EP1644556A1 - Electrochemical half cell - Google Patents

Electrochemical half cell

Info

Publication number
EP1644556A1
EP1644556A1 EP04740108A EP04740108A EP1644556A1 EP 1644556 A1 EP1644556 A1 EP 1644556A1 EP 04740108 A EP04740108 A EP 04740108A EP 04740108 A EP04740108 A EP 04740108A EP 1644556 A1 EP1644556 A1 EP 1644556A1
Authority
EP
European Patent Office
Prior art keywords
coating
gas diffusion
diffusion electrode
gas
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04740108A
Other languages
German (de)
French (fr)
Other versions
EP1644556B1 (en
Inventor
Andreas Bulan
Fritz Gestermann
Peter Fabian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Deutschland GmbH
Covestro Deutschland AG
Original Assignee
De Nora Deutschland GmbH
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Nora Deutschland GmbH, Bayer MaterialScience AG filed Critical De Nora Deutschland GmbH
Publication of EP1644556A1 publication Critical patent/EP1644556A1/en
Application granted granted Critical
Publication of EP1644556B1 publication Critical patent/EP1644556B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes

Definitions

  • the invention relates to an electrochemical half cell, in particular for the electrolysis of an aqueous alkali metal chloride solution.
  • an electrochemical half cell for the electrolysis of an aqueous alkali chloride solution with several gas pockets lying one above the other is known, a gas diffusion electrode (GDE) being located between each gas pocket and the electrolyte space.
  • the gas diffusion electrodes are attached and sealed to structural elements of the half cell with the aid of holding elements, which e.g. are designed as terminal strips.
  • the main disadvantage of a clamp connection is that it cannot guarantee a sufficient seal from the gas space to the electrolyte space in the long run. For the technical implementation, downtimes of over three years are necessary, otherwise there is no economic use. Small pressure surges also occur in the electrolyzer, which can loosen the GDE clamp connection. This impairs the tightness of the connection, so that gas escapes from the gas pocket into the electrolyte space or electrolyte floods the gas pockets.
  • EP-A-1 029 946 describes a gas diffusion electrode consisting of a reactive layer and a gas diffusion layer and a collector plate, e.g. a silver net.
  • the coating does not completely cover the collector plate, but rather leaves a coating-free edge.
  • a thin, frame-shaped metal plate, preferably made of silver, is applied to the gas diffusion electrode in such a way that the metallic frame covers the smallest possible area of the electrochemically active coating.
  • the frame projecting beyond the gas diffusion electrode serves to connect the gas diffusion electrode to the housing of the half cell, for example by welding.
  • This contacting is complicated and covers part of the GDE area, as a result of which the local current density of the free GDE area increases and the performance of the electrolyser decreases due to the higher electroysis voltage.
  • the complicated installation means high manufacturing costs for the electrolyzer.
  • EP-A-1 041 176 also describes a gas diffusion electrode with a coating-free edge, the gas diffusion electrode being connected in the coating-free edge region to the current collector frame of the cathode half-cell by means of welding.
  • the cavities between two adjacent gas diffusion electrodes are sealed with an alkali-resistant material.
  • a disadvantage of this installation method is the sealing material required for adequate sealing. The sealing effect diminishes during the operating time of the electrolyzer, so that the service life is not long enough from an economic point of view. Since the gas diffusion electrode must be connected to the electrolyzer, a low-resistance connection is particularly important in the technical design. The lowest contact resistance leads to significant economic disadvantages in technical electrolysis.
  • Low-resistance connections can generally be established by short current paths, as mentioned in DE-A-44 44 114.
  • a low-resistance connection is also provided by a metal-to-metal contact if the two metals are connected by soldering or welding.
  • the carrier of the GDE is best connected to the holding structure of the electrolyzer with low resistance by welding or soldering.
  • a sealing effect must also be achieved.
  • the object of the present invention is to make the gas diffusion electrode low-resistance, i.e. with the lowest possible ohmic resistance, to be installed in the electrochemical half cell and at the same time to produce a sealing effect between the gas and electrolyte space.
  • the structure of the gas diffusion electrode must be designed so that neither gas from the gas pocket into the electrolyte space nor electrolyte from the electrolyte space can enter the gas pocket. At the same time, as little as possible electrochemically active area of the gas diffusion electrode should be lost due to the installation. Furthermore, the installation should be technically as simple as possible.
  • the invention relates to an electrochemical half cell, at least consisting of a gas space, an electrolyte space and a gas diffusion electrode separating the gas space from the electrolyte space as a cathode or anode, which comprises at least one electrically conductive support and an electrochemically active coating, the gas diffusion electrode having a coating-free edge region and is connected to a holding structure, characterized in that the gas diffusion electrode in the coating-free edge area is connected to the holding structure with the aid of an electrically conductive plate which covers at least the coating-free edge area and an edge area of the electrochemically active coating.
  • the electrochemical half cell according to the invention consists of at least one gas space, which is divided into several gas pockets one above the other. Each gas pocket is separated from the electrolyte compartment by a gas diffusion electrode.
  • the half cell is used in particular as a cathode half cell for the electrolysis of aqueous alkali chloride solutions.
  • the electrolyte space is filled with the electrolyte, for example an aqueous alkali hydroxide solution.
  • the gas diffusion electrodes are used as oxygen consumption cathodes. Gas, for example air or oxygen, flows through the gas pockets, the gas being introduced into the lowermost gas pocket and flowing from it cascading into the gas pockets above. From the top one Excess gas is removed from the gas pocket.
  • the functioning of an electrolysis cell with a gas diffusion electrode based on the principle of pressure compensation is described for example in DE-A-44 44 114.
  • the gas diffusion electrode consists at least of an electrically conductive carrier and an electrochemically active coating.
  • the electrically conductive carrier is preferably a mesh, fabric, braid, knitted fabric, fleece or foam made of metal, in particular made of nickel, silver or silver-plated nickel.
  • the electrochemically active coating preferably consists of at least one catalyst, e.g. Silver (I) oxide, and a binder, e.g. Polytetrafluoroethylene (PTFE).
  • the electrochemically active coating can be constructed from one or more layers.
  • a gas diffusion layer for example composed of a mixture of carbon and polytetrafluoroethylene, can be provided, which is applied to the carrier.
  • a method for producing such a gas diffusion electrode is known for example from DE-A-37 10 168.
  • the coating material penetrates into the cavities of the carrier and lies on the carrier.
  • the gas diffusion electrode of the electrochemical half cell according to the invention has a coating-free edge area along the four edges.
