generally means structure sizes between 1/10 of the bundle cross sections assigned by the individual pixels up to a free diameter of the mirror. This means that the defects have lateral dimensions on the order of one millimeter to several decimeters. Such errors lead to aberrations and thus reduce the image fidelity and limit the resolution limit of the overall system.
- the X-ray mirrors should have a low roughness in the MSFR (mid spatial frequency roughness) range (middle spatial frequency range).
- MSFR mid spatial frequency roughness
- Such local wavelengths typically occur in the range between approx. 1 ⁇ and approx. 1 mm and lead to stray light within the image field and thereby to contrast losses in the imaging optics.
- the necessary prerequisites for achieving high reflectivities are sufficiently low layer and substrate roughness in the so-called HSFR (high spatial frequency roughness) range.
- HSFR high spatial frequency roughness
- the HSFR area leads to light losses due to scattering outside the field of view of the optics or due to disturbances in the microscopic superimposition of the partial wave trains.
- the relevant local wavelength range is limited at the top by the criterion of scatter outside the image field and, depending on the application, is in the range of a few ⁇ m for EUV wavelengths. In general, no limit is defined for the high-frequency limit.
- HSFR can be measured with the well-known Atomic Force microscopes (AFM), which have the necessary lateral and vertical resolution.
- AFM Atomic Force microscopes
- projection optics both figure as well as the MSFR and the HSFR can be controlled within a few angstroms rms (root ean square - square mean).
- X-ray mirrors which have the lowest possible thermal expansion coefficient, such as ZERODUR ® or ULE ® .
- the surface shape of the mirror can thus be kept stable even during operation under thermal loads.
- Single-crystalline silicon could also be used as a carrier, since it allows very low roughness.
- the higher coefficient of thermal expansion in silicon can be partially compensated for by the significantly higher thermal conductivity and suitable cooling.
- silicon has mechanical anisotropy and can generally only be used for small mirror sizes due to the required single crystallinity.
- Another major disadvantage is the comparatively high price of the single-crystal material. Silicon will therefore only be used at very high thermal loads, for example in lighting systems.
- the titanium silicate glass also known as ULE ® , is specified specifically in WO 01/08163 AI for projection lenses in EUV lithography.
- An illumination subsystem illuminates a mask or a reticle with X-rays.
- a projection subsystem has reflective, multilayer-coated titanium silicate glasses which have a flawless surface.
- the Titanium silicate glasses are heated to an operating temperature by means of the X-ray radiation, the titanium doping substance level preferably being regulated such that the glass has a thermal coefficient of thermal expansion which is centered around zero at the operating temperature.
- the titanium silicate glass specified here thus has a variation in the thermal coefficient of thermal expansion of ⁇ 10 ppb.
- the object is achieved in that at least two different mirror materials which differ in the slope of the thermal expansion coefficient as a function of the temperature in the region of the zero crossing of the thermal expansion coefficient, in particular in the sign of the slope, are provided, advantageously being used in an EUV Range with wavelengths ⁇ ⁇ 20 nm is provided.
- the projection lens is constructed with mirrors that reflect the light radiation.
- the construction of the projection lens with at least two different mirror materials, the mirror materials having a very small thermal coefficient of thermal expansion, is advantageous in that the image errors of the projection lens are assigned by a suitable assignment of the materials to the individual mirrors can be balanced or compensated for local and global temperature increases so that the resulting effects are minimized.
- the projection lens can be operated with stronger light sources, which consequently guarantees a higher wafer throughput and thus increased productivity.
- the requirements for the thermal coefficient of thermal expansion (CTE) of the materials can be reduced, which consequently enables a higher yield and therefore more economical use of the materials.
- An advantageous embodiment of the invention can provide that at least one mirror made of a glass-ceramic material and at least one mirror made of an amorphous titanium silicate glass is provided.
