EP1635910A1 - Kosmetische und/oder dermatologische zubereitungen enthaltend einen extrakt der samen von pflanzen der gattung adenanthera - Google Patents
Kosmetische und/oder dermatologische zubereitungen enthaltend einen extrakt der samen von pflanzen der gattung adenantheraInfo
- Publication number
- EP1635910A1 EP1635910A1 EP04731919A EP04731919A EP1635910A1 EP 1635910 A1 EP1635910 A1 EP 1635910A1 EP 04731919 A EP04731919 A EP 04731919A EP 04731919 A EP04731919 A EP 04731919A EP 1635910 A1 EP1635910 A1 EP 1635910A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- skin
- acid
- seeds
- preparations
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/96—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
- A61K8/97—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
- A61K8/9783—Angiosperms [Magnoliophyta]
- A61K8/9789—Magnoliopsida [dicotyledons]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/48—Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/96—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
- A61K8/97—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
- A61K8/9783—Angiosperms [Magnoliophyta]
- A61K8/9794—Liliopsida [monocotyledons]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/002—Preparations for repairing the hair, e.g. hair cure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/006—Antidandruff preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/12—Preparations containing hair conditioners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/74—Biological properties of particular ingredients
- A61K2800/75—Anti-irritant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/74—Biological properties of particular ingredients
- A61K2800/78—Enzyme modulators, e.g. Enzyme agonists
- A61K2800/782—Enzyme inhibitors; Enzyme antagonists
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/005—Preparations for sensitive skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/007—Preparations for dry skin
Definitions
- the invention is in the field of cosmetics and relates to preparations containing special plant extracts and the use of these plant extracts in cosmetic preparations, for example for skin treatment.
- Cosmetic preparations are available to the consumer in a variety of combinations today. Not only is it expected that these cosmetics have a certain nourishing effect or remedy a certain deficiency, but more and more people are asking for products that have several properties at the same time and thus show an improved range of services.
- substances that both positively influence the technical properties of the cosmetic product such as storage stability, light stability and formulability, and at the same time represent active ingredients that impart nourishing, anti-irritant, anti-inflammatory and / or light-protective properties to the skin and / or hair.
- Good skin tolerance and the use of natural products by the customer are particularly important.
- the task of the skin as an organ enveloping the organism consists in sealing and mediating functions against the environment.
- an immune system protects the skin from damage caused by pathogenic microorganisms
- the melanin-forming system regulates pigmentation and protects the skin from radiation damage
- a lipid system produces lipid micelles that contain the transdermal water loss
- regulated keratin synthesis contributes to the mechanical resistance of the horny layer.
- the systems mentioned are based on complex chemical processes, the course of which is kept in motion by enzymes and regulated by enzyme inhibitors. Even a slight inhibition or disinhibition of these biochemical systems manifests itself in noticeable changes in the skin.
- the visible and tactile condition of the skin is, however, a measure of beauty, health and youth; Maintaining it is a general goal of cosmetic care.
- the human skin usually reacts to exogenous, i.e. external stress factors such as UV radiation, ozone or other harmful substances (air pollution) present in the air with mild or severe irritation.
- external stress factors such as UV radiation, ozone or other harmful substances (air pollution) present in the air with mild or severe irritation.
- the skin is damaged by the oxygen radicals and non-specific proteinases released in irritation reactions. This can adversely affect the appearance or the elasticity or the barrier functions of the skin, for example.
- excess mobilized body proteases such as trypsin, elastase, collagenases and plasmin, can attack the skin and, in particular, its structural proteins such as collagen and elastin.
- protease inhibitors from a plant source and here in particular the serine protease inhibitors such as trypsin inhibitors has already been described, for example in US 4906457 for the prevention of cancer, caused by UV radiation or to prevent desquamation as an anti Desquamation in EP 0975 324 or against the changed skin pigmentation in WO 99/04752.
- Elastase-inhibiting protein fractions from plant extracts and their use as anti-inflammatory, hydrating, skin elasticity-increasing, proteinase-inhibiting active substances are described in EP 532 465.
- Plasmin-inhibiting effects of plant extracts are disclosed in US-A4066507, JP-A2002080359, JP-A2001354582, JP- A2001240551, JP-A2001122728, JP-A2000327555, EP-A0953341, WO98 / 24474, JP-A09020643, JP-A09020642, JP-A09020641, JP-A09020640, EP-A0567816, EP-A0223254, JP-A214297, JP-A214297-25 JP-A9612586, JP-A8993509 and CS 124782.
- Plant extracts have been used for many years in a wide variety of crops for medical but also for cosmetic purposes. New plants are extracted again and again and the extracts are examined for their cosmetic effects in order to find other plants with a new or changed spectrum of activity. Many plants, the benefits of which were not yet known, and which were considered to be exotic and insignificant, are widely used today, among other things, in cosmetics.
- the object of the present patent application was to provide cosmetic and / or dermatological preparations which meet the requirements for cosmetic formulations such as storage stability and skin tolerance and, in addition to caring properties, above all improved protective properties for human skin and / or scalp and / or hair, for example against UV radiation and other have environmental influences and at the same time have preventive and healing effects in the event of signs of aging of the skin and can be used to reduce inflammation.
- Another object of the present patent application was to provide preparations which contain active ingredients from renewable raw materials and, at the same time, can be used in a variety of ways as care products in skin and hair cosmetics.
- the invention relates to cosmetic and / or dermatological preparations containing an extract of the seeds of plants of the genus Adenanthera.
- the extracts according to the invention are extracts of the seeds of the plant Adenanthera pavonina, in particular an extract of peeled seeds, synonymous with the seeds of the seeds.
- the extracts are preferably used in amounts of 0.001 to 25% by weight, and preferably 0.05 to 5% by weight and in particular 0.1 to 0.5% by weight, calculated as dry weight based on the total amount of the preparations, with the proviso that the quantities given with water and possibly other auxiliary substances and additives add up to 100% by weight.
- preparation, agent and care agent are used synonymously in the sense of the invention.
- the extracts from seeds of plants of the genus Adenanthera and especially from seeds of the plant Adenanthera pavonina meet the requirements outlined above in an excellent manner.
- the extracts and the active ingredients contained therein are readily available and are extremely efficient plasmin inhibitors.
- the substances are therefore particularly suitable for protecting against skin irritation, inflammation and the damaging effects of UV-A, UV-B and LR rays which lead to skin aging and wrinkling.
- the extracts to be used according to the invention are obtained from seeds of the plant of the genus Adenanthera and especially the seeds of the plant Adenanthera pavonina.
- Adenanthera pavonina There are eight species under the genus Adenanthera, especially in tropical Asia, Australia and the Pacific region.
- Adenanthera pavonina Adenanthera abrosperma should also be mentioned.
- Adenanthera pavonina is also known under the synonyms Adenanthera gersenii Scheffer or Adenanthera microsperma, Agati Petite Feuille, Circassian tree, coral wood, red bead tree, red wood, pearl tree, Indian coral tree or red sandalwood tree.
- the seeds are often used as an ornament, but also in ancient India as a measure of gold.
- Indian medicine the powdered seeds, partially mixed with honey, were used to treat suppurative and inflamed abscesses.
- the broth of the seeds is used to treat pneumonia and chronic eye diseases.
- a trypsin / chymotrypsin inhibitor could be extracted from the seeds by extraction with 0.01 M hydrochloric acid followed by chromatographic separation methods.
- Natural Plant Enzyme Inhibitors Isolation and Characterization of a Trypsin / Chymotrypsin Inhibitor from Indian Red Wood (Adenanthera pavonina) Seeds; K. Sudhakar Prabhu and Thillaisthanam N. Pattabiraman; J. Sri. Food Agric. 1980, 31, n ° 10, 967-980.
- the size of the extracted inhibitor could be determined by gel chromatography as 24,000 Da.
- a trypsin inhibitor By extraction with 0.1 M sodium phosphate buffer (pH 7.6) in 1% NaCl of the seeds degreased with acetone, Richardson et al. a trypsin inhibitor can be isolated.
- isoenzymes were identified, all of which were approximately 21,000 Da in size and had a large ⁇ chain (Mr 16,000) and a smaller ⁇ chain (Mr 5000) linked via a disulfide bridge.
- the amino acid sequence and the reactive center of the DE5 isoenzyme showed great agreement with the Kunitz-type protease inhibitors from soybeans or other legume seeds.
- trypsin is a serine protease.
- the extracts can be prepared in a manner known per se, ie for example by aqueous, alcoholic or aqueous-alcoholic extraction of the seeds. All conventional extraction methods such as maceration, remaceration, digestion, movement maceration, vortex extraction, ultrasound extraction, countercurrent extraction, percolation, repercolation, evacolation (extraction under reduced pressure), diacolation or solid-liquid extraction with continuous reflux are suitable. For large-scale use the percolation method is advantageous.
- the starting material is usually seed, which can be peeled and mechanically comminuted before extraction. All comminution methods known to the person skilled in the art are suitable here, freeze grinding being mentioned as an example. After crushing the seeds, the core can preferably be freed from the seed coat by sieving.
- Organic solvents water (preferably distilled water at room temperature) or mixtures of organic solvents and water, in particular low molecular weight alcohols with more or less high water contents, can be used as solvents for carrying out the extractions.
- the extracts according to the invention can be obtained from the legume seeds mentioned, preferably by grinding the peeled seeds, optionally extracting the flour obtained with an organic solvent or a solvent mixture, drying and drying the defatted flour with water or an aqueous electrolyte solution at a pH of 2 extracted to 10, preferably at pH 5 to 6, the extract to pH 5 to 7, preferably 5.2, concentrated in vacuo, the concentrate with the addition of a filter aid such as Celite, clear filtered or centrifuged and dried by freeze-drying. Extraction with distilled water at a pH between 5 and 6 is preferred.
- the proteins can be enriched and divided into sizes by membrane enrichment in an ultrafiltration cell, for example from Amicon (10,000 Da cut off or 15,000 Da cut off). ,
- the extraction times are set by the person skilled in the art depending on the starting material, the extraction process, the extraction temperature, the ratio of solvent to raw material, etc.
- the crude extracts obtained can optionally be subjected to further customary steps, such as purification, concentration and / or decolorization. If desired, the extracts produced in this way can, for example, be subjected to a selective separation of individual undesirable ingredients.
- the present invention encompasses the knowledge that the extraction conditions and the yields of the final extracts can be chosen by the person skilled in the art depending on the desired field of use.
- the extracts can also serve as starting materials for the production of the above-mentioned pure active ingredients, provided that these cannot be produced more easily and cost-effectively by synthetic means. Accordingly, the active ingredient content in the extracts 5 to 100, preferably 50 to 95% by weight.
- the extracts themselves can be present as aqueous and / or preparations dissolved in organic solvents and as spray-dried or freeze-dried, anhydrous solids.
- Suitable organic solvents in this connection are, for example, the aliphatic alcohols having 1 to 6 carbon atoms (eg ethanol), ketones (eg acetone), halogenated hydrocarbons (eg chloroform or methylene chloride), lower esters or polyols (eg glycerol or glycols).
- the present invention further relates to the use of extracts from the seeds of plants of the genus Adenanthera, particularly preferably from seeds of the plant Adenanthera pavonina for the production of cosmetic and / or dermatological preparations and in particular for the production of treatment agents for the skin, the scalp and the hair in which it is preferably in amounts of 0.001 to 25% by weight, and preferably 0.05 to 5% by weight and in particular 0.1 to 0.5% by weight, calculated as the dry weight based on the Total amount of the preparations used can be included.
- the use of extracts of the peeled seeds is particularly preferred.