  • the coating-free edge area is preferably from 2 to 10 mm, particularly preferably from 4 to 8 mm.
  • the electrochemically active coating and, if present, further coatings in the edge area are removed.
  • the support structure preferably consists of the 'same material, are made of the the half-shells of the electrolysis half-elements, in particular of nickel in the case of chlor-alkali electrolysis.
  • the holding structure is frame-shaped and, together with the gas diffusion electrode and the rear wall of the gas pocket, forms the spatial limitation of the gas pocket.
  • the electrically conductive support of the gas diffusion electrode rests on the holding structure, to the extent that the support rests not only in the coating-free edge area but also in an edge area of the coating on the holding structure.
  • the gas diffusion electrode preferably lies on the holding structure up to an edge region of the coating of 2 to 8 mm, particularly preferably 2 to 5 mm.
  • the carrier of the gas diffusion electrode thus lies on the holding structure in total in a range from 4 to 18 mm, particularly preferably from 2 to 13 mm.
  • an electrically conductive plate preferably made of metal, in particular nickel, is placed on the coating-free edge area, ie the uncoated electrically conductive support, and an edge area of the coating.
  • the edge region of the coating covered by the electrically conductive plate is preferably 1 to 10 mm.
  • the plate may protrude beyond the carrier of the gas diffusion electrode in a range of at most 5 mm, preferably at most 3 mm.
  • the plate can contact the holding structure.
  • the width of the electrically conductive plate is preferably from 3 to 21 mm. The plate is pressed firmly onto the gas diffusion electrode and the holding structure, since sufficient sealing between the gas diffusion electrode and the holding structure must be ensured because of the sealing and the power supply.
  • the gas diffusion electrode is over the plate-.jtrat.-dsr-. Holding structure, preferably connected by welding.
  • the welding takes place in the area of the coating-free edge of the gas diffusion electrode.
  • Laser welding or ultrasonic welding is preferably used.
  • the ratio of the thickness of the plate to the distance between the plate and the carrier must be taken into account. In the case of laser welding in particular, the ratio is preferably less than 0.5, particularly preferably less than 0.2. Is the distance between the plate and the support relatively large, e.g. with a relatively thick coating on the carrier, this can be compensated for by a thicker plate.
  • the thickness of the coating that is applied to the electrically conductive carrier must be taken into account.
  • the part of the coating which lies on the carrier is greater than 0.5 mm and the distance between the plate and the carrier cannot be reduced to preferably less than 1 mm, particularly preferably less than 0.5 mm, by pressing the plate , it is advantageous to insert a wedge-shaped spacer between the plate and the support.
  • a thicker plate without a spacer can be used.
  • the electrically conductive plate preferably has a thickness of 0.05 to 2 mm.
  • the plate preferably runs frame-shaped around the gas diffusion electrode.
  • a seal is provided in the area of the contact surface of the gas diffusion electrode or the electrically conductive carrier on the holding structure.
  • the seal is located between the support structure and the carrier.
  • the coating in the edge region which is covered by the plate is hydrophilized in order to produce a gas-tight connection.
  • the hydrophilization is carried out, for example, by applying a surfactant-containing solution to the surface of the coating, as a result of which the electrolyte penetrates into the coating and causes sealing by capillary forces.
  • the advantage of the half-cell according to the invention is that the gas diffusion electrode is electrically conductively connected to the holding structure by means of the electrically conductive plate and at the same time the gas space is sealed off from the electrolyte space, so that no electrolyte can enter the gas space and no gas can enter the electrolyte space.
  • the smallest possible electrochemically active area of the gas diffusion electrode is lost as a result of the installation.
  • FIG. 1 shows a schematic section from a first embodiment of the half cell according to the invention
  • Figure 2 shows a schematic section of a second embodiment with seal
  • Figure 3 shows a schematic section of a third embodiment with a wedge-shaped spacer
  • FIG. 1 shows a gas space 2 of the electrochemical half cell with a holding structure 1 at the edge of the gas space 2.
  • the holding structure 1, the gas diffusion electrode 6 and the rear wall 11 form the gas space 2 in the form of a gas pocket.
  • the gas diffusion electrode 6 has a coating-free edge area 8, in which the coating has been removed and the carrier 5 is exposed.
  • the coating 4 penetrates the support 5 and lies on it.
  • the coating-free edge 8 of the gas diffusion electrode 6 and the edge region 7 of the coating 4 rest on the holding structure 1.
  • An electrically conductive plate 3 rests on the gas diffusion electrode 6 in such a way that it covers the coating-free edge 8 and the edge area 7 of the coating 4. It also protrudes over the coating-free edge 8 out, where it comes to lie on Haltestniktur 1.
  • the plate 3 is connected to the gas diffusion electrode 6 and the holding structure 1, preferably by means of welding.
  • FIG. 2 shows a further embodiment, the same or similar components having the same reference numbers.
  • the embodiment differs from that shown in FIG. 1 in that a seal 9 is provided between the holding structure 1 and the gas diffusion electrode 6.
  • a gas diffusion electrode was used, which consisted of an electrically conductive support and an electrochemically active layer made of a mixture of silver (I) oxide and PTFE.
  • the carrier of the gas diffusion electrode consisted of a network of nickel, in which the wire thickness was 0.14 mm and the mesh size was 0.5 mm.
  • the gas diffusion electrode was freed of the silver (I) oxide / PTFE-containing layer in an edge region of 4 mm.
  • a PTFE seal was inserted between the holding structure and the gas diffusion electrode.
  • a metal strip of nickel having a thickness of 1 and a width of 8 mm was positioned such that the coating-free edge completely, and an edge region of the gas diffusion electrode of 4 mm covered ⁇ ar.- was subsequently pressed the nickel strips on the support structure and by means of Laser welding connected to the carrier and the holding structure.
  • a gas diffusion electrode was used which had two layers: a gas diffusion layer consisting of PTFE and carbon, and an electrochemically active layer consisting of PTFE, carbon and silver.
  • the electrically conductive carrier of the gas diffusion electrode consisted of a network of silver-plated nickel, in which the wire thickness was 0.16 mm and the mesh size was 0.46 mm.
  • the gas diffusion electrode was freed of the coating consisting of gas diffusion layer and electrochemically active layer in an edge region of 4 mm.
  • a PTFE seal was inserted between the holding structure and the gas diffusion electrode.
  • the coating was hydrophilized in an edge region of the coating of the gas diffusion electrode. For this purpose, it was coated with a surfactant-containing solution (Triton®-X-100 solution, Merck).
  • a metal tire made of nickel with a thickness of 1 mm and a width of 8 mm was positioned so that the coating-free edge was completely covered and an edge area of the gas diffusion electrode was covered by 4 mm.
  • the nickel strip was then pressed onto the holding structure and connected to the carrier and the holding structure by means of laser welding.

