EP1641568B1 - Method for coating objects, electrode arrangement, and coating system - Google Patents

Method for coating objects, electrode arrangement, and coating system Download PDF

Info

Publication number
EP1641568B1
EP1641568B1 EP04738048A EP04738048A EP1641568B1 EP 1641568 B1 EP1641568 B1 EP 1641568B1 EP 04738048 A EP04738048 A EP 04738048A EP 04738048 A EP04738048 A EP 04738048A EP 1641568 B1 EP1641568 B1 EP 1641568B1
Authority
EP
European Patent Office
Prior art keywords
electrode
coating
arrangement
air flow
articles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04738048A
Other languages
German (de)
French (fr)
Other versions
EP1641568A1 (en
Inventor
Peter Taiana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soudronic AG
Original Assignee
Soudronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soudronic AG filed Critical Soudronic AG
Publication of EP1641568A1 publication Critical patent/EP1641568A1/en
Application granted granted Critical
Publication of EP1641568B1 publication Critical patent/EP1641568B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state

Definitions

  • the invention relates to a method for electrostatically assisted coating of articles with a coating material. Furthermore, the invention relates to an electrode assembly for generating an electric field in electrostatically assisted coating equipment and an electrostatic coating system.
  • the electrostatic influence of coating material in the coating of objects is well known and aims at the best possible deposition of the coating particles on the object.
  • Application finds this type of coating in many areas, especially when coating the weld on the inside of can bodies with a powdery coating material, such as from DE-A-42 27455 known.
  • It is also known to protect the field-generating electrode by a ring against the direct impingement of the powder / air mixture and also to flush the electrode with an air flow in order to minimize the contamination of the electrode by powder particles.
  • a more or less adherent accumulation of powder on the electrode may still occur, with polyamide coating powder in particular being problematic in this respect and prone to sintering at the electrode.
  • a soiled electrode changes the operating conditions during the coating and possibly causes a breakdown in the operation of the coating system.
  • the invention has for its object to provide an improved electrostatically assisted coating process.
  • Moving objects are preferably coated in this way, since as a rule the objects are moved past the coating site once at high speed, as a result of which a reduced coating due to contamination of the electrode can no longer be corrected. In particular, this is the case when coating the weld seam area inside can bodies, which is the preferred application of the method.
  • An oscillatable design of the electrode is preferred so that it can be set into oscillation or vibrated by an excitation means.
  • the excitation means may e.g. act electromagnetically or piezoelectrically.
  • an embodiment of the electrode is preferred such that it can be set in vibration by an air flow, similar to the blown tongue of a musical wind instrument.
  • it is known to provide a scavenging air flow to the electrode, and it is preferable to use just scavenging air as the drive for generating vibration.
  • the stationary electrode arrangement and objects moved past it to make the electrode driven, for example as a rotating electrode.
  • the electrode contamination reduce or avoid by coating material.
  • the electrode movement eg rotation, can be effected by an electric motor but also pneumatically and, for example, again by the mentioned scavenging air.
  • the advantages of preferred embodiments explained with reference to the method also apply to the preferred embodiments of the electrode arrangement or the coating apparatus.
  • the vibration excitation by an air flow results in a particularly simple construction in coating systems, and especially can coating systems, which are already designed to provide an air flow (scavenge air flow). This allows a simple retrofitting of such electrode arrangements in already existing coating devices.
  • a moving electrode e.g. a rotating electrode
  • a moving electrode e.g. a rotating electrode
  • FIG. 1 shows schematically the conditions when coating can weld seams on the inside of cans as an example of objects to be coated.
  • a powdery coating material is usually used, for example a polyamide powder.
  • Such coating materials are known and are not explained here in detail.
  • liquid coating materials in drop form, wherein the present invention may also find application. Also, such materials are known and will not be explained here.
  • a can body 3 is indicated, which is located above the arm 2 of a coating device 1. The can is transported by a not shown, known transport device at high speed in the direction of arrow A.
  • the can body 3 has previously been welded in a likewise known manner between the welding rollers 11 and 12 of a not-shown can welding machine, wherein usually a Draht thoroughlyelektrode on the welding rollers 11 and 12 is used.
  • the lower welding roller 11 is rotatably mounted on the lower arm 10 of the welding machine. Passing through this lower arm 10 and thereafter into the arm 2 of the coating device, at least one line 13 for conveying a coating powder-air mixture is provided.
  • the coating powder is thereby passed through conveying air through the welding machine in a known manner conveyed along the line 13 to the coating device 1.
  • the powder-air mixture is shown in the line 13 with arrows 15 and at the exit point 4 of the coating device 1 as a cloud 15.
  • the coating powder passes at the outlet at the exit point 4 on the inside of the can body 3 on the uncoated weld and forms there a layer which subsequently baked in a known manner and cooled above the weld forms a dense coating, which completes the inner coating of the can body in the weld seam area.
  • This is known and need not be explained here. It is known, as in FIG. 1 shown to provide a tip electrode 7, which is supplied via a voltage source 8 with high voltage. The correspondingly forming electrostatic field leads in a known manner to an influence of the coating material and its better adhesion to the can body 3.
  • FIGS. 2 and 3 Now show an embodiment of an electrode assembly 6 according to the invention and to explain the inventive method.
  • This electrode arrangement 6 can be used directly instead of the electrode arrangement 6 'shown in FIG.
  • the same reference numerals show the same elements, in particular again the scavenging air line is denoted by 14 and the scavenging air with the arrows 17.
  • the arrow 15 above the electrode assembly 6 shows the course of the air-powder mixture 15 accordingly FIG. 1
  • the electrode assembly 6 is usually in the device 1 of FIG. 1 arranged so that there is a similar, substantially constant from the object surface to be coated spaced position of the electrode 9 of the inventive electrode assembly 6, as corresponds to the electrode 7 according to the prior art.
  • a high voltage source 8 which preferably also generates DC voltage in the range of 20 kV.
  • the electrode 9 is designed as a vibrating or oscillating electrode.
  • the electrode is designed as a spring tongue-like, one end fixed electrode and the other end exposed electrode, which is preferably arranged in front of the opening 25 'of a resonance chamber 25.
  • FIG. 2 shows a vertical section through the electrode assembly 6 with the electrode 9 and
  • FIG. 3 shows a frontal view in the direction of arrow B of FIG. 2 , It can be seen that the vibratable electrode 9 is arranged with a fastening means 20 in front of the opening 25 'of the resonance chamber 25 and in its outer shape substantially corresponds to this opening, so that only a narrow gap 19 between the opening 25' and the electrode. 9 formed.
  • the width of this gap is for example only 1/10 mm. Smaller gap sizes are usually to be avoided for conventional coating powder for cans, since otherwise powder particles in the gap 19 can clamp. A slightly larger width of the gap 19 can be selected, but this must be such that a swinging of the tongue-shaped electrode 9 results due to the purge air 17.
  • the purge air exits through the gap and thereby stimulates the electrode 9 to the vibration or vibration desired according to the invention. In this preferred embodiment, therefore, the oscillation of the electrode is generated by an air flow, which preferably consists of the purge air flow 17.
  • other means of vibrational excitation of the electrode may be used, such as piezoelectric or electromagnetic vibrational excitation.
  • an oscillation frequency of about 500 Hz at an amplitude at the free end of the electrode 9 of about 0.5 mm can be given.
  • the oscillation frequency and the amplitude can be freely selected within a fairly wide range.
  • the above-mentioned oscillation frequency is set at the conventional air amount of 1 to 2 liters / minute, when for the electrode assembly 6 of FIG. 2 about the following mass be chosen.
  • the vibration excitation and the maintenance of the vibration is better when the resonance chamber 25 such a space 24 is connected upstream, instead of the direct insertion of the line 14 in the resonance chamber 25.
  • the resonance chamber 25 itself has a height v of about 10 mm and a width u of about 5 mm has proven suitable if the height h of the free tongue part of the electrode 9 is about 6-7 mm and the width b of the electrode is about 2 mm and the thickness is about 0 , 05 mm.
  • the electrode is formed from a spring steel and preferably has the in FIG. 3 shown tongue-like shape. But it is also possible to provide an eg rectangular shaped electrode 9 ', as in FIG. 3 indicated by broken lines.
  • the housing of the electrode assembly 6 is preferably made of plastic.
  • the voltage source 8 applied to the electrode 9 is the same voltage source as used in the conventional tip electrode.
  • other coating applications may take a different shaped and other dimensions design Electrode be used.
  • the dimensions of the electrode assembly 6 are variable in a wide range and a resonance chamber is usually only required if the vibration excitation is carried out by an air flow. If another possibility of vibrational excitation is used, for example a piezoelectric or an electromagnetic vibrational excitation, by means of which the oscillatable electrode is forcibly vibrated directly, then of course the air supply and the spaces 24 and 25 are not needed.
  • vibration excitation by a beating element which causes the electrode 9 only temporarily by a blow to the electrode or possibly an adjacent housing part or support member in vibration, can also be used to avoid the deposition of coating material and satisfy.
  • the excitation for oscillation of the electrode can be done periodically or at random intervals.
  • FIG. 4 schematically shows a further embodiment in which a per se conventional tip electrode is provided within the electrode assembly 6.
  • This tip electrode 29, which is again connected to the voltage source 8, is mounted on a base 30, which forms the actual vibrating element.
  • the electrode 29 is rigid and follows only the movement of the vibrating base.
  • This pedestal may in turn be driven piezoelectrically, electromagnetically or electromotively, or in some other known way to effect vibration. These vibrations can be done in the direction of arrow C and / or arrow D.
  • a cylindrical and rigid tip electrode in its lower region can be vibrated, for example in a range from 100 Hz to also 500 Hz or higher. Also in this way, the deposition of coating material by vibration of the electrode can be prevented.
  • scavenging air 17 can be used in a known manner, so that the scavenging air the rinse serves and is not used for vibration generation.
  • the electrode is not vibrated, but moved in another way, preferably rotated about an axis E.
  • the electrode arrangement 6 two electrodes 39 are arranged on a support 38, which together with the shaft 37 is rotatable about the said axis of rotation E.
  • the electrodes are in turn connected to the voltage source U.
  • the rotation can take place, for example, by an electric motor, or in turn an air flow, for example the scavenging air flow 17, could be used to drive the electrodes 39, which is possible by means of a corresponding wind-wheel-shaped design of the carrier 38.
  • the electrode assembly 6 is stationary with respect to the again moving objects 3 and only the single electrode or the individual electrodes 39 are moved.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zur elektrostatisch unterstützten Beschichtung von Gegenständen mit einem Beschichtungsmaterial. Ferner betrifft die Erfindung eine Elektrodenanordnung zur Erzeugung eines elektrischen Feldes bei elektrostatisch unterstützten Beschichtungsanlagen und eine elektrostatische Beschichtungsanlage.The invention relates to a method for electrostatically assisted coating of articles with a coating material. Furthermore, the invention relates to an electrode assembly for generating an electric field in electrostatically assisted coating equipment and an electrostatic coating system.

