EP1657506B1 - Système de traitement de l'air d'un habitacle de véhicule de transport en commun - Google Patents

Système de traitement de l'air d'un habitacle de véhicule de transport en commun Download PDF

Info

Publication number
EP1657506B1
EP1657506B1 EP05356198A EP05356198A EP1657506B1 EP 1657506 B1 EP1657506 B1 EP 1657506B1 EP 05356198 A EP05356198 A EP 05356198A EP 05356198 A EP05356198 A EP 05356198A EP 1657506 B1 EP1657506 B1 EP 1657506B1
Authority
EP
European Patent Office
Prior art keywords
air
volume
duct
passenger compartment
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05356198A
Other languages
German (de)
English (en)
Other versions
EP1657506A1 (fr
Inventor
Youssef Riachi
Denis Clodic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Regie Autonome des Transports Parisiens
Original Assignee
Regie Autonome des Transports Parisiens
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Regie Autonome des Transports Parisiens filed Critical Regie Autonome des Transports Parisiens
Publication of EP1657506A1 publication Critical patent/EP1657506A1/fr
Application granted granted Critical
Publication of EP1657506B1 publication Critical patent/EP1657506B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/3407Nozzles; Air-diffusers providing an air stream in a fixed direction, e.g. using a grid or porous panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/3457Outlets providing a vortex, i.e. a spirally wound air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/072Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser of elongated shape, e.g. between ceiling panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/46Air flow forming a vortex