Abstract

The present invention describes an electrochemical half-cell, comprising a gas space, an electrolyte space and a gas diffusion electrode in the form of a cathode or anode. The gas diffusion electrode separates the gas space from the electrolyte space and comprises an electrically conductive substrate and an electrochemically active coating. The gas diffusion electrode includes a coating-free edge region and is connected to a support structure in the coating-free edge region via an electrically conductive plate, which covers at least the coating-free edge region as well as a coated edge region.

Description

Elektrochemische HalbzelleElectrochemical half cell
Die Erfindung betrifft eine elelctrochemische Halbzelle, insbesondere für die Elektrolyse einer wässrigen Alkalichloridlösung.The invention relates to an electrochemical half cell, in particular for the electrolysis of an aqueous alkali metal chloride solution.
Aus DE-A-44 44 114 ist eine elektrochemische Halbzelle für die Elektrolyse einer wässrigen Alkalichloridlösung mit mehreren übereinander liegenden Gastaschen bekannt, wobei sich jeweils zwischen einer Gastasche und dem Elektrolytraum eine Gasdiffusionselektrode (GDE) befindet. Die Befestigung und Abdichtung der Gasdiffusionselektroden erfolgt an Strukturelementen der Halbzelle mit Hilfe von Halteelementen, welche z.B. als Klemmleisten, ausgebildet sind. Der wesentliche Nachteil einer Klemmverbindung ist, dass sie auf Dauer keine ausreichende Abdichtung vom Gasraum zum Elektrolytraum gewährleisten kann. Für die technische Realisierung sind Standzeiten von über drei Jahren notwendig, da sonst eine wirtschaftliche Nutzung nicht gegeben ist. Weiterhin treten im Elektrolyseur kleine Druckstöße auf, welche die Klemmverbindung der GDE lösen können. Dadurch wird die Dichtigkeit der Verbindung beeinträchtigt, so dass Gas aus der Gastasche in den Elektrolytraum entweicht oder Elektrolyt die Gastaschen flutet.From DE-A-44 44 114 an electrochemical half cell for the electrolysis of an aqueous alkali chloride solution with several gas pockets lying one above the other is known, a gas diffusion electrode (GDE) being located between each gas pocket and the electrolyte space. The gas diffusion electrodes are attached and sealed to structural elements of the half cell with the aid of holding elements, which e.g. are designed as terminal strips. The main disadvantage of a clamp connection is that it cannot guarantee a sufficient seal from the gas space to the electrolyte space in the long run. For the technical implementation, downtimes of over three years are necessary, otherwise there is no economic use. Small pressure surges also occur in the electrolyzer, which can loosen the GDE clamp connection. This impairs the tightness of the connection, so that gas escapes from the gas pocket into the electrolyte space or electrolyte floods the gas pockets.
EP-A-1 029 946 beschreibt eine Gasdiffusionselektrode, bestehend aus einer reaktiven Schicht und einer Gasdiffusionsschicht und einer Kollektorplatte, z.B. einem Silbernetz. Die Beschichtung bedeckt die Kollektorplatte nicht vollständig, sondern lässt einen beschichtungsfreien Rand überstehen. Eine dünne, rahmenförmige Metallplatte, vorzugsweise aus Silber, wird so auf die Gasdiffusionselektrode aufgebracht, dass der metallische Rahmen eine möglichst geringe Fläche der e- lektrochemisch aktiven Beschichtung bedeckt. Der über die Gasdiffusionselektrode überstehende Rahmen dient dazu, die Gasdiffusionselektrode mit dem Gehäuse der Halbzelle beispielsweise mittels Schweißen zu verbinden. Diese Kontaktierung ist kompliziert und deckt einen Teil der GDE-Fläche ab, wodurch die lokale Stromdichte der freien GDE-Fläche steigt und die Performance des Elektrolyseurs aufgrund höherer Elektroysespannung sinkt. Außerdem bedeutet der komplizierte Einbau hohe Fertigungskosten des Elektrolyseurs.EP-A-1 029 946 describes a gas diffusion electrode consisting of a reactive layer and a gas diffusion layer and a collector plate, e.g. a silver net. The coating does not completely cover the collector plate, but rather leaves a coating-free edge. A thin, frame-shaped metal plate, preferably made of silver, is applied to the gas diffusion electrode in such a way that the metallic frame covers the smallest possible area of the electrochemically active coating. The frame projecting beyond the gas diffusion electrode serves to connect the gas diffusion electrode to the housing of the half cell, for example by welding. This contacting is complicated and covers part of the GDE area, as a result of which the local current density of the free GDE area increases and the performance of the electrolyser decreases due to the higher electroysis voltage. In addition, the complicated installation means high manufacturing costs for the electrolyzer.
EP-A-1 041 176 beschreibt ebenfalls eine Gasdiffusionselektrode mit beschichtungsfreiem Rand, wobei die Gasdiffusionselektrode in dem beschichtungsfreien Randbereich mit dem Stromkollektorrahmen der Kathodenhalbzelle mittels Schweißen verbunden ist. Die Hohlräume zwischen zwei benachbarten Gasdiffusionselektroden werden mit einem laugebeständigen Material abgedichtet. Nachteilig bei dieser Einbaumethode ist das für eine ausreichende Abdichtung notwendige Dichtmaterial. Die Dichtwirkung lässt im Laufe der Betriebszeit des Elektrolyseurs nach, so dass die Standzeit aus wirtschaftlicher Sicht nicht ausreichend groß ist. Da die Gasdiffusionselektrode mit dem Elektrolyseur verbunden sein muss, ist besonders bei der technischen Ausführung auf eine niederohmige Verbindung zu achten. Geringste Übergangswiderstände führen bei technischen Elektrolysen bereits zu deutlichen wirtschaftlichen Nachteilen. Niederohmige Verbindungen können allgemein, wie in DE-A-44 44 114 genannt, durch kurze Stromwege hergestellt werden. Eine niederohmige Verbindung ist außerdem durch einen Metall-Metall- Kontakt gegeben, wenn die Verbindung der beiden Metalle durch Löten oder Schweißen erfolgt. Somit wird der Träger der GDE am besten mit der Haltestruktur des Elektrolyseurs niederohmig durch Schweißen oder Löten verbunden. Eine Dichtwirkung muss jedoch zusätzlich bewirkt werden.EP-A-1 041 176 also describes a gas diffusion electrode with a coating-free edge, the gas diffusion electrode being connected in the coating-free edge region to the current collector frame of the cathode half-cell by means of welding. The cavities between two adjacent gas diffusion electrodes are sealed with an alkali-resistant material. A disadvantage of this installation method is the sealing material required for adequate sealing. The sealing effect diminishes during the operating time of the electrolyzer, so that the service life is not long enough from an economic point of view. Since the gas diffusion electrode must be connected to the electrolyzer, a low-resistance connection is particularly important in the technical design. The lowest contact resistance leads to significant economic disadvantages in technical electrolysis. Low-resistance connections can generally be established by short current paths, as mentioned in DE-A-44 44 114. A low-resistance connection is also provided by a metal-to-metal contact if the two metals are connected by soldering or welding. Thus, the carrier of the GDE is best connected to the holding structure of the electrolyzer with low resistance by welding or soldering. However, a sealing effect must also be achieved.
Die Aufgabe der vorliegenden Erfindung liegt darin, die Gasdiffusionselektrode niederohmig, d.h. mit möglichst geringem ohmschen Widerstand, in~die elektrochemische Halbzelle einzubauen und gleichzeitig eine abdichtende Wirkung zwischen Gas- und Elektrolytraum herzustellen. Der Ürnbau der Gasdiffusionselektrode muss so gestaltet sein, dass weder Gas aus der Gastasche in den Elektrolytraum noch Elektrolyt aus dem Elektrolytraum in die Gastasche eintreten kann. Gleichzeitig soll durch den Einbau nur eine möglichst geringe elektrochemisch aktive Fläche der Gasdiffusionselektrode verloren gehen. Weiterhin soll der Einbau technisch möglichst einfach durchführbar sein.The object of the present invention is to make the gas diffusion electrode low-resistance, i.e. with the lowest possible ohmic resistance, to be installed in the electrochemical half cell and at the same time to produce a sealing effect between the gas and electrolyte space. The structure of the gas diffusion electrode must be designed so that neither gas from the gas pocket into the electrolyte space nor electrolyte from the electrolyte space can enter the gas pocket. At the same time, as little as possible electrochemically active area of the gas diffusion electrode should be lost due to the installation. Furthermore, the installation should be technically as simple as possible.