- inventions relate to the use of extracts from the seeds of plants of the genus Adenanthera, particularly preferably from seeds of the plant Adenanthera pavonina for the production of cosmetic and / or dermatological preparations and in particular for the production of treatment agents for the skin, the scalp and the hair ,
- the extracts according to the invention show an anti-irritant effect against oxidative stress for the skin, scalp or hair, which can be triggered by UV or IR radiation, the high levels of air pollution in the environment and hormonal or biological effects on the skin, scalp or hair.
- the extracts according to the invention act against skin aging and can be used for the preventive or curative treatment of signs of aging of the skin. Another name for this type of care product is anti-aging. These signs of aging include any type of wrinkles and wrinkles. Treatments include slowing skin aging.
- the signs of aging can have a wide variety of causes. In particular, these signs of aging are caused by damage to the skin induced by UV and / or IR radiation.
- proteases such as elastase, collagenase and plasmin are excreted from the skin by polymorphonuclear neutrophilic granulocytes or by macrophages.
- MMP-1 matrix metallo-proteinase
- UV-irradiated keratinocytes produce a tissue plasminogen activator (t-PA) which cleaves plasminogen in plasmin
- proteases elastase, collagenase and plasmin
- t-PA tissue plasminogen activator
- Plasmin is a human serine protease which plays a crucial role in wound healing. Plasmin breaks down blood clots made of fibrin into soluble products, the fibrinopeptides, and promotes the migration of keratinocytes to cover an injury.
- Plamsinogen is the pro-enzyme that is activated by a protease to plasmin.
- This protease is the urokinase, which is excreted by activated keratinocytes during wound healing or during skin irritation or through inflammation of the skin. Plasminogen is released during inflammation through blood vessels with increased permeability. The expression and secretion of urokinase is increased by UVB radiation on the cells.
- Plasmin plays a decisive role in skin injuries and therefore also in the photo-aging process of the skin.
- the plasmin-inhibiting effect of the extract according to the invention can thus be used to reduce inflammation of the skin or scalp, in particular for the treatment of rosacea.
- Rosacea is an inherited, non-contagious skin disease that causes the blood vessels to widen, causing the skin to "bloom” red. Sometimes inflammation can also occur around the sebaceous glands. These inflammatory processes cause pus and pustules.
- the skin disease Rosacea means something like "rose flower”. This alludes to the redness on the face that is typical of rosacea. In addition to the redness caused by enlarged blood vessels, inflammation can also lead to changes in the nose.
- the cause of rosacea has not yet been clearly clarified, but the basis is apparently the so-called rosacea diathesis. That is, the tendency to respond to certain stimuli with pronounced reddening of the face, which subside after a while. This state of redness is also called flush.
- the inflammation leads to an increase in connective tissue, which becomes visible as a thickening of the skin. If these relapses remain untreated for a long time, a so-called rhinophyma ("bulbous nose”) can occur. Rosacea often also causes inflammation of the eyelid edges and conjunctiva.
- the extracts according to the invention are used for the production of skin and hair treatment compositions for the treatment of sensitive skin , especially of dry skin, the typical characteristic of which is a low-fat, scaly, delicate surface with small tears and individual inflamed areas.
- the extracts according to the invention are used for the production of skin and hair treatment compositions for the treatment of itching, in particular against itching on the scalp. This itching can be triggered by a wide variety of causes such as insect bites, skin impurities, hormonal or bacteriological skin changes, air pollution and other environmental influences. Itching on the scalp is often accompanied by dandruff.
- the extracts according to the invention are also used for the production of skin and hair treatment agents against dandruff and in particular against dandruff on the scalp.
- a suitable agent for treating dandruff on the scalp is a hair shampoo or other hair care products such as, for example, hair rinses or hair sprays.
- the extracts according to the invention can be used to produce cosmetic or dermatological preparations, such as hair shampoos, hair lotions, bubble baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions. wax, fat masses, stick preparations, powders or ointments.
- cosmetic or dermatological preparations such as hair shampoos, hair lotions, bubble baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions. wax, fat masses, stick preparations, powders or ointments.
- agents can also be used as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, UV light protection factors, biogenic agents, antioxidants, Contain deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, insect repellents, self-tanning agents, tyrosine inhibitors (depigmentation agents), hydrotropes, solubilizers, preservatives, perfume oils, dyes and the like.
- Anionic, nonionic, cationic and / or amphoteric or zwitterionic surfactants can be present as surface-active substances, the proportion of these agents usually being about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight.
- anionic surfactants are soaps, alkyl benzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, alkyl ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, sulfate ether sulfate ethersulfate, sulfate ether sulfate ethersulfate, sulfate ether ethersulfate,
- anionic surfactants contain polyglycol ether chains, these can have a conventional, but preferably a narrow, homolog distribution.
- Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or protein alkyl glucose amides, and glucoronyl acid fatty acids (glucoronyl acid), in particular glucoronic acid (glucoronyl) acid, glucoronyl acid (glucoronyl) acid, glucoronol acid (glucoronyl) acid, especially glucoronyl acid, (), Wheat-based products), polyol fatty acid esters, sugar esters, sorb
- nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
- cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
- amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively borrowed for known connections.
- Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonate, alkyl carboxylates, amide carboxylic acid amide carboxylates, ether carboxylic acid fatty acids, fatty acid amide carboxylic acids, ether carboxylic acid sulfate acids, fatty acid amide carboxylates, or protein fatty acid condensates, the latter preferably based on wheat proteins.
- esters of linear C 6 -C 22 fatty acids with linear or branched C 6 -C 22 fatty alcohols or esters of branched C 6 -C ⁇ come as oil bodies, for example 3 - carboxylic acids with linear or branched C 6 -C 22 fatty alcohols, such as myristyl myristate, myristyl palmitate, myristyl stearate, myristyl isostearate, myristyl oleate, myristyl behenate, myristylerucate, cetyl myristate, cetyl palmitate, cetyl stearate, cetyl stearate, cetyl stearate, cetyl stearate , stearyl palmitate, stearyl stearate leat, Stearylisostearat, Stearylo-, stearyl behenate, Steary
- esters of linear C 6 -C 22 fatty acids with branched alcohols in particular 2-ethylhexanol
- esters of C 8 -C 38 alkyl hydroxy carboxylic acids with linear or branched C 6 -C 22 fatty alcohols cf.
- dioctyl malates especially dioctyl malates, esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on C 6 -CIO fatty acids, liquid mono- / di- / triglyceride mixtures
- polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
- Guerbet alcohols triglycerides based on C 6 -CIO fatty acids, liquid mono- / di- / triglyceride mixtures
- Base of C 6 -C 8 fatty acids, esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids especially benzoic acid, esters of C 2 -C 2 dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms
- dicaprylyl carbonates (Cetiol® CC), Guerbetearbonate based on fatty alcohols with 6 to 18, preferably 8 to 10 C atoms, esters of benzoic acid with linear and / or branched C 6 -C 22 alcohols (e.g.
- Finsolv® TN linear or branched, symmetrical or asymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, such as, for example, dicaprylyl ether (Cetiol® OE), ring-opening pro Products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicon methicone types, etc.) and / or ahphatic or naphthenic hydrocarbons, such as, for example, squalane, squalene or dialkylcyclohexanes.
- dicaprylyl ether ring-opening pro Products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicon methicone types, etc.) and / or ahphatic or naphthenic hydrocarbons, such as, for example, squalane, squalene or dialkylcyclohexanes.
- Suitable emulsifiers are, for example, nonionic surfactants from at least one of the following groups:
- Polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (e.g. cellulose) with saturated and / or unsaturated, linear or branched carbon atoms and with 12 to 22 fatty acids / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
- sugar alcohols e.g. sorbitol
- alkyl glucosides e.g. methyl glucoside, butyl glucoside, lauryl glucoside
- polyglucosides e.g. cellulose
- polysiloxane-polyalkyl-polyether copolymers or corresponding derivatives • polysiloxane-polyalkyl-polyether copolymers or corresponding derivatives; Block copolymers, for example polyethylene glycol 30 dipolyhydroxystearate;
- Polymer emulsifiers e.g. Pemulen types (TR-1, TR-2) from Goodrich;
- Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
- glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to preferably about 8 are suitable.
- the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
- Suitable partial glycerides are hydroxystearic acid monoglyceride, hydroxystearic acid diglyceride, isostearic acid monoglyceride, isostearic acid diglyceride, oleic acid monoglyceride, oleic acid diglyceride, ricinoleic acid moglyceride, ricinoleic acid diglyceride glyceride,
- Linolenic acid diglyceride, erucic acid monoglyceride, erucic acid diglyceride, tartaric acid monoglyceride, tartaric acid diglyceride, citric acid monoglyceride, citric diglyceride, malic acid monoglyceride, malic acid diglyceride and their technical mixtures may still contain minor amounts of triglyceride from the manufacturing process. Addition products of 1 to 30, preferably 5 to 10, mol of ethylene oxide onto the partial glycerides mentioned are also suitable.
- Sorbitantrierucat Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricino- leat, Sorbitantriricinoleat, tartrate sesqui-Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, sorbitan, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, sesqui- citrate, Sorbitandicitrat, sorbitan, sorbitan, sorbitan, sorbitan,
- Sorbitan dimaleate, sorbitan trimaleate and their technical mixtures Addition products of 1 to 30, preferably 5 to 10, mol of ethylene oxide onto the sorbitan esters mentioned are also suitable.
- polyglycerol esters are polyglyceryl-2 dipolyhydroxystearate (Dehymuls® PGPH), polyglycerol-3-diisostearate (Lameform® TGI), polyglyceryl-4 isostearate (Isolan® GI 34), polyglyceryl-3 oleate, diisostearoyl polygly- ceryl-3 diisostearate (Isolan® PDI), polyglyceryl-3 methylglucose distearate (Tego
- polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like which are optionally reacted with 1 to 30 mol of ethylene oxide.
- Anionic emulsifiers are ahphatic fatty acids with 12 to 22 carbon atoms, such as palmitic acid, stearic acid or behenic acid, and dicarboxylic acids with 12 to 22 carbon atoms, such as azelaic acid or sebacic acid.
- Zwitterionic surfactants can also be used as emulsifiers.
- Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
- Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxylm -hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
- betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example
- Suitable emulsifiers are also ampholytic surfactants.
- suitable ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-
- cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
- Typical examples of fats are glycerides, ie solid or liquid vegetable or animal products which essentially consist of mixed glycerol esters of higher fatty acids than Waxes include natural waxes such as candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresine, petroleum jelly, earth wax, earth wax Paraffin waxes, micro waxes; chemically modified waxes (hard waxes), such as montan ester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as polyalkylene waxes and polyethylene glycol waxes.
- natural waxes such as candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, gua
- lecithins In addition to fats, fat-like substances such as lecithins and phospholipids can also be used as additives.
- lecithins is understood by those skilled in the art to mean those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often referred to in the professional world as phosphatidylcholines (PC). Examples of natural lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
- phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats. Sphingosins or sphingolipids are also suitable.
- Pearlescent waxes that can be used are, for example: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15
- Suitable consistency agents are primarily fatty alcohols or hydroxyfatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxyfatty acids. A combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or is preferred Polyglycerol poly-12-hydroxy stearates.
- Suitable thickeners are, for example, aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, Polyacrylates (e.g. Carbopole® and Pemulen types from Goodrich; Synthalene® from Sigma; Keltrol types from Kelco; Sepigel types from Seppic; Salcare types from Allied Colloids), polyacrylamides, polymers, polyvinyl alcohol and polyvinylpyrrolidone.