Definitions

  • the present invention relates to a system for treating the air of a public transport vehicle cabin, as well as a vehicle equipped with such a system and a corresponding air treatment method.
  • Air is therefore to be circulated in volumes that vary between 50 and 200 m 3 , which, for an embedded system of filtration, cooling and / or heating, involves strong constraints of achievement, related to comfort thermal occupants, the air quality in the passenger compartment and the energy efficiency of the system.
  • US-B-6,745,586, US-B-6,709,328, EP-A-0,613,796, US-A-4,201,064 and EP-A-0 014 777 describe air treatment systems of a transport bus. in common. After having filtered, heated and / or cooled the air to be sent into the cockpit of the bus, these systems send this air into ducts intended to distribute the air at different points of the passenger compartment. The distribution of the treated air is however limited since, in practice, only the parts of the volume of the passenger compartment located just close to these ducts, that is to say the areas of the cabin directly subject to the air evacuated from these ducts, are effectively purified, heated and / or cooled.
  • DE-A-102 58 748 proposes a treatment system, comprising an air distribution duct, arranged at the ceiling of a vehicle.
  • this duct generates turbulence in the volume of air treated, thus allowing a certain homogenization of the air in the passenger compartment.
  • the distributed air tends to be concentrated in one or more limited longitudinal regions of the duct because the latter has no specific internal layout, which means that large sub-volumes of the vehicle are not effectively ventilated.
  • the object of the invention is to provide a treatment system that significantly improves the comfort conditions of occupants of the passenger compartment, with the lowest possible energy consumption.
  • the subject of the invention is a system for treating the air of a cabin of a public transport vehicle, as defined in claim 1.
  • the treatment system according to the invention generates eddies with the treated air leaving the sheath of the or each distribution duct. Thanks to the internal diffuser, this outgoing air is distributed substantially uniformly over the length of the duct, with a small loss of load.
  • the air velocity at the outlet of the duct is quickly damped, by the effect of turbulence, not to create of discomfort due to drafts for passengers.
  • the generated vortices also allow a rapid and homogeneous diffusion of the treated air in a large volume of air associated with the duct, and not just the direct plumb of this duct.
  • the invention also relates to a public transport vehicle, defining a passenger compartment equipped with an air treatment system as defined above.
  • the invention furthermore relates to a method for treating the air of a cabin of a public transport vehicle, in particular implemented by the system defined above, as defined in claim 13.
  • FIG. 1 a passenger compartment 1 of a public transport bus 2 in which occupants are standing or are sitting on seats 2A.
  • This cockpit is equipped with a sound treatment system 3 4.
  • Each of these units 4 constitutes a reproducible pattern that can be extended or reduced according to the total air volume V of the passenger compartment to be treated, each unit being thus associated with an elementary volume V 4 corresponding to a fraction of the total volume.
  • the bus 2 will not be described further, it being understood that it has a conventional overall structure, in particular with regard to its passenger compartment 1 delimited by a ceiling, a floor and side walls not shown in detail.
  • the terms “high”, “low” and the like are, thereafter, relative to the ground on which the bus rests in normal use.
  • the terms “vertical” and “horizontal” respectively refer to directions substantially perpendicular and substantially parallel to the ground.
  • the system 3 of FIG. 1 thus comprises twelve distribution ducts 15, 16 and 17 extending along the width of the passenger compartment 1.
  • Other configurations of these distribution ducts are conceivable, their number being able to be increased or reduced and their implantation can be planned according to the length of the passenger compartment 1, depending on the size of the passenger compartment 1 and / or installation constraints in bus 2.
  • the element 9 makes it possible to eliminate coarse dust and the element 10 makes it possible to eliminate the finer dust and the pollen while the element 11, in particular comprising activated carbon, allows to eliminate the macro-molecules, in particular the odorous macro-molecules.
  • a means (not shown) for measuring pressure loss taking into account the pressures upstream and downstream of the filtration box 8 is installed to indicate the necessary change of the filter elements from a threshold of increase of pressure. the loss of pressure.
  • Each distribution duct 15, 16 and 17 is adapted to distribute in the passenger compartment 1 the air treated by the components 8, 13 and / or 14, substantially uniformly over the entire length of the duct.
  • each duct has specific arrangements, identical from one conduit to the other and detailed below with reference to Figures 3 to 5 for the conduit 16 whose longitudinal central axis is noted X-X.
  • the latter is internally provided with a diffuser 18 having an overall cone or truncated cone shape with a longitudinal axis substantially coincident with the axis XX and converge towards the downstream end of the duct.
  • a diffuser 18 having an overall cone or truncated cone shape with a longitudinal axis substantially coincident with the axis XX and converge towards the downstream end of the duct.
  • the end of the larger diameter diffuser 18 is arranged at the upstream end of the duct 16 so as to be fed with the treated air coming from the components 8, 13 and 14 of the unit 4.
  • the lengths duct and diffuser are substantially equal.
  • This diffuser consists of a mesh fabric with a predefined porosity, ranging from 25 to 40%, this porosity being quantified by the formula 1- (Annd / 4) where d is the diameter of the yarn of the fabric, n the number of yarns per meter of diffuser and A a correction factor of, in practice, about 1.05.
  • This formula is sometimes called the "Marcus" formula.
  • the fabric used is polypropylene or polyethylene.
  • This diffuser ensures both a substantially equal distribution of the air flow, both in the upstream, current and downstream portions of the duct, and minimizes the pressure losses of the diffused air.
  • a section ratio of 1/10 th per meter, for the predefined porosity ensures a substantially homogeneous distribution of air along the direction XX.
  • This sectional ratio means that if, for example, the section is 100 cm 2 has an x-coordinate, the section at an x-1 meter abscissa is about 10 cm 2 .
  • the distribution duct 16 also comprises an outer sheath 19 of generally cylindrical shape with an axis XX, inside which the frustoconical diffuser 18 is placed in a substantially coaxial manner. As represented in FIG. 5, this sheath is located vertically above a first portion V 16 of the volume V 4 , this portion V 16 corresponding to the substantially vertical projection of the sheath 19 in the volume of air to be treated. V 4 .
  • each slot 20A, 20B is, for the sheath 19, a radial through hole relative to the axis XX, the direction is inclined relative to the vertical at an angle ⁇ .
  • the air evacuated along the sheath through each slot 20A, 20B does not converges not, at the outlet of this sheath, towards the volume part V 16 , but is directed, as indicated by the arrow 21A, 21B, towards another part of the volume V 4 , adjacent to the part V 16 and referenced V 16A and V 16B in Figure 5.