Gegenstand der Erfindung ist eine elektrochemische Halbzelle, wenigstens bestehend aus einem Gasraum, einem Elektrolytraum und einer den Gasraum von dem Elektrolytraum trennenden Gasdiffusionselektrode als Kathode oder Anode, welche wenigstens einen elektrisch leitfähigen Träger und eine elektrochemisch aktive Beschichtung umfasst, wobei die Gasdiffusionselektrode einen beschichtungsfreien Randbereich aufweist und mit einer Haltestruktur verbunden ist, dadurch gekennzeichnet, dass die Gasdiffusionselektrode im beschichtungsfreien Randbereich mit der Halte- struktur mit Hilfe einer elektrisch leitfahigen Platte verbunden ist, welche wenigstens den beschichtungsfreien Randbereich und einen Randbereich der elektrochemisch aktiven Beschichtung bedeckt.The invention relates to an electrochemical half cell, at least consisting of a gas space, an electrolyte space and a gas diffusion electrode separating the gas space from the electrolyte space as a cathode or anode, which comprises at least one electrically conductive support and an electrochemically active coating, the gas diffusion electrode having a coating-free edge region and is connected to a holding structure, characterized in that the gas diffusion electrode in the coating-free edge area is connected to the holding structure with the aid of an electrically conductive plate which covers at least the coating-free edge area and an edge area of the electrochemically active coating.
Die erfindungsgemäße elektrochemische Halbzelle besteht mindestens aus einem Gasraum, welcher in mehrere übereinanderliegende Gastaschen aufgeteilt ist. Jede Gastasche ist von dem Elektrolytraum durch eine Gasdiffusionselektrode getrennt. Die Halbzelle wird insbesondere als Katho- denhalbzelle für die Elektrolyse von wässrigen Alkalichloridlösungen verwendet. Der Elektrolytraum ist mit dem Elektrolyten, z.B. einer wässrigen Alkalihydroxidlösung, gefüllt. Die Gasdiffusionselektroden werden dabei als Sauerstoffverzehrkathoden eingesetzt. Die Gastaschen sind von Gas, z.B. Luft oder Sauerstoff, durchströmt, wobei das Gas in die unterste Gastasche eingeleitet wird und von dieser kaskadenartig in die darüberliegenden Gastaschen strömt. Aus der obersten Gastasche wird überschüssiges Gas abgeführt. Die Funktionsweise einer Elektrolysezelle mit Gasdiffusionselektrode nach dem Prinzip der Druckkompensation ist beispielsweise in DE-A-44 44 114 beschrieben.The electrochemical half cell according to the invention consists of at least one gas space, which is divided into several gas pockets one above the other. Each gas pocket is separated from the electrolyte compartment by a gas diffusion electrode. The half cell is used in particular as a cathode half cell for the electrolysis of aqueous alkali chloride solutions. The electrolyte space is filled with the electrolyte, for example an aqueous alkali hydroxide solution. The gas diffusion electrodes are used as oxygen consumption cathodes. Gas, for example air or oxygen, flows through the gas pockets, the gas being introduced into the lowermost gas pocket and flowing from it cascading into the gas pockets above. From the top one Excess gas is removed from the gas pocket. The functioning of an electrolysis cell with a gas diffusion electrode based on the principle of pressure compensation is described for example in DE-A-44 44 114.
Die Gasdiffusionselektrode besteht wenigstens aus einem elektrisch leitfahigen Träger und einer elektrochemisch aktiven Beschichtung. Der elektrisch leitfähige Träger ist bevorzugt ein Netz, Gewebe, Geflecht, Gewirke, Vlies oder Schaum aus Metall, insbesondere aus Nickel, Silber oder versilbertem Nickel. Die elektrochemisch aktive Beschichtung besteht vorzugsweise wenigstens aus einem Katalysator, z.B. Silber(I)-Oxid, und einem Binder, z.B. Polytetrafluorethylen (PTFE). Die elelctrochemisch aktive Beschichtung kann aus einer oder mehreren Schichten aufgebaut sein. Zusätzlich kann eine Gasdiffusionsschicht, beispielsweise aus einer Mischung aus Kohlenstoff und Polytetrafluorethylen, vorgesehen sein, welche auf -des- Träger aufgebracht wird.The gas diffusion electrode consists at least of an electrically conductive carrier and an electrochemically active coating. The electrically conductive carrier is preferably a mesh, fabric, braid, knitted fabric, fleece or foam made of metal, in particular made of nickel, silver or silver-plated nickel. The electrochemically active coating preferably consists of at least one catalyst, e.g. Silver (I) oxide, and a binder, e.g. Polytetrafluoroethylene (PTFE). The electrochemically active coating can be constructed from one or more layers. In addition, a gas diffusion layer, for example composed of a mixture of carbon and polytetrafluoroethylene, can be provided, which is applied to the carrier.
Ein Verfahren zur Herstellung einer solchen Gasdiffusionselektrode ist beispielsweise aus DE-A- 37 10 168 bekannt. Beim Aufbringen der Beschichtung dringt die Beschichtungsmasse in die Hohlräume des Trägers ein und liegt auf dem Träger auf.A method for producing such a gas diffusion electrode is known for example from DE-A-37 10 168. When the coating is applied, the coating material penetrates into the cavities of the carrier and lies on the carrier.
Die Gasdiffusionselektrode der erfindungsgemäßen elektrochemischen Halbzelle besitzt entlang der vier Kanten einen beschichtungsfreien Randbereich. Der beschichtungsfreie Randbereich beträgt vorzugsweise von 2 bis 10 mm, besonders bevorzugt von 4 bis 8 mm. Um den beschichtungsfreien Randbereich herzustellen, wird die elektrochemisch aktive Beschichtung und, falls vorhanden, weitere Beschichtungen im Randbereich entfernt.The gas diffusion electrode of the electrochemical half cell according to the invention has a coating-free edge area along the four edges. The coating-free edge area is preferably from 2 to 10 mm, particularly preferably from 4 to 8 mm. In order to produce the coating-free edge area, the electrochemically active coating and, if present, further coatings in the edge area are removed.
Zum Einbau der Gasdiffusionselektrode in die Halbzelle liegt die Gasdiffusionselektrode auf der Haltestruktur auf. Die Haltestruktur besteht bevorzugt aus dem' gleichen Material, aus dem auch die Halbschalen der Elektrolysehalbelemente gefertigt sind, insbesondere aus Nickel im Falle der Chloralkalielektrolyse. Wie aus DE-A-44 44 114 bekannt, ist die Haltestruktur rahmenförmig und bildet zusammen mit der Gasdiffusionselektrode und der Rückwand der Gastasche die räumliche Begrenzung der Gastasche.To install the gas diffusion electrode in the half cell, the gas diffusion electrode rests on the holding structure. The support structure preferably consists of the 'same material, are made of the the half-shells of the electrolysis half-elements, in particular of nickel in the case of chlor-alkali electrolysis. As is known from DE-A-44 44 114, the holding structure is frame-shaped and, together with the gas diffusion electrode and the rear wall of the gas pocket, forms the spatial limitation of the gas pocket.
Der elektrisch leitfahige Träger der Gasdiffusionselektrode liegt auf .der Haltestru tur auf und zwar so weit, dass der Träger nicht nur im beschichtungsfreien Randbereich, sondern auch in einem Randbereich der Beschichtung auf der Haltestruktur aufliegt. Die Gasdiffusionselektrode liegt vorzugsweise bis zu einem Randbereich der Beschichtung von 2 bis 8 mm, besonders bevorzugt von 2 bis 5 mm, auf der Haltestruktur auf. Damit liegt der Träger der Gasdiffusionselektrode vorzugsweise insgesamt in einem Bereich von 4 bis 18 mm, besonders bevorzugt von 2 bis 13 mm, auf der Haltestruktur auf. Zum Verbinden der Gasdiffusionselektrode mit der Haltestruktur wird eine elektrisch leitfahige Platte, vorzugsweise aus Metall, insbesondere aus Nickel, auf den beschichtungsfreien Randbereich, d.h. den unbeschichteten elektrisch leitfähigen Träger, und einen Randbereich der Beschichtung aufgelegt. Der von der elektrisch leitfähigen Platte bedeckte Randbereich der Beschichtung beträgt bevorzugt 1 bis 10 mm. Außerdem kann die Platte ggf. in einem Bereich von maximal 5 mm, vorzugsweise maximal 3 mm, über den Träger der Gasdiffusionselektrode hinaus ragen. Dabei kann die Platte die Haltestruktur kontaktieren. Somit beträgt die Breite der elektrisch leitfähigen Platte bevorzugt von 3 bis 21 