- aerosil types hydrophilic silicas
- polysaccharides in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl cellulose,
- Bentonites such as Bentone® Gel VS-5PC (Rheox), which is a mixture of cyclopentasiloxane, disteardimonium hectorite and propylene carbonate, have also proven to be particularly effective.
- Surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as, for example, pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides and electrolytes such as sodium chloride and ammonium chloride are also suitable.
- Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
- Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate can be used.
- Suitable cationic polymers are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethyl cellulose, which is available from Amerchol under the name Polymer JR 400®, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, such as, for example, Luviquat® (BASF) , Condensation products of polyglycols and amines, quaternized collagen polypeptides such as lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicon conpolymers, such as amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of
- Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate, isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their polyols, uncrosslinked acrylics and their esters, uncrosslinked amidopropyltrimethylammonium chloride / acrylate copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers, vinylpyrrolidone dimethylaminoethylrolactyl ether and methacrylate etherate and / or meth
- Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds which can be both liquid and resinous at room temperature.
- Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
- UV light protection filters
- UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and the absorbed energy in the form of longer-wave To emit radiation, eg heat.
- UVB filters can be oil-soluble or water-soluble. Examples of oil-soluble substances are:
- 4-Arninobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylarnino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
- Esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-) methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
- esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-iso-propylbenzyl ester, salicylic acid homomethyl ester;
- benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2- 5 hydroxy-4-methoxy-4 'methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
- esters of benzalmalonic acid preferably 4-methoxybenzmalonic acid di-2-ethylhexyl ester
- Triazine derivatives such as e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-hexyloxy) -l, 3,5-triazine and octyl triazone or dioctyl butamido triazone (Uvasorb® HEB);
- propane-l, 3-dione such as e.g. l- (4-tert-butylphenyl) -3- (4'methoxyphenyl) propane-1,3-dione;
- sulfonic acid derivatives of benzophenones preferably 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its salts
- Sulfonic acid derivatives of 3-benzylidene camphor such as e.g. 4- (2-oxo-3-bornylidene-methyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bornylidene) sulfonic acid and their salts.
- benzoylmethane such as 5, for example 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert.-, are particularly suitable as typical UV-A filters.
- Butyl-4'-methoxydibenzoylmethane (Parsol® 1789), l-phenyl-3- (4'-isopropylphenyl) propane-l, 3-dione and enamine compounds.
- the UV-A and UV-B filters can of course also be used in mixtures. Particularly favorable combinations consist of the derivatives of benzoylmethane, e.g.
- water-soluble filters such as 2-phenylbenzimidazole-5-sulfonic acid and its alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium and glucammonium salts.
- insoluble light protection pigments namely finely dispersed metal oxides or salts
- suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
- Silicates (talc), barium sulfate or zinc stearate can be used as salts.
- the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
- the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
- the pigments can also be surface treated, i.e. are hydrophilized or hydrophobized.
- Typical examples are coated titanium dioxides, e.g. Titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used.
- biogenic active substances include tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucleic acid and its fragmentation products, ⁇ -glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudo-ceramides, coin ceramides Plant extracts, such as To understand prunus extract, bambanus extract and vitamin complexes.
- Antioxidants interrupt the photochemical reaction chain, which is triggered when UV radiation penetrates the skin.
- Typical examples of this are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-camosine, L-carnosine and their derivatives (e.g. anserine), carotenoids, carotenes (e.g. ⁇ -carotene, ß-carotene, lycopene) and their derivatives, chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g.
- thiols e.g. thioredoxin, Glutathione, cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters
- salts dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (e.g.
- buthioninsulfoximines homocysteine sulfoximine, butioninsulfones, pentathion, hexa-, hexa-, heptoximine low tolerable doses (e.g. pmol to ⁇ mol / kg), further (metal) chelators (e.g. ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, Bile acid, bile extracts, bilirubin, biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g.
- Cosmetic deodorants counteract, mask or eliminate body odors.
- Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed. Accordingly, deodorants contain active ingredients that act as germ inhibitors, enzyme inhibitors, odor absorbers or odor maskers.
- germ-inhibiting agents such as.
- Suitable as odor absorbers are substances that absorb odor-forming compounds and can largely retain them. They lower the partial pressure of the individual
- Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixers", such as, for example, the main constituent.
- Fixers such as, for example, the main constituent.
- Perfume oils include, for example, mixtures of natural and synthetic fragrances.
- Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and twigs as well as resins and balms.
- Animal raw materials such as civet and castoreum, are also suitable.
- Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
- Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
- the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example, the jonones and methylcedryl ketone, and the alcohols anethole, Citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
- the aldehydes for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitron
- fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil and lavender oil.
- Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
- Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
- Excipients such as B. thickeners or complexing agents and / or non-aqueous solvents such.
- solvents such as ethanol, propylene glycol and / or glycerin.
- Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
- suitable antiperspirant active ingredients are, for example, aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds, for. B. with 1,2-propylene glycol.
- B. with amino acids such as glycine.
- oil-soluble and common in antiperspirants water-soluble auxiliaries may be contained in smaller amounts. Examples of such oil-soluble auxiliaries are:
- water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusting agents, e.g. Buffer mixtures, water soluble thickeners, e.g. water-soluble natural or synthetic polymers such as Xanthan gum,
- Hydroxyethyl cellulose polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
- Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
- Piroctone olamine (1-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (1H) -pyridinone monoethanolamine salt
- Baypival® (climbazole), Ketoconazol®, (4-acetyl) are used as anti-dandruff agents - 1 - ⁇ -4- [2- (2.4-dichlorophenyl) r-2- (1 H -imidazole-1-ylmethyl) - 1, 3 -dioxylan-c- 4-ylmethoxyphenyl ⁇ piperazine, ketoconazole, elubiol, selenium disulfide, Sulfur colloidal, sulfur polyethylene glycol sorbitan monooleate, sulfur ricinole polyhexylate, sulfur tar distillates, salicylic acid (or in combination with hexachlorophene), undexylenic acid monoethanolamide sulfosuccinate sodium salt, Lamepon® UD (protein
- Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases.
- Other suitable polymers or Swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
- Suitable insect repellents are N, N-diethyl-m-toluamide, 1, 2-pentanediol or ethyl butyl acetylaminopropionate
- Dihydroxyacetone is suitable as a self-tanner.
- Arbutin, ferulic acid, kojic acid, coumaric acid and ascorbic acid (vitamin C) are examples of possible tyrosine inhibitors which prevent the formation of melanin and are used in depigmenting agents.
- Hydrotropes such as ethanol, isopropyl alcohol or polyols can also be used to improve the flow behavior.
- Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
- the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
- Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
- Technical oligoglycerol mixtures with a degree of self-condensation of 1.5 to 10 such as technical diglycerol mixtures with a diglycerol content of 40 to 50% by weight;
- Methyl compounds such as, in particular, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
- Lower alkyl glucosides in particular those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
- Sugar alcohols having 5 to 12 carbon atoms such as, for example, sorbitol or mannitol,
- Aminosugars such as glucamine; • Dialcohol amines, such as diethanolamine or 2-amino-1,3-propanediol.
- Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid as well as the silver complexes known under the name Surfacine® and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
- Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouh, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme) ), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
- Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert.-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linylbenzoate, benzyl formate, ethylmethylphenylglycate, allylcyclohexylpropylate propylate, pylate ethylpylate.
- the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example, the jonones, ⁇ -isomethylionone and methylcedryl ketone, and the alcohols Anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpinol, the hydrocarbons mainly include terpenes and balms.
- fragrance oils which are mostly Mac components are used as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
- Suitable flavors are, for example, peppermint oil, spearmint oil, anise oil, stemanis oil, caraway oil, eucalyptus oil, fennel oil, lemon oil, wintergreen oil, clove oil, menthol and the like.
- the dyes which can be used are the substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. Examples are culinary red A (CI 16255), patent blue V (CI42051), indigotine (CI73015), chlorophyllin (CI75810), quinoline yellow (CI47005), titanium dioxide (CI77891), indanthrene blue RS (CI 69800) and madder varnish (CI 58000). Luminol may also be present as the luminescent dye. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
- the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40% by weight, based on the composition.
- the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used. Examples
- the seeds of Adenanthera pavonina were roughly ground and the red seed coat was separated from the yellow seeds (cotyledons) by sieving. The seeds were finely ground and a fine powder, the seed meal, was obtained.
- the anti-trypsin activity of the seed meal is determined by the method of Kakade et al. was 80.8 TUI / mg.
- 30 g of seed meal was added to 300 ml of distilled water.
- the mixture was homogenized using an ultra-thorax.
- the pH of the solution was 5.9.
- the solution was extracted for 1 h at room temperature and the mixture was then centrifuged for 15 min at 5000 g and the upper fat phase was separated off.
- the supernatant was passed through a filter with a mesh size of 15 ⁇ m.
- the pH of the solution thus obtained was adjusted to 5.0 with sulfuric acid, which led to the formation of a precipitate.
- the suspension obtained was centrifuged again at 5000 g for 15 min.
- lyophilisate 230 ml of a yellow filtrate was obtained and then freeze-dried. 4.45 g of lyophilisate were obtained, which corresponds to a yield of 14.85% based on the seed meal.
- the anti-trypsin activity of the lyophilisate was 250 TUI / mg, which corresponds to a 3.1-fold increase in activity compared to seed meal.
- the extract was prepared according to the same procedure as for batch A.
- a yield of extract of 21.9% with an anti-trypsin activity of 251.8 TUI / mg was obtained from 58 g of seed meal, which corresponds to a 3.1-fold increase in activity compared to seed meal.
- the extract was also produced according to the same procedure as for batch A, however the ratio of seed meal / water was changed from 1/10 to 1/15 and the extraction was carried out for 1.5 hours. 16.13 g of lyophilisate were obtained from 70 g of seed meal, which corresponds to a yield of 23.04% based on the seed meal. The anti-trypsin activity of the lyophilisate was 287.2 TUI / mg, which corresponds to a 3.6-fold increase in activity compared to the seed meal.
- proteases such as elastase, collagenase and plasmin are excreted from the skin by polymorphonuclear neutrophilic granulocytes or by macrophages.
- MMP-1 matrix metallo-proteinase
- UV-irradiated keratinocytes produce a tissue plasminogen activator (t-PA) which cleaves plasminogen in plasmin
- t-PA tissue plasminogen activator
- Elastase is a protease which is excreted by the fibroblasts either during inflammation by the leukocytes or as a result of UV-A damage and for the breakdown of dermal macromolecules, e.g. Collagen and elastin and therefore responsible for skin aging.
- pancreatic elastase a serine protease
- elastin was labeled with a chromogenic synthetic substrate as the substrate.
- the system was incubated with the active ingredients for 30 min at room temperature and then, after centrifugation, the optical density of the dye was determined at 410 nm.
- the amount of extracts used was 0.3% by weight.
- Plasmin is a human serine protease which plays a crucial role in wound healing. Plasmin breaks down blood clots made of fibrin into soluble products, the fibrinopeptides, and promotes the migration of keratinocytes to cover an injury.
- Plamsinogen is the pro-enzyme that is activated by a protease to plasmin.
- This protease is the urokinase, which is excreted by activated keratinocytes during wound healing or during skin irritation or through inflammation of the skin. Plasminogen is released during inflammation through blood vessels with increased permeability. The expression and secretion of urokinase is increased by UVB radiation on the cells.
- plasminogen is transformed in an extracellular matrix to plasmin which can then activate pro-MMP3 and which can then lead to a breakdown of dermal glycoproteins such as fibronectin, laminin and proteoglycan.
- the protease-catalyzed hydrolysis breaks down the quenching and leads to a fluorescence signal.
