US20060213590A1 - Thin strips or foils of alfesi alloy - Google Patents

Thin strips or foils of alfesi alloy Download PDF

Info

Publication number
US20060213590A1
US20060213590A1 US10/565,219 US56521904A US2006213590A1 US 20060213590 A1 US20060213590 A1 US 20060213590A1 US 56521904 A US56521904 A US 56521904A US 2006213590 A1 US2006213590 A1 US 2006213590A1
Authority
US
United States
Prior art keywords
alloy
mpa
strip
thickness
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/565,219
Inventor
Armelle Danielou
Jean-Marie Feppon
Bruno Chenal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novelis Inc Canada
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to NOVELIS, INC. reassignment NOVELIS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHENAL, BRUNO, FEPPON, JEAN-MARIE, DANIELOU, ARMELLE
Publication of US20060213590A1 publication Critical patent/US20060213590A1/en
Assigned to UBS AG, STAMFORD BRANCH reassignment UBS AG, STAMFORD BRANCH SECURITY AGREEMENT Assignors: NOVELIS CAST HOUSE TECHNOLOGY LTD., NOVELIS INC., NOVELIS NO. 1 LIMITED PARTNERSHIP
Assigned to LASALLE BUSINESS CREDIT, LLC reassignment LASALLE BUSINESS CREDIT, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOVELIS CAST HOUSE TECHNOLOGY LTD., NOVELIS INC., NOVELIS NO. 1 LIMITED PARTNERSHIP
Assigned to BANK OF AMERICA, NATIONAL ASSOCIATION reassignment BANK OF AMERICA, NATIONAL ASSOCIATION COLLATERAL AGENT SUBSTITUTION Assignors: LASALLE BUSINESS CREDIT, LLC
Assigned to NOVELIS INC., NOVELIS NO. 1 LIMITED PARTNERSHIP, NOVELIS CAST HOUSE TECHNOLOGY LTD. reassignment NOVELIS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A.
Assigned to NOVELIS INC., NOVELIS NO.1 LIMITED PARTNERSHIP, NOVELIS CAST HOUSE TECHNOLOGY LTD. reassignment NOVELIS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UBS AG, STAMFORD BRANCH
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • This invention concerns thin strips or foils less than 200 ⁇ m thick and preferably less than 50 ⁇ m thick, made of an aluminium alloy with iron and with silicon, with substantially low manganese content, and a process of manufacturing such strips or foils. These strips may be obtained by semi-continuous casting of conventional plates or by continuous casting, for example by twin-belt casting or twin-roll casting.
  • Alloys with a very low manganese content are frequently used for thin foil, for example such as the 8111 alloy with the following composition (% by weight) registered with the Aluminum Association:
  • Manganese is normally added to increase the mechanical strength, for example as in the 8006 alloy for which the composition (% by weight) registered with the Aluminum Association is as follows:
  • the mechanical properties can also be improved by adding a small quantity of manganese in alloys in the 8000 series containing iron.
  • Patent application WO 02/64848 (Alcan International) describes the fabrication of thin strips made of AlFeSi alloy containing from 1.2% to 1.7% Fe and 0.35% to 0.8% of Si, by continuous casting. A high mechanical strength is obtained by adding 0.07% to 0.20% of manganese to the alloy. This addition of manganese is recognised as being necessary to obtain a small grain size after final annealing.
  • manganese appears to be an element capable of improving the mechanical properties of 8000 alloys.
  • manganese in solid solution or in the form of fine precipitates can block or delay recrystallisation during final annealing. Therefore, the precipitation of phases containing manganese needs to be controlled precisely during each step in the procedure, which is often difficult. Any drift in the transformation procedure has non-negligible consequences on the effectiveness of the final annealing. Therefore, it would be very useful to develop an alloy that does not contain any manganese, but that does have high mechanical properties.
  • U.S. Pat. No. 5,503,689 (Reynolds Metals) describes a process for manufacturing a thin strip made of an alloy containing 0.30% to 1.1% Si and 0.40% to 1.0% Fe, less than 0.25% Cu and less than 0.1% Mn, by continuous casting and cold rolling without intermediate annealing.
  • the preferred contents of iron and silicon are between 0.6% and 0.75%.
  • U.S. Pat. No. 5,725,695 (Reynolds Metals) describes a procedure for the same composition, with intermediate annealing between 400° C. and 440° C. (750° F.-825° F.) and a final recrystallisation annealing at 288° C. (550° F.).
  • the ratio of the Si and Fe contents is greater than or equal to 1.
  • the maximum ultimate tensile strength obtained is 90 MPa (13.13 ksi)
  • the maximum yield stress is 39.1 MPa (5.68 ksi)
  • the elongation is 11.37% for thicknesses of 46 ⁇ m (0.00185°).
  • the intermediate annealing control usually requires a high temperature heat treatment (at above 400° C.) so as to obtain recrystallisation.
  • Patent application WO 99/23269 (Nippon Light Metal and Alcan International) describes a process applicable to AlFeSi alloys containing 0.2% to 1% of Si and 0.3% to 1.2% of Fe, with a Si/Fe ratio of between 0.4 and 1.2, in which intermediate annealing is done in two steps, the first between 350° C. and 450° C., and the second between 200° C. and 330° C. The purpose of this process is to reduce surface defects in the foil. Mechanical properties are not mentioned.
  • the purpose of the invention is to obtain thin strips or foils made of an AlFeSi alloy with no added manganese, with a high mechanical strength while maintaining good formability, with the most economic industrial manufacturing procedure possible.