mm. Die Platte wird fest auf die Gasdiffusionselektrode und die Haltestruktur gepresst, da wegen der Abdichtung und der Strornzufuhrung ein ausreichender Kontakt zwischen der Gasdiffusionselektrode und der Haltestruktur gewährleistet sein muss.The electrically conductive support of the gas diffusion electrode rests on the holding structure, to the extent that the support rests not only in the coating-free edge area but also in an edge area of the coating on the holding structure. The gas diffusion electrode preferably lies on the holding structure up to an edge region of the coating of 2 to 8 mm, particularly preferably 2 to 5 mm. The carrier of the gas diffusion electrode thus lies on the holding structure in total in a range from 4 to 18 mm, particularly preferably from 2 to 13 mm. To connect the gas diffusion electrode to the holding structure, an electrically conductive plate, preferably made of metal, in particular nickel, is placed on the coating-free edge area, ie the uncoated electrically conductive support, and an edge area of the coating. The edge region of the coating covered by the electrically conductive plate is preferably 1 to 10 mm. In addition, the plate may protrude beyond the carrier of the gas diffusion electrode in a range of at most 5 mm, preferably at most 3 mm. The plate can contact the holding structure. Thus, the width of the electrically conductive plate is preferably from 3 to 21 mm. The plate is pressed firmly onto the gas diffusion electrode and the holding structure, since sufficient sealing between the gas diffusion electrode and the holding structure must be ensured because of the sealing and the power supply.
Die Gasdiffusionselektrode wird über die Platte-.jtrat.-dsr-. Haltestruktur .vorzugsweise mittels Schweißen verbunden. Das Schweißen erfolgt im Bereich des beschichtungsfreien Randes der Gasdiffusionselektrode. Bevorzugt wird Laserschweißung oder Ultraschallschweißung angewendet. Dabei ist einerseits das Verhältnis von der Dicke der Platte zu dem Abstand zwischen der Platte und dem Träger zu berücksichtigen. Insbesondere beim Laserschweißen beträgt das Verhältnis vorzugsweise weniger als 0,5, besonders bevorzugt weniger als 0,2. Ist der Abstand zwischen der Platte und dem Träger verhältnismäßig groß, z.B. bei einer verhältnismäßig dicken Beschichtung auf dem Träger, so kann dies durch eine dickere Platte kompensiert werden. Andererseits ist die Dicke der Beschichtung, welche auf dem elektrisch leitfähigen Träger aufgebracht ist, zu berücksichtigen. Ist der Teil der Beschichtung, welcher auf dem Träger aufliegt, größer als 0,5 mm und kann der Abstand zwischen der Platte und dem Träger nicht auf bevorzugt weniger als 1 mm, besonders bevorzugt weniger als 0,5 mm, durch Anpressen der Platte verringert werden, ist es vorteilhaft einen keilförmigen Abstandshalter zwischen Platte und Träger einzufuhren. Alternativ kann auch eine dickere Platte ohne Abstandshalter verwendet werden.The gas diffusion electrode is over the plate-.jtrat.-dsr-. Holding structure, preferably connected by welding. The welding takes place in the area of the coating-free edge of the gas diffusion electrode. Laser welding or ultrasonic welding is preferably used. On the one hand, the ratio of the thickness of the plate to the distance between the plate and the carrier must be taken into account. In the case of laser welding in particular, the ratio is preferably less than 0.5, particularly preferably less than 0.2. Is the distance between the plate and the support relatively large, e.g. with a relatively thick coating on the carrier, this can be compensated for by a thicker plate. On the other hand, the thickness of the coating that is applied to the electrically conductive carrier must be taken into account. If the part of the coating which lies on the carrier is greater than 0.5 mm and the distance between the plate and the carrier cannot be reduced to preferably less than 1 mm, particularly preferably less than 0.5 mm, by pressing the plate , it is advantageous to insert a wedge-shaped spacer between the plate and the support. Alternatively, a thicker plate without a spacer can be used.
Die elektrisch leitfahige Platte weist vorzugsweise eine Dicke von 0,05 bis 2 mm auf.The electrically conductive plate preferably has a thickness of 0.05 to 2 mm.
Die Platte läuft bevorzugt rahmenförmig um die Gasdiffusionselektrode. Alternativ ist es auch möglich, mehrere streifenförmige Platten einzusetzen, die sich beispielsweise an ihren Enden überlappen oder auf Stoß oder Gehrung liegen. Sie bilden dabei ebenfalls einen vollständigen Rahmen um die Gasdiffusionselektrode zur Abdichtung.The plate preferably runs frame-shaped around the gas diffusion electrode. Alternatively, it is also possible to use a plurality of strip-shaped plates which, for example, overlap at their ends or lie on a joint or miter. They also form a complete frame around the gas diffusion electrode for sealing.
In einer bevorzugten Ausführungsform ist im Bereich der Auflagefläche der Gasdiffusionselektrode bzw. dem elektrisch leitfähigen Träger auf die Haltestruktur eine Dichtung vorgesehen. Die Dichtung befindet sich zwischen Haltestruktur und Träger. In einer weiteren bevorzugten Ausführungsform wird zusätzlich oder alternativ zu der Dichtung die Beschichtung in dem Randbereich, der von der Platte bedeckt wird, hydrophilisiert, um eine gasdichte Verbindung herzustellen. Die Hydrophilisierung erfolgt beispielsweise durch Aufbringen einer tensidhaltigen Lösung auf die Oberfläche der Beschichtung, wodurch der Elektrolyt in die Beschichtung eindringt und eine Abdichtung über Kapillarkräfte bewirkt.In a preferred embodiment, a seal is provided in the area of the contact surface of the gas diffusion electrode or the electrically conductive carrier on the holding structure. The seal is located between the support structure and the carrier. In a further preferred embodiment, in addition to or as an alternative to the seal, the coating in the edge region which is covered by the plate is hydrophilized in order to produce a gas-tight connection. The hydrophilization is carried out, for example, by applying a surfactant-containing solution to the surface of the coating, as a result of which the electrolyte penetrates into the coating and causes sealing by capillary forces.
Der Vorteil der erfindungsgemäßen Halbzelle liegt darin, dass mittels der elektrisch leitfähigen Platte die Gasdiffusionselektrode mit der Haltestruktur elektrisch leitend verbunden ist und gleichzeitig die Abdichtung des Gasraums gegenüber dem Elektrolytraum erfolgt, sodass kein Elektrolyt in den Gasraum und kein Gas in den Elektrolytraum eintreten kann. Dabei geht durch den Einbau eine möglichst geringe elektrochemisch aktive Fläche der Gasdiffusionselektrode verloren. Ein zu großer Verlust an elektrochemisch aktiver Fläche hätte-ϊ.uxF©J.gsτ,dass.die Differenz zwischen der "Anόdenfiäche und der Fläche der Gasdiffusionselektrode zu groß wäre, weshalb insbesondere im Falle einer Umrüstung einer Membrananlage auf GDE-Betrieb die Elektrolysezelle mit einer erhöhten Stromdichte, und damit einer erhöhten Spannung, betrieben werden üsste, soll die Produktionskapazität nicht anteilig zurückgehen.The advantage of the half-cell according to the invention is that the gas diffusion electrode is electrically conductively connected to the holding structure by means of the electrically conductive plate and at the same time the gas space is sealed off from the electrolyte space, so that no electrolyte can enter the gas space and no gas can enter the electrolyte space. The smallest possible electrochemically active area of the gas diffusion electrode is lost as a result of the installation. Too great a loss of electrochemically active surface would-ϊ.uxF © J.gs τ, dass.die difference between the "Anόdenfiäche and the area of the gas diffusion electrode would be too great, which is why in the case of retrofitting a membrane plant to GDE operating the electrolysis cell With an increased current density and thus an increased voltage, the production capacity should not decrease proportionately.
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:The invention is explained in more detail below with reference to the drawings. Show it:
Figur 1 einen schematischen Ausschnitt aus einer ersten Ausfuhrungsform der erfϊndungs- gemäßen Halbzelle1 shows a schematic section from a first embodiment of the half cell according to the invention
Figur 2 einen schematischen Ausschnitt aus einer zweiten Ausführungsform mit DichtungFigure 2 shows a schematic section of a second embodiment with seal