- the proportion of hydrolyzed substrate was determined by measuring the increased green fluorescence within 30 min. The more active the plasmin, the more substrate is hydrolyzed and the higher the fluorescence intensity. The inhibition of the enzyme activity was examined in comparison to a control and a reference substance SBTI from Sigma.
- Table 3-6 contain a number of formulation examples.
- Cosmetic preparations conditioner (water, preservative ad 100 wt .-%)
- Table 3 Cosmetic preparations shampoo (water, preservative ad 100 wt .-%)
- Glycerin (86% by weight) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
- Glycerin (86% by weight) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
- Glycerin (86% by weight) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
- Deoxyribonucleic acid molecular weight approx. 70000, purity (determined by spectrophotometric measurement of the D absorption at 260 nm and 280 nm): at least 1.7.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Dermatology (AREA)
- Engineering & Computer Science (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Biotechnology (AREA)
- Botany (AREA)
- Birds (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Alternative & Traditional Medicine (AREA)
- Medical Informatics (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Cosmetics (AREA)
Abstract
Vorgeschlagen werden kosmetische, und/oder dermatologische Zubereitungen, die einen Extrakt der Samen von Pflanzen der Gattung Adenanthera, insbesondere von Samen der Pflanze Adenanthera pavonina enthalten sowie die Verwendung der Extrakte zur Herstellung von Haut und Haarbehandlungsmitteln.
Description
KOSMETISCHE UND/ODER DERMATOLOGISCHE ZUBEREITUNGEN ENTHALTEND EINEN EXTRAKT DER SAMEN VON PFLANZEN DER GATTUNG ADENANTHERA
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der Kosmetik und betrifft Zubereitungen enthaltend spezielle Pflanzenextrakte sowie die Verwendung dieser Pflanzenextrakte in kosmetischen Zubereitungen beispielsweise für die Hautbehandlung.
Stand der Technik
Kosmetische Zubereitungen stehen dem Verbraucher heute in einer Vielzahl von Kombinationen zur Verfügung. Dabei wird nicht nur erwartet, dass diese Kosmetika einen bestimmten pflegenden Effekt zeigen oder einen bestimmten Mangel beheben, sondern immer häufiger wird nach Produkten verlangt, die mehrere Eigenschaften gleichzeitig aufweisen und somit ein verbessertes Leistungsspektrum zeigen. Von besonderem Interesse sind Stoffe, die sowohl die technischen Eigenschaften des kosmetischen Produktes, wie Lagerstabilität, Lichtstabilität und Formulierbarkeit positiv beeinflussen, als auch gleichzeitig Wirkstoffe darstellen, die für Haut und/oder Haare beispielsweise pflegende, irritationshemmende, entzündungshemmende und/oder lichtschutzwirkende Eigenschaften vermitteln. Hierbei sind zusätzlich eine gute Hautverträglichkeit und besonders der Einsatz natürlicher Produkte beim Kunden gefragt. Die Aufgabe der Haut als ein den Organismus umhüllendes Organ besteht in abdichtenden und vermittelnden Funktionen gegenüber der Umwelt. Verschiedene biochemische und biophysikalische Systeme dienen der Aufrechterhaltung der Integrität dieses exponierten Organs. Beispielsweise schützt ein Immunsystem die Haut vor Schäden durch pathogene Mikroorganismen, das Melanin bildende System regelt die Pigmentierung und bewahrt die Haut vor Strahlenschäden, ein Lipidsystem produziert Lipidmizellen, die den transdermalen Wasserverlust eindämmen, und eine geregelte Keratinsynthese trägt zur mechanischen Widerstandsfähigkeit der Hornschicht bei. Den genannten Systemen liegen komplexe chemische Prozesse zu Grunde, deren Ablauf unter anderem durch Enzyme in Gang gehalten und durch Enzyminhibitoren geregelt wird. Bereits eine geringfügige Hemmung oder Enthemmung dieser biochemischen Systeme äußert sich in spürbaren Veränderungen der Haut. Der sichtbare und
fühlbare Zustand der Haut gilt jedoch als Maßstab für Schönheit, Gesundheit und Jugend; ihn zu erhalten ist ein generelles Ziel pflegender Kosmetik.
Die menschliche Haut reagiert in der Regel auf exogene, d.h. externe Stressfaktoren, wie UV- Strahlung, Ozon oder andere in der Luft vorhandene schädliche Substanzen (Luftverunreini- gungen) mit leichten oder schwereren Irritationen. Insbesondere wird die Haut durch die in Irritationsreaktionen freigesetzten Sauerstoffradikale und nichtspezifischen Proteinasen geschädigt. Dies kann beispielsweise das Aussehen oder die Elastizität oder die Barrierefunktionen der Haut negativ beeinflussen. So können bei entzündlichen Prozessen und Immunreaktionen im Überschuss mobilisierte körpereigene Proteasen, wie zum Beispiel Trypsin, Elast- äsen, Collagenasen und Plasmin, die Haut und im besonderen deren Strukturproteine wie Collagen und Elastin angreifen.
Der Einsatz von Protease-Inhibitoren aus pflanzlicher Quelle und hier speziell der Serin- Protease-Inhibitoren wie Trypsin-Inhibitoren wurde bereits beschrieben zum Beispiel in US 4906457 zur Vorbeugung gegen Krebs, verursacht durch UV-Strahlung oder zur Verhinde- rung des Abschuppens als Anti-Desquamation in EP 0975 324 oder gegen die veränderte Hautpigmentierung in WO 99/04752. Elastase inhibierende Proteinfraktionen aus pflanzlichen Extrakten und ihre Verwendung als entzündungshemmende, hydratisierende, die Hautelastizität steigernde, proteinasehemmende Wirkungstoffe werden beschrieben in EP 532 465. Plasmin- inhibierende Wirkungen von Pflanzenextrakten werden offenbart in US-A4066507, JP- A2002080359, JP-A2001354582, JP-A2001240551, JP-A2001122728, JP-A2000327555, EP- A0953341, WO98/24474, JP-A09020643, JP-A09020642, JP-A09020641, JP-A09020640, EP-A0567816, EP-A0223254, JP-A200280359, JP-A9725214, JP-A9612586, JP-A8993509 und CS 124782. Pflanzenextrakte werden seit vielen Jahren in den unterschiedlichsten Kulturen für medizinische aber auch für kosmetische Zwecke genutzt. Es werden immer wieder neue Pflanzen extrahiert und die Extrakte auf ihre kosmetischen Wirkungen hin untersucht um weitere Pflanzen mit neuem oder verändertem Wirkspektrum zu finden. Viele Pflanzen, deren Nutzen man noch nicht kannte, und die als exotisch und unbedeutend galten, finden heute breite Anwendung unter anderem in der Kosmetik.
Beschreibung der Erfindung
Die Aufgabe der vorliegenden Patentanmeldung hat darin bestanden, kosmetische und/oder dermatologische Zubereitungen zur Verfügung zu stellen, welche den Anforderungen für kosmetische Formulierungen wie Lagerstabilität und Hautverträglichkeit gerecht werden und neben pflegenden Eigenschaften vor allem verbesserte schützende Eigenschaften für menschliche Haut und/oder Kopfhaut und/oder Haare beispielsweise gegen UV-Strahlung und ande-
ren Umwelteinflüssen besitzen und gleichzeitig vorbeugende und heilende Wirkung bei Alterserscheinungen der Haut zeigen und entzündungshemmend einsetzbar sind. Eine weitere Aufgabe der vorliegenden Patentanmeldung hat darin bestanden, Zubereitungen zur Verfügung zu stellen, die Wirkstoffe aus nachwachsenden Rohstoffen enthalten und gleichzeitig vielseitig als Pflegemittel in der Haut- und Haarkosmetik einsetzbar sind.
Gegenstand der Erfindung sind kosmetische und/oder dermatologische Zubereitungen enthaltend einen Extrakt der Samen von Pflanzen der Gattung Adenanthera.
In einer besonders bevorzugten Ausführungsform handelt es sich bei den erfϊndungsgemäßen Extrakten um Extrakte der Samen der Pflanze Adenanthera pavonina, insbesondere ein Ex- trakt von geschälten Samen, gleichbedeutend mit den Kernen der Samen.
Die Extrakte werden bevorzugt in Mengen von 0,001 bis 25 Gew.-%, und bevorzugt 0,05 bis 5 Gew.-% und insbesondere 0,1 bis 0,5 Gew.-% berechnet als Trockengewicht bezogen auf die Gesamtmenge der Zubereitungen eingesetzt, mit der Maßgabe, dass sich die Mengenangaben mit Wasser und gegebenenfalls weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addie- ren.
Die Begriffe Zubereitung, Mittel und Pflegemittel werden im Sinne der Erfindung synonym verwendet.
Überraschenderweise wurde gefunden, dass die Extrakte aus Samen von Pflanzen der Gattung Adenanthera und speziell von Samen der Pflanze Adenanthera pavonina die eingangs geschilderten Anforderungen in ausgezeichneter Weise erfüllen. Die Extrakte bzw. die darin enthaltenen Wirkstoffe sind leicht erhältlich und stellen äußerst effiziente Plasmin-inhibitoren dar. Die Stoffe eignen sich daher insbesondere zum Schutz vor Hautirritationen, Entzündungen sowie die schädigenden Einflüsse von UV-A- , UV-B- und LR-Strahlen die zu Hautalte- rung und Faltenbildung führen.
Adenanthera pavonina
Die erfindungsgemäß einzusetzenden Extrakte werden aus Samen der Pflanze der Gattung Adenanthera und speziell der Samen der Pflanze Adenanthera pavonina gewonnen. Unter der Gattung Adenanthera finden sich acht Spezies vor allem im tropischen Asien, in Australien und in der Pazifik Region. Benannt sei neben Adenanthera pavonina auch Adenanthera abrosperma. Adenanthera pavonina ist auch unter den Synonyma Adenanthera gersenii Scheffer oder Adenanthera microsperma, Agati Petite Feuille, Circassian tree, coral wood, red bead tree, red wood, Perlenbaum, indischer Korallenbaum oder roter Sandelholzbaum bekannt. Sie zählt botanisch zur Familie der Leguminosae oder Fabaceae. Bei dieser Pflanze handelt es sich um 6 bis 15 m hohe, schnellwachsende Bäume, mit gräulich-braunen Rinden. Die Blätter finden sich an spiralförmig angeordneten 20-30 cm langen Zweigen und sind el-
liptisch geformt 5-10 cm lang. Die Blüten sind hell gelb und duftend an 5-15 cm langen Stielen. Die Samen sind glänzend scharlachrot und sehr gleichmäßig im Durchmesser und im Gewicht, vier Samen entsprechen 1 Gramm, jeder Samen hat 8 mm Durchmesser. Beheimatet ist die Pflanze in SriLanka, Burma, Indochina, Surinam, Süd-China, Thailand, Malaysia und Indonesien. Sie wird kultiviert als Zierpflanze aber auch als schattenspendende Pflanze für Kaffee oder Gewürzpflanzen, als Brennholzlieferant oder als Holz für den Möbelbau. Die Samen werden oftmals verwendet als Verzierung aber auch bereits im antiken Indien als Maß für Gold. In der indischen Medizin wurden die pulverisierten Samen, teilweise vermischt mit Honig zur Behandlung von eiternden und entzündeten Abzessen angewendet. Der Sud der Samen wird verwendet zur Behandlung von Lungenentzündungen und chronischen Augenkrankheiten.
