EP1644775A2 - Procede d'analyse d'objets en microlithographie - Google Patents

Procede d'analyse d'objets en microlithographie

Info

Publication number
EP1644775A2
EP1644775A2 EP04740612A EP04740612A EP1644775A2 EP 1644775 A2 EP1644775 A2 EP 1644775A2 EP 04740612 A EP04740612 A EP 04740612A EP 04740612 A EP04740612 A EP 04740612A EP 1644775 A2 EP1644775 A2 EP 1644775A2
Authority
EP
European Patent Office
Prior art keywords
correction
imaging
optics
scintillator
euv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04740612A
Other languages
German (de)
English (en)
Inventor
Holger Seitz
Roman Windpassinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMS GmbH
Original Assignee
Carl Zeiss SMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMS GmbH filed Critical Carl Zeiss SMS GmbH
Publication of EP1644775A2 publication Critical patent/EP1644775A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70653Metrology techniques
    • G03F7/70666Aerial image, i.e. measuring the image of the patterned exposure light at the image plane of the projection system

Definitions

  • Optical imaging systems can often be described as a transmission chain, the optical transmission behavior of which is described by the transmission behavior of the individual links.
  • the transmission behavior manifests itself in
  • Resolving power and is usually described by the point transfer function (PSF) or spectrally by the optical transfer function (OTF: Optical Transfer Function) [1-4].
  • PSF point transfer function
  • OTF optical Transfer Function
  • the optical transmission behavior of the individual links is usually largely determined by the technical boundary conditions and only variable within limits. On the other hand, a defined transmission behavior is generally required for measurement technology use. If the given boundary conditions are too restrictive, the desired transmission behavior of the system can no longer be achieved to the required extent. Consequences can be a lower contrast and a lower resolution as well as the occurrence of imaging errors.
  • Inventive solution The problem described is solved according to the invention in that the output variables of the AIMS system (aerial images) are corrected in an additional processing stage with regard to the transmission behavior in such a way that the corrected output variables of the imaging of a photolithography stepper / scanner with the desired system -OTF corresponds.
  • the case is assumed
  • the output variable is a discrete or analog electronic signal or a corresponding digital data set (eg the pixel values of a CCD array detector);
  • the correction consists in filtering the output variable, in which the proportion of the interfering transmission elements in the transmission behavior is compensated for.
  • location-dependent variables are identified by lower case letters and their respective Fourier transforms by upper case letters.
  • An example is the PSF (designation: g (x, y)) and its Fourier transform, the OTF (designation: G (f ⁇ , f y )).
  • the OTF of the system is the product of the OTFs of the individual transmission elements and the PSF of the system is the convolution product of the PSFs of the individual elements.
  • F 1 ⁇ ... ⁇ is the (inverse) Fourier transform.
  • the OTF varies more or less across the image area. Such variations can be approximately taken into account by setting up the corresponding filter functions for several suitably selected sub-areas and superimposing the results of the associated filterings in a weighted manner.
  • Figure 1 shows the inventive principle schematically.
  • the imaging system for an object which is characterized by its object intensity i 0 (x, y), consists of N stages Gi .-. G N , each of which is characterized by a transfer function.
  • the resulting image characterized by a signal distribution s (x, y), is corrected by means of a correction filter by folding back for the stages G 2 ... G N of the imaging system.
  • the result is a corrected image with an image signal distribution s k (x, y).
  • a system is described as an exemplary embodiment (see Fig. 2) which is divided into two mapping stages, which correspond to the transfer functions Gi, G 2 in Fig. 1.
  • the imaging principle (without EUV lighting unit) of a two-stage EUV-VIS-AIMS is shown in order to examine a mask for semiconductor production. Illumination can be via incident light, as here with EUV lighting, but also via transmitted light.
  • the object here a mask structure
  • the object is imaged via an EUV lens on a scintillator (intermediate image), which converts the EUV wavelength into visible light.
  • the intermediate image is transferred to a CCD camera via the subsequent VIS optics.
  • G ⁇ (f x , f y ) is the OTF of the first magnification level, with which the transmission behavior of a stepper is simulated.
  • G 2 (f ⁇ , f y ) the OTF of the subsequent stages, z.
  • g 2 (x > y) are the impulse response and G 2 (f x , f y ) are the transfer function of level 2.
  • the resolution of level 2 is greater than that of level 1.
  • M.a.W . The upper cut-off frequency of level 2 is higher than that of level 1.
  • the intensity h (x, y) is to be reconstructed from s (x, y).
  • Level 2 is i. a. itself to be seen as a composite system.
  • Level 2 does not necessarily have to include a wave optical subsystem. In the simplest case, it only consists of the detector (CCD array or the like). • The mapping through level 2 behaves mathematically analogous to an incoherent optical mapping, in which the output intensity is created by folding the input intensity with the PSF.
  • Figure 3 shows the calculated cross-section of an object structure intensity io (x, y) (3 lines of width in nm and distance in nm) as a function of the location, as well as the associated image intensities of the first imaging level h (x, y) of the overall system s (x, y) and the corrected system S ⁇ (x, y), using the following imaging parameters: wavelength, numerical aperture, sigma.
  • An ideal VIS lens was assumed for the interfering element (second imaging level).
  • Figure 4 clearly shows that the intensities of the first imaging level (target) correspond very well with the intensities of the corrected system.
  • Figure 4 shows the magnitude spectra of the OTF associated with Figure 4 of the first mapping level G ⁇ (f x , f y ), the second mapping level G 2 (f x , f y ), of the overall system G ⁇ (f x , f y ) • G 2 (f x , f y ) and the corrected system Gk (f x , f y ).
  • the magnitude spectrum of the OTF of the first mapping level (target) corresponds very well with that of the corrected system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé d'analyse d'objets en microlithographie, de préférence de masques à l'aide d'un système de mesure d'image aérienne (AIMS) comportant au moins deux étages d'imagerie, l'image détectée étant corrigée par un filtre correcteur en ce qui concerne le comportement de transmission du deuxième étage d'imagerie ou d'un étage d'imagerie suivant. L'objet est éclairé par une lumière incidente et/ou une lumière transmise. La correction apportée est telle que les grandeurs de sortie corrigées correspondent à la représentation d'un moteur pas à pas ou d'un scanner de photolithographie. Cette correction est effectuée par une reconvolution et, pour la correction, on tient compte des valeurs de correction mesurées ou calculées.
EP04740612A 2003-07-11 2004-07-03 Procede d'analyse d'objets en microlithographie Withdrawn EP1644775A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10332059A DE10332059A1 (de) 2003-07-11 2003-07-11 Verfahren zur Analyse von Objekten in der Mikrolithographie
PCT/EP2004/007267 WO2005008335A2 (fr) 2003-07-11 2004-07-03 Procede d'analyse d'objets en microlithographie