Die elektrostatische Beeinflussung von Beschichtungsmaterial beim Beschichten von Gegenständen ist wohl bekannt und bezweckt eine möglichst gute Ablagerung der Beschichtungsteilchen auf dem Gegenstand. Anwendung findet diese Art von Beschichtung auf vielen Gebieten, insbesondere beim Beschichten der Schweissnaht an der Innenseite von Dosenzargen mit einem pulverförmigen Beschichtungsmaterial, wie z.B. aus DE-A- -42 27455 bekannt. Es ist weiter bekannt, die felderzeugende Elektrode durch einen Ring gegen die direkte Beaufschlagung durch das Pulver/Luft-Gemisch zu schützen und auch, die Elektrode zusätzlich mit einem Luftstrom zu umspülen, um die Verschmutzung der Elektrode durch Pulverteilchen minimal zu halten. Je nach Pulvertyp kann es aber dennoch zu einer mehr oder weniger haftenden Anlagerung von Pulver an der Elektrode kommen, wobei insbesondere Polyamid-Beschichtungspulver diesbezüglich problematisch ist und zu einer Versinterung an der Elektrode neigt. Eine verschmutzte Elektrode verändert die Betriebsbedingungen bei der Beschichtung und bedingt allenfalls einen Betriebsunterbruch der Beschichtungsanlage. Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes elektrostatisch unterstütztes Beschichtungsverfahren zu schaffen.The electrostatic influence of coating material in the coating of objects is well known and aims at the best possible deposition of the coating particles on the object. Application finds this type of coating in many areas, especially when coating the weld on the inside of can bodies with a powdery coating material, such as from DE-A-42 27455 known. It is also known to protect the field-generating electrode by a ring against the direct impingement of the powder / air mixture and also to flush the electrode with an air flow in order to minimize the contamination of the electrode by powder particles. Depending on the type of powder, however, a more or less adherent accumulation of powder on the electrode may still occur, with polyamide coating powder in particular being problematic in this respect and prone to sintering at the electrode. A soiled electrode changes the operating conditions during the coating and possibly causes a breakdown in the operation of the coating system. The invention has for its object to provide an improved electrostatically assisted coating process.