Aus den Samen konnte durch Extraktion mit 0,01 M Salzsäure gefolgt von chromatographischen Trennmethoden, ein Trypsin/Chymotrypsin Inhibitor extrahiert werden. [Natural Plant Enzyme Inhibitors. Isolation and Characterisation of a Trypsin/Chymotrypsin Inhibitor from Indian Red Wood (Adenanthera pavonina) Seeds; K. Sudhakar Prabhu und Thillaisthanam N. Pattabiraman; J. Sri. Food Agric. 1980, 31,n°10, 967-980.]. Der Größe des extrahierten Inhibitors konnte durch Gelchromatographie bestimmt werden als 24 000 Da. Durch Extraktion mit 0,1 M Natriumphosphat Puffer (pH 7,6) in 1% NaCl der mit Aceton entfetteten Samen konnte ebenfalls von Richardson et al. ein Trypsin Inhibitor isoliert werden. [The amino acid sequence and reactive (inhibitory) site of the major trypsin isoinhibitor (DE5) isolated from seeds of the Brazilian Carolina tree ( Adenanthera pavonina L.); M. Richardson , FA.P. Campos, J. Xavier-Filho, M.L.R. Macedo, G.M.C. Maia and A. Yarwood; Biochimica and bi- ophysica Acta, 1986, 872, n° 1-2, 134-146.]. Es konnten acht Isoenzyme identifiziert werden, die alle eine Größe von ca 21 000 Da aufwie- sen und eine große α-Kette (Mr 16 000) und eine kleinere ß-Kette (Mr 5000) verknüpft über eine Disulfidbrücke besaßen. Die Aminosäuresequenz und das reaktive Zentrum des DE5 Isoenzyms zeigten eine große Übereinstimmung mit den Kunitz-Typ Protease Inhibitoren aus Sojabohnen oder anderen Leguminose Samen. Trypsin zählt wie Chymotrypsin, Elastin und Plasmin zu den Serin-Proteasen.
Extraktion
Die Herstellung der Extrakte kann in an sich bekannter Weise erfolgen, d.h. beispielsweise durch wässrigen, alkoholischen oder wässrig-alkoholischen Auszug der Samen. Geeignet sind alle herkömmlichen Extraktionsverfahren wie z.B. Mazeration, Remazeration, Digestion, Bewegungsmazeration, Wirbelextraktion, Ultraschallextraktion, Gegenstromextraktion, Perkola- tion, Reperkolation, Evakolation (Extraktion unter vermindertem Druck), Diakolation oder Festflüssig-Extraktion unter kontinuierlichem Rückfluss. Für den großtechnischen Einsatz
vorteilhaft ist die Perkolationsmethode. Als Ausgangsmaterial wird üblicherweise von Samen ausgegangen, die vor der Extraktion geschält und mechanisch zerkleinert werden können. Hierbei eignen sich alle dem Fachmann bekannten Zerkleinerungsmethoden, als Beispiel sei die Gefriermahlung genannt. Bevorzugt kann nach dem Zerkleinern der Samen der Kern von der Samenhülle durch Sieben befreit werden. Als Lösungsmittel für die Durchführung der Extraktionen können organische Lösungsmittel, Wasser (vorzugsweise destilliertes Wasser auf Raumtemperatur temperiert) oder Gemische aus organischen Lösungsmitteln und Wasser, insbesondere niedermolekulare Alkohole mit mehr oder weniger hohen Wassergehalten, verwendet werden. Die erfindungsgemäßen Extrakte können aus den genannten Leguminosensamen gewonnen werden, in dem man bevorzugt die geschälten Samen mahlt, das erhaltene Mehl gegebenenfalls mit einem organischen Lösungsmittel oder einem Lösungsmittelgemisch extrahiert, trocknet und das derart entfettete Mehl mit Wasser oder einer wässrigen Elektrolytlösung bei einem pH von 2 bis 10, vorzugsweise bei pH 5 bis 6 extrahiert, den Extrakt auf pH 5 bis 7, bevorzugt 5,2 stellt, im Vakuum einengt, das Konzentrat unter Zusatz eines Filterhilfsmittels wie zum Beispiel Celite klar filtriert oder zentrifugiert und durch Gefriertrocknung trocknet. Bevorzugt ist die Extraktion mit destilliertem Wasser bei einem pH- Wert zwischen 5 und 6. Die Proteine daraus können angereichert und nach Größen eingeteilt werden durch Membrananreicherung in einer Ultrafiltrationszelle beispielsweise von der Firma Amicon (10 000 Da cut off oder 15 000 Da cut off).
Die Extraktionszeiten werden vom Fachmann in Abhängigkeit vom Ausgangsmaterial, dem Extraktionsverfahren, der Extraktionstemperatur, vom Verhältnis Lösungsmittel zu Rohstoff u.a. eingestellt. Nach der Extraktion können die erhaltenen Rohextrakte gegebenenfalls weiteren üblichen Schritten, wie beispielsweise Aufreinigung, Konzentration und/oder Entfärbung unterzogen werden. Falls wünschenswert, können die so hergestellten Extrakte beispielsweise einer selektiven Abtrennung einzelner unerwünschter Inhaltsstoffe, unterzogen werden. Die Extraktion kann bis zu jedem beliebigen Extraktionsgrad erfolgen, wird aber gewöhnlich bis zur Erschöpfung durchgeführt. Typische Ausbeuten (= Trockensubstanzmenge des Extraktes bezogen auf eingesetzte Rohstoffmenge) bei der Extraktion der Samen liegen im Bereich von 10 bis 30, insbesondere 13 bis 25 Gew.-%. Die vorliegende Erfindung umfasst die Erkenntnis, dass die Extraktionsbedingungen sowie die Ausbeuten der Endextrakte vom Fachmann je nach gewünschtem Einsatzgebiet gewählt werden können. Diese Extrakte, die in der Regel Aktivsubstanzgehalte (= Feststoffgehalte) im Bereich von 0,5 bis 10 Gew.-% aufweisen, können als solche eingesetzt werden, es ist jedoch ebenfalls möglich, das Lösungsmittel durch Trocknung, insbesondere durch Sprüh- oder Gefriertrocknung vollständig zu entfernen. Die Extrakte können auch als Ausgangsstoffe für die Gewinnung der oben genannten reinen Wirkstoffe dienen, sofern diese nicht auf synthetischem Wege einfacher und kostengünstiger hergestellt werden können. Demzufolge kann der Wirkstoffgehalt in den Extrakten 5 bis 100,
vorzugsweise 50 bis 95 Gew.-% betragen. Die Extrakte selbst können als wässrige und/oder in organischen Solventien gelöste Zubereitungen sowie als sprüh- bzw. gefriergetrocknete, wasserfreie Feststoffe vorliegen. Als organische Lösungsmittel kommen in diesem Zusammenhang beispielsweise die aliphatischen Alkohole mit 1 bis 6 Kohlenstoffatomen (z.B. Ethanol), Ketone (z.B. Aceton), Halogenkohlenwasserstoffe (z.B. Chloroform oder Methylenchlorid), niedere Ester oder Polyole (z.B. Glycerin oder Glycole) in Frage.
Gewerbliche Anwendbarkeit
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung von Extrakten der Samen von Pflanzen der Gattung Adenanthera, besonders bevorzugt von Samen der Pflanze Adenanthera pavonina zur Herstellung kosmetischer und/oder dermatologischer Zu- bereitungen und insbesondere zur Herstellung von Behandlungsmitteln für die Haut, die Kopfhaut und die Haare, in denen sie vorzugsweise in Mengen von 0,001 bis 25 Gew.-%, und bevorzugt 0,05 bis 5 Gew.-% und insbesondere 0,1 bis 0,5 Gew.-% berechnet als Trockege- wicht bezogen auf die Gesamtmenge der Zubereitungen eingesetzt enthalten sein können. Besonders bevorzugt ist die Verwendung von Extrakten der geschälten Samen.
Weitere besondere Ausführungsformen der Erfindung betreffen die Verwendung von Extrakten der Samen von Pflanzen der Gattung Adenanthera, besonders bevorzugt von Samen der Pflanze Adenanthera pavonina zur Herstellung von kosmetischer und/oder dermatologischer Zubereitungen und insbesondere zur Herstellung von Behandlungsmitteln für die Haut, die Kopfhaut und die Haare.
• mit lindernder, wohltuender und irritationshemmender Wirkung, insbesondere gegen oxi- dativen Stress und/oder Luftverunreinigungen,
• mit Plasmin-inhibierender Wirkung; • gegen Hautalterung und Faltenbildung zur vorbeugenden oder heilenden Behandlung von Alterserscheinungen der Haut, verursacht insbesondere durch UVA-, UVB- und/oder LR- Strahlung;
• zur Verminderung von Entzündungen der Haut, insbesondere zur Behandlung von Rosa- cea; • zur Behandlung von empfindlicher Haut, insbesondere zur Behandlung trockener Haut.
• Gegen Juckreiz, insbesondere gegen Juckreiz auf der Kopfhaut
• Gegen Schuppenbildung, insbesondere gegen Schuppen auf der Kopfhaut.
Die erfmdungsgemäßen Extrakte zeigen irritationshemmende Wirkung gegen oxidativen Stress für die Haut, Kopfhaut oder Haare der v.a. ausgelöst werden kann durch UV- oder IR- Strahlung, durch die hohe Luftverunreinigungen der Umwelt sowie durch hormoneile oder biologische Einwirkungen auf die Haut, Kopfhaut oder Haare. Die erfindungsgemäßen Extrakte wirken gegen Hautalterung und können zur vorbeugenden oder heilenden Behandlung von Alterserscheinungen der Haut verwendet werden. Eine andere Bezeichnung für diese Art der Pflegemittel ist auch anti-ageing Mittel. Zu diesen Alterserscheinungen zählen beispielsweise jede Art der Fältchen- und Faltenbildung. Die Behandlungen schließen eine Verlangsamung von Altersprozessen der Haut mit ein. Die Alterserschei- nungen können die unterschiedlichsten Ursachen aufweisen. Insbesondere sind diese Alterserscheinungen auf Grund einer durch UV- und/oder IR-Strahlung induzierten Schädigung der Haut verursacht.
Während einer Entzündung oder während des Hautalterungsprozesses werden von der Haut durch Polymorphonucleare neutrophile Granulocyten oder durch Macrophagen Proteasen wie beispielsweise Elastase, Collagenase und Plasmin ausgeschieden.
Auf andere Weise können dermale Fibroblasten älterer Menschen oder infolge von UV- Strahlung interstitial Collagenase sog. MMP-1 (Matrix-Metallo-Proteinase) ausscheiden während UV-bestrahlte Keratinocyten einen Gewebe-Plasminogen Aktivator produzieren (t-PA) welcher Plasminogen in Plasmin spaltet. Diese Proteasen (Elastase, Collagenase und Plasmin) katalysieren die Fragmentierung sehr wichtiger Makromoleküle der Haut wie beispielsweise Proteoglycan, Collagen und Elastin.
Plasmin ist eine menschliche Serin-Pro tease welche eine entscheidende Rolle in der Wundheilung einnimmt. Plasmin baut aus Fibrin bestehende Blutgerinnsel zu löslichen Produkten, den Fibrinopeptiden ab und begünstigt die Migration von Keratinocyten um eine Verletzung zu bedecken.
Plamsinogen ist das Pro-Enzym welches durch eine Protease zu Plasmin aktiviert wird. Diese Protease ist die Urokinase, welche durch aktivierte Keratinocyten während der Wundheilung oder während Hautirritationen oder durch Entzündungen der Haut ausgeschieden wird. Plasminogen wird während einer Entzündung durch Blutgefäße mit einer erhöhten Permeabilität freigesetzt. Die Expression und Sekretion der Urokinase wird durch UVB-Strahlung auf den Zellen erhöht.