Publications (1)

Publication Number Publication Date
EP1644775A2 true EP1644775A2 (fr) 2006-04-12

Family

ID=33547017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04740612A Withdrawn EP1644775A2 (fr) 2003-07-11 2004-07-03 Procede d'analyse d'objets en microlithographie

Country Status (5)

Country Link
US (1) US20060269117A1 (fr)
EP (1) EP1644775A2 (fr)
JP (1) JP2007527019A (fr)
DE (1) DE10332059A1 (fr)
WO (1) WO2005008335A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7995832B2 (en) * 2007-01-11 2011-08-09 Kla-Tencor Corporation Photomask inspection and verification by lithography image reconstruction using imaging pupil filters
DE102007000981B4 (de) * 2007-02-22 2020-07-30 Vistec Semiconductor Systems Gmbh Vorrichtung und Verfahren zum Vermessen von Strukturen auf einer Maske und zur Berechnung der aus den Strukturen resultierenden Strukturen in einem Photoresist
DE102007047924B4 (de) * 2007-02-23 2013-03-21 Vistec Semiconductor Systems Jena Gmbh Verfahren zur automatischen Detektion von Fehlmessungen mittels Qualitätsfaktoren
DE102007041939A1 (de) * 2007-09-04 2009-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren für die XUV-Mikroskopie
DE102008002873A1 (de) * 2008-05-30 2009-12-17 Vistec Semiconductor Systems Gmbh Verfahren zum Auffinden eines Gebiets minimaler Lensdistortion eines Objektivs und Verwendung des Verfahrens bei einer Koordinaten-Messmaschine
DE102009038558A1 (de) * 2009-08-24 2011-03-10 Carl Zeiss Sms Gmbh Verfahren zur Emulation eines fotolithographischen Prozesses und Maskeninspektionsmikroskop zur Durchführung des Verfahrens
DE102010030261A1 (de) 2010-06-18 2011-12-22 Carl Zeiss Smt Gmbh Vorrichtung sowie Verfahren zum ortsaufgelösten Vermessen einer von einer Lithographie-Maske erzeugten Strahlungsverteilung
EP3274698A4 (fr) * 2015-03-23 2018-12-26 Techinsights Inc. Procédés, systèmes et dispositifs se rapportant à une correction de la distorsion dans des dispositifs d'imagerie
CN108734177B (zh) * 2018-05-17 2021-06-29 中国人民解放军陆军工程大学 双步相关滤波目标跟踪方法
DE102019206651B4 (de) * 2019-05-08 2022-10-13 Carl Zeiss Smt Gmbh Verfahren zum dreidimensionalen Bestimmen eines Luftbildes einer Lithographiemaske