  • the air thus evacuated obliquely vis-à-vis the volume portion V 16 generates a vortex flow 22A, 22B which winds in both the adjacent volume portion V 16A , V 16B and in the volume part V 16 .
  • These vortices result from the fact that the air flow evacuated from each slot 20A, 20B faces, moving away from the sheath, either to a similar air flow discharged from the adjacent distribution duct, as for the jets of 21B and 21A respectively discharged from the ducts 16 and 17 in Figure 5, or a vertical wall P defining the passenger compartment 1, as for the air jet 21B discharged from the conduit 17 in Figure 5.
  • each treatment unit 4 supplies its diffusion ducts 15, 16 and 17 with air both driven by the fan 12, filtered by the casing 8 and cooled by the battery 13 or heated by the battery 14, as indicated by the arrows 23 in Figure 2.
  • This treated air is distributed substantially uniformly over the entire length of the distribution ducts through the diffusers 18, with a small pressure drop.
  • the air distributed at the outlet of the ducts 19 of these ducts generates, thanks to the inclined slots 20A and 20B, vortex flows 22A, 22B which allow a very homogeneous diffusion of the air in the volume V 4 .
  • the generation of vortex flows 22A, 22B requires that the rate of ejection of air at the slots 20A and 20B is relatively high, of the order of 5 to 10 meters per second. However, the turbulences within these vortex flows damp very quickly the speed of the distributed air, thus creating no current-type inconvenience for the occupants of the bus 2.
  • the angle ⁇ of inclination of the slots 20A, 20B is advantageously between 40 and 50 °. Preferably, ⁇ is about 45 °. Under these conditions, it was measured that at a point located approximately 20 cm from the sheath 19, the air velocity vector module distributed in the passenger compartment 1 is only about 0.2. at 0.3 meters per second, thus generating no drafts effect for passengers.
  • the values of the spacing between two adjacent ducts and the angle ⁇ can be adjusted to reduce the dead zone between the distribution ducts, by the generation of vortices that meet from one duct to another .
  • the width of the slots 20A, 20B is chosen as a function of the length of the duct and of the air flow rate to be distributed, so that the rate of ejection of the air leaving the duct remains between 5 and 10. m / s.
  • each unit 4 mixes, at its chamber 7, this return air, indicated by the arrow 25, with fresh air taken outside the passenger compartment 1, indicated by the arrow 26, by means of of the intake duct 5. respective proportions of fresh air and fresh air are fixed by the position of the adjustment flap 7A.
  • each treatment unit 4 incorporates a portion of air previously blown into the passenger compartment by the distribution ducts 15, 16, 17, the energy required for the fan 12 to circulate the air is reduced. , thus limiting the energy consumption of the system 3.
  • the treatment system 3 comprises an electronic regulator 30.
  • This regulator is provided to control the operation of the treatment units 4 and, although shown in FIG. 2, in connection with a single of these units 4, the regulator 30 is advantageously common to the four treatment units 4.
  • the regulator 30 is adapted to adjust, at each treatment unit 4, the proportions of fresh air and return air to be treated, the distributed air flow rate and the power supplied to the cold 13 and hot 14 batteries in view to maintain the conditions of hygiene and comfort for the passengers and to minimize the energy consumption of the treatment system 3.
  • the regulator 30 includes, for each treatment unit 4, a regulating module 32 of the mixing chamber 7, a fan control module 34, a cold battery regulating module 36 and a module
  • the controller 30 is further associated with various sensors and control interfaces, which are detailed below in connection with the description of an exemplary control in cooling mode, that is, regulation to ensure that the temperature of the distributed air is lowered as close as possible to a cold setpoint temperature, for example inputted to a setpoint box 40.
  • the cold battery 13 is compression-type refrigeration machine, that is to say, it acts on the air therethrough to lower the temperature value by means of a closed circuit of refrigerant circulating successively in a compressor, a condenser, an expansion valve and an evaporator.
  • the regulation module 32 modifies the position of the flap 7A and thus imposes the proportions of In addition, if the outside air temperature value is lower than the temperature of the return air temperature, the regulator 30 concludes that it is possible to obtain a cooling effect "free", that is to say non-energy consuming, by increasing the fresh air flow admitted by a corresponding movement of the flap 7A.
  • the regulation module 36 aims to minimize the energy consumption of the compression refrigerating machine 13 and comprises for this purpose a condenser control sub-module of this machine and a compressor control sub-module of the compressor. machine.
  • the condenser control sub-module consists of an independent loop using the air temperature values outside the passenger compartment 1 and the refrigerant in the high pressure part of the condenser circuit. From these two data, the supply voltage of a variable speed fan associated with the condenser is adjusted.
  • the compressor control sub-module meanwhile, vary the swept volume of the compressor via an associated solenoid valve whose technology is known and available on the market for variable volume compressors.
  • the parameters used by the compressor control sub-module are the air flow blown on the evaporator of the refrigerating machine 13, the difference between the values of the set-point and the air-blown temperatures on the evaporator, the speed of rotation of the compressor and the values of the evaporation and condensation pressures refrigerant.
  • the regulator 30 is able to set a control voltage of the aforementioned solenoid valve, which controls the swept volume of the compressor and thereby, adjusts the flow of compressed refrigerant.
  • a cooling capacity call of the order of one third of the maximum power is envisaged.
  • the outside temperature is for example 25 ° C and the set temperature in the bus is also 25 ° C.
  • the refrigerating machine 13 then only has to compensate the incoming solar charge and the thermal loads related to the number of passengers present.
  • the blowing temperature is then, for example, 17 ° C. and, depending on the rotation speed of the compressor, the control solenoid valve will adjust the swept volume of the compressor to just one third of its maximum capacity.
  • the regulator 30 modifies, for each treatment unit 4, the flow of air treated by this unit and the temperature of this air as a function of the number of passengers present in the volume of air associated with the unit and the flow this volume V 4 , while minimizing the energy consumption of the unit by adapting them to the actual needs of air treatment, by modulating the flow of refrigerant in the compressor of the refrigerating machine 13 and by modulation the supply voltage of the fan 12.
  • a regulation in heating mode uses the same variables detailed above, but in order to increase the temperature value of the air distributed by the system 3 to the hot set temperature.
  • the number of passengers in the passenger compartment 1 is particularly useful since the occupancy density of a public transport vehicle such as bus 2 may vary from 0.3 to 3 persons per m 2 . This factor of ten implies considerable variations in the heat load, as well as strong variations in promiscuity and therefore hygiene requirements.