  • the subject matter of the invention is a thin foil between 6 ⁇ m and 200 ⁇ m thick, and preferably between 6 ⁇ m and 50 ⁇ m thick, of an alloy with the following composition (% by weight):
  • Si 1.0-1.5; Fe: 1.0-1.5; Cu ⁇ 0.2; Mn ⁇ 0.1; other elements ⁇ 0.05 each and ⁇ 0.15 total, remainder Al, preferably with the condition Si/Fe ⁇ 0.95, with an ultimate tensile strength in the annealed temper R m >10 MPa for thicknesses >9 ⁇ m and >100 MPa for thicknesses between 6 ⁇ m and 9 ⁇ m.
  • the yield stress R 0.2 of the thin foil is preferably >70 MPa.
  • the ultimate elongation is greater than the following values, as a function of the thickness of the foil: Thickness ( ⁇ m) A (%) greater than and preferably than 6-9 3 4 9-15 5 7 15-25 10 15 25-50 18 25 50-200 20 25
  • the silicon content of the alloy is preferably between 1.1% and 1.3% and its iron content is between 1.0% and 1.2%.
  • Another subject matter of the invention is a manufacturing process for thin strips thinner than 200 ⁇ m made of an Al—Fe—Si alloy with composition (% by weight):
  • the thin strips or foils according to the invention are made from 8000 AlSiFe alloys with almost no manganese, typically less than 0.1%. Iron and silicon contents are significantly higher than 8011 and 8111 alloys that are the most frequently used manganese-free AlSiFe alloys for thin foil.
  • One preferred composition range is an alloy containing 1.1% to 1.3% of silicon and 1.0% to 1.2% of iron.
  • Alloys according to the invention preferably have a composition such that the Si/Fe ratio of silicon and iron contents is ⁇ 0.95.
  • Their mechanical strength in the annealed temper (O temper) is exceptional for alloys with this composition, with an ultimate tensile strength R m >110 MPa or even 115 MPa for thicknesses >9 ⁇ m, and >100 MPa for thicknesses from 6 ⁇ m to 9 ⁇ m, and a conventional yield stress at 0.2%, R 0.2 >70 MPa.
  • This high mechanical strength is not obtained at the expense of formability, since elongations are at least as high as for 8011 and 8111 alloys, and bursting pressures are higher.
  • Hot rolled strips, or as-cast strips obtained by continuous twin-roll casting may be homogenised at low temperature (between 450° C. and 500° C.) to reduce the central segregation that may reduce formability to the final thickness.
  • This low temperature heat treatment is sufficient to resorb any central segregations in these manganese-free alloys.
  • the strips are then cold rolled, either down to the final thickness or to an intermediate thickness between 0.5 mm and 5 mm, at which an intermediate annealing is performed.
  • this intermediate annealing can be done at a relatively low temperature between 250° C. and 350° C., and preferably between 280° C. and 340° C., for longer than 2 hours.
  • this temperature range is described in the literature, particularly in patent application WO 02/064848 mentioned above, it is below the normal range that remains above 400° C.
  • Final annealing is done at a temperature between 200° C. and 370° C. for between 1 h and 72 h. Annealing durations depend on the degreasing quality of the foil. A fine grain structure is obtained after annealing, with an average grain size measured by image analysis with a scanning electron microscope equal to less than 3 ⁇ m.
  • the combination of low temperature homogenisation or no homogenisation at all with an intermediate annealing at low temperature or no intermediate annealing at all, is economically advantageous but also helps to obtain a fine grain size.
  • the grain size is about 30% lower than is possible with heat treatments at a higher temperature, consequently increasing the mechanical properties R 0.2 and R m which for small thicknesses are related to the number of grain joints. This gain is not achieved at the detriment of elongation, since the increase in the number of grains in the thickness also limits the risk of local damage in one or two single grains in the thickness of the foil.
  • Thin foils according to the invention are particularly suitable for applications requiring good mechanical strength and high formability, for example such as fabrication of multi-layer composites, particularly for lids for packaging of fresh products, overcaps or aluminium wrapping.
  • the strips were cold rolled to a thickness of 2 mm and an intermediate annealing was then carried out on them for 5 hours at 320° C.
  • the strips were then cold rolled in several passes to the final thickness of 38 ⁇ m.
  • a final annealing was then carried out on them for 40 hours at 270° C.
  • the ultimate strength of the alloy A strip is much higher than 110 MPa, and the yield stress is higher than 70 MPa.
  • the bursting pressure and the elongation are also higher, such that this alloy is both stronger and more formable.
  • a 6.1 mm thick strip made of alloy A described in example 1 was made by continuous twin-roll casting. The strip was then cold rolled to a thickness of 2 mm. A normal intermediate annealing for an alloy of this type was then carried out on part of the strip, for 5 hours at 500° C. An intermediate annealing was carried out on the other part of the strip, for 5 hours at 320° C. according to the invention. The two parts of the strip were then cold rolled in several passes to the final thickness of 10.5 ⁇ m. A final annealing was then carried out on them for 40 hours at 270° C.
  • the average grain size measured by image analysis with an SEM is 3.6 ⁇ m for annealing at 470° C., and 2.3 ⁇ m for annealing at 320° C. Therefore the increase in mechanical properties for low temperature annealing is related to the reduction in grain size obtained after final annealing.