Des weiteren wird Plasminogen in extracellulärer Matrix zu Plasmin transformiert welches dann pro-MMP3 aktivieren kann und was dann zu einem Abbau dermaler Glycoproteine wie Fibronektin, Laminin und Proteoglycan führen kann. Plasmin spielt eine entscheidende Rolle bei Hautverletzungen und dadurch auch beim Photo- alterungsprozess der Haut.
Die plasmin-inhibierende Wirkung des erfindungsgemäßen Extraktes kann also zur Verminderung von Entzündungen der Haut oder Kopfhaut, insbesondere zur Behandlung von Rosa- cea eingesetzt werden.
Rosacea ist eine erblich bedingte, nicht ansteckende Hauterkrankung bei der es zu einer Er- Weiterung der Blutgefäße, welche die Haut rot „aufblühen" lässt kommt. Phasenweise können auch Entzündungen um die Talgdrüsen auftreten. Diese entzündlichen Vorgänge verursachen Eiterbläschen und Pusteln. Die Hautkrankheit Rosacea bedeutet übersetzt soviel wie „Rosen- blütchen". Dies spielt auf die Rötung im Gesicht an, die für Rosacea typisch ist. Neben diesen Rötungen, die durch erweiterte Blutäderchen entstehen, kann es durch Entzündungen auch zu Veränderungen der Nase kommen.
Zwar ist bis heute die Ursache von Rosacea nicht eindeutig geklärt, die Grundlage ist jedoch offenbar die sogenannte Rosacea-Diathese. Das heißt, die Neigung, auf bestimmte Reize mit ausgeprägten Gesichtsrötungen zu reagieren, die nach einer Weile wieder abklingen. Dieser Rötungszustand wird auch Flush genannt. Durch die Entzündungen kommt es zu einer Binde- gewebsvermehrung, die als Verdickung der Haut sichtbar wird. Bleiben diese Schübe lange Zeit unbehandelt, kann es zu einem sogenannten Rhinophym („Knollennase") kommen. Häufig kommt es bei Rosacea auch zu Entzündungen der Augenlidränder und Bindehäute. Die erfindungsgemäßen Extrakte werden verwendet zur Herstellung von Haut- und Haarbehandlungsmitteln zur Behandlung von empfindlicher Haut, insbesondere von trockener Haut, deren typisches Merkmal eine fettarme, schuppig, zarte Oberfläche ist mit kleinen Einrissen und einzelnen entzündeten Bereichen.
Die erfindungsgemäßen Extrakte werden verwendet zur Herstellung von Haut- und Haarbehandlungsmitteln zur Behandlung von Juckreiz, insbesondere gegen Juckreiz auf der Kopfhaut. Dieser Juckreiz kann ausgelöst sein durch die unterschiedlichsten Ursachen wie bei- spielsweise Insektenstiche, Hautverunreinigungen, hormonell oder bakteriologisch bedingte Hautveränderungen, Luftverschmutzungen und weitere Umwelteinflüsse. Auf der Kopfhaut geht der Juckreiz oftmals einher mit einer Schuppenbildung. Die erfindungsgemäßen Extrakte werden auch verwendet zur Herstellung von Haut- und Haarbehandlungsmitteln gegen Schuppenbildung und insbesondere gegen Schuppenbildung auf der Kopfhaut. Ein geeignetes Mittel zur Behandlung von Schuppen auf der Kopfhaut stellt ein Haarshampoo oder andere Haarpflegemittel wie beispielsweise Haarspülungen oder Haarspray dar.
Kosmetische, pharmazeutische und/oder dermatologische Zubereitungen
Die erfindungsgemäßen Extrakte können zur Herstellung von kosmetischen oder dermatologischen Zubereitungen, wie beispielsweise Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wässrig/alkoholische Lösungen, Emulsio-
nen, Wachs/ Fett-Massen, Stiftpräparaten, Pudern oder Salben dienen. Diese Mittel können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, UV-Lichtschutzfaktoren, bio- gene Wirkstoffe, Antioxidantien, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentie- rungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.
Tenside
Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder ampho- tere bzw. zwitterionische Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Ole- finsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sul- fofettsäuren, Alkylsulfate, Alkylethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hy- droxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauri- de, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fett- säureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoron- säurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und A- minoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie bei- spielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quater- nierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imi- dazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließ-
lieh um bekannte Verbindungen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäure- tauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fett- säureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Ölkörper
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-Cι3- Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, My- ristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehe- nat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearylo- leat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleyl- palmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmy- ristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Cι8-C38-Alkylhy- droxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen (vgl. DE 19756377 AI), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-Cιo-Fettsäuren, flüssige Mono-/Di- /Triglyceridmischungen auf Basis von C6-Cι8-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Cι2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guer- betearbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22- Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffhungspro-
dukte von epoxidierten Fettsäureestem mit Polyolen, Siliconöle (Cyclomethicone, Silicium- methicontypen u.a.) und/oder ahphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
• Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propyleno- xid an lineare Fettalkohole mit 8 bis 22 C- Atomen, an Fettsäuren mit 12 bis 22 C- Atomen, an Alkylphenole mit 8 bis 15 C- Atomen in der Alkylgruppe sowie Alkylami- ne mit 8 bis 22 Kohlenstoffatomen im Alkylrest; • Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im
Alk(en)ylrest und deren ethoxylierte Analoga;
• Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
• Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
• Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycar- bonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol E- thylenoxid; • Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8),
Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
• Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol und oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin. • Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG- alkylphosphate und deren Salze;
• Wollwachsalkohole;
• Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
• Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
• Polymeremulgatoren, z.B. Pemulen-Typen (TR-l,TR-2) von Goodrich;
• Polyalkylenglycole sowie
• Glycerincarbonat.
• Ethylenoxidanlagerungsprodukte
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkoho- le, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche
Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxy- lierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Cι2/] 8- Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
• Alkyl- und/oder Alkenyloligoglykoside
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
• Partialglyceride
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglyce- rid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäuredigly- cerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäure- diglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid,
Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäure- monoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die
untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
• Sorbitanester
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitan- diisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitan- dioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat,
Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricino- leat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitan- sesqui-tartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesqui- citrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat,
Sorbitan-dimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
• Polyglycerinester
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydro- xystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Po- lyglyceryl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polygly- ceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego
Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Po- lyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polygly- ceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
Anionische Emulgatoren
Typische anionische Emulgatoren sind ahphatische Fettsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Palmitinsäure, Stearinsäure oder Behensäure, sowie Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Azelainsäure oder Sebacinsäure.
• Amphotere und kationische Emulgatoren
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Car- boxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethyl- ammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C- Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylamino- ethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Eben- falls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensi- den werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/ι8- Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N- Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-
Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkyl- aminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C- Atomen in der Alkylgruppe.. Besonders bevorzugte ampholytische Tenside sind das N-Kokos- alkylaminopropionat, das Kokosacylaminoethylaminopropionat und das Cι2/ι8- Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise mefhylquaternierte Difettsäu- retriethanolaminester-Salze, besonders bevorzugt sind.
Fette und Wachse
Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestem höherer Fettsäuren bestehen, als
Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; che- misch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethy- lenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphor- säure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC) bezeichnet. Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1,2- Diacyl-sn-glycerin-3 -phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospho- lipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glyce- rinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphin- gosine bzw. Sphingolipide in Frage.
Perlglanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethy- lenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxy- substituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell lang- kettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffhungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoff- atomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Konsistenzgeber und Verdickungsmittel
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder
Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Ae- rosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar- Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethyl- und Hydroxypropylcellulose, femer höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon. Als besonders wirkungsvoll haben sich auch Bentonite, wie z.B. Bentone® Gel VS-5PC (Rheox) erwiesen, bei dem es sich um eine Mischung aus Cyclopentasiloxan, Disteardimonium Hectorit und Propylencarbonat handelt. Weiter in Frage kommen Tenside, wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkylo- ligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Überfettungsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monogly- ceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quatemierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quatemierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quatemierte Kollagenpoly- peptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lame- quat®L/Grünau), quatemierte Weizenpolypeptide, Polyethylenimin, kationische Sili-
conpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethyla- minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kati- onische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bis- dialkylaminen, wie z.B. Bis-Dimethylamino-l,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quatemierte Ammo- niumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vi- nylacetat/Butylmaleat Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid- Copolymere und deren Ester, unvemetzte und mit Polyolen vemetzte Polyacrylsäuren, Acryl- amidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmeth- acrylat/tert.Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere, Polyvi- nylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon Dimethylamino- ethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Cellulo- seether und Silicone in Frage.
Siliconverbindungen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpo- lysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt.
UV-Lichtschutzfilter
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger
Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
• 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4- Methylbenzyliden)campher beschrieben;
• 4-Arninobenzoesäurederivate, vorzugsweise 4-(Dimethylarnino)benzoesäure-2-ethyl- hexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4- (Dimethylamino)benzoe-säureamylester;
• Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4- ) Methoxy-zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3- phenylzimtsäure-2-ethylhexylester (Octocrylene) ;
• Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4- iso-propylbenzylester, Salicylsäurehomomenthylester;
• Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- 5 Hydroxy-4-methoxy-4 ' -methylbenzophenon, 2,2 ' -Dihydroxy-4-methoxybenzophenon;
• Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexyl- ester;
• Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl- -hexyloxy)-l,3,5-triazin und Octyl Triazon oder Dioctyl Butamido Triazone (Uvasorb® HEB);
0 • Propan-l,3-dione, wie z.B. l-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-l,3- dion;
• Ketotricyclo(5.2.1.0)decan-Derivate.
Als wasserlösliche Substanzen kommen in Frage: !5
• 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Al- kylammonium-, Alkanolammonium- und Glucammoniumsalze;
• Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze; 0 • Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenme- thyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie 5 beispielsweise l-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-l,3-dion, 4-tert.-Butyl-4'- methoxydibenzoylmethan (Parsol® 1789), l-Phenyl-3-(4'-isopropylphenyl)-propan-l,3-dion sowie Enaminverbindungen. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate
des Benzoylmethans,, z.B. 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol® 1789) und 2- Cyano-3,3-phenylzimtsäure-2-ethyl-hexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester und/oder 4- Methoxyzimtsäurepropylester und/oder 4-Methoxyzimtsäureisoamylester. Vorteilhaft werden deartige Kombinationen mit wasserlöslichen Filtern wie z.B. 2-Phenylbenzimidazol-5- sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammoni- um- und Glucammoniumsalze kombiniert.
Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Licht- schutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekora- tive Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophi- lisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet.
Biogene Wirkstoffe und Antioxidantien
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherol- palmitat, Ascorbinsäure, (Desoxy)Ribonucleinsäure und deren Fragmentierungsprodukte, ß- Glucane, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte, wie z.B. Prunusextrakt, Bamba- ranussextrakt und Vitaminkomplexe zu verstehen.
Antioxidantien unterbrechen die photochemische Reaktionskette, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Camosin, L-Carnosin und deren Derivate
(z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäu- re), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximin- verbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), femer (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin- A-palmitat) sowie Koniferylben- zoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfu- rylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajak- harzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSO4) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Deodorantien und keimhemmende Mittel
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren.
• Keimhemmende Mittel
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-
(4-Chlorphenyl)-N'-(3,4 dichlorphenyl)hamstoff, 2,4,4 '-Trichlor-2'-hydroxy- diphenylether (Triclosan), 4-Chlor-3,5-dimethyl-phenol, 2,2'-Methylen-bis(6-brom-4- chlorphenol), 3-Methyl-4-(l-methylethyl)-phenol, 2-Benzyl-4-chlorphenol, 3-(4- Chlθ henoxy)-l,2-propandiol, 3-Iod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'- Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonocaprinat, Glyce- rinmonocaprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Sali- cylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n- decylamid.
