EP1644545B1 - Thin strips or foils of al-fe-si alloy - Google Patents

Thin strips or foils of al-fe-si alloy Download PDF

Info

Publication number
EP1644545B1
EP1644545B1 EP04767726A EP04767726A EP1644545B1 EP 1644545 B1 EP1644545 B1 EP 1644545B1 EP 04767726 A EP04767726 A EP 04767726A EP 04767726 A EP04767726 A EP 04767726A EP 1644545 B1 EP1644545 B1 EP 1644545B1
Authority
EP
European Patent Office
Prior art keywords
alloy
mpa
thickness
foil
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04767726A
Other languages
German (de)
French (fr)
Other versions
EP1644545A2 (en
Inventor
Armelle Danielou
Jean-Marie Feppon
Bruno Chenal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novelis Inc Canada
Original Assignee
Novelis Inc Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novelis Inc Canada filed Critical Novelis Inc Canada
Priority to PL04767726T priority Critical patent/PL1644545T3/en
Publication of EP1644545A2 publication Critical patent/EP1644545A2/en
Application granted granted Critical
Publication of EP1644545B1 publication Critical patent/EP1644545B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to thin sheets or strips with a thickness of less than 200 ⁇ m, and preferably 50 ⁇ m, made of aluminum alloy with iron and silicon, substantially free of manganese, and a method of manufacturing such leaves or strips.
  • These strips can be obtained by semi-continuous casting of conventional plates or by continuous casting, for example the continuous casting between belts ("twin-belt casting") or between cylinders ("twin-roll casting”).
  • the mechanical characteristics can also be improved by the addition of manganese in small quantities in iron-loaded 8000 series alloys.
  • the patent application WO 02/64848 (Alcan International) describes the continuous casting of thin strips of AlFeSi alloy containing from 1.2 to 1.7% Fe and from 0.35 to 0.8% Si. high mechanical strength by adding to the alloy from 0.07 to 0.20% manganese. This addition of manganese is recognized as necessary to obtain a small grain size after the final annealing.
  • manganese in solid solution or in the form of fine precipitates can block or delay the recrystallization during the final annealing. It is therefore necessary to precisely control the precipitation of the phases containing manganese during each step of the range, which is often difficult. Any drift in the transformation range has significant consequences on the effectiveness of the final annealing. It is therefore very interesting to develop an alloy that does not contain manganese, but nevertheless has high mechanical characteristics.
  • US Pat. Nos. 5,503,689 discloses a process for manufacturing a thin alloy strip containing from 0.30 to 1.1% Si and from 0.40 to 1.0% Fe, less than 0.25% Cu. and less than 0.1% Mn, by continuous casting and cold rolling without intermediate annealing.
  • the preferred levels of iron and silicon are between 0.6 and 0.75%.
  • US Patent 5,725,695 discloses for the same compositional range a range with intermediate annealing between 400 and 440 ° C (750 - 825 ° F) and final recrystallization annealing at 288 ° C (550 ° F).
  • the ratio of Si / Fe contents is equal to or greater than 1.
  • the maximum ultimate tensile strength obtained is 90 MPa (13.13 ksi)
  • the maximum yield strength is 39.1 MPa (5.68 ksi)
  • the elongation is 11.37% for thicknesses of 46 ⁇ m (0.00185 ').
  • the patent application WO 99/23269 (Nippon Light Metal and Alcan International) describes a process applicable to AlFeSi alloys containing from 0.2 to 1% Si and from 0.3 to 1.2% Fe, with a Si / Fe ratio. between 0.4 and 1.2, wherein the intermediate annealing is carried out in two stages, the first between 350 and 450 ° C, the second between 200 and 330 ° C.
  • the purpose of this method is to reduce the surface defects of the sheet. Mechanical characteristics are not mentioned.
  • the object of the invention is to obtain thin sheets or strips of AlFeSi alloy without the addition of manganese, having a high mechanical strength, while maintaining a good formability, with an industrial manufacturing range that is as economical as possible.
  • the thin sheets or strips according to the invention are manufactured from 8000 AlSiFe alloys substantially free of manganese, with a content typically less than 0.1%.
  • the iron and silicon contents are significantly higher than those of alloys 8011 and 8111, which are the AlSiFe alloys for the most commonly used manganese-free thin sheets.
  • a preferred composition domain is an alloy containing 1.1 to 1.3% silicon and 1.0 to 1.2% iron.
  • the alloys according to the invention should preferably have a composition such that the Si / Fe ratio of the respective silicon and iron contents is ⁇ 0.95. They have, in the annealed state (state O), an unusual mechanical strength for alloys of this composition, with a breaking strength R m > 110 MPa, or even 115 MPa, for thicknesses> 9 ⁇ m and> 100 MPa for thicknesses from 6 to 9 ⁇ m, and a yield strength of 0.2% R 0.2 > 70 MPa. This high mechanical strength is not obtained at the expense of formability, since, with respect to alloys 8011 or 8111, the elongations are at least the same, and the burst pressures are increased.
  • the hot-rolled or untreated tapes are optionally subjected to a low-temperature homogenization (between 450 and 500 ° C) to reduce the central segregation which may be a source of a reduction in the formability at final thickness.
  • This low-temperature heat treatment is sufficient to reduce the possible central segregations in these alloys without manganese.
  • the strips are then cold rolled, either to the final thickness, or to an intermediate thickness of between 0.5 and 5 mm, to which they are subjected to an intermediate annealing.
  • the Applicant has found that the application to an AlFeSi alloy, more particularly to a composition such as Si / Fe ⁇ 0.95, of low temperature heat treatments, possibly with the suppression of the intermediate annealing when it is technically possible, leads to a significantly improved mechanical strength, at least 15% compared to the usual intermediate annealing. This superior mechanical strength is obtained while improving the formability measured by burst pressure or dome height according to ISO 2758.
  • the final annealing is carried out at a temperature of between 200 and 370 ° C. for a duration of between 1 and 72 hours.
  • the annealing times are conditioned by the quality of the degreasing of the sheet.
  • a fine grain structure with an average grain size, measured by scanning electron microscope image analysis, of less than 3 ⁇ m is obtained.
  • the conjunction of a homogenization at low temperature or a lack of homogenization and an intermediate annealing at low temperature or completely suppressed, in addition to its economic advantage, is favorable to obtaining a fine size of grains.
  • the grain size is reduced by about 30% compared with heat treatments at higher temperatures, which leads to an increase in the mechanical characteristics R 0.2 and R m , which for thin thicknesses are related to the number of grain boundaries. This gain is not at the expense of elongation, as increasing the number of grains in the thickness also limits the risk of damage located in one or two single grains of the thickness of the sheet.
  • the thin sheets according to the invention are particularly suitable for applications requiring both a good mechanical strength and a high formability, such as for example the manufacture of multilayer complexes, in particular for the lids of fresh product packaging, overcap caps or of household aluminum.
  • Example 1 An alloy strip A of Example 1 with a thickness of 6.1 mm was cast in continuous casting between rolls. The strip was then cold rolled to a thickness of 2 mm. Part of the strip was subjected to a usual intermediate anneal for such a 5 hour alloy at 500 ° C. The other part of the strip has undergone an intermediate anneal according to the invention for 5 hours at 320 ° C. The two parts of the strip were then cold rolled in several passes until the final thickness of 10.5 microns. They were then subjected to a final annealing of 40 h at 270 ° C.
  • Example 3 The same properties as in Example 1 were measured, the values of which are given in Table 3: Table 3 Annealing inter R m (MPa) R 0.2 (MPa) AT (%) Pe (kPa) Hd (mm) 470 ° C 99 63 7.3 71 5.1 320 ° C 117 84 8.1 92 5.7 It is found that the lowering of the intermediate annealing temperature leads to both an increase in the mechanical strength, the elongation, the bursting strength and the formability.
  • the average grain size, measured by SEM image analysis, is 3.6 ⁇ m for annealing at 470 ° C, and 2.3 ⁇ m for annealing at 320 ° C.
  • the increase in the mechanical characteristics for the low temperature annealing is therefore related to a reduction in the grain size obtained after final annealing.