Abstract

The invention relates to a thin strip or foil, having a thickness of 6 to 200 ?m, preferably, of 6 to 50 ?m, and composed of an alloy containing (in weight %) Si: 1.0 to 1.5, Fe: 1.0 to 1.5, Cu <0.2, Mn <0.1, other elements <0.05 each up to a total <0.15, the remainder being Al. The annealed thin strip or foil has a tensile strength Rm >110 MPa for a thickness >9 ?m and >100 MPa for a thickness of 6 to 9 ?m, and an elastic limit R0.2 >70 MPa. Preferably, said alloy has a silicon content of 1.1 to 1.3% and an iron content of 1.0 to 1.2%. The aforementioned thin strips or foils may be used especially for the production of multilayer composites, overcaps for bottles or aluminium wrappings.

Description

    DOMAIN OF THE INVENTION
  • This invention concerns thin strips or foils less than 200 μm thick and preferably less than 50 μm thick, made of an aluminium alloy with iron and with silicon, with substantially low manganese content, and a process of manufacturing such strips or foils. These strips may be obtained by semi-continuous casting of conventional plates or by continuous casting, for example by twin-belt casting or twin-roll casting.
  • STATE OF THE ART
  • The trend in the thin aluminium alloy foil market is moving towards a constant reduction in the thicknesses used for a given application, while demanding high mechanical properties and good formability.
  • Alloys with a very low manganese content are frequently used for thin foil, for example such as the 8111 alloy with the following composition (% by weight) registered with the Aluminum Association:
  • Si 0.30-1.1; Fe 0.40-1.0; Cu <0.10; Mn <0.10
  • The lack of manganese makes it easy to obtain recrystallisation during the final annealing, but the ultimate tensile strength Rm remains insufficient for thicknesses less than 100 μm.
  • Therefore, there is a need to develop new alloys and/or to optimise transformation procedures to satisfy market demand.
  • Manganese is normally added to increase the mechanical strength, for example as in the 8006 alloy for which the composition (% by weight) registered with the Aluminum Association is as follows:
  • Si <0.40; Fe: 1.2-2.0; Cu <0.30; Mn: 0.30-1.0; Mg <0.10
  • The result of adding manganese is to harden the material. The mechanical properties obtained with patent U.S. Pat. No. 6,517,646 belonging to the applicant for an alloy with composition Si=0.23%; Fe=1.26%; Cu=0.017%; Mn=0.37%; Mg=0.0032%; Ti=0.008%, in combination with a favourable transformation procedure, gives a value Rm equal to 103 MPa for a thickness of 6.6 μm.
  • The mechanical properties can also be improved by adding a small quantity of manganese in alloys in the 8000 series containing iron. Patent application WO 02/64848 (Alcan International) describes the fabrication of thin strips made of AlFeSi alloy containing from 1.2% to 1.7% Fe and 0.35% to 0.8% of Si, by continuous casting. A high mechanical strength is obtained by adding 0.07% to 0.20% of manganese to the alloy. This addition of manganese is recognised as being necessary to obtain a small grain size after final annealing.
  • Therefore, manganese appears to be an element capable of improving the mechanical properties of 8000 alloys. However, manganese in solid solution or in the form of fine precipitates can block or delay recrystallisation during final annealing. Therefore, the precipitation of phases containing manganese needs to be controlled precisely during each step in the procedure, which is often difficult. Any drift in the transformation procedure has non-negligible consequences on the effectiveness of the final annealing. Therefore, it would be very useful to develop an alloy that does not contain any manganese, but that does have high mechanical properties.
  • U.S. Pat. No. 5,503,689 (Reynolds Metals) describes a process for manufacturing a thin strip made of an alloy containing 0.30% to 1.1% Si and 0.40% to 1.0% Fe, less than 0.25% Cu and less than 0.1% Mn, by continuous casting and cold rolling without intermediate annealing. The preferred contents of iron and silicon are between 0.6% and 0.75%.
  • U.S. Pat. No. 5,725,695 (Reynolds Metals) describes a procedure for the same composition, with intermediate annealing between 400° C. and 440° C. (750° F.-825° F.) and a final recrystallisation annealing at 288° C. (550° F.). The ratio of the Si and Fe contents is greater than or equal to 1. In the examples, the maximum ultimate tensile strength obtained is 90 MPa (13.13 ksi), the maximum yield stress is 39.1 MPa (5.68 ksi), and the elongation is 11.37% for thicknesses of 46 μm (0.00185°). These mechanical properties are still low for some applications.
  • For alloys obtained by continuous casting, it is often necessary to perform a high temperature heat treatment to reduce the noxiousness of segregations, by resorbing precipitation lumps and homogenising the structure through the thickness. The effect of a homogenisation at 600° C. for the 8011 alloy (composition 0.71% Fe; 0.77% Si; 0.038% Cu; 0.006% Mn; 98.45% Al) obtained by twin-roll casting is described in the article by Y. Birol “Centerline Segregation in a Twin-Roll Cast AA8011 Alloy”, Aluminium, 74, 1998, pp 318-321. The precipitated phases are modified and heterogeneities are reduced. The reduction in central segregation subsequently limits the porosity of very thin foils and improves their formability.