- the coefficients of thermal expansion of a glass-ceramic material and an amorphous titanium silicate glass are so small that they can be made to disappear at a certain temperature. Using such materials as mirror substrates with correct assignment of the materials to the mirrors, image errors can be significantly minimized and the overall system quality can be improved.
- Figure 1 is a schematic representation of a 6-mirror projection lens, as known from DE 100 378 70 AI;
- FIG. 2 shows the dependence of the CTE (T) on the temperature in the region of the zero crossing temperature (ZCT).
- FIG. 3 shows a graphical representation of the sensitivities of the imaging errors without manipulator correction
- FIG. 4 shows a graphical representation of the compensation of thermally induced image errors by means of manipulators.
- Figure 5 is a graphical representation of a material mix optimization for distortion (NCE).
- FIG. 1 shows an exemplary 6-mirror projection lens 1 known from the prior art, for example according to DE 100 37 870 A1, when used in the EUV range with wavelengths ⁇ ⁇ 157 nm, in particular ⁇ ⁇ 20 nm, with a Object 0 is located in object level 2.
- the object 0 to be imaged represents a mask or a reticle in the lithography.
- the object 0 is generated via a first mirror Ml, a second mirror M2, a third mirror M3, a fourth mirror M4, a fifth mirror M5 and a sixth mirror M6 mapped in an image plane 3.
- a wafer is arranged in the image plane 3 in the lithography.
- Ml, M2, M3, M4, M5 and M6 are aspherical mirrors, the first mirror M1 being designed as a convex mirror.
- a diaphragm B limits the rays 4 passing through the system 1.
- the diaphragm B is located directly on the second mirror M2 or in the immediate vicinity of the mirror M2.
- the overall system is arranged centered on an optical axis 5 and has a telecentric beam path in the image plane 3.
- an intermediate image Z is formed between the fourth mirror M4 and the fifth mirror M5. This intermediate image Z is in turn imaged into the image plane 3 via the mirrors M5 and M6.
- the thermal expansion coefficients (CTE) of suitable glass-ceramic materials can be set at a certain temperature that can be set in certain ranges, namely the zero crossing temperature - zero crossing temperature (ZCT) - can be made to disappear, as shown schematically in FIG.
- ZCT zero crossing temperature - zero crossing temperature
- the two material classes differ, among other things, in the dependence of the coefficient of thermal expansion on the temperature in the area of zero crossing temperature.
- the special functional profile of the thermal coefficient of thermal expansion with respect to the temperature and the distribution of inhomogeneities is also different.
- the zero crossing temperature should be in the range between 0 and 100 ° C, advantageously between 10 and 50 ° C.
- the Term - CTE (T) negative
- ULE ® the Ter dT
- - CTE (T) is positive.
- ZCT zero crossing temperature
- Materials should advantageously be used which have an increase in the coefficient of thermal expansion of less than 100 ppb / K 2 , in particular less than 10 ppb / K 2 .
- materials which have a CTE slope of less than 2ppb / K 2 such as ZERODUR ® or ULE ® , are particularly preferred.
- the glass-ceramic materials as well as the amorphous titanium-silicate glasses, can now be used to compensate for global and local temperature increases in such a way that the resulting effects or still existing imaging errors are minimized.
- This is done by appropriately assigning the two different mirror materials, which differ in the slope of the coefficient of thermal expansion as a function of temperature, in particular in the sign of the size, to the individual mirrors M1, M2, M3, M4, M5 and M6.
- the temperature distributions to be expected and, in turn, the resulting surface deformations are first determined using finite element analyzes. These are then superimposed on the ideal surfaces in an optical beam tracing program (eg code V) and the resulting imaging errors are determined.
- an optical beam tracing program eg code V
- the most prominent aberrations such as distortion (NCE), field curvature (FPD), astigmatism (AST), coma (Zernike coefficient 7/8), spherical aberration (Zernike coefficient Z9) and influences the root mean square of the wavefront errors (RMS) and the resulting effects are minimized.