Description

Domaine de l'inventionField of the invention

L'invention concerne des feuilles ou bandes minces, d'épaisseur inférieure à 200 µm, et de préférence à 50 µm, en alliage d'aluminium au fer et au silicium, substantiellement exempt de manganèse, ainsi qu'un procédé de fabrication de telles feuilles ou bandes. Ces bandes peuvent être obtenues par coulée semi-continue de plaques conventionnelle ou par coulée continue, par exemple la coulée continue entre courroies (« twin-belt casting ») ou entre cylindres (« twin-roll casting »).The invention relates to thin sheets or strips with a thickness of less than 200 μm, and preferably 50 μm, made of aluminum alloy with iron and silicon, substantially free of manganese, and a method of manufacturing such leaves or strips. These strips can be obtained by semi-continuous casting of conventional plates or by continuous casting, for example the continuous casting between belts ("twin-belt casting") or between cylinders ("twin-roll casting").

Etat de la techniqueState of the art

La tendance du marché des feuilles minces en alliage d'aluminium conduit à une réduction constante des épaisseurs utilisées pour une application donnée, tout en exigeant des caractéristiques mécaniques élevées et une bonne formabilité.
On utilise souvent pour les feuilles minces des alliages à très faible teneur en manganèse, comme par exemple l'alliage 8111 de composition (% en poids) enregistrée à l'Aluminum Association :

  • Si : 0,30 - 1,1 Fe : 0,40 - 1,0 Cu < 0,10 Mn < 0,10
L'absence de manganèse permet d'obtenir plus facilement la recristallisation au recuit final, mais la résistance à la rupture Rm reste insuffisante pour les épaisseurs inférieures à 100 µm.
Il est donc nécessaire de développer de nouveaux alliages et/ou d'optimiser les gammes de transformation pour répondre à la demande du marché.The market trend for thin aluminum alloy sheets leads to a constant reduction of the thicknesses used for a given application, while requiring high mechanical characteristics and good formability.
Very thin alloys of manganese, such as for example alloy 8111 of composition (% by weight) recorded at the Aluminum Association, are often used for thin sheets:
  • Si: 0.30 - 1.1 Fe: 0.40 - 1.0 Cu <0.10 Mn <0.10
The absence of manganese makes it easier to obtain recrystallization at the final annealing, but the breaking strength R m remains insufficient for thicknesses less than 100 μm.
It is therefore necessary to develop new alloys and / or optimize the transformation ranges to meet market demand.

Pour augmenter la résistance mécanique, il est habituel d'ajouter du manganèse, comme par exemple dans l'alliage 8006, dont la composition enregistrée à l'Aluminum Association est la suivante (% en poids) :

  • Si < 0,40 Fe : 1,2 - 2,0 Cu < 0,30 Mn: 0,30-1,0 Mg < 0,10
L'ajout de manganèse a en effet pour résultat de durcir le matériau. Dans le cas du brevet US 6,517,646 de la demanderesse, les caractéristiques mécaniques obtenues avec un alliage de composition : Si = 0,23%, Fe = 1.26%, Cu = 0.017%, Mn = 0.37%, Mg = 0.0032%, Ti = 0.008%, en combinaison avec une gamme de transformation favorable, conduit à une valeur de Rm de 103 MPa pour une épaisseur de 6.6µm.To increase the mechanical strength, it is usual to add manganese, as for example in alloy 8006, whose composition recorded in the Aluminum Association is as follows (% by weight):
  • If <0.40 Fe: 1.2 - 2.0 Cu <0.30 Mn: 0.30-1.0 Mg <0.10
The addition of manganese has the effect of hardening the material. In the case of US Pat. No. 6,517,646 of the Applicant, the mechanical characteristics obtained with an alloy of composition: Si = 0.23%, Fe = 1.26%, Cu = 0.017%, Mn = 0.37%, Mg = 0.0032%, Ti = 0.008%, in combination with a favorable transformation range, leads to a value of R m of 103 MPa for a thickness of 6.6 μm.

On peut également améliorer les caractéristiques mécaniques par ajout de manganèse en faible quantité dans des alliages de la série 8000 chargés en fer. La demande de brevet WO 02/64848 (Alcan International) décrit la fabrication par coulée continue de bandes minces en alliage AlFeSi contenant de 1,2 à 1,7% Fe et de 0,35 à 0,8% Si. On obtient une résistance mécanique élevée en ajoutant à l'alliage de 0,07 à 0,20% de manganèse. Cette addition de manganèse est reconnue nécessaire pour obtenir une faible taille de grains après le recuit final.The mechanical characteristics can also be improved by the addition of manganese in small quantities in iron-loaded 8000 series alloys. The patent application WO 02/64848 (Alcan International) describes the continuous casting of thin strips of AlFeSi alloy containing from 1.2 to 1.7% Fe and from 0.35 to 0.8% Si. high mechanical strength by adding to the alloy from 0.07 to 0.20% manganese. This addition of manganese is recognized as necessary to obtain a small grain size after the final annealing.