  • It is economically attractive to limit the heat treatment temperature. For an 8111 alloy with composition 0.7% Fe; 0.7% Si; Mn <0.02, Zn <0.02; Cu <0.02, a beginning of a transformation of the phases is observed with total recrystallisation at 460° C., although annealing at 550° C.-580° C. is necessary to obtain a more complete transformation (see M. Slamova et al. “Response of AA8006 and AA8111 Strip-Cast Rolled Alloys to High Temperature Annealing”, ICAA-6, 1998). Therefore low temperature homogenisation could be considered for alloys without manganese.
  • Moreover, in the transformation to low thicknesses subsequent to homogenisation, it is standard practice to add an intermediate annealing step in order to soften the metal. For manganese alloys, the intermediate annealing control usually requires a high temperature heat treatment (at above 400° C.) so as to obtain recrystallisation.
  • For manganese-free 8000 type alloys, it is possible to envisage a heat treatment at a lower temperature than for 8006 type alloys.
  • Patent application WO 99/23269 (Nippon Light Metal and Alcan International) describes a process applicable to AlFeSi alloys containing 0.2% to 1% of Si and 0.3% to 1.2% of Fe, with a Si/Fe ratio of between 0.4 and 1.2, in which intermediate annealing is done in two steps, the first between 350° C. and 450° C., and the second between 200° C. and 330° C. The purpose of this process is to reduce surface defects in the foil. Mechanical properties are not mentioned.
  • The purpose of the invention is to obtain thin strips or foils made of an AlFeSi alloy with no added manganese, with a high mechanical strength while maintaining good formability, with the most economic industrial manufacturing procedure possible.
  • SUBJECT MATTER OF THE INVENTION
  • The subject matter of the invention is a thin foil between 6 μm and 200 μm thick, and preferably between 6 μm and 50 μm thick, of an alloy with the following composition (% by weight):
  • Si: 1.0-1.5; Fe: 1.0-1.5; Cu <0.2; Mn <0.1; other elements <0.05 each and <0.15 total, remainder Al, preferably with the condition Si/Fe ≧0.95, with an ultimate tensile strength in the annealed temper Rm >10 MPa for thicknesses >9 μm and >100 MPa for thicknesses between 6 μm and 9 μm. The yield stress R0.2 of the thin foil (measured on sheared test pieces) is preferably >70 MPa. The ultimate elongation is greater than the following values, as a function of the thickness of the foil:
    Thickness (μm) A (%) greater than and preferably than
    6-9 3 4
     9-15 5 7
    15-25 10 15
    25-50 18 25
     50-200 20 25
  • The silicon content of the alloy is preferably between 1.1% and 1.3% and its iron content is between 1.0% and 1.2%.
  • Another subject matter of the invention is a manufacturing process for thin strips thinner than 200 μm made of an Al—Fe—Si alloy with composition (% by weight):
  • Si: 1.0-1.5; Fe: 1.0-1.5; Cu <0.2; Mn <0.1; other elements <0.05 each and <0.15 total, remainder Al, preferably with the condition Si/Fe ≧0.95, including the preparation of a first strip either by vertical semi-continuous casting of a plate and hot rolling, or by continuous casting possibly followed by hot rolling, cold rolling of this first strip down to the final thickness, possibly with intermediate annealing for between 2 h and 20 h at a temperature between 250° C. and 350° C., and preferably between 280° C. and 340° C., and final annealing at a temperature between 200° C. and 370° C.
  • DESCRIPTION OF THE INVENTION
  • The thin strips or foils according to the invention are made from 8000 AlSiFe alloys with almost no manganese, typically less than 0.1%. Iron and silicon contents are significantly higher than 8011 and 8111 alloys that are the most frequently used manganese-free AlSiFe alloys for thin foil. One preferred composition range is an alloy containing 1.1% to 1.3% of silicon and 1.0% to 1.2% of iron.
  • Alloys according to the invention preferably have a composition such that the Si/Fe ratio of silicon and iron contents is ≧0.95. Their mechanical strength in the annealed temper (O temper) is exceptional for alloys with this composition, with an ultimate tensile strength Rm >110 MPa or even 115 MPa for thicknesses >9 μm, and >100 MPa for thicknesses from 6 μm to 9 μm, and a conventional yield stress at 0.2%, R0.2 >70 MPa. This high mechanical strength is not obtained at the expense of formability, since elongations are at least as high as for 8011 and 8111 alloys, and bursting pressures are higher.
  • These high mechanical properties are obtained equally well for strips produced from plates obtained by conventional vertical semi-continuous casting and hot rolled, and for strips derived from continuous casting, either by belt casting or twin-roll casting. Continuous belt casting is also following by hot rolling.