Description

  • La présente invention concerne un système de traitement de l'air d'un habitacle de véhicule de transport en commun, ainsi qu'un véhicule équipé d'un tel système et un procédé correspondant de traitement de l'air.
  • L'amélioration du confort des voitures de transport en commun, telles que les bus, les tramways et les voitures ferroviaires, constitue un double enjeu en ce qui concerne la satisfaction des passagers et l'attractivité des transports en commun, limitant ainsi indirectement l'usage de véhicules privés.
  • La circulation d'air dans un habitacle de véhicule de grande taille recevant des charges thermiques extrêmement variables, dues notamment au flux solaire et au nombre d'occupants, pose des problèmes aérauliques importants. Typiquement, la hauteur d'une voiture de transport en commun varie entre 2,10 et 2,50 mètres, sa largeur entre 2 et 3 mètres et sa longueur entre 12 et 25 mètres. De l'air est donc à faire circuler dans des volumes qui varient entre 50 et 200 m3 environ, ce qui, pour un système embarqué de filtration, de refroidissement et/ou de chauffage, implique de fortes contraintes de réalisation, liées au confort thermique des occupants, à la qualité de l'air dans l'habitacle et à l'efficacité énergétique du système.
  • Les documents US-B-6,745,586, US-B-6,709,328, EP-A-0 613 796, US-A-4,201,064 et EP-A-0 014 777 décrivent des systèmes de traitement de l'air d'un bus de transport en commun. Après avoir filtré, chauffé et/ou refroidi l'air à envoyer dans l'habitacle du bus, ces systèmes envoient cet air dans des conduits destinés à distribuer l'air en différents points de l'habitacle. La répartition de l'air traité est cependant limitée puisque, en pratique, seules les parties du volume de l'habitacle situées juste à proximité de ces conduits, c'est-à-dire les zones de l'habitacle directement soumises à l'air évacué de ces conduits, sont efficacement purifiées, chauffées et/ou refroidies. En outre, le fonctionnement de ces systèmes conduit à des courts-circuits entre l'air traité distribué et de l'air repris à l'intérieur de l'habitacle en vue d'être traité. C'est en particulier le cas pour les systèmes agencés en totalité au niveau du plafond de l'habitacle. Il en résulte des pertes d'efficacité énergétique et un confort moindre pour les occupants de l'habitacle.
  • DE-A-102 58 748 propose un système de traitement, comportant un conduit de distribution d'air, agencé au niveau du plafond d'un véhicule. En service, ce conduit génère des turbulences dans le volume d'air traité, permettant ainsi une certaine homogénéisation de l'air dans l'habitacle. Cependant, en pratique, l'air distribué tend à se concentrer en une ou plusieurs régions longitudinales limitées du conduit car ce dernier ne présente aucun aménagement interne spécifique, ce qui induit que de larges sous-volumes du véhicule ne sont pas efficacement ventilés.
  • Le but de l'invention est de proposer un système de traitement qui améliore significativement les conditions de confort des occupants de l'habitacle, avec une consommation énergétique la plus faible possible.
  • A cet effet, l'invention a pour objet un système de traitement de l'air d'un habitacle de véhicule de transport en commun, tel que défini à la revendication 1.
  • En fonctionnement, le système de traitement selon l'invention génère des tourbillons avec l'air traité sortant de la gaine du ou de chaque conduit de distribution. Grâce au diffuseur interne, cet air sortant est réparti de manière sensiblement homogène sur la longueur du conduit, avec une faible perte de charge. La vitesse de l'air en sortie du conduit est rapidement amortie, par effet de turbulences, pour ne pas créer d'inconfort dû aux courants d'air pour les passagers. Les tourbillons générés permettent en outre une diffusion rapide et homogène de l'air traité dans un grand volume d'air associé au conduit, et pas uniquement à l'aplomb direct de ce conduit.
  • D'autres caractéristiques de ce système, prises isolément ou selon toutes les combinaisons techniquement possibles, sont énoncées aux revendications dépendantes 2 à 11.
  • L'invention a également pour objet un véhicule de transport en commun, délimitant un habitacle équipé d'un système de traitement de l'air tel que défini ci-dessus.
  • L'invention a en outre pour objet un procédé de traitement de l'air d'un habitacle de véhicule de transport en commun, notamment mis en oeuvre par le système défini ci-dessus, tel que défini à la revendication 13.
  • Une caractéristique avantageuse du procédé est énoncée à la revendication dépendante 14.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins sur lesquels :
    • la figure 1 est une vue schématique en perspective de l'habitacle d'un bus de transport en commun, équipé d'un système de traitement selon l'invention ;
    • la figure 2 est une vue schématique en élévation d'une partie du système de traitement de la figure 1 ;
    • les figures 3A et 3B sont des vues en perspective, sous des angles de vue respectifs différents, d'un conduit de distribution du système de traitement de la figure 1, représenté partiellement en arraché ;
    • la figure 4 est une vue schématique en perspective d'un composant interne du conduit de distribution des figures 3A et 3B ; et
    • la figure 5 est une coupe schématique prise suivant un plan vertical V de la figure 1, illustrant la circulation de l'air distribué par une partie du système de traitement de la figure 1.
  • Sur la figure 1 est représenté un habitacle 1 d'un bus de transport en commun 2 dans lequel des occupants se tiennent debout ou sont assis sur des sièges 2A. Cet habitacle est équipé d'un système 3 de traitement de son air intérieur, comportant quatre unités de traitement 4. Chacune de ces unités 4 constitue un motif reproductible pouvant être étendu ou réduit en fonction du volume d'air total V de l'habitacle à traiter, chaque unité étant ainsi associé à un volume élémentaire V4 correspondant à une fraction du volume total.
  • Le bus 2 ne sera pas décrit plus avant, étant entendu qu'il présente une structure globale conventionnelle, en particulier en ce qui concerne son habitacle 1 délimité par un plafond, un plancher et des parois latérales non représentés en détail. Par commodité, les termes « haut », « bas » et analogues s'entendent, par la suite, par rapport au sol sur lequel le bus repose en usage normal. De même, les termes « vertical » et « horizontal » se rapportent respectivement à des directions sensiblement perpendiculaire et sensiblement parallèle au sol.
  • Comme représenté plus en détail sur la figure 2, chaque unité 4 comprend :
    • un conduit 5 d'admission d'air neuf, dont l'extrémité amont débouche à l'extérieur du bus 2, notamment au-dessus du toit de l'habitacle 1 comme représenté à la figure 1 ;
    • un conduit 6 de reprise d'air, dont l'extrémité amont débouche dans la partie basse de l'habitacle 1, notamment au niveau du plancher de cet habitacle, la partie courante de ce conduit 6 se présentant, par exemple, sous la forme d'une barre sensiblement verticale agencée à l'intérieur de l'habitacle et pouvant être agrippée par les occupants du bus 2 ;
    • une chambre 7 de mélange d'air neuf et d'air repris, dans laquelle débouchent les extrémités aval des conduits 5 et 6 ;
    • un volet 7A de réglage du rapport des débits d'air neuf et d'air repris, agencé de manière mobile au niveau des extrémités aval des conduits 5 et 6 ;
    • un caisson de filtration 8 disposé sur le trajet d'écoulement de l'air en aval de la chambre de mélange 7 et incluant trois organes de filtration successive 9, 10 et 11, aptes à retenir des impuretés de l'air de tailles respectivement décroissantes ;
    • un ventilateur 12 à vitesse variable, agencé entre la chambre de mélange 7 et le caisson de filtration 8 et apte à aspirer l'air en sortie de la chambre et à l'envoyer avec une légère surpression vers le caisson ;
    • une batterie froide 13 constituée, par exemple, de l'évaporateur d'une machine frigorifique à compression ;
    • une batterie chaude 14 constituée, par exemple, d'une batterie de chauffage électrique ou d'une batterie raccordée au circuit de refroidissement du moteur du bus 2 ; et