Diese Aufgabe wird mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This object is achieved with the characterizing features of claim 1.

Es hat sich gezeigt, dass eine in Vibration versetzte Elektrode deutlich weniger verschmutzt. Die Anhaftung von Teilchen wird stark vermindert oder praktisch ganz verhindert. Durch die vibrierende Elektrode wird dabei die Beschichtungsqualität nicht negativ beeinflusst und es ist in der Regel auch nicht erforderlich die Betriebsparameter des Beschichtungsvorganges zu ändern. Die Vibration erfolgt im wesentlichen quer zur elektrischen Feldlinienrichtung oder/und in der Feldlinienrichtung des von der Elektrode bewirkten Feldes.It has been found that a vibrated electrode contaminated much less. The adhesion of particles is greatly reduced or virtually completely prevented. The coating quality is not adversely affected by the vibrating electrode and it is usually not necessary to change the operating parameters of the coating process. The vibration takes place substantially transversely to the electric field line direction and / or in the field line direction of the field caused by the electrode.

Bevorzugterweise werden bewegte Gegenstände auf diese Weise beschichtet, da dabei in der Regel die Gegenstände mit hoher Geschwindigkeit einmalig an der Beschichtungsstelle vorbeibewegt werden, wodurch eine verminderte Beschichtung infolge Verschmutzung der Elektrode nicht mehr korrigiert werden kann. Insbesondere ist dies der Fall bei der Beschichtung des Schweissnahtbereiches im Inneren von Dosenzargen, was die bevorzugte Anwendung des Verfahrens ist.Moving objects are preferably coated in this way, since as a rule the objects are moved past the coating site once at high speed, as a result of which a reduced coating due to contamination of the electrode can no longer be corrected. In particular, this is the case when coating the weld seam area inside can bodies, which is the preferred application of the method.

Bevorzugt ist eine schwingfähige Ausbildung der Elektrode, so dass diese durch ein Anregungsmittel in Schwingung versetzbar bzw. in Vibration bringbar ist. Das Anregungsmittel kann z.B. elektromagnetisch oder piezoelektrisch wirken. Bevorzugt ist indes eine Ausbildung der Elektrode derart, dass diese durch einen Luftstrom in Schwingung versetzbar ist, ähnlich der angeblasenen Zunge eines musikalischen Blasinstrumentes. Wie erwähnt ist es bekannt einen Spülluftstrom für die Elektrode vorzusehen und es ist bevorzugt, gerade Spülluft als Antrieb zur Schwingungserzeugung zu verwenden.An oscillatable design of the electrode is preferred so that it can be set into oscillation or vibrated by an excitation means. The excitation means may e.g. act electromagnetically or piezoelectrically. However, an embodiment of the electrode is preferred such that it can be set in vibration by an air flow, similar to the blown tongue of a musical wind instrument. As mentioned, it is known to provide a scavenging air flow to the electrode, and it is preferable to use just scavenging air as the drive for generating vibration.

Alternativ oder zusätzlich zur Vibration der Elektrode ist es möglich, bei stationärer Elektrodenanordnung und daran vorbeibewegten Gegenständen, die Elektrode angetrieben beweglich zu machen, zum Beispiel als rotierende Elektrode. Auch eine solche Bewegung der Elektrode bei einer grundsätzlich bei der Beschichtung stationären Elektrodenanordnung kann die Elektrodenverschmutzung durch Beschichtungsmaterial reduzieren oder vermeiden. Die Elektrodenbewegung, z.B. Rotation, kann elektromotorisch bewirkt werden aber auch pneumatisch und z.B. wiederum durch die erwähnte Spülluft.As an alternative or in addition to the vibration of the electrode, it is possible, with the stationary electrode arrangement and objects moved past it, to make the electrode driven, for example as a rotating electrode. Such a movement of the electrode in a basically stationary during the coating electrode assembly, the electrode contamination reduce or avoid by coating material. The electrode movement, eg rotation, can be effected by an electric motor but also pneumatically and, for example, again by the mentioned scavenging air.

Der Erfindung liegt weiter die Aufgabe zugrunde eine verbesserte Elektrodenanordnung und eine verbesserte Beschichtungsvorrichtung zu schaffen.It is a further object of the invention to provide an improved electrode assembly and an improved coating apparatus.

Diese Aufgabe wird gemäss den Ansprüchen 10 bzw. 17 gelöst.This object is achieved according to claims 10 and 17, respectively.

Auf diese Weise werden die anhand des Verfahrens erläuterten Vorteile erzielt.In this way, the advantages explained by the method are achieved.

Die anhand des Verfahrens erläuterten Vorteile bevorzugter Ausführungsformen treffen auch auf die bevorzugten Ausführungsformen der Elektrodenanordnung bzw. der Beschichtungsvorrichtung zu. Insbesondere ergibt die Schwingungsanregung durch einen Luftstrom eine besonders einfache Konstruktion bei Beschichtungsanlagen, und speziell Dosenbeschichtungsanlagen, die bereits zur Bereitstellung eines Luftstromes (Spülluftstromes) ausgestaltet sind. Dies erlaubt eine einfache Nachrüstung solcher Elektrodenanordnungen in bereits bestehende Beschichtungsvorrichtungen.The advantages of preferred embodiments explained with reference to the method also apply to the preferred embodiments of the electrode arrangement or the coating apparatus. In particular, the vibration excitation by an air flow results in a particularly simple construction in coating systems, and especially can coating systems, which are already designed to provide an air flow (scavenge air flow). This allows a simple retrofitting of such electrode arrangements in already existing coating devices.

Alternativ kann auch bei einer stationären Elektrodenanordnung bzw. einer Beschichtungsvorrichtung mit stationärer Elektrodenanordnung eine bewegte Elektrode, z.B. eine rotierend bewegte Elektrode, vorgesehen sein; dies allenfalls in Kombination mit einer Vibration der Elektrode.Alternatively, even in a stationary electrode assembly or a stationary electrode assembly coating apparatus, a moving electrode, e.g. a rotating electrode, be provided; this at best in combination with a vibration of the electrode.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnungen näher erläutert. Dabei zeigt

  • Figur 1 schematisch in Schnittdarstellung die Beschichtung einer Dosenzarge;
  • Figur 2 eine Schnittdarstellung einer Elektrodenanordnung gemäss der Erfindung;
  • Figur 3 eine Draufsicht auf die Elektrodenanordnung von Figur 2;
  • Figur 4 schematisch eine weitere Ausführungsform der Erfindung; und
  • Figur 5 noch eine Ausführungsform der Erfindung.
In the following embodiments of the invention will be explained in more detail with reference to the drawings. It shows
  • FIG. 1 schematically in sectional view the coating of a can body;
  • FIG. 2 a sectional view of an electrode assembly according to the invention;
  • FIG. 3 a plan view of the electrode assembly of FIG. 2 ;
  • FIG. 4 schematically a further embodiment of the invention; and
  • FIG. 5 another embodiment of the invention.