Figur 3 einen schematischen Ausschnitt aus einer dritten Ausführungsform mit einem keilförmigen AbstandshalterFigure 3 shows a schematic section of a third embodiment with a wedge-shaped spacer
Figur 1 zeigt einen Gasraum 2 der elektrochemischen Halbzelle mit einer Haltestruktur 1 am Rand des Gasraums 2. Eine Gasdiffusionselektrode 6, bestehend aus einem elektrisch leitfähigen Träger 5 und einer elektrochemisch aktiven Beschichtung 4, liegt auf der Haltestruktur 1 auf. Die Haltestruktur 1 , die Gasdiffusionselektrode 6 und die Rückwand 11 bilden den Gasraum 2 in Form einer Gastasche.FIG. 1 shows a gas space 2 of the electrochemical half cell with a holding structure 1 at the edge of the gas space 2. A gas diffusion electrode 6, consisting of an electrically conductive carrier 5 and an electrochemically active coating 4, rests on the holding structure 1. The holding structure 1, the gas diffusion electrode 6 and the rear wall 11 form the gas space 2 in the form of a gas pocket.
Die Gasdiffusionselektrode 6 weist einen beschichtungsfreien Randbereich 8 auf, in dem die Beschichtung entfernt wurde und der Träger 5 freiliegt. Die Beschichtung 4 durchdringt den Träger 5 und liegt auf ihm auf. Der beschichtungsfreie Rand 8 der Gasdiffusionselektrode 6 und der Randbereich 7 der Beschichtung 4 liegen auf der Haltestruktur 1 auf. Eine elektrisch leitfahige Platte 3 liegt so auf der Gasdiffusionselektrode 6 auf, dass sie den beschichtungsfreien Rand 8 und den Randbereich 7 der Beschichtung 4 bedeckt. Sie ragt außerdem über den beschichtungsfreien Rand 8 hinaus, wo sie auf der Haltestniktur 1 zu liegen kommt. Im Bereich des beschichtungsfreien Randes 8 wird die Platte 3 mit der Gasdiffusionselektrode 6 und der Haltestruktur 1, vorzugsweise mittels Schweißen, verbunden.The gas diffusion electrode 6 has a coating-free edge area 8, in which the coating has been removed and the carrier 5 is exposed. The coating 4 penetrates the support 5 and lies on it. The coating-free edge 8 of the gas diffusion electrode 6 and the edge region 7 of the coating 4 rest on the holding structure 1. An electrically conductive plate 3 rests on the gas diffusion electrode 6 in such a way that it covers the coating-free edge 8 and the edge area 7 of the coating 4. It also protrudes over the coating-free edge 8 out, where it comes to lie on Haltestniktur 1. In the area of the coating-free edge 8, the plate 3 is connected to the gas diffusion electrode 6 and the holding structure 1, preferably by means of welding.
In Figur 2 ist eine weitere Ausführungsform dargestellt, wobei gleiche oder ähnliche Bauteile die gleichen Bezugszeichen aufweisen. Die Ausführungsform unterscheidet sich von der in Figur 1 dargestellten dadurch, dass eine Dichtung 9 zwischen der Haltestruktur 1 und der Gasdiffusionselektrode 6 vorgesehen ist.FIG. 2 shows a further embodiment, the same or similar components having the same reference numbers. The embodiment differs from that shown in FIG. 1 in that a seal 9 is provided between the holding structure 1 and the gas diffusion electrode 6.
In einer dritten Ausführungsform in Figur 3 sind ebenfalls gleiche oder ähnliche Bauteile mit den gleichen Bezugszeichen versehen. Im Vergleich zu der in Figur 1 gezeigten Ausführungsform ist ein keilförmiger Abstandshalter 10 zwischen der elektrisch leitfähigen Platte 3 und dem beschichtungsfreien Rand 8 eingeführt. Ein Abstandshalter 10 ist dann vorgesehen, wenn die BeschichtungIn a third embodiment in FIG. 3, identical or similar components are likewise provided with the same reference symbols. In comparison to the embodiment shown in FIG. 1, a wedge-shaped spacer 10 is inserted between the electrically conductive plate 3 and the coating-free edge 8. A spacer 10 is provided when the coating
4 der Gasdiffusionselektrode 6 so dick ist, dass der Abstand zwischen, der Platte 3 und dem Träger4 of the gas diffusion electrode 6 is so thick that the distance between the plate 3 and the carrier
5 zu groß ist, um eine Verbindung der Platte 3 mit der Gasdiffusionselektrode 6 und der Haltestruktur 1 herzustellen. 5 is too large to establish a connection of the plate 3 with the gas diffusion electrode 6 and the holding structure 1.
BeispieleExamples
Beispiel 1: Homogene GasdiffusionselektrodeExample 1: Homogeneous gas diffusion electrode
Es wurde eine Gasdiffusionselektrode eingesetzt, die aus einem elektrisch leitfähigen Träger und einer elektrochemisch aktiven Schicht aus einer Mischung aus Silber(I)-Oxid und PTFE bestand. Der Träger der Gasdiffusionselektrode bestand aus einem Netz aus Nickel, bei der die Drahtdicke 0,14 mm und die Maschenweite 0,5 mm betrug. Die Gasdiffusionselektrode wurde in einem Randbereich von 4 mm von der Silber(I)-Oxid/PTFE-haltigen Schicht befreit. Zwischen der Haltestruktur und der Gasdiffusionselektrode wurde eine PTFE-Dichtung eingelegt. Ein Metallstreifen aus Nickel mit einer Dicke von 1 mm und einer Breite von 8 mm wurde so positioniert, dass der be- schichtungsfreie Rand vollständig sowie ein Randbereich der Gasdiffusionselektrode von 4 mm bedeckt ^ar.- Anschließend wurde der Nickelstreifen an die Haltestruktur gepresst und mittels Laserschweißen mit dem Träger und der Haltestruktur verbunden.A gas diffusion electrode was used, which consisted of an electrically conductive support and an electrochemically active layer made of a mixture of silver (I) oxide and PTFE. The carrier of the gas diffusion electrode consisted of a network of nickel, in which the wire thickness was 0.14 mm and the mesh size was 0.5 mm. The gas diffusion electrode was freed of the silver (I) oxide / PTFE-containing layer in an edge region of 4 mm. A PTFE seal was inserted between the holding structure and the gas diffusion electrode. Mm, a metal strip of nickel having a thickness of 1 and a width of 8 mm was positioned such that the coating-free edge completely, and an edge region of the gas diffusion electrode of 4 mm covered ^ ar.- was subsequently pressed the nickel strips on the support structure and by means of Laser welding connected to the carrier and the holding structure.
Beispiel 2: Zweilagig aufgebaute GasdiffusionselektrodeExample 2: Two-layer gas diffusion electrode
Es wurde eine Gasdiffusionselektrode eingesetzt, die zwei Schichten aufwies: eine Gasdiffusionsschicht, bestehend aus PTFE und Kohlenstoff, und eine elektrochemisch aktive Schicht, bestehend aus PTFE, Kohlenstoff und Silber. Der elektrisch leitfähige Träger der Gasdiffusionselektrode bestand aus einem Netz aus versilbertem Nickel, bei der die Drahtdicke 0,16 mm und die Maschenweite 0,46 mm betrug. Die Gasdiffusionselektrode wurde in einem Randbereich von 4 mm von der Beschichtung, bestehend aus Gasdiffusionsschicht und elektrochemisch aktiver Schicht, befreit. Zwischen Haltestruktur und Gasdiffusionselektrode wurde eine PTFE-Dichtung eingelegt. In einem Randbereich der Beschichtung der Gasdiffusionselektrode wurde die Beschichtung hydrophilisiert. Hierzu wurde sie mit einer tensidhaltigen Lösung (Triton®-X-100-Lösung, Fa. Merck) bestrichen. Ein Metalls-reifen aus Nickel mit einer Dicke von 1 mm und einer Breite von 8 mm wurde so positioniert, dass der beschichtungsfreie Rand vollständig sowie ein Randbereich der Gasdiffusionselektrode von 4 mm bedeckt war. Anschließend wurde der Nickelstreifen an die Haltestruktur gepresst und mittels Laserschweißen mit dem Träger und der Haltestruktur verbunden. A gas diffusion electrode was used which had two layers: a gas diffusion layer consisting of PTFE and carbon, and an electrochemically active layer consisting of PTFE, carbon and silver. The electrically conductive carrier of the gas diffusion electrode consisted of a network of silver-plated nickel, in which the wire thickness was 0.16 mm and the mesh size was 0.46 mm. The gas diffusion electrode was freed of the coating consisting of gas diffusion layer and electrochemically active layer in an edge region of 4 mm. A PTFE seal was inserted between the holding structure and the gas diffusion electrode. The coating was hydrophilized in an edge region of the coating of the gas diffusion electrode. For this purpose, it was coated with a surfactant-containing solution (Triton®-X-100 solution, Merck). A metal tire made of nickel with a thickness of 1 mm and a width of 8 mm was positioned so that the coating-free edge was completely covered and an edge area of the gas diffusion electrode was covered by 4 mm. The nickel strip was then pressed onto the holding structure and connected to the carrier and the holding structure by means of laser welding.