    • trois conduits essentiellement horizontaux 15, 16 et 17 de distribution, dans l'habitacle 1, de l'air sortant des batteries 13 et 14, qui s'étendent parallèlement les uns aux autres, suivant une direction sensiblement perpendiculaire à la direction longitudinale du bus 2, et qui sont agencés dans la partie haute de l'habitacle 1, c'est-à-dire au-dessus du volume d'air à traiter V4, en étant par exemple fixé à la face intérieure du plafond du bus comme à la figure 1.
  • Le système 3 de la figure 1 comporte ainsi douze conduits de distribution 15, 16 et 17 s'étendant suivant la largeur de l'habitacle 1. D'autres configurations de ces conduits de distribution sont envisageables, leur nombre pouvant être augmenté ou réduit et leur implantation pouvant être prévue suivant la longueur de l'habitacle 1, en fonction de la taille de l'habitacle 1 et/ou des contraintes d'installation dans le bus 2.
  • Au sein du caisson de filtration 8, l'élément 9 permet d'éliminer les poussières grossières et l'élément 10 permet d'éliminer les poussières plus fines et les pollens tandis que l'élément 11, comprenant en particulier du charbon actif, permet d'éliminer les macro-mollécules, notamment les macro-mollécules odorantes. Avantageusement, un moyen, non représenté, de mesure de perte de pression prenant en compte les pressions en amont et en aval du caisson de filtration 8 est installé pour indiquer le nécessaire changement des éléments de filtration à partir d'un seuil d'accroissement de la perte de pression.
  • Chaque conduit de distribution 15, 16 et 17 est adapté pour distribuer dans l'habitacle 1 l'air traité par les composants 8, 13 et/ou 14, de manière sensiblement homogène sur toute la longueur du conduit. A cet effet, chaque conduit présente des aménagements spécifiques, identiques d'un conduit à l'autre et détaillés ci-dessous en regard des figures 3 à 5 pour le conduit 16 dont l'axe central longitudinal est noté X-X.
  • Pour assurer un débit d'air distribué sensiblement homogène suivant la longueur du conduit 16, ce dernier est muni intérieurement d'un diffuseur 18 présentant une forme globale de cône ou de tronc de cône d'axe longitudinal sensiblement confondu avec l'axe X-X et convergent vers l'extrémité aval du conduit. Ainsi, l'extrémité du diffuseur 18 de plus grand diamètre est agencée au niveau de l'extrémité amont du conduit 16 de manière à être alimenté par l'air traité provenant des composants 8, 13 et 14 de l'unité 4. Les longueurs du conduit et du diffuseur sont sensiblement égales.
  • Ce diffuseur est constitué d'un tissu maillé avec une porosité prédéfinie, valant de 25 à 40%, cette porosité étant quantifiée par la formule 1-(Annd/4) où d est le diamètre du fil du tissu, n le nombre de fils par mètre de diffuseur et A un facteur de correction égal, en pratique, à 1,05 environ. Cette formule est parfois appelée formule de « Marcus ». Avantageusement, le tissu utilisé est du polypropylène ou du polyéthylène.
  • La forme conique ou tronconique de ce diffuseur assure à la fois une distribution sensiblement égale du débit d'air, aussi bien dans les parties amont, courante et aval du conduit, et minimise les pertes de charge de l'air diffusé. A cet effet, des expérimentations ont permis de définir qu'un rapport de section de 1/10ème par mètre, pour la porosité prédéfinie, assure une distribution d'air sensiblement homogène suivant la direction X-X. Ce rapport de section signifie que si, par exemple, la section est de 100 cm2 a une abscisse x, la section à une abscisse x + 1 mètre est de 10 cm2 environ.
  • Le conduit de distribution 16 comporte également une gaine externe 19 de forme globalement cylindrique d'axe X-X, à l'intérieur de laquelle est placé le diffuseur tronconique 18 de manière sensiblement co-axiale. Comme représenté à la figure 5, cette gaine est située à l'aplomb vertical d'une première partie V16 du volume V4, cette partie V16 correspondant à la projection sensiblement verticale de la gaine 19 dans le volume d'air à traiter V4.
  • Dans sa moitié dirigée vers le volume V4, la gaine 19 est fendue sur l'essentiel de sa longueur, en formant des fentes référencées 20A et 20B. En coupe transversale, comme à la figure 5, chaque fente 20A, 20B constitue, pour la gaine 19, un orifice traversant radial par rapport à l'axe X-X, dont la direction est inclinée par rapport à la verticale en formant un angle α. De cette façon, l'air évacué le long de la gaine par chaque fente 20A, 20B ne converge pas, en sortie de cette gaine, vers la partie de volume V16, mais est dirigé, comme indiqué par la flèche 21A, 21B, vers une autre partie du volume V4, adjacente à la partie V16 et référencée V16A et V16B à la figure 5. L'air ainsi évacué en biais vis-à-vis de la partie de volume V16 génère un flux tourbillonnaire 22A, 22B qui s'enroule à la fois dans la partie de volume adjacente V16A, V16B et dans la partie de volume V16. Ces tourbillons résultent du fait que le flux d'air évacué de chaque fente 20A, 20B est confronté, en s'éloignant de la gaine, soit à un flux d'air analogue évacué du conduit de distribution adjacent, comme pour les jets d'air 21B et 21A respectivement évacués des conduits 16 et 17 à la figure 5, soit à une paroi verticale P délimitant l'habitacle 1, comme pour le jet d'air 21B évacué du conduit 17 à la figure 5.
  • En fonctionnement, chaque unité de traitement 4 alimente ses conduits de diffusion 15, 16 et 17 avec de l'air à la fois entraîné par le ventilateur 12, filtré par le caisson 8 et refroidi par la batterie 13 ou réchauffé par la batterie 14, comme indiqué par les flèches 23 à la figure 2. Cet air traité est réparti de manière sensiblement homogène sur toute la longueur des conduits de distribution grâce aux diffuseurs 18, avec une faible perte de charge. L'air distribué en sortie des gaines 19 de ces conduits génère, grâce aux fentes inclinées 20A et 20B, des flux tourbillonnaires 22A, 22B qui permettent une diffusion bien homogène de l'air dans le volume V4.
  • La génération des flux tourbillonnaires 22A, 22B nécessite que la vitesse d'éjection de l'air au niveau des fentes 20A et 20B soit relativement élevée, de l'ordre de 5 à 10 mètres par seconde. Cependant, les turbulences au sein de ces flux tourbillonnaires amortissent très rapidement la vitesse de l'air distribué, ne créant ainsi aucune gêne de type courant d'air pour les occupants du bus 2. Des expérimentations ont mis en évidence que l'angle α d'inclinaison des fentes 20A, 20B vaut avantageusement entre 40 et 50°. De préférence, α vaut 45° environ. Dans ces conditions, on a mesuré qu'en un point situé à environ 20 cm de la gaine 19, le module du vecteur vitesse de l'air distribué dans l'habitacle 1 n'est plus que de l'ordre de 0,2 à 0,3 mètre par seconde, ne générant ainsi aucun effet de courant d'air pour les passagers.
  • En pratique, différents paramètres géométriques des conduits de distribution 15, 16, 17. peuvent être modifiés pour s'adapter au mieux à l'habitacle dont l'air est à traiter. En particulier, les valeurs de l'espacement entre deux conduits adjacents et de l'angle α peuvent être ajustées afin de réduire la zone morte entre les conduits de distribution, par la génération de tourbillons qui se rejoignent d'un conduit à l'autre. De même, la largeur des fentes 20A, 20B est choisie en fonction de la longueur du conduit et du débit d'air à distribuer, de sorte que la vitesse d'éjection de l'air en sortie du conduit reste comprise entre 5 et 10 m/s. Ces valeurs sont par exemple établies par calcul, notamment par simulation numérique.
  • En plus des effets des flux tourbillonnaires décrits ci-dessus, la répartition de l'air traité par chaque unité 4 au sein de son volume d'air associé V4 est améliorée par la reprise d'air intérieur à l'habitacle dans la partie basse de ce dernier, au niveau de l'extrémité amont du conduit de reprise 6. L'air traité circule ainsi du haut vers le bas, balayant verticalement tout le volume V4. En outre, chaque unité 4 mélange, au niveau de sa chambre 7, cet air repris, indiqué par la flèche 25, avec de l'air neuf prélevé à l'extérieur de l'habitacle 1, indiqué par la flèche 26, au moyen du conduit d'admission 5. Les proportions respectives d'air repris et d'air neuf sont fixées par la position du volet de réglage 7A.