Figur 1 zeigt schematisch die Verhältnisse beim Beschichten von Dosenschweissnähten an der Innenseite von Dosen als Beispiel von zu beschichtenden Gegenständen. Die nachfolgend erläuterte Erfindung ist aber auch bei der elektrostatisch unterstützten Beschichtung von anderen Gegenständen anwendbar, obschon die Dosenschweissnahtbeschichtung die bevorzugte Anwendung ist. Dabei wird in der Regel ein pulverförmiges Beschichtungsmaterial eingesetzt, z.B. ein Polyamid-Pulver. Derartige Beschichtungsmaterialien sind bekannt und werden hier nicht nähert erläutert. Bei der Beschichtung von Gegenständen ist es weiter auch bekannt, flüssige Beschichtungsmaterialien in Tropfenform einzusetzen, wobei die vorliegende Erfindung ebenfalls Anwendung finden kann. Auch solche Materialien sind bekannt und werden hier nicht näher erläutert. In Figur 1 ist eine Dosenzarge 3 angedeutet, welche sich über dem Arm 2 einer Beschichtungsvorrichtung 1 befindet. Die Dose wird dabei durch eine nicht gezeigte, bekannte Transporteinrichtung mit hoher Geschwindigkeit in Richtung des Pfeiles A transportiert. Die Dosenzarge 3 ist vorher auf ebenfalls bekannte Weise zwischen den Schweissrollen 11 und 12 einer nicht weiter dargestellten Dosenschweissmaschine geschweisst worden, wobei in der Regel eine Drahtzwischenelektrode auf den Schweissrollen 11 und 12 Verwendung findet. Die untere Schweissrolle 11 ist am Unterarm 10 der Schweissmaschine drehbar gelagert. Durch diesen Unterarm 10 hindurch und danach in den Arm 2 der Beschichtungsvorrichtung hinein verlaufend ist mindestens eine Leitung 13 zur Förderung eines Beschichtungspulver-Luft-Gemisches vorgesehen. Das Beschichtungspulver wird dabei auf bekannte Weise durch Förderluft durch die Schweissmaschine hindurch entlang der Leitung 13 bis zur Beschichtungsvorrichtung 1 gefördert. In der Figur ist das Pulver-LuftGemisch in der Leitung 13 mit Pfeilen 15 und an der Austrittstelle 4 der Beschichtungseinrichtung 1 als Wolke 15 dargestellt. Das Beschichtungspulver gelangt beim Austritt an der Austrittstelle 4 auf die Innenseite der Dosenzarge 3 auf deren unbeschichtete Schweissnaht und bildet dort eine Schicht, welche nachfolgend auf bekannte weise eingebrannt und abgekühlt über der Schweissnaht eine dichte Beschichtung bildet, welche im Schweissnahtbereich die Innenbeschichtung der Dosenzarge vervollständigt. Dieses ist bekannt und muss hier nicht weiter erläutert werden. Bekannt ist es weiter, wie in Figur 1 dargestellt, eine Spitzenelektrode 7 vorzusehen, welche über eine Spannungsquelle 8 mit Hochspannung versorgt wird. Das entsprechend sich ausbildende elektrostatische Feld führt auf bekannte Weise zu einer Beeinflussung des Beschichtungsmaterials und dessen bessere Anhaftung an der Dosenzarge 3. Bekannt ist es dabei, die Spitzenelektrode durch einen Schutzring 18 vor dem Beschichtungspulver zu schützen und ferner über eine Leitung 14 pulverfreie Luft 17 als Spülluft um die Elektrode herum zu führen und in den Raum 5 austreten zu lassen, um die Elektrode ebenfalls vor der Beschichtung durch das Beschichtungsmaterial zu schützen. Es zeigt sich indes, dass es trotzdem zu Pulverablagerungen an der bekannten Elektrode 7 kommt, besonders bei der Verwendung von Polyamid-Pulver als Beschichtungsmaterial. Es ist bereits versucht worden, der Pulververschmutzung der Elektrode 7 einerseits durch eine Erhöhung der Luftgeschwindigkeit der Spülluft zu begegnen, doch hat dies nicht den gewünschten Erfolg gebracht. Die Geschwindigkeit der Spülluft ist ferner nach oben hin begrenzt, da durch die austretende Spülluft die Wolke 15 nicht übermässig gestört werden darf. Ferner wurde versucht, die Hochspannung an der Elektrode 7 weiter zu erhöhen, um auch dadurch eine erhöhte Abstossung des Pulvers von der Elektrode zu erreichen. Es zeigt sich aber, dass der übliche Bereich von ca. 20 kV Spannung und eine Höchstspannung von 25 kV nicht überschritten werden sollte. Bei zu hoher Spannung ergibt sich nämlich der Effekt, dass die neben dem unbeschichteten Schweissnahtbereich liegende Lackschicht an der Innenseite der Dose ebenfalls aufgeladen wird, was wiederum zu einer Abstossung des Beschichtungspulvers führt. Es ist daher erwünscht, die bei einer solchen Anordnung üblichen Parameter von Spülluftgeschwindigkeit entsprechend einer Spülluftmenge von ca. 1 bis 2 Liter/Minute und die Hochspannung im Bereich von ungefähr 20 kV möglichst beizubehalten. Natürlich gelten für andere Beschichtungssituationen, wie andere zu beschichtende Gegenstände und andere Beschichtungsmaterialien jeweils andere Standardwerte, doch ist auch dort das Bestreben, die für eine gute Beschichtung verwendeten Standardwerte möglichst beizubehalten. FIG. 1 shows schematically the conditions when coating can weld seams on the inside of cans as an example of objects to be coated. However, the invention explained below is also applicable to the electrostatically assisted coating of other articles, although the can weld seam coating is the preferred application. In this case, a powdery coating material is usually used, for example a polyamide powder. Such coating materials are known and are not explained here in detail. In the coating of articles, it is also known to use liquid coating materials in drop form, wherein the present invention may also find application. Also, such materials are known and will not be explained here. In FIG. 1 a can body 3 is indicated, which is located above the arm 2 of a coating device 1. The can is transported by a not shown, known transport device at high speed in the direction of arrow A. The can body 3 has previously been welded in a likewise known manner between the welding rollers 11 and 12 of a not-shown can welding machine, wherein usually a Drahtzwischenelektrode on the welding rollers 11 and 12 is used. The lower welding roller 11 is rotatably mounted on the lower arm 10 of the welding machine. Passing through this lower arm 10 and thereafter into the arm 2 of the coating device, at least one line 13 for conveying a coating powder-air mixture is provided. The coating powder is thereby passed through conveying air through the welding machine in a known manner conveyed along the line 13 to the coating device 1. In the figure, the powder-air mixture is shown in the line 13 with arrows 15 and at the exit point 4 of the coating device 1 as a cloud 15. The coating powder passes at the outlet at the exit point 4 on the inside of the can body 3 on the uncoated weld and forms there a layer which subsequently baked in a known manner and cooled above the weld forms a dense coating, which completes the inner coating of the can body in the weld seam area. This is known and need not be explained here. It is known, as in FIG. 1 shown to provide a tip electrode 7, which is supplied via a voltage source 8 with high voltage. The correspondingly forming electrostatic field leads in a known manner to an influence of the coating material and its better adhesion to the can body 3. It is known to protect the tip electrode by a guard ring 18 before the coating powder and also via a line 14 powder-free air 17 than Purge air around the electrode to lead and leave in the space 5 to protect the electrode also before coating by the coating material. It turns out, however, that it still leads to powder deposits on the known electrode 7, especially when using polyamide powder as a coating material. It has already been tried to counteract the powder contamination of the electrode 7 on the one hand by increasing the air velocity of the scavenging air, but this has not brought the desired success. The speed of the scavenging air is also limited to the top, since the exiting scavenging air, the cloud 15 may not be disturbed excessively. Further, it has been attempted to further increase the high voltage at the electrode 7 to thereby also achieve increased repulsion of the powder from the electrode. It appears but that the usual range of about 20 kV voltage and a maximum voltage of 25 kV should not be exceeded. If the voltage is too high, this results in the effect that the lacquer layer lying next to the uncoated weld seam region is also charged on the inside of the can, which in turn leads to a repulsion of the coating powder. It is therefore desirable to maintain as far as possible the parameters of purging air velocity customary in such an arrangement corresponding to a purging air volume of approximately 1 to 2 liters / minute and the high voltage in the range of approximately 20 kV. Of course, for other coating situations, such as other articles to be coated and other coating materials, each have different default values, there is a desire to maintain the default values used for a good coating as much as possible.