Claims

Patentansprüche claims
1. Elektrochemische Halbzelle, wenigstens bestehend aus einem Gasraum (2), einem Elektrolytraum und einer den Gasraum (2) von dem Elektrolytraum trennenden Gasdiffusionselektrode (6) als Kathode oder Anode, welche wenigstens einen elektrisch leitfähigen Träger (5) und eine elektrochemisch aktive Beschichtung (4) umfasst, wobei die Gasdiffusionselektrode (6) einen beschichtungsfreien Randbereich (8) aufweist und mit einer Haltestruktur (1) verbunden ist, dadurch gekennzeichnet, dass die Gasdiffusionselektrode (6) im beschichtungsfreien Randbereich (8) mit der Haltestruktur (1) mit Hilfe einer elektrisch leitfahigen Platte (3) verbunden ist, welche wenigstens den beschichtungsfreien Randbereich (8) und einen Randbereich (7) der elektrochemisch aktiven Beschichtung (4) bedeckt. 1. Electrochemical half-cell, at least consisting of a gas space (2), an electrolyte space and a gas diffusion electrode (6) separating the gas space (2) from the electrolyte space as cathode or anode, which has at least one electrically conductive carrier (5) and an electrochemically active coating (4), wherein the gas diffusion electrode (6) has a coating-free edge area (8) and is connected to a holding structure (1), characterized in that the gas diffusion electrode (6) in the coating-free edge area (8) with the holding structure (1) An electrically conductive plate (3) is connected, which covers at least the coating-free edge area (8) and an edge area (7) of the electrochemically active coating (4).
2. Elektrochemische, HaJh.zeHe.nach Anspruch .1, dadurch gekennzeichnet, dass der beschich- tungsfreie Randbereich (8) von 2 bis 10 mm, bevorzugt von 4 bis 8 mm, beträgt.2. Electrochemical, HaJh.zeHe.nach claim .1, characterized in that the coating-free edge region (8) is from 2 to 10 mm, preferably from 4 to 8 mm.
3. Elektrochemische Halbzelle nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der von der elektrisch leitfähigen Platte (3) bedeckte Randbereich (7) der elektrochemisch aktiven Beschichtung (4) von 2 bis 8 mm, vorzugsweise von 2 bis 5 mm, beträgt.3. Electrochemical half cell according to one of claims 1 or 2, characterized in that the edge region (7) of the electrochemically active coating (4) covered by the electrically conductive plate (3) is from 2 to 8 mm, preferably from 2 to 5 mm, is.
4. Elektrochemische Halbzelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Verbindung der Gasdiffusionselektrode (6) mit der Haltestruktur (1) über die e- lektrisch leitfähige Platte (3) mittels Schweißen erfolgt.4. Electrochemical half-cell according to one of claims 1 to 3, characterized in that the connection of the gas diffusion electrode (6) with the holding structure (1) via the electrically conductive plate (3) takes place by means of welding.
5. Elektrochemische Halbzelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die elektrisch leitfähige Platte eine Dicke von 0,05 bis 2 mm aufweist.5. Electrochemical half cell according to one of claims 1 to 4, characterized in that the electrically conductive plate has a thickness of 0.05 to 2 mm.
6. Elektrochemische Halbzelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die elektrisch leitfahige Platte aus Metall, vorzugsweise Nickel, ist.6. Electrochemical half cell according to one of claims 1 to 5, characterized in that the electrically conductive plate is made of metal, preferably nickel.
7. Elektrochemische Halbzelle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass im Bereich der Auflagefläche der Gasdiffusionselektrode (6) auf die Haltestruktur (1) eine Dichtung (9) vorgesehen ist.7. Electrochemical half-cell according to one of claims 1 to 6, characterized in that a seal (9) is provided in the area of the contact surface of the gas diffusion electrode (6) on the holding structure (1).
8. Elektrochemische Halbzelle nach einem der Ansprüche 1 bis 1, dadurch gekennzeichnet, dass im Randbereich (7) der Beschichtung (4) eine tensidhaltige Lösung aufgebracht ist. 8. Electrochemical half-cell according to one of claims 1 to 1, characterized in that a surfactant-containing solution is applied in the edge region (7) of the coating (4).
EP04740108A 2003-07-04 2004-06-21 Electrochemical half cell Not-in-force EP1644556B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10330232A DE10330232A1 (en) 2003-07-04 2003-07-04 Electrochemical half cell
PCT/EP2004/006667 WO2005003410A1 (en) 2003-07-04 2004-06-21 Electrochemical half cell

Publications (2)

Publication Number Publication Date
EP1644556A1 true EP1644556A1 (en) 2006-04-12
EP1644556B1 EP1644556B1 (en) 2012-01-11

Family

ID=33521340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04740108A Not-in-force EP1644556B1 (en) 2003-07-04 2004-06-21 Electrochemical half cell

Country Status (8)