  • Comme l'air distribué par chaque unité de traitement 4 intègre une partie d'air repris préalablement soufflé dans l'habitacle par les conduits de distribution 15, 16, 17, l'énergie nécessaire au ventilateur 12 pour faire circuler l'air est réduite, limitant ainsi la consommation énergétique du système 3.
  • Selon un second aspect avantageux de l'invention, le système de traitement 3 comporte un régulateur électronique 30. Ce régulateur est prévu pour commander le fonctionnement des unités de traitement 4 et, bien que représenté, à la figure 2, en lien avec une seule de ces unités 4, le régulateur 30 est avantageusement commun aux quatre unités de traitement 4.
  • Le régulateur 30 est adapté pour ajuster, au niveau de chaque unité de traitement 4, les proportions d'air neuf et d'air repris à traiter, le débit d'air distribué et la puissance fournie aux batteries froide 13 et chaude 14 en vue de maintenir les conditions d'hygiène et de confort pour les passagers et de minimiser la consommation d'énergie du système de traitement 3.
  • A cet effet, le régulateur 30 inclut, pour chaque unité de traitement 4, un module 32 de régulation de la chambre de mélange 7, un module 34 de régulation du ventilateur 12, un module 36 de régulation de la batterie froide 13 et un module 38 de régulation de la batterie chaude 14. Le régulateur 30 est en outre associé à différents capteurs et interfaces de réglage, qui sont détaillés ci-dessous dans le cadre de la description d'un exemple de régulation en mode rafraîchissement, c'est-à-dire d'une régulation visant à ce que la température de l'air distribué soit abaissée au plus près d'une température de consigne froide, saisie par exemple au niveau d'un boîtier de consigne 40.
  • Pour mieux comprendre cet exemple, on considère que la batterie froide 13 est de type machine frigorifique à compression, c'est-à-dire qu'elle agit sur l'air la traversant pour en abaisser la valeur de température au moyen d'un circuit fermé de fluide frigorigène circulant successivement dans un compresseur, un condenseur, une vanne de détente et un évaporateur.
  • Dans un premier temps, le régulateur 30 calcule la charge thermique du volume V4 et le débit d'air minimal d'un point de vue hygiénique pour traiter ce volume, en fonction :
    • du nombre de passagers présents dans le volume V4, déterminé par un capteur associé 42,
    • de la valeur de température de l'air à l'extérieur de l'habitacle 1, mesurée par un capteur 44,
    • de la valeur de température de l'air repris dans le conduit 6, mesurée par un capteur 46.
  • Sur la base du débit d'air neuf minimal pour renouveler l'air dans le volume V4, calculé par le régulateur 30 en fonction du nombre de passagers, le module de régulation 32 modifie la position du volet 7A et impose ainsi les proportions d'air neuf et d'air repris admis dans la chambre de mélange 7. En outre, si la valeur de température de l'air extérieur est plus basse que la valeur de température de l'air repris, le régulateur 30 conclut qu'il est possible d'obtenir un effet de refroidissement « gratuit », c'est-à-dire non consommateur d'énergie, en augmentant le débit d'air neuf admis, par un déplacement correspondant du volet 7A.
  • En fonction à la fois du rapport air neuf/air repris imposé par le volet 7A, du flux solaire auquel est soumis l'habitacle 1, mesuré par un capteur solaire 48, et de la quantité de chaleur excédentaire présente dans le volume V4, déduite par le régulateur 30 de la comparaison des valeurs des températures de consigne et d'air repris, le module de régulation 34 ajuste le débit de soufflage de l'air traité en modifiant la tension d'alimentation du ventilateur 12. A titre d'exemple, le besoin en air neuf par passager peut être considéré à environ 20 m3/heure. Si, par exemple, le débit d'air soufflé par le ventilateur 12 peut varier entre 1000 et 2000 m3/heure, le module 34 applique la formule 1000x(1 + Np/Nm), avec Np = nombre de passagers présents et Nm nombre maximal de passagers admissibles, pour commander le ventilateur 12.
  • Dans un second temps, le module de régulation 36 vise à minimiser la consommation énergétique de la machine frigorifique à compression 13 et comporte à cet effet un sous-module de régulation du condenseur de cette machine et un sous-module de régulation du compresseur de la machine. Plus précisément, le sous-module de régulation du condenseur est constitué d'une boucle indépendante utilisant les valeurs des températures de l'air à l'extérieur de l'habitacle 1 et du fluide frigorigène dans la partie haute pression du circuit du condenseur. A partir de ces deux données, la tension d'alimentation d'un ventilateur à vitesse variable associé au condenseur est ajustée. Le sous-module de régulation du compresseur fait, quant à lui, varier le volume balayé du compresseur, via une électrovanne associée dont la technologie est connue et disponible sur le marché pour les compresseurs à volume variable. Les paramètres utilisés par le sous-module de régulation du compresseur sont le débit d'air soufflé sur l'évaporateur de la machine frigorifique 13, l'écart entre les valeurs des températures de consigne et d'air soufflé sur l'évaporateur, la vitesse de rotation du compresseur et les valeurs des pressions d'évaporation et de condensation du fluide frigorigène. Sur la base de ces paramètres et en intégrant les caractéristiques du compresseur, à savoir son rendement global et son rendement volumétrique, le régulateur 30 est à même de fixer une tension de pilotage de l'électrovanne précitée, qui commande le volume balayé du compresseur et, par là, ajuste le débit de fluide frigorigène comprimé.
  • Considérons, à titre d'exemple, qu'un appel de puissance frigorifique de l'ordre du tiers de la puissance maximale soit envisagée. Dans ce cas, le nombre de passagers est réduit, la température extérieure est par exemple de 25°C et la température de consigne dans le bus est également de 25°C. La machine frigorique 13 n'a alors qu'à compenser la charge solaire entrante et les charges thermiques liées au nombre de passagers présents. La température de soufflage vaut alors par exemple 17°C et, selon la vitesse de rotation du compresseur, l'électrovanne de commande va régler le volume balayé du compresseur à simplement le tiers de sa cylindrée maximale.
  • Ainsi, le régulateur 30 modifie, pour chaque unité de traitement 4, le débit d'air traité par cette unité et la température de cet air en fonction du nombre de passagers présents dans le volume d'air associé à l'unité et du flux thermique auquel est soumis ce volume V4, tout en minimisant les consommations énergétiques de l'unité en les adaptant aux besoins réels de traitement de l'air, par modulation du débit de fluide frigorigène dans le compresseur de la machine frigorifique 13 et par modulation de la tension d'alimentation du ventilateur 12.
  • Une régulation en mode chauffage utilise les mêmes variables détaillées ci-dessus, mais en vue d'augmenter la valeur de température de l'air distribué par le système 3 jusqu'à la température de consigne chaude.
  • Le fait de prendre en compte le nombre de passagers présents dans l'habitacle 1 est particulièrement utile puisque la densité d'occupation d'un véhicule de transport en commun tel que le bus 2 peut varier de 0,3 à 3 personnes au m2. Ce facteur dix implique des variations considérables de la charge thermique, ainsi que de fortes variations de promiscuité et donc d'exigence d'hygiène.
  • Divers aménagements et variantes au système de traitement 3 décrit ci-dessus sont en outre envisageables :
    • les batteries froide 13 et chaude 14 peuvent être remplacées par un système de pompe à chaleur, pouvant être basculé d'un mode rafraîchissement en été à un mode chauffage en hiver ; et/ou
    • le nombre et la géométrie des orifices d'évacuation de l'air traité à travers la gaine externe 19 des conduits de distribution 15, 16, 17 peuvent être modifiés pour s'adapter notamment à la longueur des conduits.