Le manganèse apparaît donc comme un élément permettant d'augmenter les caractéristiques mécaniques des alliages 8000. Cependant, le manganèse en solution solide ou sous forme de fins précipités peut bloquer ou retarder la recristallisation au cours du recuit final. Il est donc nécessaire de contrôler précisément la précipitation des phases contenant du manganèse au cours de chaque étape de la gamme, ce qui se révèle souvent délicat. Toute dérive dans la gamme de transformation a des conséquences non négligeables sur l'efficacité du recuit final. Il est donc très intéressant de développer un alliage qui ne contienne pas de manganèse, mais présente néanmoins des caractéristiques mécaniques élevées.Manganese thus appears as an element allowing to increase the mechanical characteristics of alloys 8000. However, manganese in solid solution or in the form of fine precipitates can block or delay the recrystallization during the final annealing. It is therefore necessary to precisely control the precipitation of the phases containing manganese during each step of the range, which is often difficult. Any drift in the transformation range has significant consequences on the effectiveness of the final annealing. It is therefore very interesting to develop an alloy that does not contain manganese, but nevertheless has high mechanical characteristics.

Les brevets US 5,503,689 (Reynolds Metals) décrit un procédé de fabrication d'une bande mince en alliage contenant de 0,30 à 1,1% Si et de 0,40 à 1,0% Fe, moins de 0,25% Cu et moins de 0,1% Mn, par coulée continue et laminage à froid sans recuit intermédiaire. Les teneurs préférentielles en fer et silicium se situent entre 0,6 et 0,75%.
Le brevet US 5,725,695 (Reynolds Metals) décrit pour le même domaine de composition une gamme avec recuit intermédiaire entre 400 et 440°C (750 - 825°F) et recuit final de recristallisation à 288°C (550°F). Le rapport des teneurs Si/Fe est égal ou supérieur à 1. Dans les exemples, la résistance à la rupture maximale obtenue est 90 MPa (13.13 ksi), la limite d'élasticité maximale est 39.1 MPa (5.68 ksi), et l'allongement est 11,37% pour des épaisseurs de 46µm (0.00185'). Ces caractéristiques mécaniques restent encore faibles pour certaines applications.
US Pat. Nos. 5,503,689 (Reynolds Metals) discloses a process for manufacturing a thin alloy strip containing from 0.30 to 1.1% Si and from 0.40 to 1.0% Fe, less than 0.25% Cu. and less than 0.1% Mn, by continuous casting and cold rolling without intermediate annealing. The preferred levels of iron and silicon are between 0.6 and 0.75%.
US Patent 5,725,695 (Reynolds Metals) discloses for the same compositional range a range with intermediate annealing between 400 and 440 ° C (750 - 825 ° F) and final recrystallization annealing at 288 ° C (550 ° F). The ratio of Si / Fe contents is equal to or greater than 1. In the examples, the maximum ultimate tensile strength obtained is 90 MPa (13.13 ksi), the maximum yield strength is 39.1 MPa (5.68 ksi), and the elongation is 11.37% for thicknesses of 46μm (0.00185 '). These mechanical characteristics are still low for some applications.

Pour les alliages obtenus par coulée continue, il est souvent nécessaire d'effectuer un traitement thermique à haute température afin de réduire la nocivité des ségrégations, en résorbant les amas de précipitation et en homogénéisant la structure dans l'épaisseur. L'effet d'une homogénéisation à 600°C est décrit pour l'alliage 8011 (de composition : 0.71%Fe, 0.77%Si, 0.038%Cu, 0.006%Mn, 98.45%Al) obtenu par coulée entre cylindres dans l'article de Y. Birol « Centerline Segregation in a Twin-Roll Cast AA8011 Alloy » Aluminium, 74, 1998, pp. 318-321. On obtient une modification des phases précipitées et une réduction des hétérogénéités. La réduction de la ségrégation centrale permet par la suite de limiter la porosité des feuilles très minces, et d'améliorer leur formabilité.For the alloys obtained by continuous casting, it is often necessary to carry out a heat treatment at high temperature in order to reduce the harmfulness of the segregations, by resorbing the clusters of precipitation and by homogenizing the structure in the thickness. The effect of a homogenization at 600 ° C is described for the alloy 8011 (composition: 0.71% Fe, 0.77% Si, 0.038% Cu, 0.006% Mn, 98.45% Al) obtained by casting between rolls in the article by Y. Birol "Centerline Segregation in Twin-Roll Cast AA8011 Alloy" Aluminum, 74, 1998, pp. 318-321. A modification of the precipitated phases and a reduction in heterogeneities are obtained. The reduction of the central segregation makes it possible later to limit the porosity of the very thin leaves, and to improve their formability.

Il est intéressant pour des raisons économiques de limiter la température de traitement thermique. Pour un alliage 8111 de composition : 0.7%Fe, 0.7%Si, Mn < 0,02, Zn < 0,02, Cu < 0,02, on observe un début de transformation des phases et une recristallisation totale dès 460°C, même si un recuit à 550-580°C est nécessaire pour obtenir une transformation plus complète (cf. M. Slamova et al. « Response of AA8006 and AA8111 Strip-Cast Rolled Alloys to High Temperature Annealing » , ICAA-6, 1998). Une homogénéisation à basse température est donc envisageable pour les alliages sans manganèse.It is interesting for economic reasons to limit the temperature of heat treatment. For an alloy 8111 of composition: 0.7% Fe, 0.7% Si, Mn <0.02, Zn <0.02, Cu <0.02, a beginning of phase transformation is observed and a total recrystallization from 460 ° C, although annealing at 550-580 ° C is required to achieve a more complete transformation (see M. Slamova et al., "Response of AA8006 and AA8111 Strip-Cast Rolled Alloys to High Temperature Annealing", ICAA-6, 1998) . Homogenization at low temperature is therefore possible for alloys without manganese.