Die Figuren 2 und 3 zeigen nun eine Ausführungsform einer Elektrodenanordnung 6 gemäss der Erfindung und zur Erläuterung des erfindungsgemässen Verfahrens. Diese Elektrodenanordnung 6 ist anstelle der in Figur 1 dargestellten Elektrodenanordnung 6' direkt einsetzbar. Gleiche Bezugszeichen zeigen dabei dieselben Elemente, insbesondere ist wiederum die Spülluftleitung mit 14 bezeichnet und die Spülluft mit den Pfeilen 17. Der Pfeil 15 oberhalb der Elektrodenanordnung 6 zeigt den Verlauf des Luft-Pulver-Gemisches 15 entsprechend Figur 1. Die Elektrodenanordnung 6 ist dabei in der Regel in der vorrichtung 1 von Figur 1 so angeordnet, dass sich eine ähnliche, im wesentlichen von der zu beschichtenden Gegenstandsfläche konstant beabstandete Stellung der Elektrode 9 der erfindungsgemässen Elektrodenanordnung 6 ergibt, wie dies der Elektrode 7 nach Stand der Technik entspricht. Auch andere Einbaumöglichkeiten sind indes möglich, wenn dadurch das erwünschte elektrostatische Feld durch die Elektrode 9 erzeugt wird. Diese ist wiederum mit einer Hochspannungsquelle 8 verbunden, welche vorzugsweise ebenfalls Gleichspannung im Bereich von 20 kV erzeugt.The FIGS. 2 and 3 Now show an embodiment of an electrode assembly 6 according to the invention and to explain the inventive method. This electrode arrangement 6 can be used directly instead of the electrode arrangement 6 'shown in FIG. The same reference numerals show the same elements, in particular again the scavenging air line is denoted by 14 and the scavenging air with the arrows 17. The arrow 15 above the electrode assembly 6 shows the course of the air-powder mixture 15 accordingly FIG. 1 , The electrode assembly 6 is usually in the device 1 of FIG. 1 arranged so that there is a similar, substantially constant from the object surface to be coated spaced position of the electrode 9 of the inventive electrode assembly 6, as corresponds to the electrode 7 according to the prior art. However, other installation options are also possible if this generates the desired electrostatic field through the electrode 9. This is in turn connected to a high voltage source 8, which preferably also generates DC voltage in the range of 20 kV.