Claims (14)

  1. Système (3) de traitement de l'air d'un habitacle (1) de véhicule de transport en commun (2), comprenant au moins une unité (4) de traitement d'un volume d'air (V4) de l'habitacle, qui inclut au moins un conduit (15, 16, 17) de distribution d'air traité dans le volume d'air, disposé à l'aplomb d'une première partie (V16) du volume d'air et comportant une gaine externe (19) allongée et ajourée suivant sa longueur, l'air évacué le long de cette gaine étant, en sortie de la gaine, dirigé au moins en partie vers une seconde partie (V16A, V16B) du volume d'air (V4), distincte de la première partie (V16), pour générer au moins un flux tourbillonnaire (22A, 22B) dans les première et seconde parties du volume d'air
    caractérisé en ce que le ou chaque conduit de distribution (15, 16, 17) comporte en outre un diffuseur interne (18) entouré par la gaine (19), constitué d'un tissu poreux, de forme sensiblement tronconique d'axe longitudinal (X-X) disposé suivant la longueur de la gaine et adapté, pour, lorsqu'il est alimenté en air au niveau de sa base, répartir l'air qu'il diffuse de manière sensiblement homogène suivant sa longueur.
  2. Système suivant la revendication 1, caractérisé en ce que la gaine externe (19) délimite au moins une fente longitudinale (20A, 20B) qui traverse ladite gaine suivant une direction transversale à la direction longitudinale (X-X) de la gaine.
  3. Système suivant la revendication 2, caractérisé en ce que ladite direction de la fente (20A, 20B) forme un angle (α) de valeur comprise entre 40 et 50° par rapport à la verticale, de préférence un angle valant 45°.
  4. Système suivant l'une quelconque des revendications précédentes, caractérisé en ce que le rapport de section du diffuseur tronconique (18) vaut 1/10ème par mètre suivant la longueur du diffuseur.
  5. Système suivant l'une quelconque des revendications précédentes, caractérisé en ce que le diffuseur tronconique (18) présente une porosité de valeur comprise entre 25 et 40%.
  6. Système suivant l'une quelconque des revendications précédentes, caractérisé en ce que la ou chaque unité de traitement (4) inclut, en amont du ou des conduits de distribution (15, 16, 17), des moyens (8) de filtration d'air, comprenant de préférence plusieurs éléments de filtration (9, 10, 11) adaptés pour filtrer successivement des impuretés de tailles respectivement décroissantes.
  7. Système suivant l'une quelconque des revendications précédentes, caractérisé en ce que la ou chaque unité de traitement (4) inclut des moyens (6) de reprise d'air du côté du volume d'air (V4), opposé au(x) conduit(s) de distribution (15, 16, 17).
  8. Système suivant la revendication 7, caractérisé en ce que la ou chaque unité de traitement (4) inclut une chambre (7) de mélange d'air neuf prélevé à l'extérieur de l'habitacle (1) et d'air provenant des moyens de reprise (6).
  9. Système suivant la revendication 8, caractérisé en ce qu'il comporte des moyens (7A, 30, 32) de commande des proportions d'air neuf et d'air repris admis dans la chambre de mélange (7), régulés en fonction d'au moins le nombre de personnes présentes dans le volume d'air (V4).
  10. Système suivant l'une quelconque des revendications précédentes, caractérisé en ce que la ou chaque unité de traitement (4) inclut des moyens de chauffage (13) et/ou de refroidissement (14) de l'air à traiter.
  11. Système suivant les revendications 8 et 10, caractérisé en ce qu'il comporte des moyens électroniques (30) de régulation de la ou chaque unité de traitement (4), adaptés pour commander à la fois les proportions d'air neuf et d'air repris admis dans la chambre de mélange (7), le débit d'air traité envoyé au(x) conduit(s) de distribution (15, 16, 17) et l'énergie fournie aux moyens de chauffage (13) et/ou de refroidissement (14), en fonction d'au moins le nombre de personnes présentes dans le volume d'air (V4) associé à l'unité de traitement, du flux solaire auquel est soumis l'habitacle (1), de la température ambiante à l'extérieur de l'habitacle et d'une valeur de consigne déterminée pour la température de l'air traité.
  12. Véhicule de transport en commun (2), délimitant un habitacle (1) équipé d'un système (3) de traitement de l'air conforme à l'une quelconque des revendications précédentes.
  13. Procédé de traitement de l'air d'un habitacle (1) de véhicule de transport en commun (2), dans lequel on alimente en air traité au moins un conduit de distribution (15, 16, 17) disposé à l'aplomb d'une première partie (V16) d'un volume d'air (V4) de l'habitacle et on évacue l'air traité le long du ou de chaque conduit en dirigeant au moins en partie cet air, en sortie du conduit, vers une seconde partie (V16A, V16B) du volume d'air (V4), distincte de la première partie (V16), pour générer au moins un flux tourbillonnaire (22A, 22B) dans les première et seconde parties du volume d'air,
    caractérisé en ce qu'on répartit l'air alimentant le ou chaque conduit de distribution (15, 16, 17) de manière sensiblement homogène suivant la longueur du conduit en utilisant un diffuseur (18) dont est muni intérieurement le conduit, constitué d'un tissu poreux et présentant une forme sensiblement tronconique d'axe longitudinal (X-X) disposé suivant la longueur du conduit.
  14. Procédé suivant la revendication 13, caractérisé en ce que la vitesse d'évacuation de l'air en sortie du ou de chaque conduit de distribution (15, 16, 17) est comprise entre 5 et 10 mètres par seconde.
EP05356198A 2004-11-15 2005-11-14 Système de traitement de l'air d'un habitacle de véhicule de transport en commun Not-in-force EP1657506B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0412078A FR2877880A1 (fr) 2004-11-15 2004-11-15 Systeme de traitement de l'air d'un habitacle de vehicule de transport en commun, vehicule dont l'habitacle est equipe d'un tel systeme et procede de traitement correspondant

Publications (2)

Publication Number Publication Date
EP1657506A1 EP1657506A1 (fr) 2006-05-17
EP1657506B1 true EP1657506B1 (fr) 2007-03-21

Family

ID=34951716

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05356198A Not-in-force EP1657506B1 (fr) 2004-11-15 2005-11-14 Système de traitement de l'air d'un habitacle de véhicule de transport en commun

Country Status (5)