Par ailleurs, dans la transformation successive à l'homogénéisation, jusqu'à de faibles épaisseurs, il est habituel d'introduire une étape de recuit intermédiaire, afin d'adoucir le métal. Pour les alliages au manganèse, le contrôle du recuit intermédiaire nécessite en général un traitement thermique à haute température (au-dessus de 400°C), afin d'obtenir une recristallisation.Moreover, in the subsequent conversion to homogenization, up to small thicknesses, it is usual to introduce an intermediate annealing step, in order to soften the metal. For manganese alloys, control of the intermediate annealing generally requires high temperature heat treatment (above 400 ° C) to obtain recrystallization.

Pour les alliages de type 8000 sans manganèse, on peut envisager de réaliser un traitement thermique à une température plus basse que pour les alliages de type 8006.For type 8000 alloys without manganese, it is conceivable to perform a heat treatment at a lower temperature than for type 8006 alloys.

La demande de brevet WO 99/23269 (Nippon Light Metal et Alcan International) décrit un procédé applicable aux alliages AlFeSi contenant de 0,2 à 1% Si et de 0,3 à 1,2% Fe, avec un rapport Si/Fe compris entre 0,4 et 1,2, dans lequel le recuit intermédiaire est effectué en deux étapes, la première entre 350 et 450°C, la seconde entre 200 et 330°C. Le but de ce procédé est de réduire les défauts de surface de la feuille. Les caractéristiques mécaniques ne sont pas mentionnées.The patent application WO 99/23269 (Nippon Light Metal and Alcan International) describes a process applicable to AlFeSi alloys containing from 0.2 to 1% Si and from 0.3 to 1.2% Fe, with a Si / Fe ratio. between 0.4 and 1.2, wherein the intermediate annealing is carried out in two stages, the first between 350 and 450 ° C, the second between 200 and 330 ° C. The purpose of this method is to reduce the surface defects of the sheet. Mechanical characteristics are not mentioned.

L'invention a pour but d'obtenir des feuilles ou bandes minces en alliage AlFeSi sans addition de manganèse, présentant une résistance mécanique élevée, tout en conservant une bonne formabilité, avec une gamme de fabrication industrielle aussi économique que possible.The object of the invention is to obtain thin sheets or strips of AlFeSi alloy without the addition of manganese, having a high mechanical strength, while maintaining a good formability, with an industrial manufacturing range that is as economical as possible.

Objet de l'inventionObject of the invention

L'invention a pour objet une feuille mince d'épaisseur comprise entre 6 et 200 µm, et de préférence entre 6 et 50 µm, en alliage de composition (% en poids) :

  • Si : 1,0 - 1,5 Fe : 1,0 - 1,5 Cu < 0,2 Mn < 0,1 autres éléments < 0,05
chacun et < 0,15 au total, reste Al, avec de préférence la condition Si/Fe ≥ 0,95, présentant à l'état recuit une résistance à la rupture Rm > 110 MPa pour les épaisseurs > 9 µm, et > 100 MPa pour les épaisseurs de 6 à 9 µm. La feuille mince a, de préférence, une limite d'élasticité R0.2 (mesurée sur éprouvettes cisaillées) > 70 MPa. L'allongement à la rupture est supérieur aux valeurs suivantes en fonction de l'épaisseur de la feuille : Epaisseur (µm) A (%) supérieur à et de préférence à 6-9 3 4 9 - 15 5 7 15-25 10 15 25-50 18 25 50-200 20 25 L'alliage a, de préférence, une teneur en silicium comprise entre 1,1 et 1,3% et une teneur en fer comprise entre 1,0 et 1,2%.The subject of the invention is a thin sheet with a thickness of between 6 and 200 μm, and preferably between 6 and 50 μm, of alloy composition (% by weight):
  • Si: 1.0 - 1.5 Fe: 1.0 - 1.5 Cu <0.2 Mn <0.1 other elements <0.05
each and <0.15 in total, remains Al, preferably with the Si / Fe condition ≥ 0.95, having in the annealed state a breaking strength R m > 110 MPa for thicknesses> 9 μm, and> 100 MPa for thicknesses from 6 to 9 μm. The thin sheet preferably has a yield strength R 0.2 (measured on sheared specimens)> 70 MPa. The elongation at break is greater than the following values depending on the thickness of the sheet: Thickness (μm) A (%) greater than and preferably to 6-9 3 4 9 - 15 5 7 15-25 10 15 25-50 18 25 50-200 20 25 The alloy preferably has a silicon content of between 1.1 and 1.3% and an iron content of between 1.0 and 1.2%.

L'invention a également pour objet un procédé de fabrication de bandes minces d'épaisseur inférieure à 200 µm en alliage Al-Fe-Si de composition (% en poids) :

  • Si : 1,0 - 1,5 Fe : 1,0 - 1,5 Cu < 0,2 Mn < 0,1 autres éléments < 0,05 chacun et < 0,15 au total, reste Al, avec de préférence la condition Si/Fe ≥ 0,95,
comportant la préparation d'une première bande soit par coulée semi-continue verticale d'une plaque et laminage à chaud, soit par coulée continue éventuellement suivie d'un laminage à chaud, le laminage à froid de cette première bande jusqu'à l'épaisseur finale avec éventuellement un recuit intermédiaire de 2 à 20 h à une température comprise entre 250 et 350°C, et de préférence entre 280 et 340°C, et un recuit final à une température comprise entre 200 et 370°C.The subject of the invention is also a process for producing thin strips with a thickness of less than 200 μm in Al-Fe-Si alloy of composition (% by weight):
  • If: 1.0 - 1.5 Fe: 1.0 - 1.5 Cu <0.2 Mn <0.1 other elements <0.05 each and <0.15 in total, remain Al, preferably with condition Si / Fe ≥ 0.95,
involving the preparation of a first web either by vertical semi-continuous casting of a plate and hot rolling, or by continuous casting possibly followed by hot rolling, cold rolling of this first web to final thickness with optionally an intermediate annealing of 2 to 20 hours at a temperature between 250 and 350 ° C, and preferably between 280 and 340 ° C, and a final annealing at a temperature between 200 and 370 ° C.