  • Hot rolled strips, or as-cast strips obtained by continuous twin-roll casting, may be homogenised at low temperature (between 450° C. and 500° C.) to reduce the central segregation that may reduce formability to the final thickness. This low temperature heat treatment is sufficient to resorb any central segregations in these manganese-free alloys. The strips are then cold rolled, either down to the final thickness or to an intermediate thickness between 0.5 mm and 5 mm, at which an intermediate annealing is performed. Unlike alloys containing manganese, this intermediate annealing can be done at a relatively low temperature between 250° C. and 350° C., and preferably between 280° C. and 340° C., for longer than 2 hours. Although this temperature range is described in the literature, particularly in patent application WO 02/064848 mentioned above, it is below the normal range that remains above 400° C.
  • The applicant has observed that the application of low temperature heat treatments to an AlFeSi alloy, more particularly with a composition such that Si/Fe >0.95, possibly eliminating the intermediate annealing when technically possible, results in significantly higher mechanical strength than is possible with normal intermediate annealing, at least 15% better. This higher mechanical strength is obtained while improving the formability measured by the bursting pressure or the dome height according to standard ISO 2758.
  • Final annealing is done at a temperature between 200° C. and 370° C. for between 1 h and 72 h. Annealing durations depend on the degreasing quality of the foil. A fine grain structure is obtained after annealing, with an average grain size measured by image analysis with a scanning electron microscope equal to less than 3 μm.
  • The combination of low temperature homogenisation or no homogenisation at all with an intermediate annealing at low temperature or no intermediate annealing at all, is economically advantageous but also helps to obtain a fine grain size. The grain size is about 30% lower than is possible with heat treatments at a higher temperature, consequently increasing the mechanical properties R0.2 and Rm which for small thicknesses are related to the number of grain joints. This gain is not achieved at the detriment of elongation, since the increase in the number of grains in the thickness also limits the risk of local damage in one or two single grains in the thickness of the foil.
  • Thin foils according to the invention are particularly suitable for applications requiring good mechanical strength and high formability, for example such as fabrication of multi-layer composites, particularly for lids for packaging of fresh products, overcaps or aluminium wrapping.
  • EXAMPLES Example 1
  • Two 6.1 mm thick strips made of alloy A according to the invention and alloy B type 8111 with the composition (% by weight) indicated in table 1 were made by continuous twin-roll casting, in order to demonstrate the influence of the composition of the alloy:
    TABLE 1
    Alloy Si Fe Cu Mn Mg Cr Ti B
    A 1.17 1.11 0.001 0.003 0.0004 0.0007 0.006 0.0005
    B 0.7 0.7 0.001 0.003 0.0005 0.001 0.007 0.0005
  • The strips were cold rolled to a thickness of 2 mm and an intermediate annealing was then carried out on them for 5 hours at 320° C. The strips were then cold rolled in several passes to the final thickness of 38 μm. A final annealing was then carried out on them for 40 hours at 270° C.
  • The mechanical properties were measured in each case. The measured values were the ultimate tensile strength Rm (in MPa), the conventional yield stress at 0.2% R0.2 and the ultimate elongation A (in %) according to standard NF-EN 546-2, the bursting pressure in air Pe (in kPa) measured according to standard ISO 2758 and the dome height Hd (in mm). The results are given in table 2:
    TABLE 2
    Alloy Rm (MPa) R0.2 (MPa) A (%) Pe (kPA) Hd
    A 123 76 30 394 9.2
    B 104 54 15.8 284 6.6
  • It is found that, unlike the 8111 type alloy B, the ultimate strength of the alloy A strip is much higher than 110 MPa, and the yield stress is higher than 70 MPa. The bursting pressure and the elongation are also higher, such that this alloy is both stronger and more formable.
  • Example 2
  • A 6.1 mm thick strip made of alloy A described in example 1 was made by continuous twin-roll casting. The strip was then cold rolled to a thickness of 2 mm. A normal intermediate annealing for an alloy of this type was then carried out on part of the strip, for 5 hours at 500° C. An intermediate annealing was carried out on the other part of the strip, for 5 hours at 320° C. according to the invention. The two parts of the strip were then cold rolled in several passes to the final thickness of 10.5 μm. A final annealing was then carried out on them for 40 hours at 270° C.
  • The properties were the same as in example 1, and the values are shown in table 3:
    TABLE 3
    Inter.
    annealing Rm (MPa) R0.2 (MPa) A (%) Pe (kPa) Hd (mm)
    470° C. 99 63 7.3 71 5.1
    320° C. 117 84 8.1 92 5.7
  • It is found that the lower temperature of the intermediate annealing increases the mechanical strength, the elongation, the bursting strength and the formability.
  • The average grain size measured by image analysis with an SEM, is 3.6 μm for annealing at 470° C., and 2.3 μm for annealing at 320° C. Therefore the increase in mechanical properties for low temperature annealing is related to the reduction in grain size obtained after final annealing.