Country Link
EP (1) EP1657506B1 (fr)
AT (1) ATE357634T1 (fr)
DE (1) DE602005000742T2 (fr)
ES (1) ES2281891T3 (fr)
FR (1) FR2877880A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678997A (zh) * 2017-02-23 2017-05-17 诺曼利尔(青岛)环境能源技术有限公司 基于公共交通工具的空气净化装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464397B2 (en) * 2016-03-03 2019-11-05 Tesla, Inc. Thermal system with high aspect ratio vent
ITUA20163155A1 (it) * 2016-05-04 2017-11-04 Key Frost S R L Impianto perfezionato per la stagionatura e/o l'asciugatura di prodotti, preferibilmente di prodotti alimentari
EP3640112B1 (fr) 2017-06-12 2021-11-17 Mitsubishi Electric Corporation Appareil de climatisation de véhicule et procédé de climatisation d'un appareil de climatisation de véhicule

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7714617U1 (de) 1977-05-07 1978-05-03 Suetrak Transportkaelte Gmbh & Co Kg, 7257 Ditzingen Omnibus-Klimaanlage
BE873700A (nl) 1979-01-25 1979-07-25 Hool Nv Verbeterde klimatisatie-inrichting voor autobussen
IT8552864V0 (it) * 1985-01-21 1985-01-21 Foggini Progetti Dispositivo di distribuzione e diffusione dell aria di climatizzazio ne ai posti posteriori delle autovetture
CH670498A5 (en) * 1986-06-24 1989-06-15 Grzegorz Gottschalk Variable air volume ventilation duct - has side grille with inner rotating sleeve having divergent openings and central perforated duct
BE1006913A3 (nl) 1993-03-05 1995-01-24 Hool Nv Geklimatiseerde autobus.
DE19628103A1 (de) * 1996-07-12 1998-01-15 Bayerische Motoren Werke Ag Luftausströmer für die Belüftung insbesondere eines Fahrzeug-Innenraumes
DE10258748B4 (de) * 2002-12-13 2007-05-10 Hymer-Leichtmetallbau Gmbh & Co Kg Versorgungsmodul für Land-, Wasser- und Luftfahrzeuge
US6709328B1 (en) 2003-04-22 2004-03-23 International Truck Intellectual Property Company, Llc Ventilation system for a bus
US6745586B1 (en) 2003-05-05 2004-06-08 Carrier Corporation Supply air duct arrangement for a bus air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678997A (zh) * 2017-02-23 2017-05-17 诺曼利尔(青岛)环境能源技术有限公司 基于公共交通工具的空气净化装置

Also Published As

Publication number Publication date
ES2281891T3 (es) 2007-10-01
ATE357634T1 (de) 2007-04-15
EP1657506A1 (fr) 2006-05-17
DE602005000742D1 (de) 2007-05-03
DE602005000742T2 (de) 2007-12-06
FR2877880A1 (fr) 2006-05-19

Similar Documents

Publication Publication Date Title
EP1657506B1 (fr) Système de traitement de l'air d'un habitacle de véhicule de transport en commun
US9623722B2 (en) Ventilation system for a passenger transit vehicle
EP2021247A2 (fr) Unite et procede de conditionnement d'air
FR2531666A1 (fr) Installation de climatisation pour un vehicule automobile, notamment pour une voiture de tourisme
EP1062109A1 (fr) Dispositif d'aeration, de chauffage et de climatisation d'un habitacle d'un vehicule automobile
FR2884058A1 (fr) Dispositif de maintien a une temperature de consigne d'une batterie d'un vehicule a motorisation electrique par fluide caloporteur
FR2787510A1 (fr) Systeme de refroidissement de moteur a reaction
FR2899319A1 (fr) Dispositif de ventilation et de chauffage aeraulique de locaux
FR2919510A1 (fr) Melangeur de fluide gazeux
EP1132226B1 (fr) Dispositif de détection d'un risque d'embuage d'une vitre de véhicule automobile, et installation comportant un tel dispositif
FR2902700A1 (fr) Dispositif de preventilation, de ventilation, de chauffage et/ou de climatisation d'un habitacle de vehicule, mettant en oeuvre un pulseur et des unites thermoelectriques a effet peltier
EP1173340B1 (fr) Dispositif d'aeration d'un habitacle avec diffusion douce
WO2013120828A1 (fr) Boucle de climatisation fonctionnant en pompe à chaleur à dégivrage par impulsion
KR20190060682A (ko) 차량용 다-구역 공기 조화 시스템
FR2743027A1 (fr) Dispositif de climatisation de l'habitacle d'un vehicule
FR2735425A1 (fr) Dispositif de chauffage et/ou de climatisation de l'habitacle d'un vehicule automobile
EP3385101A1 (fr) Système de climatisation pour véhicule automobile à sécheur régénérable et procédé de commande d'un tel système
FR2843916A1 (fr) Dispositif de regulation thermique pour habitacle de vehicule automobile
FR2845318A1 (fr) Dispositif de regulation thermique pour habitacle de vehicule automobile utilisant au moins un siege
EP0683744B1 (fr) Procede et installation pour le conditionnement et la pressurisation d'un espace semi-clos
EP1010599B1 (fr) Procédé de conditionnement et de diffusion d'air dans un véhicule, et véhicule pour la mise en oeuvre de ce procédé
FR2945478A1 (fr) Installation de ventilation, de chauffage et/ou de climatisation comprenant quatre echangeurs de chaleur
FR3085625A1 (fr) Boitier pour dispositif de chauffage, ventilation et/ou climatisation d'un vehicule automobile
NL2028585B1 (en) Vehicle cabin climate control system
EP3752723A1 (fr) Module de refroidissement pour véhicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060830

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070321

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602005000742

Country of ref document: DE

Date of ref document: 20070503

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070821

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E001814

Country of ref document: HU

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2281891

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

26N No opposition filed

Effective date: 20071227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070622

BERE Be: lapsed

Owner name: REGIE AUTONOME DES TRANSPORTS PARISIENS

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070621

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201019

Year of fee payment: 16

Ref country code: SE

Payment date: 20201112

Year of fee payment: 16

Ref country code: DE

Payment date: 20201109

Year of fee payment: 16

Ref country code: GB

Payment date: 20201118

Year of fee payment: 16

Ref country code: ES

Payment date: 20201221

Year of fee payment: 16

Ref country code: HU

Payment date: 20201020

Year of fee payment: 16

Ref country code: CZ

Payment date: 20201020

Year of fee payment: 16

Ref country code: IT

Payment date: 20201112

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005000742

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211114

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115