Description de l'inventionDescription of the invention

Les feuilles ou bandes minces selon l'invention sont fabriquées à partir d'alliages 8000 AlSiFe pratiquement exempts de manganèse, avec une teneur typiquement inférieure à 0,1%. Les teneurs en fer et en silicium sont significativement plus élevées que celles des alliages 8011 et 8111, qui sont les alliages AlSiFe pour feuilles minces sans manganèse les plus couramment utilisés. Un domaine de composition préférentiel est un alliage contenant de 1,1 à 1,3% de silicium et de 1,0 à 1,2% de fer.The thin sheets or strips according to the invention are manufactured from 8000 AlSiFe alloys substantially free of manganese, with a content typically less than 0.1%. The iron and silicon contents are significantly higher than those of alloys 8011 and 8111, which are the AlSiFe alloys for the most commonly used manganese-free thin sheets. A preferred composition domain is an alloy containing 1.1 to 1.3% silicon and 1.0 to 1.2% iron.

Les alliages selon l'invention doivent avoir de préférence une composition telle que le rapport Si/Fe des teneurs respectives en silicium et en fer soit ≥ 0,95. Ils présentent à l'état recuit (état O) une résistance mécanique inhabituelle pour des alliages de cette composition, avec une résistance à la rupture Rm > 110 MPa, voire 115 MPa, pour les épaisseurs > 9 µm et > 100 MPa pour les épaisseurs de 6 à 9 µm, et une limite d'élasticité conventionnelle à 0,2% R0.2 > 70 MPa. Cette résistance mécanique élevée n'est pas obtenue aux dépens de la formabilité, car, par rapport aux alliages 8011 ou 8111, les allongements sont au moins les mêmes, et les pressions d'éclatement sont augmentées.The alloys according to the invention should preferably have a composition such that the Si / Fe ratio of the respective silicon and iron contents is ≥ 0.95. They have, in the annealed state (state O), an unusual mechanical strength for alloys of this composition, with a breaking strength R m > 110 MPa, or even 115 MPa, for thicknesses> 9 μm and> 100 MPa for thicknesses from 6 to 9 μm, and a yield strength of 0.2% R 0.2 > 70 MPa. This high mechanical strength is not obtained at the expense of formability, since, with respect to alloys 8011 or 8111, the elongations are at least the same, and the burst pressures are increased.

Ces propriétés mécaniques élevées sont obtenues aussi bien pour des bandes produites à partir de plaques obtenues par coulée semi-continue verticale conventionnelle et laminées à chaud, que pour des bandes issues de coulée continue, soit entre courroies (« belt casting »), soit entre cylindres (« roll casting »). La coulée continue entre courroies est suivie également d'un laminage à chaud.These high mechanical properties are obtained both for strips produced from plates obtained by vertical semi-continuous casting conventional and hot-rolled, only for bands from continuous casting, or between belts ("belt casting") or between rolls ("roll casting"). Continuous casting between belts is also followed by hot rolling.

Les bandes laminées à chaud ou brutes de coulée dans le cas de la coulée continue entre cylindres sont éventuellement soumises à une homogénéisation basse température (entre 450 et 500°C) pour réduire la ségrégation centrale qui peut être source d'une réduction de la formabilité à épaisseur finale. Ce traitement thermique basse température est suffisant pour résorber les ségrégations centrales éventuelles dans ces alliages sans manganèse. Les bandes sont ensuite laminées à froid, soit jusqu'à l'épaisseur finale, soit jusqu'à une épaisseur intermédiaire comprise entre 0,5 et 5 mm, à laquelle elles sont soumises à un recuit intermédiaire. Contrairement aux alliages contenant du manganèse, il est possible d'effectuer ce recuit intermédiaire à une température relativement basse, comprise entre 250 et 350°C, et de préférence entre 280 et 340°C, pendant une durée supérieure à 2 h. Un tel domaine de température, bien que décrit dans la littérature, notamment dans la demande de brevet WO 02/064848 mentionnée plus haut, se situe en dessous du domaine habituel qui est au-dessus de 400°C.In the case of continuous casting between rolls, the hot-rolled or untreated tapes are optionally subjected to a low-temperature homogenization (between 450 and 500 ° C) to reduce the central segregation which may be a source of a reduction in the formability at final thickness. This low-temperature heat treatment is sufficient to reduce the possible central segregations in these alloys without manganese. The strips are then cold rolled, either to the final thickness, or to an intermediate thickness of between 0.5 and 5 mm, to which they are subjected to an intermediate annealing. Unlike alloys containing manganese, it is possible to carry out this intermediate annealing at a relatively low temperature, between 250 and 350 ° C, and preferably between 280 and 340 ° C, for a duration greater than 2 hours. Such a temperature range, although described in the literature, especially in the patent application WO 02/064848 mentioned above, is below the usual range which is above 400 ° C.

La demanderesse a constaté que l'application à un alliage AlFeSi, plus particulièrement de composition telle que Si/Fe ≥ 0,95, de traitements thermiques basse température, avec éventuellement la suppression du recuit intermédiaire lorsque c'est techniquement possible, conduisait à une résistance mécanique nettement améliorée, d'au moins 15% par rapport au recuit intermédiaire habituel. Cette résistance mécanique supérieure est obtenue tout en améliorant la formabilité mesurée par la pression d'éclatement ou la hauteur de dôme selon la norme ISO 2758.The Applicant has found that the application to an AlFeSi alloy, more particularly to a composition such as Si / Fe ≥ 0.95, of low temperature heat treatments, possibly with the suppression of the intermediate annealing when it is technically possible, leads to a significantly improved mechanical strength, at least 15% compared to the usual intermediate annealing. This superior mechanical strength is obtained while improving the formability measured by burst pressure or dome height according to ISO 2758.

Le recuit final s'effectue à une température comprise entre 200 et 370°C pour une durée comprise entre 1 et 72 h. Les durées du recuit sont conditionnées par la qualité du dégraissage de la feuille. On obtient après recuit final une structure à grains fins, avec une taille moyenne de grain, mesurée par analyse d'images au microscope électronique à balayage, inférieure à 3 µm.The final annealing is carried out at a temperature of between 200 and 370 ° C. for a duration of between 1 and 72 hours. The annealing times are conditioned by the quality of the degreasing of the sheet. After final annealing, a fine grain structure with an average grain size, measured by scanning electron microscope image analysis, of less than 3 μm is obtained.