Claims (10)

1. Thin strip or foil between 6 μm and 200 μm thick, and preferably between 6 μm and 50 μm thick, of an alloy with the following composition (% by weight):
Si: 1.0-1.5; Fe: 1.0-1.5; Cu <0.2; Mn <0.1; other elements <0.05 each and <0.15 total, remainder Al, with an ultimate tensile strength Rm in the annealed temper >110 MPa for thicknesses >9 μm and >100 MPa for thicknesses between 6 μm and 9 μm.
2. Thin strip or foil according to claim 1, characterized in that it has an ultimate tensile strength Rm in the annealed temper >115 MPa for thicknesses >9 μm.
3. Thin strip or foil according claim 1, characterized in that it has a yield stress R0.2 >70 MPa.
4. Thin strip or foil according to claim 1, characterized in that its ultimate elongation A is a function of the thickness, as follows:
Thickness (μm) A (%) greater than and preferably than 6-9 3 4  9-15 5 7 15-25 10 15 25-50 18 25  50-200 20 25
5. Thin strip or foil according to claim 1, characterized in that the alloy has a composition such that Si/Fe ≧0.95.
6. Thin strip or foil according to claim 1, characterized in that the silicon content of the alloy is between 1.1% and 1.3% and its iron content is between 1.0% and 1.2%.
7. Manufacturing process for thin strips thinner than 200 μm made of an Al—Fe—Si alloy with composition (% by weight):
Si: 1.0-1.5; Fe: 1.0-1.5; Cu <0.2; Mn <0.1; other elements <0.05 each and <0.15 total, remainder Al,
including the preparation of a first strip either by vertical semi-continuous casting of a plate and hot rolling, or by continuous casting possibly followed by hot rolling, cold rolling of this first strip down to the final thickness, possibly with intermediate annealing at a temperature between 250° C. and 350° C., and preferably between 280° C. and 340° C., and final annealing at a temperature between 200° C. and 370° C.
8. Process according to claim 7, characterized in that the alloy has a composition such that Si/Fe ≧0.95.
9. Process according to claim 7, characterized in that the first strip is subjected to an homogenisation at a temperature between 450 and 500° C. before cold rolling.
10. Process according to claim 7, characterized in that the strip is prepared by continuous twin-roll casting.
US10/565,219 2003-07-21 2004-07-19 Thin strips or foils of alfesi alloy Abandoned US20060213590A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR03/08864 2003-07-21
FR0308864A FR2857981A1 (en) 2003-07-21 2003-07-21 Thin sheet or strip of aluminum alloy for bottle caps and wrapping foil has a thickness of less than 200 microns, is essentially free of manganese, and has increased mechanical strength
PCT/FR2004/001902 WO2005010222A2 (en) 2003-07-21 2004-07-19 Thin strips or foils of alfesi alloy

Publications (1)

Publication Number Publication Date
US20060213590A1 true US20060213590A1 (en) 2006-09-28

Family

ID=33560962

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/565,219 Abandoned US20060213590A1 (en) 2003-07-21 2004-07-19 Thin strips or foils of alfesi alloy

Country Status (21)