- the overall projection lens 1 can be operated with stronger light sources, which means that a higher wafer throughput and an increased productivity can be guaranteed.
- a composition of the projection objective 1 can be achieved from mirrors Ml, M2, M3, M4, M5 and M6, which are arranged to minimize thermal errors due to their mirror materials.
- ULE ® Due to the process, ULE ® is a layered material.
- the use of ULE ® may cause a low-frequency MSFR due to the streaks that occur, at least on curved surfaces, which in turn leads to small-angle scattering.
- Such scattering is particularly disruptive on mirrors close to the pupil, since it affects a field-dependent non-uniformity of the illuminance on the wafer or on the image plane 3.
- the small-angle scatter essentially leads to nonuniformities in the illuminance in the pupil, that is to say the angular distribution of the light rays in a field point. This effect can be classified as much less critical than the non-uniformity of the illuminance on the wafer.
- the crystallite structure of glass ceramic materials is prepared by certain manufacturing processes (see WO 03/16233 AI or DE 101 27 086 AI) and preferably contributes to high-frequency MSFR components and HSFR components, that is, wide-angle scattering is caused. It is therefore advantageous if the glass-ceramic material or ZERODUR ® is preferably used in mirrors in which these spatial frequencies scatter in angular ranges that do not reach the wafer through vignetting or masking.
- the material should preferably be used in mirrors with large bundle cross sections, it also being possible for mirrors to be arranged in the front part, that is to say in the region remote from the wafer, of the lens 1 so that the scattered light is masked out by the aperture B or the other mirrors, so that it does not or minimized arrives in the wafer level 3.
- An optimization of the scattered light distribution in the wafer plane can thus be achieved by a suitable composition of the mirror materials.
- FIG. 3 shows the sensitivities of the above-mentioned imaging errors in connection with the assignment of the materials to the individual mirrors Ml, M2, M3, M4, M5 and M6 for an exemplary objective relative to a suitably defined tolerance range, the sensitivities of the absolute errors in nm, arranged according to combinations of the materials ZERODUR ® and ULE ® .
- the combinations are symmetrical with regard to a common change of sign of the CTE (T) slope on all mirrors Ml, M2, M3, M4, M5 and M6.
- the plus sign stands for the material ULE ® and the minus sign for the material ZERODUR ® in the relevant arranged mirror.
- the analyzes were carried out with the following, exemplary, but realistic heat loads, which represent the absorbed power of the respective mirrors:
- the material mix can be further optimized by arranging ULE ® mirrors in areas close to the field and not near the pupil.
- ULE ® 1 may be preferably for the mirrors Ml be used M3 and M4.
- FIG. 4 shows the compensation of the thermally induced image errors by using manipulators which allow whole-body movement of the individual mirrors M1, M2, M3, M4, M5 and M6 during operation.
- FIG. 4 shows that for any material combinations, by changing the distances, the decentration and the tilting of the mirrors Ml, M2, M3, M4, M5 and M6, all image defects can be checked within their specified tolerance ranges.
- NCE material mix optimization for distortion
- FIG. 5 A material mix optimization for distortion (NCE) is shown graphically in FIG.
- the sensitivities without manipulator correction from FIG. 4 are shown arranged according to NCE residual errors.
- the material mix that produces the lowest NCE is shown in the left area of the graphic.
- a mix of "+++ - + -" or "+ - +”, as can be seen provides the lowest NCE.
- ULE ® -ZERODUR ® combination it can be seen particularly clearly that all image defects, NCE, FPD, AST, Z7 / 8, Z9 and RMS can be found within the tolerance range without costly manipulator correction, as can be seen in FIG. 5 , It is now clearly shown that a combination of materials with ULE ® / ZERODUR ® can influence distortion (NCE) in particular. Other image errors can also be influenced and minimized by such a combination of materials.
- the specified material distribution was determined for an exemplary system with an exemplary temperature distribution, without being restricted to this.