Gemäss der Erfindung ist die Elektrode 9 als vibrierende bzw. schwingende Elektrode ausgestaltet. Bei der Ausführungsform gemäss den Figuren 2 und 3 ist die Elektrode als eine federzungenartige, einerends befestigte und anderenends frei liegende Elektrode ausgestaltet, welche vorzugsweise vor der Öffnung 25' eines Resonanzraumes 25 angeordnet ist. Figur 2 zeigt dabei einen Vertikalschnitt durch die Elektrodenanordnung 6 mit der Elektrode 9 und Figur 3 zeigt eine Frontalansicht in Richtung des Pfeiles B von Figur 2. Ersichtlich ist, dass die schwingfähige Elektrode 9 mit einem Befestigungsmittel 20 vor der Öffnung 25' des Resonanzraumes 25 angeordnet ist und in ihrer äusseren Form im wesentlichen dieser Öffnung entspricht, so dass sich nur ein schmaler Spalt 19 zwischen der Öffnung 25' und der Elektrode 9 ausbildet. Die Breite dieses Spaltes beträgt z.B. nur 1/10 mm. Geringere Spaltgrössen sind in der Regel für herkömmliche Beschichtungspulver für Dosen zu vermeiden, da sich ansonsten Pulverpartikel im Spalt 19 festklemmen können. Eine etwas grössere Breite des Spaltes 19 kann gewählt werden, diese muss aber so bemessen sein, dass sich ein Schwingen der zungenförmigen Elektrode 9 aufgrund der Spülluftzufuhr 17 ergibt. Die Spülluft tritt nämlich durch den Spalt aus und regt dabei die Elektrode 9 zu der erfindungsgemäss gewünschten Vibration bzw. Schwingung an. Bei dieser bevorzugten Ausführungsform wird also die Schwingung der Elektrode durch einen Luftstrom erzeugt, welcher bevorzugterweise aus dem Spülluftstrom 17 besteht. Natürlich können bei anderen Beschichtungsanwendungen, bei welchen kein Spülluftstrom vorgesehen ist, andere Möglichkeiten zur Schwingungsanregung der Elektrode verwendet werden, so z.B. eine piezoelektrische oder elektromagnetische Schwingungsanregung. Auch bei solchen Anwendungen kann indes ein spezieller Luftstrom erzeugt werden, welcher dann zur Schwingungsanregung dient. Natürlich kann die Schwingung mit einem Luftstrom auch auf andere bekannte Weise erzielt werden, z.B. indem ein aus einer Düse austretender Luftstrom über die Oberkante einer Elektrode strömt und diese vibrierend auslenkt.According to the invention, the electrode 9 is designed as a vibrating or oscillating electrode. In the embodiment according to the FIGS. 2 and 3 the electrode is designed as a spring tongue-like, one end fixed electrode and the other end exposed electrode, which is preferably arranged in front of the opening 25 'of a resonance chamber 25. FIG. 2 shows a vertical section through the electrode assembly 6 with the electrode 9 and FIG. 3 shows a frontal view in the direction of arrow B of FIG. 2 , It can be seen that the vibratable electrode 9 is arranged with a fastening means 20 in front of the opening 25 'of the resonance chamber 25 and in its outer shape substantially corresponds to this opening, so that only a narrow gap 19 between the opening 25' and the electrode. 9 formed. The width of this gap is for example only 1/10 mm. Smaller gap sizes are usually to be avoided for conventional coating powder for cans, since otherwise powder particles in the gap 19 can clamp. A slightly larger width of the gap 19 can be selected, but this must be such that a swinging of the tongue-shaped electrode 9 results due to the purge air 17. The purge air exits through the gap and thereby stimulates the electrode 9 to the vibration or vibration desired according to the invention. In this preferred embodiment, therefore, the oscillation of the electrode is generated by an air flow, which preferably consists of the purge air flow 17. Of course, in other coating applications where no scavenge air flow is provided, other means of vibrational excitation of the electrode may be used, such as piezoelectric or electromagnetic vibrational excitation. However, even in such applications, a special air flow can be generated, which then serves for vibration excitation. Naturally The oscillation with an air flow can also be achieved in other known ways, for example by a stream of air emerging from a nozzle flowing over the upper edge of an electrode and deflecting it vibratingly.

Als Anhaltspunkt für eine Schwingung, welche die Elektrode 9 wirkungsvoll frei von Pulververschmutzungen hält, kann eine Schwingfrequenz von ca. 500 Hz bei einer Amplitude am freien Ende der Elektrode 9 von ca. 0,5 mm gegeben werden. Natürlich kann die Schwingungsfrequenz und die Amplitude in einem recht weiten Bereich frei gewählt werden. Die genannte Schwingungsfrequenz stellt sich bei der herkömmlichen Luftmenge von 1 bis 2 Litern/Minute ein, wenn für die Elektrodenanordnung 6 von Figur 2 ungefähr die folgenden Masse gewählt werden. Als Länge x des Zufuhrraumes 24 für die Zufuhr der Luftströmung 17 in den Resonanzraum 25 ca. 60 mm. Als Höhe y des Raumes 24 ca. 6 mm. Es hat sich gezeigt, dass die Schwingungsanregung und die Aufrechterhaltung der Schwingung besser erfolgt, wenn dem Resonanzraum 25 ein solcher Raum 24 vorgeschaltet ist, anstelle des direkten Einführens der Leitung 14 in den Resonanzraum 25. Für den Resonanzraum 25 selber hat sich eine Höhe v von ca. 10 mm und eine Breite u von ca. 5 mm als geeignet erwiesen, wenn die Höhe h des freien Zungenteils der Elektrode 9 ungefähr 6-7 mm beträgt und die Breite b der Elektrode ca. 2 mm beträgt sowie deren Dicke ca. 0,05 mm. Die Elektrode ist dabei aus einem Federstahl gebildet und weist vorzugsweise die in Figur 3 gezeigte zungenartige Form auf. Es ist aber durchaus möglich auch eine z.B. rechteckig geformte Elektrode 9' vorzusehen, wie dies in Figur 3 mit unterbrochenen Linien angedeutet ist. Das Gehäuse der Elektrodenanordnung 6 besteht vorzugsweise aus Kunststoff. Die Spannungsquelle 8, die an der Elektrode,9 angelegt wird, ist dieselbe Spannungsquelle, wie sie bei der herkömmlichen Spitzenelektrode Verwendung findet. Bei anderen Beschichtungsanwendungen kann natürlich eine anders geformte und mit anderen Dimensionen versehene Elektrode eingesetzt werden. Auch die Dimensionen der Elektrodenanordnung 6 sind natürlich in weitem Bereich veränderbar und ein Resonanzraum ist in der Regel nur dann erforderlich, wenn die Schwingungsanregung durch einen Luftstrom erfolgt. Wird eine andere Möglichkeit der Schwingungsanregung verwendet, z.B. eine piezoelektrische oder eine elektromagnetische Schwingungsanregung, mittels welcher die schwingfähige Elektrode direkt zwangsweise in Schwingung versetzt wird, so wird natürlich die Luftzufuhr und es werden die Räume 24 und 25 gar nicht benötigt. Auch eine Schwingungsanregung durch ein schlagendes Element, welches die Elektrode 9 nur zeitweise durch einen Schlag auf die Elektrode oder allenfalls einen benachbarten Gehäuseteil oder Halterungsteil in Vibration versetzt, kann auch zur Vermeidung der Ablagerung von Beschichtungsmaterial verwendet werden und dazu genügen. Die Anregung zur Schwingung der Elektrode kann dabei periodisch oder in zufällig gewählten Abständen erfolgen.As an indication of a vibration that keeps the electrode 9 effectively free of powder contamination, an oscillation frequency of about 500 Hz at an amplitude at the free end of the electrode 9 of about 0.5 mm can be given. Of course, the oscillation frequency and the amplitude can be freely selected within a fairly wide range. The above-mentioned oscillation frequency is set at the conventional air amount of 1 to 2 liters / minute, when for the electrode assembly 6 of FIG. 2 about the following mass be chosen. As a length x of the supply chamber 24 for the supply of air flow 17 into the resonance chamber 25 about 60 mm. As height y of the room 24 about 6 mm. It has been found that the vibration excitation and the maintenance of the vibration is better when the resonance chamber 25 such a space 24 is connected upstream, instead of the direct insertion of the line 14 in the resonance chamber 25. For the resonance chamber 25 itself has a height v of about 10 mm and a width u of about 5 mm has proven suitable if the height h of the free tongue part of the electrode 9 is about 6-7 mm and the width b of the electrode is about 2 mm and the thickness is about 0 , 05 mm. The electrode is formed from a spring steel and preferably has the in FIG. 3 shown tongue-like shape. But it is also possible to provide an eg rectangular shaped electrode 9 ', as in FIG. 3 indicated by broken lines. The housing of the electrode assembly 6 is preferably made of plastic. The voltage source 8 applied to the electrode 9 is the same voltage source as used in the conventional tip electrode. Of course, other coating applications may take a different shaped and other dimensions design Electrode be used. Of course, the dimensions of the electrode assembly 6 are variable in a wide range and a resonance chamber is usually only required if the vibration excitation is carried out by an air flow. If another possibility of vibrational excitation is used, for example a piezoelectric or an electromagnetic vibrational excitation, by means of which the oscillatable electrode is forcibly vibrated directly, then of course the air supply and the spaces 24 and 25 are not needed. Also, vibration excitation by a beating element, which causes the electrode 9 only temporarily by a blow to the electrode or possibly an adjacent housing part or support member in vibration, can also be used to avoid the deposition of coating material and satisfy. The excitation for oscillation of the electrode can be done periodically or at random intervals.