La conjonction d'une homogénéisation à basse température ou d'une absence d'homogénéisation et d'un recuit intermédiaire à basse température ou totalement supprimé, en plus de son avantage économique, se révèle favorable à l'obtention d'une fine taille de grains. La taille de grains est réduite d'environ 30% par comparaison avec des traitements thermiques à plus haute température, ce qui conduit donc à une augmentation des caractéristiques mécaniques R0.2 et Rm, qui, pour les épaisseurs minces, sont liées au nombre de joints de grains. Ce gain ne se fait pas au détriment de l'allongement, car l'augmentation du nombre de grains dans l'épaisseur limite aussi le risque d'endommagement localisé dans un ou deux grains uniques de l'épaisseur de la feuille.The conjunction of a homogenization at low temperature or a lack of homogenization and an intermediate annealing at low temperature or completely suppressed, in addition to its economic advantage, is favorable to obtaining a fine size of grains. The grain size is reduced by about 30% compared with heat treatments at higher temperatures, which leads to an increase in the mechanical characteristics R 0.2 and R m , which for thin thicknesses are related to the number of grain boundaries. This gain is not at the expense of elongation, as increasing the number of grains in the thickness also limits the risk of damage located in one or two single grains of the thickness of the sheet.

Les feuilles minces selon l'invention sont particulièrement adaptées aux applications nécessitant à la fois une bonne résistance mécanique et une formabilité élevée, comme par exemple la fabrication de complexes multicouches, notamment pour les opercules d'emballages de produits frais, de coiffes de surbouchage ou d'aluminium ménager.The thin sheets according to the invention are particularly suitable for applications requiring both a good mechanical strength and a high formability, such as for example the manufacture of multilayer complexes, in particular for the lids of fresh product packaging, overcap caps or of household aluminum.

ExemplesExamples Exemple 1Example 1

Dans le but de montrer l'influence de la composition de l'alliage, on a fabriqué, en coulée continue entre cylindres, deux bandes d'épaisseur 6,1 mm en alliages A selon l'invention et B de type 8111, de composition (% en poids) indiquée au tableau 1 : Tableau 1 All. Si Fe Cu Mn Mg Cr Ti B A 1,17 1,11 0,001 0,003 0,0004 0,0007 0,006 0,0005 B 0,7 0,7 0,001 0,003 0,0005 0,001 0,007 0,0005 Les bandes ont été laminées à froid jusqu'à l'épaisseur 2 mm, puis soumises à un recuit intermédiaire de 5 h à 320°C. Les bandes ont ensuite été laminées à froid en plusieurs passes jusqu'à l'épaisseur finale de 38 µm. Elles ont ensuite été soumises à un recuit final de 40 h à 270°C.In order to show the influence of the composition of the alloy, two 6.1 mm thick strips of alloy A according to the invention and B of type 8111, of composition, were manufactured in continuous casting between rolls. (% by weight) shown in Table 1: Table 1 All. Yes Fe Cu mn mg Cr Ti B AT 1.17 1.11 0,001 0,003 0.0004 0.0007 0.006 0.0005 B 0.7 0.7 0,001 0,003 0.0005 0,001 0,007 0.0005 The strips were cold rolled to a thickness of 2 mm and then subjected to a 5 hour intermediate anneal at 320 ° C. The strips were then cold rolled in several passes until the final thickness of 38 microns. They were then subjected to a final annealing of 40 h at 270 ° C.

On a mesuré dans chaque cas les caractéristiques mécaniques : résistance à la rupture Rm (en MPa), limite d'élasticité conventionnelle à 0,2% R0,2 et allongement A (en %) selon la norme NF-EN 546-2, ainsi que la pression d'éclatement à l'air Pe (en kPa) mesurée selon la norme ISO 2758 et la hauteur de dôme Hd (en mm). Les résultats sont indiqués au tableau 2 : Tableau 2 Alliage Rm (MPa) R0.2 (MPa) A (%) Pe (kPa) Hd A 123 76 30 394 9,2 B 104 54 15,8 284 6,6 On constate que, contrairement à l'alliage B de type 811 1, la résistance à la rupture de la bande en alliage A est largement supérieure à 110 MPa, et la limite élastique supérieure à 70 MPa. De plus, la pression d'éclatement et l'allongement sont également supérieurs, de sorte que cet alliage est à la fois résistant et formable.The mechanical characteristics were measured in each case: tensile strength R m (in MPa), conventional yield strength at 0.2% R 0.2 and elongation A (in%) according to standard NF-EN 546- 2, as well as the air burst pressure Pe (in kPa) measured according to the ISO 2758 standard and the dome height Hd (in mm). The results are shown in Table 2: Table 2 Alloy R m (MPa) R 0.2 (MPa) AT (%) Pe (kPa) Hd AT 123 76 30 394 9.2 B 104 54 15.8 284 6.6 It is found that, unlike alloy B type 811 1, the breaking strength of the alloy strip A is much greater than 110 MPa, and the yield strength greater than 70 MPa. In addition, burst pressure and elongation are also higher, so that this alloy is both strong and formable.

Exemple 2Example 2

On a coulé en coulée continue entre cylindres une bande en alliage A de l'exemple 1 d'épaisseur 6,1 mm. La bande a été ensuite laminée à froid jusqu'à l'épaisseur de 2 mm. Une partie de la bande a été soumise à un recuit intermédiaire habituel pour un alliage de ce type de 5 h à 500°C. L'autre partie de la bande a subi un recuit intermédiaire selon l'invention de 5 h à 320°C. Les deux parties de la bande ont ensuite été laminées à froid en plusieurs passes jusqu'à l'épaisseur finale de 10,5 µm. Elles ont ensuite été soumises à un recuit final de 40 h à 270°C.An alloy strip A of Example 1 with a thickness of 6.1 mm was cast in continuous casting between rolls. The strip was then cold rolled to a thickness of 2 mm. Part of the strip was subjected to a usual intermediate anneal for such a 5 hour alloy at 500 ° C. The other part of the strip has undergone an intermediate anneal according to the invention for 5 hours at 320 ° C. The two parts of the strip were then cold rolled in several passes until the final thickness of 10.5 microns. They were then subjected to a final annealing of 40 h at 270 ° C.