- different optimal material combinations can occur in the inventive sense.
- the invention should not be limited to EUVL components. Depending on thermal and litter light specification, it can be advantageous to optimize reflective components, for example of a 157 nm lithography system, from these points of view.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- High Energy & Nuclear Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Atmospheric Sciences (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Toxicology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2003/010761 WO2005040925A1 (de) | 2003-09-27 | 2003-09-27 | Euv-projektionsobjektiv mit spiegeln aus materialien mit unterschiedlichem vorzeichen der steigung der temperaturabhängigkeit des wärmeausdehnungskoeffizienten nahe der nulldurchgangstemperatur |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1664933A1 true EP1664933A1 (de) | 2006-06-07 |
Family
ID=34485989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03755564A Ceased EP1664933A1 (de) | 2003-09-27 | 2003-09-27 | Euv-projektionsobjektiv mit spiegeln aus materialien mit unterschiedlichem vorzeichen der steigung der temperaturabhängigkeit des wärmeausdehnungskoeffizienten nahe der nulldurchgangstemperatur |
Country Status (6)
Country | Link |
---|---|
US (1) | US7557902B2 (de) |
EP (1) | EP1664933A1 (de) |
JP (1) | JP4817844B2 (de) |
KR (1) | KR101052386B1 (de) |
AU (1) | AU2003273409A1 (de) |
WO (1) | WO2005040925A1 (de) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7428037B2 (en) * | 2002-07-24 | 2008-09-23 | Carl Zeiss Smt Ag | Optical component that includes a material having a thermal longitudinal expansion with a zero crossing |
JP5424013B2 (ja) * | 2008-08-29 | 2014-02-26 | 株式会社ニコン | 光学系及び露光装置 |
DE102008046699B4 (de) | 2008-09-10 | 2014-03-13 | Carl Zeiss Smt Gmbh | Abbildende Optik |
KR101238070B1 (ko) * | 2008-11-06 | 2013-02-27 | (주)엘지하우시스 | 기능성 시트 및 이를 포함하는 태양전지 모듈 |
DE102009049640B4 (de) | 2009-10-15 | 2012-05-31 | Carl Zeiss Smt Gmbh | Projektionsobjektiv für eine mikrolithographische EUV-Projektionsbelichtungsanlage |
DE102010028488A1 (de) * | 2010-05-03 | 2011-11-03 | Carl Zeiss Smt Gmbh | Substrate für Spiegel für die EUV-Lithographie und deren Herstellung |
KR101895083B1 (ko) | 2010-07-30 | 2018-10-18 | 칼 짜이스 에스엠티 게엠베하 | Euv 노광 장치 |
DE102010056444A1 (de) | 2010-12-28 | 2012-06-28 | Carl Zeiss Smt Gmbh | Verfahren zur mikrolithographischen Projektion einer Maske auf eine lichtempfindliche Schicht |
DE102011104543A1 (de) | 2011-06-18 | 2012-12-20 | Carl Zeiss Smt Gmbh | Beleuchtungssystem einer mikrolithographischen Projektionsbelichtungsanlage und Verfahren zur mikrolithographischen Projektion einer Maske |
DE102011113521A1 (de) | 2011-09-15 | 2013-01-03 | Carl Zeiss Smt Gmbh | Mikrolithographische Projektionsbelichtungsanlage |
DE102012216284A1 (de) | 2011-09-27 | 2013-03-28 | Carl Zeiss Smt Gmbh | Mikrolithographische Projektionsbelichtungsanlage |
DE102011085358B3 (de) * | 2011-10-28 | 2012-07-12 | Carl Zeiss Smt Gmbh | Optische Anordnung für die EUV-Lithographie und Verfahren zum Konfigurieren einer solchen optischen Anordnung |
DE102012212898A1 (de) * | 2012-07-24 | 2014-01-30 | Carl Zeiss Smt Gmbh | Spiegelanordnung für eine EUV-Projektionsbelichtungsanlage, Verfahren zum Betreiben derselben, sowie EUV-Projektionsbelichtungsanlage |