Figur 4 zeigt schematisch eine weitere Ausführungsform, bei welcher eine an sich herkömmliche Spitzenelektrode innerhalb der Elektrodenanordnung 6 vorgesehen ist. Diese Spitzenelektrode 29, die wieder mit der Spannungsquelle 8 verbunden ist, ist auf einem Sockel 30 befestigt, welcher das eigentliche vibrierende Element bildet. Die Elektrode 29 ist dabei starr und folgt lediglich der Bewegung des vibrierenden Sockels. Dieser Sockel kann wiederum piezoelektrisch, elektromagnetisch oder elektromotorisch oder auf andere bekannte Weise zur Ausführung von Vibration angetrieben sein. Diese Vibrationen können dabei in Richtung des Pfeiles C und/oder des Pfeiles D erfolgen. Auf diese Weise kann eine in ihrem unteren Bereich zylindrische und starre Spitzenelektrode vibriert werden, z.B. in einem Bereich von 100 Hz bis ebenfalls 500 Hz oder höher. Auch auf diese Weise kann die Ablagerung von Beschichtungsmaterial durch Vibration der Elektrode verhindert werden. Zusätzlich kann Spülluft 17 auf bekannte Weise eingesetzt werden, so dass die Spülluft der Spülung dient und nicht zur Vibrationserzeugung herangezogen wird. FIG. 4 schematically shows a further embodiment in which a per se conventional tip electrode is provided within the electrode assembly 6. This tip electrode 29, which is again connected to the voltage source 8, is mounted on a base 30, which forms the actual vibrating element. The electrode 29 is rigid and follows only the movement of the vibrating base. This pedestal may in turn be driven piezoelectrically, electromagnetically or electromotively, or in some other known way to effect vibration. These vibrations can be done in the direction of arrow C and / or arrow D. In this way, a cylindrical and rigid tip electrode in its lower region can be vibrated, for example in a range from 100 Hz to also 500 Hz or higher. Also in this way, the deposition of coating material by vibration of the electrode can be prevented. In addition, scavenging air 17 can be used in a known manner, so that the scavenging air the rinse serves and is not used for vibration generation.

Gemäss einem weiteren Aspekt der Erfindung, welcher in Figur 5 ersichtlich ist, wird die Elektrode nicht vibriert, sondern auf andere Weise bewegt, vorzugsweise um eine Achse E gedreht. In dem gezeigten Beispiel von Figur 5 sind in der Elektrodenanordnung 6 zwei Elektroden 39 auf einem Träger 38 angeordnet, der zusammen mit der Welle 37 um die genannte Drehachse E drehbar ist. Die Elektroden sind wiederum mit der Spannungsquelle U verbunden. Die Drehung kann z.B. elektromotorisch erfolgen oder es könnte wiederum eine Luftströmung, z.B. die Spülluftströmung 17 eingesetzt werden, um die Elektroden 39 anzutreiben, was durch eine entsprechende windradmässige Ausgestaltung des Trägers 38 möglich ist. Die Elektrodenanordnung 6 ist dabei bezüglich der wiederum bewegten Gegenstände 3 stationär und nur die einzelne Elektrode oder die einzelnen Elektroden 39 werden bewegt.According to a further aspect of the invention, which in FIG. 5 can be seen, the electrode is not vibrated, but moved in another way, preferably rotated about an axis E. In the example shown by FIG. 5 In the electrode arrangement 6, two electrodes 39 are arranged on a support 38, which together with the shaft 37 is rotatable about the said axis of rotation E. The electrodes are in turn connected to the voltage source U. The rotation can take place, for example, by an electric motor, or in turn an air flow, for example the scavenging air flow 17, could be used to drive the electrodes 39, which is possible by means of a corresponding wind-wheel-shaped design of the carrier 38. The electrode assembly 6 is stationary with respect to the again moving objects 3 and only the single electrode or the individual electrodes 39 are moved.

Claims (17)