On a mesuré les mêmes propriétés que dans l'exemple 1, dont les valeurs sont indiquées au tableau 3 : Tableau 3 Recuit inter Rm (MPa) R0.2 (MPa) A (%) Pe (kPa) Hd (mm) 470°C 99 63 7,3 71 5,1 320°C 117 84 8,1 92 5,7 On constate que l'abaissement de la température du recuit intermédiaire conduit à la fois à une augmentation de la résistance mécanique, de l'allongement, de la résistance à l'éclatement et de la formabilité.
La taille moyenne de grain, mesurée par analyse d'images au MEB, est de 3,6 µm pour le recuit à 470°C, et de 2,3 µm pour le recuit à 320°C. L'augmentation des caractéristiques mécaniques pour le recuit à basse température est donc liée à une réduction de la taille de grains obtenue après recuit final.
The same properties as in Example 1 were measured, the values of which are given in Table 3: Table 3 Annealing inter R m (MPa) R 0.2 (MPa) AT (%) Pe (kPa) Hd (mm) 470 ° C 99 63 7.3 71 5.1 320 ° C 117 84 8.1 92 5.7 It is found that the lowering of the intermediate annealing temperature leads to both an increase in the mechanical strength, the elongation, the bursting strength and the formability.
The average grain size, measured by SEM image analysis, is 3.6 μm for annealing at 470 ° C, and 2.3 μm for annealing at 320 ° C. The increase in the mechanical characteristics for the low temperature annealing is therefore related to a reduction in the grain size obtained after final annealing.

Claims (10)

  1. Foil or thin strip with a thickness between 6 and 200 µm, and preferably between 6 and 50 µm, made of an alloy with a composition (% by weight):
    Si: 1.0-1.5 Fe: 1.0-1.5 Cu < 0.2 Mn < 0.1, other elements < 0.05 each and < 0.15 in total, the remainder Al, having in the annealed state a breaking strength Rm> 110 MPa for thicknesses > 9µm, and > 100 MPa for thicknesses from 6 to 9 µm.
  2. Foil or thin strip according to claim 1, characterized in that it has in the annealed state a breaking strength Rm> 115 MPa for thicknesses > 9µm.
  3. Foil or thin strip according to either of claims 1 or 2, characterized in that it has in the annealed state an elastic limit R0.2 > 70 MPa.
  4. Foil or thin strip according to one of claims 1 to 3, characterized in that it has an elongation at break A, as a function of thickness: Thickness (µm) A (%) greater than and preferably greater than 6-9 3 4 9-15 5 7 15-25 10 15 25-50 18 25 50-200 20 25
  5. Foil or thin strip according to one of claims 1 to 4, characterized in that the alloy has a composition such that Si/Fe ≥ 0.95.
  6. Foil or thin strip according to one of claims 1 to 5, characterized in that the alloy has a silicon content of between 1.1 and 1.3% and an iron content between 1.0 and 1.2%.
  7. Method for producing thin strips with a thickness less than 200 µm made of an Al-Fe-Si alloy with a composition (% by weight):
    Si: 1.0-1.5 Fe: 1.0-1.5 Cu < 0.2 Mn < 0.1, other elements < 0.05 each and < 0.15 in total, the remainder Al, comprising the preparation of a first strip either by the semi-continuous vertical casting of a sheet and hot rolling, or by continuous casting optionally followed by hot rolling, cold rolling this first sheet to the final thickness with optionally intermediate annealing at a temperature between 250 and 350°C, and preferably between 280 and 340°C, and a final annealing at a temperature between 200 and 370°C.
  8. Method according to claim 7, characterized in that the alloy has a composition such that Si/Fe ≥ 0.95.
  9. Method according to either of claims 7 or 8, characterized in that before cold rolling, the first strip is subjected to homogenisation at a temperature between 450 and 500°C.
  10. Method according to one of claims 7 to 9, characterized in that the strip is prepared by continuous casting between cylinders.
EP04767726A 2003-07-21 2004-07-19 Thin strips or foils of al-fe-si alloy Active EP1644545B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04767726T PL1644545T3 (en) 2003-07-21 2004-07-19 Thin strips or foils of al-fe-si alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0308864A FR2857981A1 (en) 2003-07-21 2003-07-21 Thin sheet or strip of aluminum alloy for bottle caps and wrapping foil has a thickness of less than 200 microns, is essentially free of manganese, and has increased mechanical strength
PCT/FR2004/001902 WO2005010222A2 (en) 2003-07-21 2004-07-19 Thin strips or foils of alfesi alloy

Publications (2)

Publication Number Publication Date
EP1644545A2 EP1644545A2 (en) 2006-04-12
EP1644545B1 true EP1644545B1 (en) 2007-02-28

Family

ID=33560962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767726A Active EP1644545B1 (en) 2003-07-21 2004-07-19 Thin strips or foils of al-fe-si alloy

Country Status (21)

Country Link
US (1) US20060213590A1 (en)
EP (1) EP1644545B1 (en)
JP (1) JP4989221B2 (en)
CN (1) CN100445405C (en)
AR (1) AR044882A1 (en)
AT (1) ATE355392T1 (en)
AU (1) AU2004259877A1 (en)
BR (1) BRPI0412775A (en)
CA (1) CA2532585A1 (en)
DE (1) DE602004005045T2 (en)
DK (1) DK1644545T3 (en)
EA (1) EA009227B1 (en)
ES (1) ES2281831T3 (en)
FR (1) FR2857981A1 (en)
NO (1) NO338970B1 (en)
PL (1) PL1644545T3 (en)
PT (1) PT1644545E (en)
SA (1) SA04250245B1 (en)
UA (1) UA80778C2 (en)
WO (1) WO2005010222A2 (en)
ZA (1) ZA200600425B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846554B2 (en) * 2007-04-11 2010-12-07 Alcoa Inc. Functionally graded metal matrix composite sheet
US8403027B2 (en) * 2007-04-11 2013-03-26 Alcoa Inc. Strip casting of immiscible metals
US20100084053A1 (en) * 2008-10-07 2010-04-08 David Tomes Feedstock for metal foil product and method of making thereof
US8956472B2 (en) * 2008-11-07 2015-02-17 Alcoa Inc. Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same
CN102245788B (en) * 2009-03-05 2013-10-23 东洋铝株式会社 Aluminum alloy foil for current collector and method for producing same
KR101308963B1 (en) * 2011-07-22 2013-09-25 한국생산기술연구원 Diecasting aluminum alloy for radiator grille
WO2014109739A1 (en) * 2013-01-09 2014-07-17 Albea Americas, Inc. Layered materials comprising aluminum foil and tubes made therefrom
EP3235916B1 (en) 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Cast alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762223B2 (en) * 1985-04-11 1995-07-05 古河電気工業株式会社 Method of manufacturing deep drawing closure
US5503689A (en) * 1994-04-08 1996-04-02 Reynolds Metals Company General purpose aluminum alloy sheet composition, method of making and products therefrom
JP3107191B2 (en) * 1994-11-16 2000-11-06 古河電気工業株式会社 Method for producing aluminum alloy support for lithographic printing plate
US5714019A (en) * 1995-06-26 1998-02-03 Aluminum Company Of America Method of making aluminum can body stock and end stock from roll cast stock
US5725695A (en) * 1996-03-26 1998-03-10 Reynolds Metals Company Method of making aluminum alloy foil and product therefrom
JP4058536B2 (en) * 1997-10-31 2008-03-12 日本軽金属株式会社 Method for producing aluminum alloy foil
AU740061B2 (en) * 1998-02-18 2001-10-25 Novelis Inc. Process of manufacturing high strength aluminum foil
US6531006B2 (en) * 2001-02-13 2003-03-11 Alcan International Limited Production of high strength aluminum alloy foils
FR2832497B1 (en) * 2001-11-19 2004-05-07 Pechiney Rhenalu ALUMINUM ALLOY STRIPS FOR HEAT EXCHANGERS
FR2836154B1 (en) * 2002-02-15 2004-10-22 Pechiney Rhenalu THIN STRIPS IN ALUMINUM-IRON ALLOY