Geruchsabsorber
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufheh- men und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen
Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duft- Stoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labda- num bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfumöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natür- liehe Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Bu- tylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclame- naldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischun-
gen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamil- lenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbee- renöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boi- sambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, O- rangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß- Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evemyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
adstringierende Wirkstoffe,
Ölkomponenten, nichtionische Emulgatoren,
Coemulgatoren,
Konsistenzgeber,
Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant- Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminium chlorhydrat, Aluminiumdich- lorhydrat, Alumini umsesquichlorhydrat und deren Komplex Verbindungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Alu- minium-Zirkonium-Trichlorohydrat, Aluminium-Zirko-nium-tetrachlorohydrat, Alu- minium-Zirkonium-pentachlorohydrat und deren Komplexverbindungen z. B. mit A- minosäuren wie Glycin. Daneben können in Antitranspirantien übliche öllösliche und
wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:
• entzündungshemmende, hautschützende oder wohlriechende ätherische Öle, • synthetische hautschützende Wirkstoffe und/oder
• öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duft- stoffe, pH- Wert-Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum,
Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quater- niertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quatemäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Antischuppenwirkstoffe
Als Antischuppenwirkstoffe kommen Pirocton Olamin (l-Hydroxy-4-methyl-6-(2,4,4- trimythylpentyl)-2-(lH)-pyridinonmonoethanolaminsalz), Baypival® (Climbazole), Ketoco- nazol® , (4-Acetyl- 1 - { -4-[2-(2.4-dichlorphenyl) r-2-( 1 H-imidazol- 1 -ylmethyl)- 1 ,3 -dioxylan-c- 4-ylmethoxyphenyl}piperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel kolloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexylensäure Mo- noethanolamid Sulfosuccinat Na-Salz, Lamepon® UD (Protein-Undecylensäurekondensat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion / Dipyrithion-Magnesiumsulfat in Frage.
Quellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw.
Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Insekten-Repellentien
Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1 ,2-Pentandiol oder Ethyl Buty- lacetylaminopropionate in Frage
Selbstbräuner und Depigmentierungsmittel
Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispiels- weise Arbutin, Ferulasäure, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.
Hydrotrope
Zur Verbesserung des Fließverhaltens können femer Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktioneile Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
• Glycerin;
• Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
• technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
• Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Tri- methylolbutan, Pentaerythrit und Dipentaerythrit;
• Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
• Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Man- nit,
• Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
• Aminozucker, wie beispielsweise Glucamin; • Dialkoholamine, wie Diethanolamin oder 2-Amino-l,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die unter der Bezeichnung Surfacine® bekannten Silberkomplexe und die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle und Aromen
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang- Ylang), Stengeln und Blättern (Geranium, Patchouh, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, An- gelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern- , Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Lina- lylbenzoat, Benzylformiat, Ethylmethylphenylglycmat, Allylcyclohexylpropionat, Styral- lylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpi- neol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aro-
makomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Ge- raniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, He- dione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evemyl, Iraldein gamma, Phenylessigsäure, Gera- nylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Aromen kommen beispielsweise Pfefferminzöl, Krauseminzöl, Anisöl, Stemanisöl, Kümmelöl, Eukalyptusöl, Fenchelöl, Citronenöl, Wintergrünöl, Nelkenöl, Menthol und dergleichen in Frage.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Beispiele sind Kochenillerot A (C.I. 16255), Patentblau V (C.I.42051), Indigotin (C.I.73015), Chlorophyllin (C.I.75810), Chinolingelb (C.I.47005), Titandioxid (C.I.77891), Indanthrenblau RS (C.I. 69800) und Krapplack (C.I.58000). Als Lumineszenzfarbstoff kann auch Luminol enthalten sein. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur- Methode.
Beispiele
Herstellbeispiel Hl
Die Samen von Adenanthera pavonina wurden grob gemahlen und die rote Kernhülle wurde durch Sieben von den gelben Samenkernen (Cotyledons) getrennt. Die Samenkeme wurden fein gemahlen und ein feines Pulver, das Samenkernmehl erhalten.
Die anti-trypsin Aktivität des Samenkernmehls bestimmt nach der Methode von Kakade et al. betrug 80,8 TUI/mg. In einem Reaktor wurden 30 g Samenkernmehl zu 300 ml destilliertes Wasser gegeben. Die Mischung wurde mit Hilfe eines Ultra-Thorax homogenisiert. Der pH-Wert der Lösung lag bei 5.9. Die Lösung wurde 1 h bei Raumtemperatur extrahiert und die Mischung anschließend 15 min bei 5000 g zentriftigiert und die obere Fettphase abgetrennt. Der Überstand wurde über ein Filter mit einer Maschenweite von 15 μm gegeben. Der pH-Wert der so erhaltenen Lösung wurde mit Schwefelsäure auf 5.0 eingestellt was zur Bildung eines Niederschlags führte. Die erhaltene Suspension wurde erneut 15 min bei 5000 g zentrifugiert. 230 ml eines gelben Filt- rats wurde erhalten und anschließend gefriergetrocknet. 4,45 g Lyophilisat wurden erhalten, das entspricht einer Ausbeute von 14,85 % bezogen auf das Samenkernmehl. Die anti-trypsin Aktivität des Lyophilisates betrug 250 TUI/mg, diese entspricht einer 3,1 fachen Aktivitätser- höhung im Vergleich zum Samenkernmehl.
Herstellbeispiel H2
Batch A:
22 g des Samenkernmehls erhalten nach Beispiel 1 wurden zu 220 ml destilliertes Wasser gegeben. Die Mischung wurde mit Hilfe eines Ultra-Thorax homogenisiert. Der pH-Wert der Lösung lag bei 5,9. Der pH- Wert der Lösung wurde mit 4N Schwefelsäure auf 5,2 eingestellt. Die Lösung wurde dann bei diesem pH eine Stunde bei Raumtemperatur extrahiert und die Mischung anschließend 15 min bei 5000 g zentrifugiert. Der Überstand wurde unter Zusatz von Celite über ein Filter mit einer Maschenweite von 45 μm und danach über ein Filter mit einer Maschenweite von 0,2 μm gegeben. 102,1 ml eines gelben Filtrats wurde erhalten und anschließend gefriergetrocknet. 3,06 g Lyophilisate wurden erhalten, das entspricht einer Ausbeute von 13,91 % bezogen auf das Samenkernmehl. Die anti-trypsin Aktivität des Lyophilisates betrug 314 TUI/mg, dies entspricht einer 3,9 fachen Aktivitätserhöhung im Vergleich zum Samenkernmehl.
Batch B
Der Extrakt wurde auf der gleichen Vorschrift wie für Batch A hergestellt. Aus 58 g Samen- kemmehl ergab sich eine Ausbeute an Extrakt von 21,9 % mit einer anti-trypsin Aktivität von 251,8 TUI/mg, diese entspricht einer 3,1 fachen Aktivitätserhöhung im Vergleich zum Samenkernmehl.
Batch C
Der Extrakt wurde ebenfalls nach der gleichen Vorschrift wie für Batch A hergestellt jedoch wurde das Verhältnis Samenkernmehl/Wasser von 1/10 auf 1/15 geändert und die Extraktion 1,5 h durchgeführt. Aus 70 g Samenkernmehl wurden 16,13 g Lyophilisat erhalten, dies entspricht einer Ausbeute von 23,04 % bezogen auf das Samenkernmehl. Die anti-trypsin Aktivität des Lyophilisates betrug 287,2 TUI/mg, diese entspricht einer 3,6 fachen Aktivitätserhöhung im Vergleich zum Samenkernmehl.
Herstellbeispiel 3
150 ml eines Extraktes hergestellt nach Beispiel 2 Batch B wurden in eine Ultrafiltrationszelle (Amicon model 8200, 200 ml) ausgestattet mit einer Membran mit einem 10 000 Da cut-off (Amicon ref YM10) gegeben. Der Extrakt wurde durch die Membran aufkonzentriert zu einem Volumen von 50 ml und weitere 50 ml destilliertes Wasser wurden zugegeben. Die Lö- sung wurde ultrafiltriert und es wurden 50 ml Filtrat erhalten. Das erhaltene Permeat wurde gefriergetrocknet und 1 g Lyophilisat erhalten. Die anti-trypsin Aktivität des Lyophilisates betrug ca. 450 TUI/mg, diese entspricht einer 1,8 fachen Aktivitätserhöhung im Vergleich zum eingesetzten Extrakt und 5,6 fachen Erhöhung im Vergleich zum Samenkernmehl.
Herstellbeispiel 4
2600 ml eines Extraktes hergestellt nach Beispiel 2 Batch B wurde durch Ultrafiltration (Konzentration und Diafiltration) in einem TIA Ultrafiltrationsgerät ausgestattet mit 2 Carbosep Membranen (Tech-Sep, Membran mit einem 15 000 Da cut-off, 80 cm2 Membran) gegeben. Die Temperatur wurde durch einen Wärmeaustauscher auf 25 °C gehalten. Nach der ersten Ultrafiltration wurden 1300 ml Filtrat erhalten, welches für den Diaflitrationsschritt mit 1300 ml destilliertem Wasser versetzt wurde. Das erhaltene Filtrat wurde lyophilisiert. Die anti- trypsin Aktivität des Lyophilisates betrug ca. 457 TUI/mg, diese entspricht einer 2 fachen Aktivitätserhöhung im Vergleich zum eingesetzten Extrakt und 5,65 fachen Erhöhung im Vergleich zum Samenkernmehl.
Anti-Protease-Aktivitäts Test
Während einer Entzündung oder während des Hautalterungsprozesses werden von der Haut durch Polymorphonucleare neutrophile Granulocyten oder durch Macrophagen Proteasen wie beispielsweise Elastase, Collagenase und Plasmin ausgeschieden. Auf andere Weise können dermale Fibroblasten älterer Menschen oder infolge von UV- Strahlung interstitial Collagenase sog. MMP-1 (Matrix-Metallo-Proteinase) ausscheiden während UV-bestrahlte Keratinocyten einen Gewebe-Plasminogen Aktivator produzieren (t-PA) welcher Plasminogen in Plasmin spaltet. Diese Proteasen (Elastase, Collagenase und Plasmin) katalysieren die Fragmentierung sehr wichtiger Makromoleküle der Haut wie beispielsweise Proteoglycan, Collagen und Elastin.
Beispiel: Inhibierung der Elastase- Aktivität
Elastase ist eine Protease, welche entweder während einer Inflammation durch die Leukocyten oder infolge UV-A-Schädigung von den Fibroblasten ausgeschieden wird und für den Abbau von dermalen Makromolekülen, wie z.B. Kollagen und Elastin und damit für die Hautalterung mitverantwortlich ist. Zur Untersuchung der Wirksamkeit des Pflanzenextraktes die Freisetzung von Elastase zu inhibieren wurde Pankreaselastase (eine Serin-Protease) untersucht und als Substrat Elastin mit einem chromogenen synthetischen Substrat markiert. Das System wurde mit den Wirkstoffen über 30 min bei Raumtemperatur inkubiert und anschließend nach Zentrifugation die optische Dichte des Farbstoffes bei 410 nm bestimmt. Die Einsatzmenge der Extrakte betrug 0,3 Gew.-%. Die Ergebnisse sind in Tabelle 1 zusammengefaßt. Die Angabe erfolgte relativ zu einer Kontrolle als Standard (= 0 %), als Standard diente αl- Antitrypsin.
Beispiel Inhibierung der Plasmin- Aktivität
Hintergrund: Plasmin ist eine menschliche Serin-Protease welche eine entscheidende Rolle in der Wundheilung einnimmt. Plasmin baut aus Fibrin bestehende Blutgerinnsel zu löslichen Produkten, den Fibrinopeptiden ab und begünstigt die Migration von Keratinocyten um eine Verletzung zu bedecken.