  1. A method of electrostatically supported coating of articles (1) with a coating material (15), characterised in that the at least one field-producing electrode (9; 29) is caused to vibrate at least at times and preferably continuously during the coating operation.
  2. A method according to claim 1 characterised in that the articles (3) are moved past the stationary vibrating electrode (9; 29) and in particular are bodies of tins, the inside seam region of which is coated, in particular with a coating material in powder form.
  3. A method according to claim 1 or claim 2 characterised in that the electrode is in the form of an oscillating element (9) and is excited to vibrate by an excitation means (17).
  4. A method according to claim 3 characterised in that the electrode is excited to vibrate by an air flow (17), in particular a flushing air flow.
  5. A method according to claim 4 characterised in that the electrode (9) is arranged in leaf form and in particular tongue form in front of the opening (25') of a resonance chamber (25), and the air (17) is passed through a gap (19) between the electrode (9) and the opening (25').
  6. A method according to claim 1 or claim 2 characterised in that the electrode (29) is in the form of a substantially rigid element which is moved with an oscillating motion by a drive means (30).
  7. A method according to claim 6 characterised in that flushing air flows around the electrode (29).
  8. A method of electrostatically supported coating of moving articles (3) with a coating material, comprising an electrode arrangement (6) disposed stationarily at a spacing from the articles and including at least one electrode (39), characterised in that the electrode (39) in the coating operation is moved driven at least at times and in particular is moved in driven rotation about an axis of rotation (E).
  9. A method according to claim 8 characterised in that the electrode (39) is moved by an air flow (17) or by electric motor means.
  10. An electrode arrangement (6) for producing an electrical field in electrostatically supported coating apparatuses, characterised in that the arrangement (6) has at least one vibratingly movable electrode (9; 29).
  11. An electrode arrangement according to claim 10 characterised in that the electrode is in the form of a flexible electrode (9) which can be excited to oscillate, in particular being in the form of an electrode (9) which can be excited to vibrate by an air flow.
  12. An electrode arrangement according to claim 11 characterised in that the electrode (9) is of a substantially leaf-shaped, in particular tongue-shaped configuration, and is fixed at one end.
  13. An electrode arrangement according to one of claims 10 to 12 characterised in that the electrode is fixed in front of the opening (25') of a chamber (25) of the arrangement, forming an air gap (19), which chamber is in communication with an air inlet of the arrangement (6).
  14. An electrode arrangement according to claim 10 characterised in that the electrode (29) is in the form of a substantially rigid electrode, in particular a point electrode which is fixed on or to a vibrator element (30).
  15. An electrode arrangement (36) for producing an electrical field in electrostatically supported coating apparatuses, characterised in that the arrangement (36) has at least one electrode (39) arranged driven rotatably about an axis of rotation.
  16. An electrode arrangement according to claim 15 characterised in that it includes an electric-motor drive means for the rotary movement or a drive means (38) driven rotatably by an air flow.
  17. A coating apparatus (1) for the coating of articles (3), in particular moving articles, comprising an electrode arrangement according to one of claims 10 to 16.
EP04738048A 2003-07-07 2004-06-29 Method for coating objects, electrode arrangement, and coating system Not-in-force EP1641568B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH11902003 2003-07-07
PCT/CH2004/000407 WO2005002738A1 (en) 2003-07-07 2004-06-29 Method for coating objects, electrode arrangement, and coating system

Publications (2)

Publication Number Publication Date
EP1641568A1 EP1641568A1 (en) 2006-04-05
EP1641568B1 true EP1641568B1 (en) 2008-05-21

Family

ID=33557711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04738048A Not-in-force EP1641568B1 (en) 2003-07-07 2004-06-29 Method for coating objects, electrode arrangement, and coating system

Country Status (5)

Country Link
US (1) US20060153980A1 (en)
EP (1) EP1641568B1 (en)
DE (1) DE502004007234D1 (en)
ES (1) ES2303074T3 (en)
WO (1) WO2005002738A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2504149T3 (en) * 2009-11-24 2020-11-30 Kalwar Cft Fusions-Technik Gmbh Method for surface treating a substrate and device for carrying out the method
CH713662A2 (en) * 2017-03-30 2018-10-15 Soudronic Ag Powder spray head and powder coating system with such.
WO2020250060A1 (en) * 2019-06-11 2020-12-17 System Ceramics S.P.A. A dispensing device for a granular material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2173078A (en) * 1933-10-04 1939-09-12 Behr Manning Corp Production of pile surfaces
US2447374A (en) * 1934-04-25 1948-08-17 Granne Trust Company Method of applying coating materials
GB789581A (en) * 1956-05-31 1958-01-22 Schweitzer Electrostatic Compa Coating composition atomizing head
NL250925A (en) * 1959-05-12
AT231041B (en) * 1962-02-26 1964-01-10 Gluecksbandwerk G Roth & Cie Device for the production of single and multi-colored flocked materials
US3290169A (en) * 1962-09-10 1966-12-06 Interplanetary Res & Dev Corp Process and apparatus for electrostatic detearing
FR1367496A (en) * 1963-04-24 1964-07-24 Sames Mach Electrostat Improvements to electrostatic coating of objects
US4808432A (en) * 1986-08-18 1989-02-28 Electrostatic Technology Incorporated Electrostatic coating apparatus and method
DE4227455C2 (en) * 1992-08-19 1996-04-04 Wagner Int Device for electrostatically re-coating the inner surfaces of welds

Also Published As

Publication number Publication date
DE502004007234D1 (en) 2008-07-03
WO2005002738A1 (en) 2005-01-13
US20060153980A1 (en) 2006-07-13
ES2303074T3 (en) 2008-08-01
EP1641568A1 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
EP2566627B1 (en) Coating device with jets of coating medium which are broken down into drops
DE10117807B4 (en) Scattering device and method for applying solid particles
EP2696988B1 (en) Device and method for conveying powder from a powder supply
EP2122427B1 (en) Operating method for a sprayer and corresponding coating device
EP3429770A1 (en) Device and method for descaling a workpiece in motion
DE1280101B (en) Device for spraying paint by means of ultrasound
DE7504093U (en) FLUIDIC OSCILLATOR FOR SPRAYING A FLUID
DE10359280A1 (en) spray coater
EP0321693B1 (en) Method for reducing ambient influences on the powder coating of objects, and apparatus for powder coating
EP1641568B1 (en) Method for coating objects, electrode arrangement, and coating system
DE2720340B2 (en) Method and device for separating fiber flocks from a transport air flow into a disposal shaft
DE2656330C2 (en) Process and device for the production of powders or granulates from metals and alloys
EP0913204A1 (en) Method and apparatus for powder coating
DE4405549A1 (en) Device for applying powder
DE4219549A1 (en) Welding components - using vibration exciters to produce periodically varying gap at weld spot
EP0170827B1 (en) Method of and apparatus for coating objects, and their use
WO2018176164A1 (en) Electrostatic powder spraying head
EP0192099B1 (en) Method for coating objects, and apparatus for carrying out this method
DE4430749C2 (en) Powder coating system for the recovery of unused powder material
WO2005061123A9 (en) Ultrasonic standing wave-atomizer system
EP1633493B1 (en) Standing ultrasonic wave spraying arrangement
DE1577757A1 (en) Method and device for the electrostatic coating of an object with pulverized coating material
EP1054738B1 (en) Mist generating head
DE19926951A1 (en) Electrostatic separator for separating a feed mixture into two types of particles such as silica and limestone particles has rows of oppositely charged electrostatic rotating electrodes having top ends supported in bearing
DE202008013560U1 (en) Apparatus for generating a plasma jet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOUDRONIC AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

REF Corresponds to:

Ref document number: 502004007234

Country of ref document: DE

Date of ref document: 20080703

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2303074

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200618

Year of fee payment: 17

Ref country code: CH

Payment date: 20200618

Year of fee payment: 17

Ref country code: FR

Payment date: 20200619

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200625

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200824

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200625

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004007234

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210629

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210629

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630