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633504A (en) * 1984-06-28 1986-12-30 Kla Instruments Corporation Automatic photomask inspection system having image enhancement means
US5576829A (en) * 1990-10-08 1996-11-19 Nikon Corporation Method and apparatus for inspecting a phase-shifted mask
US5700602A (en) * 1992-08-21 1997-12-23 Intel Corporation Method and apparatus for precision determination of phase-shift in a phase-shifted reticle
US5789118A (en) * 1992-08-21 1998-08-04 Intel Corporation Method and apparatus for precision determination of phase-shift in a phase-shifted reticle
US5498923A (en) * 1994-01-05 1996-03-12 At&T Corp. Fluoresence imaging
US6002740A (en) * 1996-10-04 1999-12-14 Wisconsin Alumni Research Foundation Method and apparatus for X-ray and extreme ultraviolet inspection of lithography masks and other objects
US6091845A (en) * 1998-02-24 2000-07-18 Micron Technology, Inc. Inspection technique of photomask
US6466315B1 (en) * 1999-09-03 2002-10-15 Applied Materials, Inc. Method and system for reticle inspection by photolithography simulation
US7120285B1 (en) * 2000-02-29 2006-10-10 Advanced Micro Devices, Inc. Method for evaluation of reticle image using aerial image simulator
US20020041377A1 (en) * 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
US7072502B2 (en) * 2001-06-07 2006-07-04 Applied Materials, Inc. Alternating phase-shift mask inspection method and apparatus
DE10230755A1 (de) * 2002-07-09 2004-01-22 Carl Zeiss Jena Gmbh Anordnung zur Herstellung von Photomasken

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005008335A2 *

Also Published As

Publication number Publication date
US20060269117A1 (en) 2006-11-30
WO2005008335A2 (fr) 2005-01-27
JP2007527019A (ja) 2007-09-20
WO2005008335A3 (fr) 2005-06-09
DE10332059A1 (de) 2005-01-27

Similar Documents

Publication Publication Date Title
DE102018210315B4 (de) Verfahren zur Erfassung einer Struktur einer Lithografiemaske sowie Vorrichtung zur Durchführung des Verfahrens
DE60209306T2 (de) Verfahren zur Identifizierung von Regionen extremer Wechselwirkung, Verfahren zum Entwerfen von Maskenmustern und zur Herstellung von Masken, Verfahren zur Herstellung von Elementen und Computerprogramme
EP2062019B1 (fr) Procédé et dispositif de détermination à résolution locale de la phase et de l'amplitude d'un champ électromagnétique dans le plan d'image d'une représentation d'un objet
DE69631714T2 (de) Vorrichtung zur optischen Untersuchung eines Fluids, insbesondere zur hämatologischen Analyse
DE102008019341A1 (de) Verfahren zur Analyse von Masken für die Photolithographie
DE102009038558A1 (de) Verfahren zur Emulation eines fotolithographischen Prozesses und Maskeninspektionsmikroskop zur Durchführung des Verfahrens
WO2007025746A1 (fr) Dispositif et procede de mesure interferometrique de masques de phases
DE102010047051A1 (de) Verfahren zur Bestimmung der Position einer Struktur innerhalb eines Bildes und Positionsmessvorrichtung zur Durchführung des Verfahrens
EP1644775A2 (fr) Procede d'analyse d'objets en microlithographie
DE102020211380A1 (de) Verfahren zum superauflösenden Auswerten von strukturiert beleuchteten Mikroskopbildern und Mikroskop mit strukturierter Beleuchtung
EP1963812B1 (fr) Procédé et dispositif d'analyse de la méthode d'affichage d'une optique d'imagerie
WO2022043438A1 (fr) Procédé, unité de traitement d'image et microscope à balayage laser pour imagerie à arrière-plan réduit d'une structure dans un échantillon
DE102004030961B4 (de) Verfahren zum Bestimmen einer Matrix von Transmissionskreuzkoeffizienten bei einer optischen Näherungskorrektur von Maskenlayouts
DE102019208552A1 (de) Verfahren zum Ermitteln eines Produktions-Luftbildes eines zu vermessenden Objektes
DE102018202637B4 (de) Verfahren zur Bestimmung einer Fokuslage einer Lithographie-Maske und Metrologiesystem zur Durchführung eines derartigen Verfahrens
DE112019000351T5 (de) Spektrometer mit variabler auflösung
DE102004022595B4 (de) Verfahren und System zum Erkennen der Qualität einer alternierenden Phasenschiebermaske
DE102014000454B4 (de) Verfahren zur Emulation der Abbildung von Masken, welche durch lokale Dichtevariationen korrigiert wurden
EP1273878B1 (fr) Procédé pour détecter un objet en utilisant de résolutions différentes
DE10027132A1 (de) Verfahren und System der Mehrband-UV (ultraviolett)-Lichtillumination von Wafern für optische Mikroskopwaferprüfsysteme und -meßsysteme
DE102007033243A1 (de) Verfahren und Anordnung zur Analyse einer Gruppe von Photolithographiemasken
DE102014209348A1 (de) Ermittlung einer korrigierten Größe
DE10258371A1 (de) Verfahren zur Inspektion von periodischen Gitterstrukturen auf Lithographlemasken
DE102009049787B4 (de) Verfahren zur Bestimmung von Parametern einer Proximity-Funktion, insbesondere für die Korrektur des Proximity-Effekts bei der Elektronenstrahllithografie
WO2021151794A1 (fr) Procédé et dispositif d'imagerie sans lentille au moyen de l'holographie par transformation de fourier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051130

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEITZ, HOLGER

Inventor name: WINDPASSINGER, ROMAN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060829