DE102012213671A1 (de) | 2012-08-02 | 2014-02-06 | Carl Zeiss Smt Gmbh | Spiegelanordnung für eine EUV-Lithographieanlage und Verfahren zur Herstellung derselben |
DE102013204445A1 (de) * | 2013-03-14 | 2014-09-18 | Carl Zeiss Smt Gmbh | Vergrößernde abbildende Optik sowie EUV-Maskeninspektionssystem mit einer derartigen abbildenden Optik |
DE102014219755A1 (de) * | 2013-10-30 | 2015-04-30 | Carl Zeiss Smt Gmbh | Reflektives optisches Element |
DE102016210794A1 (de) | 2016-06-16 | 2017-04-27 | Carl Zeiss Smt Gmbh | Optische Anordnung, EUV-Lithographieanlage und Verfahren zum Betrieb der optischen Anordnung |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5265143A (en) * | 1993-01-05 | 1993-11-23 | At&T Bell Laboratories | X-ray optical element including a multilayer coating |
JPH11345760A (ja) * | 1998-05-29 | 1999-12-14 | Nikon Corp | 露光装置 |
EP1772775B1 (de) * | 1999-02-15 | 2008-11-05 | Carl Zeiss SMT AG | Mikrolithographie-Reduktionsobjektiveinrichtung sowie Projektionsbelichtungsanlage |
EP1214718A4 (de) | 1999-07-22 | 2006-08-23 | Corning Inc | Extrem-ultraviolett weiche-roentchenstrahlungen lithographisches projektionsverfahren- und vorrichtung und lithographische elemente |
DE10037870A1 (de) | 2000-08-01 | 2002-02-14 | Zeiss Carl | 6-Spiegel-Mikrolithographie-Projektionsobjektiv |
US6867913B2 (en) * | 2000-02-14 | 2005-03-15 | Carl Zeiss Smt Ag | 6-mirror microlithography projection objective |
JP2002107630A (ja) * | 2000-08-01 | 2002-04-10 | Carl Zeiss Stiftung Trading As Carl Zeiss | 6枚の反射鏡を用いたマイクロリソグラフィ用の投影光学系 |
DE10128086A1 (de) | 2001-06-11 | 2002-12-12 | Franz Dietrich Oeste | Markierte Inkontinenzmittel |
DE10134387A1 (de) * | 2001-07-14 | 2003-01-23 | Zeiss Carl | Optisches System mit mehreren optischen Elementen |
DE10139188A1 (de) | 2001-08-16 | 2003-03-06 | Schott Glas | Glaskeramik für röntgenoptische Komponenten |
TWI260469B (en) * | 2001-12-04 | 2006-08-21 | Asml Netherlands Bv | Lithographic apparatus, device manufacturing method, and method of manufacturing an optical element |
DE10359102A1 (de) * | 2003-12-17 | 2005-07-21 | Carl Zeiss Smt Ag | Optische Komponente umfassend ein Material mit einer vorbestimmten Homogenität der thermischen Längsausdehnung |
-
2003
- 2003-09-27 EP EP03755564A patent/EP1664933A1/de not_active Ceased
- 2003-09-27 WO PCT/EP2003/010761 patent/WO2005040925A1/de active Application Filing
- 2003-09-27 US US10/577,163 patent/US7557902B2/en active Active
- 2003-09-27 KR KR1020067008015A patent/KR101052386B1/ko active IP Right Grant
- 2003-09-27 AU AU2003273409A patent/AU2003273409A1/en not_active Abandoned
- 2003-09-27 JP JP2005509784A patent/JP4817844B2/ja not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2005040925A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2003273409A1 (en) | 2005-05-11 |
KR20060107523A (ko) | 2006-10-13 |
US7557902B2 (en) | 2009-07-07 |
WO2005040925A1 (de) | 2005-05-06 |
KR101052386B1 (ko) | 2011-07-28 |
JP2007524214A (ja) | 2007-08-23 |
JP4817844B2 (ja) | 2011-11-16 |
US20070035814A1 (en) | 2007-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1480082B1 (de) | Ringfeld-4-Spiegelsysteme mit konvexem Primärspiegel für die EUV-Lithographie | |