Country Link
US (1) US20060213590A1 (en)
EP (1) EP1644545B1 (en)
JP (1) JP4989221B2 (en)
CN (1) CN100445405C (en)
AR (1) AR044882A1 (en)
AT (1) ATE355392T1 (en)
AU (1) AU2004259877A1 (en)
BR (1) BRPI0412775A (en)
CA (1) CA2532585A1 (en)
DE (1) DE602004005045T2 (en)
DK (1) DK1644545T3 (en)
EA (1) EA009227B1 (en)
ES (1) ES2281831T3 (en)
FR (1) FR2857981A1 (en)
NO (1) NO338970B1 (en)
PL (1) PL1644545T3 (en)
PT (1) PT1644545E (en)
SA (1) SA04250245B1 (en)
UA (1) UA80778C2 (en)
WO (1) WO2005010222A2 (en)
ZA (1) ZA200600425B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080251230A1 (en) * 2007-04-11 2008-10-16 Alcoa Inc. Strip Casting of Immiscible Metals
US20100084053A1 (en) * 2008-10-07 2010-04-08 David Tomes Feedstock for metal foil product and method of making thereof
US20100119407A1 (en) * 2008-11-07 2010-05-13 Alcoa Inc. Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same
US20110036464A1 (en) * 2007-04-11 2011-02-17 Aloca Inc. Functionally graded metal matrix composite sheet
EP3235916A1 (en) 2016-04-19 2017-10-25 Rheinfelden Alloys GmbH & Co. KG Cast alloy
US10160580B2 (en) * 2013-01-09 2018-12-25 Albea Americas, Inc. Layered materials comprising aluminum foil and tubes made therefrom
CN117568667A (en) * 2024-01-15 2024-02-20 中铝材料应用研究院有限公司 Aluminum foil material and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245788B (en) * 2009-03-05 2013-10-23 东洋铝株式会社 Aluminum alloy foil for current collector and method for producing same
KR101308963B1 (en) * 2011-07-22 2013-09-25 한국생산기술연구원 Diecasting aluminum alloy for radiator grille
CN117568668A (en) * 2024-01-15 2024-02-20 中铝材料应用研究院有限公司 Aluminum plastic film aluminum foil blank and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503689A (en) * 1994-04-08 1996-04-02 Reynolds Metals Company General purpose aluminum alloy sheet composition, method of making and products therefrom
US5725695A (en) * 1996-03-26 1998-03-10 Reynolds Metals Company Method of making aluminum alloy foil and product therefrom

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762223B2 (en) * 1985-04-11 1995-07-05 古河電気工業株式会社 Method of manufacturing deep drawing closure
JP3107191B2 (en) * 1994-11-16 2000-11-06 古河電気工業株式会社 Method for producing aluminum alloy support for lithographic printing plate
US5714019A (en) * 1995-06-26 1998-02-03 Aluminum Company Of America Method of making aluminum can body stock and end stock from roll cast stock
JP4058536B2 (en) * 1997-10-31 2008-03-12 日本軽金属株式会社 Method for producing aluminum alloy foil
KR100587128B1 (en) * 1998-02-18 2006-06-07 노벨리스 인코퍼레이티드 Process of manufacturing high strength aluminum foil
US6531006B2 (en) * 2001-02-13 2003-03-11 Alcan International Limited Production of high strength aluminum alloy foils
FR2832497B1 (en) * 2001-11-19 2004-05-07 Pechiney Rhenalu ALUMINUM ALLOY STRIPS FOR HEAT EXCHANGERS
FR2836154B1 (en) * 2002-02-15 2004-10-22 Pechiney Rhenalu THIN STRIPS IN ALUMINUM-IRON ALLOY

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503689A (en) * 1994-04-08 1996-04-02 Reynolds Metals Company General purpose aluminum alloy sheet composition, method of making and products therefrom
US5725695A (en) * 1996-03-26 1998-03-10 Reynolds Metals Company Method of making aluminum alloy foil and product therefrom

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697248B2 (en) 2007-04-11 2014-04-15 Alcoa Inc. Functionally graded metal matrix composite sheet
US20110036464A1 (en) * 2007-04-11 2011-02-17 Aloca Inc. Functionally graded metal matrix composite sheet
US8381796B2 (en) 2007-04-11 2013-02-26 Alcoa Inc. Functionally graded metal matrix composite sheet
US8403027B2 (en) 2007-04-11 2013-03-26 Alcoa Inc. Strip casting of immiscible metals
US20080251230A1 (en) * 2007-04-11 2008-10-16 Alcoa Inc. Strip Casting of Immiscible Metals
US20100084053A1 (en) * 2008-10-07 2010-04-08 David Tomes Feedstock for metal foil product and method of making thereof
US20100119407A1 (en) * 2008-11-07 2010-05-13 Alcoa Inc. Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same
US8956472B2 (en) 2008-11-07 2015-02-17 Alcoa Inc. Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same
US10160580B2 (en) * 2013-01-09 2018-12-25 Albea Americas, Inc. Layered materials comprising aluminum foil and tubes made therefrom
EP3235916A1 (en) 2016-04-19 2017-10-25 Rheinfelden Alloys GmbH & Co. KG Cast alloy
WO2017182103A1 (en) 2016-04-19 2017-10-26 Rheinfelden Alloys Gmbh & Co. Kg Cast alloy
US11421305B2 (en) 2016-04-19 2022-08-23 Rheinfelden Alloys Gmbh & Co. Kg Cast alloy
CN117568667A (en) * 2024-01-15 2024-02-20 中铝材料应用研究院有限公司 Aluminum foil material and preparation method thereof