Country Link
US (2) US20050224341A1 (en)
EP (1) EP1644556B1 (en)
JP (1) JP4729485B2 (en)
CN (1) CN1816649B (en)
AT (1) ATE541069T1 (en)
DE (1) DE10330232A1 (en)
TW (1) TW200519232A (en)
WO (1) WO2005003410A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054159A1 (en) 2010-12-10 2012-06-14 Bayer Materialscience Aktiengesellschaft Process for the incorporation of oxygen-consuming electrodes in electrochemical cells and electrochemical cells
DE102010062803A1 (en) 2010-12-10 2012-06-14 Bayer Materialscience Aktiengesellschaft Method for incorporating oxygen-consuming electrodes into electrochemical cells and electrochemical cells
DE102011017264A1 (en) 2011-04-15 2012-10-18 Bayer Material Science Ag Alternative installation of a gas diffusion electrode in an electrochemical cell
DE102011100768A1 (en) 2011-05-06 2012-12-06 Bayer Material Science Ag Frame-sealed electrochemical cell for alternative sealing against electrolyte flow

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3710168A1 (en) 1987-03-27 1988-10-13 Varta Batterie Method of fabricating a plastic-bound gas-diffusion electrode with metallic fuel-cell catalysts
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
USRE37307E1 (en) * 1994-11-14 2001-08-07 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
DE4444114C2 (en) * 1994-12-12 1997-01-23 Bayer Ag Electrochemical half cell with pressure compensation
US5933016A (en) * 1996-08-30 1999-08-03 The University Of Dayton Single electrode conductivity technique
JP3008343B2 (en) * 1997-02-24 2000-02-14 日本ピラー工業株式会社 Expanded graphite sheet and gland packing using the same
EP1041176A4 (en) * 1998-10-13 2006-05-31 Toagosei Co Ltd Method for reducing charge in gas diffusing electrode and its charge reducing structure
JP3026264B1 (en) * 1999-02-16 2000-03-27 長一 古屋 Gas diffusion electrode-edge material assembly and its manufacturing method
EP1029946A3 (en) * 1999-02-16 2007-11-14 Nagakazu Furuya Gas diffusion electrode assemblies and process for producing the same
DE10152792A1 (en) * 2001-10-25 2003-05-08 Bayer Ag Method of integrating a gas diffusion electrode into an electrochemical reaction apparatus
US7404878B2 (en) * 2003-03-31 2008-07-29 Chlorine Engineers Corp., Ltd. Gas diffusion electrode assembly, bonding method for gas diffusion electrodes, and electrolyzer comprising gas diffusion electrodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005003410A1 *

Also Published As

Publication number Publication date
TW200519232A (en) 2005-06-16
EP1644556B1 (en) 2012-01-11
ATE541069T1 (en) 2012-01-15
JP4729485B2 (en) 2011-07-20
CN1816649B (en) 2010-12-15
WO2005003410A1 (en) 2005-01-13
US20050224341A1 (en) 2005-10-13
JP2007533841A (en) 2007-11-22
CN1816649A (en) 2006-08-09
US7691242B2 (en) 2010-04-06
DE10330232A1 (en) 2005-01-20
US20080296153A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
EP0182114B1 (en) Electrolysis apparatus with horizontally positioned electrodes
DD211130A5 (en) ELECTRODE COMPONENT
DE4208057C2 (en) Cell structure for electrolysers and fuel cells
DE1421051B2 (en) Multiple electrolysis cell
EP2697410B1 (en) Alternative installation of a gas diffusion electrode in an electrochemical cell having percolator technology
EP0059931B1 (en) Electrolyzer for alkaline water electrolysis, and process for its manufacture
CH632014A5 (en) BIPOLAR ELECTRODE.
EP0687312B1 (en) Electrode arrangement for gas-forming electrolytic processes in membrane or diaphragm cells
DE2262173B2 (en) Detachable, bipolar electrode
DE10027339A1 (en) Dimensionally stable gas diffusion electrode
EP2705174B1 (en) Electrochemical cell having a frame seal for alternative sealing against marginal leakages of the electrolyte
EP4093901B1 (en) Device and method for carbon dioxide electrolysis or carbon monoxide electrolysis
DE2538000B2 (en) Bipolar electrode construction for a membrane-free electrolysis cell
EP1644556B1 (en) Electrochemical half cell
DE1417193A1 (en) Electrolytic cell
DE10333853A1 (en) Electrochemical cell
DE3808495C2 (en)
DE2125941B2 (en) Bipolar unit and electrolytic cell built up with it
DE112021002023T5 (en) ELECTROLYSIS TANK
DE1596230A1 (en) Cell for storing electrical energy through electrolysis of water and recovery of the same through electrochemical conversion of the hydrogen and oxygen formed
DE2148337A1 (en) BIPOLAR MULTIPLE ELECTROLYSIS CELL WITH DIAPHRAGMA
WO1992010597A1 (en) Electrolytic cell for electrolytic processes in which gases are developed or consumed, and a method of manufacturing the cell
EP2649222B1 (en) Method for mounting oxygen consuming-electrodes in electrochemical cells and electrochemical cells
EP2463408B1 (en) Method for installing oxygen consumption electrodes in electrochemical cells and electrochemical cell
DE1421051C (en) Multiple electrolysis cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BULAN, ANDREAS

Inventor name: FABIAN, PETER

Inventor name: GESTERMANN, FRITZ

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GESTERMANN, FRITZ

Inventor name: BULAN, ANDREAS

Inventor name: FABIAN, PETER

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GESTERMANN, FRITZ

Inventor name: BULAN, ANDREAS

Inventor name: FABIAN, PETER

17Q First examination report despatched

Effective date: 20071109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 541069

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013221

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120412

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

26N No opposition filed

Effective date: 20121012

BERE Be: lapsed

Owner name: BAYER MATERIALSCIENCE A.G.

Effective date: 20120630

Owner name: DE NORA DEUTSCHLAND G.M.B.H.

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013221

Country of ref document: DE

Effective date: 20121012

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120422

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120702

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 541069

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AKTIENGES, DENORA DEUTSCHLAND GMBH, , DE

Effective date: 20120119

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: DE NORA DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AKTIENGES, DENORA DEUTSCHLAND GMBH, , DE

Effective date: 20120119

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: DE NORA DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: DE NORA DEUTSCHLAND GMBH, 63517 RODENBACH, DE

Effective date: 20140918

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNER: DE NORA DEUTSCHLAND GMBH, 63517 RODENBACH, DE

Effective date: 20140918

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: DE NORA DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNERS: BAYER MATERIALSCIENCE AKTIENGESELLSCHAFT, 51373 LEVERKUSEN, DE; DENORA DEUTSCHLAND GMBH, 63517 RODENBACH, DE

Effective date: 20120119

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE

Free format text: FORMER OWNERS: BAYER MATERIALSCIENCE AKTIENGESELLSCHAFT, 51373 LEVERKUSEN, DE; DENORA DEUTSCHLAND GMBH, 63517 RODENBACH, DE

Effective date: 20120119

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: DE NORA DEUTSCHLAND GMBH, 63517 RODENBACH, DE

Effective date: 20140918

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNERS: BAYER MATERIALSCIENCE AKTIENGESELLSCHAFT, 51373 LEVERKUSEN, DE; DENORA DEUTSCHLAND GMBH, 63517 RODENBACH, DE

Effective date: 20120119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150617

Year of fee payment: 12

Ref country code: SE

Payment date: 20150611

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: DE NORA DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNERS: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE; DE NORA DEUTSCHLAND GMBH, 63517 RODENBACH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013221

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNERS: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE; DE NORA DEUTSCHLAND GMBH, 63517 RODENBACH, DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160622

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170613

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170619

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013221

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180621

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101