Also Published As

Publication number Publication date
EP1644545A2 (en) 2006-04-12
JP2007502360A (en) 2007-02-08
ZA200600425B (en) 2007-03-28
SA04250245B1 (en) 2007-10-29
DK1644545T3 (en) 2007-06-18
DE602004005045T2 (en) 2007-11-15
UA80778C2 (en) 2007-10-25
PT1644545E (en) 2007-04-30
BRPI0412775A (en) 2006-09-26
AU2004259877A1 (en) 2005-02-03
CN100445405C (en) 2008-12-24
WO2005010222A3 (en) 2006-07-20
ATE355392T1 (en) 2006-03-15
EA200600276A1 (en) 2006-10-27
WO2005010222A2 (en) 2005-02-03
ES2281831T3 (en) 2007-10-01
PL1644545T3 (en) 2007-07-31
CN1997763A (en) 2007-07-11
NO20060508L (en) 2006-01-31
CA2532585A1 (en) 2005-02-03
JP4989221B2 (en) 2012-08-01
FR2857981A1 (en) 2005-01-28
NO338970B1 (en) 2016-11-07
DE602004005045D1 (en) 2007-04-12
US20060213590A1 (en) 2006-09-28
AR044882A1 (en) 2005-10-05
EA009227B1 (en) 2007-12-28

Similar Documents

Publication Publication Date Title
KR101103135B1 (en) Aluminum alloy sheet and method for manufacturing the same
EP0823489B2 (en) AlMgMn alloy product for welded structures with improved corrosion resistance
FR2876118A1 (en) AL-ZN ALLOY PRODUCT OF HIGH STRENGTH AND HIGH STRENGTH, AND METHOD OF MANUFACTURING THE SAME
EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
EP1184474B1 (en) Process for making aluminium-iron alloy foil
EP0983129B1 (en) Method for making aluminium alloy strips by continuous thin gauge twin-roll casting
US20170233856A1 (en) Feedstock for metal foil product and method of making thereof
FR3053979B1 (en) FLANS IN ALUMINUM ALLOYS WITH A LOCAL FLASH RECLA
EP1644545B1 (en) Thin strips or foils of al-fe-si alloy
CA3085811A1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture
FR2707669A1 (en) Process for producing a thin sheet suitable for making box components
EP1483422B1 (en) Use of thin strip aluminium-iron alloy
JP2007502360A5 (en) AlFeSi alloy foil or thin sheet
FR3122187A1 (en) 5xxx aluminum sheets with high formability
EP1481106B1 (en) Al-mg alloy sheet or strip for the production of bent parts having a small bend radius
WO2022239694A1 (en) Aluminum alloy sheet for ring pull caps and method for producing same
CN115298336A (en) Technique for producing aluminum alloy products with improved formability and recyclability
CA2091390A1 (en) Fine and homogenous structure aluminum alloy, thin and ductile sheet with high yield strength
FR2841568A1 (en) Heat-treatable aluminum alloy sheet for production of car body parts contains silicon, magnesium and copper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060111

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FEPPON, JEAN-MARIE

Inventor name: DANIELOU, ARMELLE

Inventor name: CHENAL, BRUNO

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602004005045

Country of ref document: DE

Date of ref document: 20070412

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070412

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070528

REG Reference to a national code

Ref country code: PT

Ref legal event code: TE4A

Owner name: NOVELIS, INC, CA

Effective date: 20070518

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2281831

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

BECA Be: change of holder's address

Owner name: 191 EVANS AVENUE, TORONTO, ONTARIO M8Z 1J5

Effective date: 20070228

Owner name: NOVELIS, INC.

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070529

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: NOVELIS, INC.

Free format text: NOVELIS, INC.#70 YORK STREET SUITE 1510#TORONTO, ONTARIO M5J 1S9 (CA) -TRANSFER TO- NOVELIS, INC.#191 EVANS AVENUE#TORONTO, ONTARIO M8Z 1J5 (CA)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070901

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

REG Reference to a national code

Ref country code: FR

Ref legal event code: AU

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110609 AND 20110615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004005045

Country of ref document: DE

Representative=s name: PATENTANWAELTE WEICKMANN & WEICKMANN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004005045

Country of ref document: DE

Representative=s name: WEICKMANN & WEICKMANN PATENTANWAELTE - RECHTSA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004005045

Country of ref document: DE

Representative=s name: WEICKMANN & WEICKMANN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004005045

Country of ref document: DE

Representative=s name: WEICKMANN & WEICKMANN PATENT- UND RECHTSANWAEL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230619

Year of fee payment: 20

Ref country code: NL

Payment date: 20230622

Year of fee payment: 20

Ref country code: FR

Payment date: 20230612

Year of fee payment: 20

Ref country code: DK

Payment date: 20230626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230619

Year of fee payment: 20

Ref country code: FI

Payment date: 20230626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230707

Year of fee payment: 20

Ref country code: GB

Payment date: 20230725

Year of fee payment: 20

Ref country code: ES

Payment date: 20230807

Year of fee payment: 20

Ref country code: CH

Payment date: 20230802

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230721

Year of fee payment: 20

Ref country code: DE

Payment date: 20230712

Year of fee payment: 20

Ref country code: BE

Payment date: 20230721

Year of fee payment: 20