Also Published As

Publication number Publication date
AR044882A1 (en) 2005-10-05
PL1644545T3 (en) 2007-07-31
SA04250245B1 (en) 2007-10-29
DE602004005045T2 (en) 2007-11-15
NO20060508L (en) 2006-01-31
DE602004005045D1 (en) 2007-04-12
AU2004259877A1 (en) 2005-02-03
PT1644545E (en) 2007-04-30
ES2281831T3 (en) 2007-10-01
CA2532585A1 (en) 2005-02-03
DK1644545T3 (en) 2007-06-18
FR2857981A1 (en) 2005-01-28
ZA200600425B (en) 2007-03-28
NO338970B1 (en) 2016-11-07
JP2007502360A (en) 2007-02-08
WO2005010222A2 (en) 2005-02-03
UA80778C2 (en) 2007-10-25
JP4989221B2 (en) 2012-08-01
ATE355392T1 (en) 2006-03-15
BRPI0412775A (en) 2006-09-26
EA009227B1 (en) 2007-12-28
WO2005010222A3 (en) 2006-07-20
EP1644545A2 (en) 2006-04-12
EP1644545B1 (en) 2007-02-28
CN1997763A (en) 2007-07-11
EA200600276A1 (en) 2006-10-27
CN100445405C (en) 2008-12-24

Similar Documents

Publication Publication Date Title
US5266130A (en) Process for manufacturing aluminum alloy material having excellent shape fixability and bake hardenability
US9254879B2 (en) Formed automotive part made from an aluminium alloy product and method of its manufacture
US10253404B2 (en) High strength, high formability, and low cost aluminum-lithium alloys
US20080056932A1 (en) High Strength, Heat Treatable Aluminum Alloy
EP2728026A1 (en) Damage tolerant aluminium material having a layered microstructure
EP2546373A1 (en) Method of manufacturing an Al-Mg alloy sheet product
NO338970B1 (en) Thin strips or foils of Al-Fe-Si alloy
US8500926B2 (en) Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy
JP2022517861A (en) How to manufacture brazing sheet products
RU2254392C2 (en) Method of manufacture of ultrathin tapes from ferro-aluminum alloy
KR102477158B1 (en) High formability, recycled aluminum alloy and manufacturing method thereof
CN104487243B (en) The fin material of super anti-sag and anti-fusing with very high strength
EP3191611B2 (en) Alloys for highly shaped aluminum products and methods of making the same
US5080728A (en) Rolled aluminum product and method for its production
AU2018249841B2 (en) Anodized quality 5xxx aluminum alloys with high strength and high formability and methods of making the same
EP2110235A1 (en) Al-Mg-Si alloy rolled sheet product with good hemming
JP2007502360A5 (en) AlFeSi alloy foil or thin sheet
US20050207934A1 (en) Thin strips made of alumunium-iron alloy
KR20090045981A (en) Al-alloy for bumper back beam
JPS602644A (en) Aluminum alloy
RU2778434C1 (en) 7xxx SERIES ALUMINUM ALLOY PRODUCT
JP2000001730A (en) Aluminum alloy sheet for can body, and its production
US20230193430A1 (en) High strength and thermally stable 5000-series aluminum alloys
JPH0239580B2 (en) CHOSOSEIALGOKIN

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVELIS, INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DANIELOU, ARMELLE;FEPPON, JEAN-MARIE;CHENAL, BRUNO;REEL/FRAME:017454/0279;SIGNING DATES FROM 20060123 TO 20060126

AS Assignment

Owner name: UBS AG, STAMFORD BRANCH, CONNECTICUT

Free format text: SECURITY AGREEMENT;ASSIGNORS:NOVELIS INC.;NOVELIS NO. 1 LIMITED PARTNERSHIP;NOVELIS CAST HOUSE TECHNOLOGY LTD.;REEL/FRAME:019714/0384

Effective date: 20070706

AS Assignment

Owner name: LASALLE BUSINESS CREDIT, LLC, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:NOVELIS INC.;NOVELIS NO. 1 LIMITED PARTNERSHIP;NOVELIS CAST HOUSE TECHNOLOGY LTD.;REEL/FRAME:019744/0262

Effective date: 20070706

AS Assignment

Owner name: BANK OF AMERICA, NATIONAL ASSOCIATION, ILLINOIS

Free format text: COLLATERAL AGENT SUBSTITUTION;ASSIGNOR:LASALLE BUSINESS CREDIT, LLC;REEL/FRAME:021590/0001

Effective date: 20080918

Owner name: BANK OF AMERICA, NATIONAL ASSOCIATION,ILLINOIS

Free format text: COLLATERAL AGENT SUBSTITUTION;ASSIGNOR:LASALLE BUSINESS CREDIT, LLC;REEL/FRAME:021590/0001

Effective date: 20080918

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NOVELIS INC., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH;REEL/FRAME:025580/0904

Effective date: 20101217

Owner name: NOVELIS NO. 1 LIMITED PARTNERSHIP, CANADA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:025578/0180

Effective date: 20101217

Owner name: NOVELIS NO.1 LIMITED PARTNERSHIP, CANADA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH;REEL/FRAME:025580/0904

Effective date: 20101217

Owner name: NOVELIS CAST HOUSE TECHNOLOGY LTD., CANADA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:025578/0180

Effective date: 20101217

Owner name: NOVELIS CAST HOUSE TECHNOLOGY LTD., CANADA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH;REEL/FRAME:025580/0904

Effective date: 20101217

Owner name: NOVELIS INC., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:025578/0180

Effective date: 20101217