DE102008046699B4 (de) | Abbildende Optik | |
EP1664933A1 (de) | Euv-projektionsobjektiv mit spiegeln aus materialien mit unterschiedlichem vorzeichen der steigung der temperaturabhängigkeit des wärmeausdehnungskoeffizienten nahe der nulldurchgangstemperatur | |
EP4073588A1 (de) | Optisches system, sowie heizanordnung und verfahren zum heizen eines optischen elements in einem optischen system | |
DE10139177A1 (de) | Objektiv mit Pupillenobskuration | |
DE102009035583A1 (de) | Vergrößernde abbildende Optik sowie Metrologiesystem mit einer derartigen abbildenden Optik | |
DE102010021539B4 (de) | Projektionsobjektiv mit Blenden | |
DE102014219755A1 (de) | Reflektives optisches Element | |
DE102014218969A1 (de) | Optische Anordnung einer mikrolithographischen Projektionsbelichtungsanlage | |
DE102020207748A1 (de) | Optisches System, insbesondere in einermikrolithographischen Projektionsbelichtungsanlage | |
DE102010030913A1 (de) | Erzeugen eines Substrats für einen EUV-Spiegel mit einer Soll-Oberflächenform bei einer Betriebstemperatur | |
EP1417159B1 (de) | Substratmaterial für röntgenoptische komponenten | |
WO2004092843A2 (de) | Projektionsobjektiv, mikrolithographische projektionsbelichtungsanlage und verfahren zur herstellung einer halbleiterschaltung | |
EP3827312A1 (de) | Verfahren und vorrichtung zum bestimmen des erwärmungszustandes eines optischen elements in einem optischen system für die mikrolithographie | |
DE102022211799A1 (de) | Manipulator, optisches system, projektionsbelichtungsanlage und verfahren | |
DE102021200790A1 (de) | Verfahren zum Betreiben eines optischen Systems, sowie Spiegel und optisches System | |
DE102021202849A1 (de) | Projektionsbelichtungsanlage für die Halbleiterlithographie | |
DE102021201258A1 (de) | Verfahren zum Heizen eines optischen Elements in einer mikrolithographischen Projektionsbelichtungsanlage, sowie optisches System | |
EP1471539A1 (de) | Abbildungssystem für ein, auf extrem ultravioletter (EUV) Strahlung basierendem Mikroskop | |
WO2004015477A1 (de) | Optische komponente umfassend ein material mit einem nulldurchgang der thermischer längsausdehnung | |
DE102016205618A1 (de) | Projektionsobjektiv mit Wellenfrontmanipulator, Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage | |
DE102021201193A1 (de) | Verfahren zur Justage eines optischen Systems, insbesondere für die Mikrolithographie | |
DE102022204396A1 (de) | Optisches System, sowie Verfahren zum Betreiben eines optischen Systems | |
DE102022204580A1 (de) | Verfahren zum herstellen oder betreiben eines spiegels in einer lithographieanlage | |
DE102020213983A1 (de) | Optisches System, insbesondere in einer mikrolithographischen Projektionsbelichtungsanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060406 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 20060703 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: OCHSE, ANDREAS Inventor name: LOWISCH, MARTIN Inventor name: KOEHLER, STEFAN Inventor name: LAUFER, TIMO Inventor name: DINGER, UDO Inventor name: ZELLNER, JOHANNES Inventor name: EISERT, FRANK |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 20060703 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CARL ZEISS SMT AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20100228 |