Plamsinogen ist das Pro-Enzym welches durch eine Protease zu Plasmin aktiviert wird. Diese Protease ist die Urokinase, welche durch aktivierte Keratinocyten während der Wundheilung oder während Hautirritationen oder durch Entzündungen der Haut ausgeschieden wird. Plasminogen wird während einer Entzündung durch Blutgefäße mit einer erhöhten Permeabilität freigesetzt. Die Expression und Sekretion der Urokinase wird durch UVB-Strahlung auf den Zellen erhöht.
Des weiteren wird Plasminogen in extracellulärer Matrix zu Plasmin transformiert welches dann pro-MMP3 aktivieren kann und was dann zu einem Abbau dermaler Glycoproteine wie Fibronektin, Laminin und Proteoglycan führen kann.
Plasmin spielt eine entscheidende Rolle bei Hautverletzungen und dadurch auch beim Photo- alterungsprozess der Haut.
Methode: Menschliches Plasmin bezogen von der Firma Sigma wird mit dem Extrakt in einer Menge von 0,3 Gew.-% vermischt und einige Minuten bei 20°C inkubiert. Anschließend wird natürliches Casein zugegeben, das mit einer gequenchten Fluorescence Probe (Interchim natu- ral) markiert ist.
Die Protease-katalysierte Hydrolyse baut das quenching ab und führt zu einem Fluorescence- Signal. Der Anteil an hydrolysiertem Substrat wurde bestimmt durch Messung der erhöhten grünen Fluorescence innerhalb von 30 min. Je aktiver das Plasmin, desto mehr Substrat wird hydrolysiert und desto höher wird die Fluorescence Intensität. Untersucht wurde die Inhibierung der Enzymaktivität im Vergleich zu einer Kontrolle und einer Referenzsubstanz SBTI der Firma Sigma.
Tabelle 1 Elastase- und Plasmin-inhibierung
Die Ergebnisse verdeutlichen, dass die unterschiedlichen Extrakte aus den Samen von Adenanthera pavonina in der Lage sind, die Elastase und speziell die Pankreas-Elastase und Plasmin zu inhibieren, jedoch nicht in gleichem Masse. Die Inhibierung des Plasmin ist vergleichbar höher als die der Elastase Basierend auf diesen Ergebnissen wurde der IC50% Wert von Plasmin bestimmt
Tabelle 2 IC50%-Werte der Inhibierung/Kontrolle (Mittelwert aus 2 Versuchen)
Diese Ergebnisse zeigen, das die Erhöhung der anti-Plasmin Aktivität (eine Verringemng des IC50%- Wertes) parallel zur Anreichemng des Trypsin Inhibitors ist, welcher bei den Herstellbeispielen bestimmt wurde.
Tabelle 3-6 enthalten eine Reihe von Formulierungsbeispielen.
Tabelle 3 Beispiele für kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)
(1) W/O-Sonnenschutzcreme, (2-4) W/O-Sonnenschutzlotion, (5, 8, 10) OΛV-Sonnenschutzlotion, (6, 7, 9) O W-Sonnenschutzcreme
Tabelle 3: Rezepturen für Conditioner
Kosmetische Zubereitungen Conditioner (Wasser, Konservierungsmittel ad 100 Gew.-%)
(11-14) Haarspülung, (15-16) Haarkur
Tabelle 3: Kosmetische Zubereitungen Shampoo (Wasser, Konservierungsmittel ad 100 Gew.-%)
Tabelle 4: Softcreme Rezepturen Kl bis K7
(Alle Angaben in Gew.-% bez. auf das kosmetische Mitteln
Zusammensetzung (INCI) K1 K2 K3 K4 K5 K6 K7 V1
Glyceryl Stearate (and) Ceteareth-12/20 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0
(and) Cetearyl Alcohol (and) Cetyl Palmi- tate
Cetearyl Alcohol 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Dicaprylyl Ether 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Cocoglycerides 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Cetearyl Isononanoate 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Glycerin (86 Gew.-%ig) 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Extrakt nach Beispiel 1 bis 4 0,5 0,5 0,5 0,5 0,5 0,5 0,5 -
Tocopherol 0,5
Allantoin 0,2
Bisabolol 0,5
Chitosan (Hydagen CMF) 10,0
Desoxyribonucleinsäure 1> 0,5
Panthenol 0,5
Wasser Ad 100
Tabelle 5: Nachtcremerezepturen K8 bis K14
(Alle Angaben in Gew.-% bez. auf das kosmetische Mitteln)
INCI Bezeichnung K8 K9 K10 K11 K12 K13 K14 V2
Polyglyceryl-2 Dipolyhydroxystearate 4,0 4,0 4,0 4,0 4,0 4,0 4,0 5,0
Polyglyceryl-3 Diisostearate 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Cera Alba 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Zinc Stearate 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Cocoglycerides 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0
Cetaeryl Isononanoate 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0
Dicaprylyl Ether 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
Magnesiumsulfate 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Glycerin (86 Gew.-%ig) 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
Extrakt nach Beispiel 1 bis 4 0,5 0,5 0,5 0,5 0,5 0,5 0,5 -
Tocopherol 0,5
Allantoin 0,2
Bisabolol 0,5
Chitosan (Hydagen CMF) 10,0
Desoxyribonucleinsäure 1> 0,5
Panthenol 0,5
Wasser Ad 100
Tabelle 6: W/O Bodvlotion Rezepturen Kl 5 bis K21
(Alle Angaben in Gew.-% bez. auf das kosmetische Mitteln )
INCI-Bezeichnung K15 K16 K17 K18 K19 K20 K21 V3
PEG-7 Hydrogenated Castor Oil 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0
Decyl Oleate 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0
Cetearyl Isononanoate 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0
Glycerin (86 Gew.-%ig) 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
MgS04 * 7 H20 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
Extrakt nach Beispiel 1 bis 4 0,5 0,5 0,5 0,5 0,5 0,5 0,5 -
Tocopherol 0,5
Allantoin 0,2
Bisabolol 0,5
Chitosan (Hydagen CMF) 10,0
Desoxyribonucleinsäure 1> 0,5
Panthenol 0,5
Wasser
Ad 100
1) Desoxyribonucleinsäure: Molekulargewicht ca. 70000, Reinheit (bestimmt durch spektro-photometrische Messung der D Absorption bei 260 nm sowie 280 nm): mindestens 1 ,7.
Alle in der Tabelle 3-6 aufgeführten und verwendeten Substanzen mit registriertem Warenzeichen ® sind Marken und Produkte der COGNIS Gruppe.
Claims
1. Kosmetische und/oder dermatologische Zubereitungen, enthaltend einen Extrakt der Samen von Pflanzen der Gattung Adenanthera.
2. Zubereitungen nach Anspruch 1, dadurch gekennzeichnet, dass ein Extrakt von Samen der Pflanze Adenanthera pavonina enthalten ist.
3. Zubereitungen nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass ein Extrakt von geschälten Samen enthalten ist.
4. Zubereitungen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Extrakt in Mengen von 0,001 bis 5 Gew.-%, berechnet als Trockengewicht bezogen auf die Gesamtmenge der Zubereitungen enthalten ist, mit der Maßgabe, dass sich die Mengenangaben mit Wasser und gegebenenfalls weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren.
5. Verwendung von Extrakten der Samen von Pflanzen der Gattung Adenanthera, insbesondere von Samen der Pflanze Adenanthera pavonina zur Herstellung kosmetischer und/oder dermatologischer Zubereitungen.
6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, dass die Zubereitungen Behandlungsmittel für die Haut, die Kopfhaut und die Haare darstellen.
7. Verwendung nach Anspruch 5, dadurch gekennzeichnet, dass die Zubereitungen Haut- und Haarbehandlungsmittel darstellen mit lindernder, wohltuender und irritationshem- mender Wirkung, insbesondere gegen oxidativen Stress und/oder Luftverunreinigungen.
8. Verwendung nach Anspruch 5, dadurch gekennzeichnet, dass die Zubereitungen Haut- und Haarbehandlungsmittel darstellen mit Plasmin-inhibierender Wirkung.
9. Verwendung nach Anspruch 5, dadurch gekennzeichnet, dass die Zubereitungen Haut Hautbehandlungsmittel darstellen gegen Hautalterung und Faltenbildung zur vorbeugenden oder heilenden Behandlung von Alterserscheinungen der Haut, verursacht insbesondere durch UVA-, UVB und/oder IR-Strahlung.
0. Verwendung nach Anspruch 5, dadurch gekennzeichnet, dass die Zubereitungen Hautbehandlungsmittel darstellen zur Verminderung von Entzündungen der Haut, insbesondere zur Behandlung von Rosacea oder zur Behandlung von empfindlicher Haut, insbesondere zur Behandlung trockener Haut oder gegen Juckreiz, insbesondere gegen Juckreiz auf der Kopfhaut oder gegen Schuppenbildung, insbesondere gegen Schuppen auf der Kopfhaut.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0305873A FR2854799A1 (fr) | 2003-05-16 | 2003-05-16 | Utilisation d'extraits des graines de plantes appartenant au genre adenanthera pour la fabrication de preparations cosmetiques et/ou dermatologiques |
PCT/EP2004/004963 WO2004100909A1 (de) | 2003-05-16 | 2004-05-10 | Kosmetische und/oder dermatologische zubereitungen enthaltend einen extrakt der samen von pflanzen der gattung adenanthera |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1635910A1 true EP1635910A1 (de) | 2006-03-22 |
Family
ID=33306393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04731919A Withdrawn EP1635910A1 (de) | 2003-05-16 | 2004-05-10 | Kosmetische und/oder dermatologische zubereitungen enthaltend einen extrakt der samen von pflanzen der gattung adenanthera |
Country Status (6)
Country | Link |
---|---|
US (2) | US20070104676A1 (de) |
EP (1) | EP1635910A1 (de) |
JP (1) | JP2006528944A (de) |
KR (1) | KR20060028389A (de) |
FR (1) | FR2854799A1 (de) |
WO (1) | WO2004100909A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008273874A (ja) * | 2007-04-27 | 2008-11-13 | Fuji Chem Ind Co Ltd | 頭皮外用剤 |
WO2009102075A1 (en) * | 2008-02-13 | 2009-08-20 | Kao Corporation | Method for producing hippocastanaceae plant seed extract |
MX2012003563A (es) | 2009-09-24 | 2012-04-30 | Unilever Nv | Agente desinfectante que comprende eugenol, terpineol y timol. |
JP5123333B2 (ja) | 2010-01-26 | 2013-01-23 | 株式会社 資生堂 | 油中水型乳化日焼け止め化粧料 |
BR112013013085B1 (pt) | 2010-12-07 | 2018-02-14 | Unilever N.V. | Composição de cuidados orais, enxaguante bucal, creme dental, dentífrico, método para desinfetar a cavidade oral e uso de uma composição |
US9693941B2 (en) | 2011-11-03 | 2017-07-04 | Conopco, Inc. | Liquid personal wash composition |
GB2525895A (en) * | 2014-05-07 | 2015-11-11 | Boots Co Plc | Skin care composition |
US11090256B2 (en) * | 2017-07-31 | 2021-08-17 | L'oreal | Hair-treatment composition and methods of use |
CN111150751B (zh) * | 2020-02-19 | 2021-08-17 | 中国人民解放军军事科学院军事医学研究院 | 制备海红豆提取物的方法、海红豆提取物及其应用 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4172887A (en) * | 1973-11-30 | 1979-10-30 | L'oreal | Hair conditioning compositions containing crosslinked polyaminopolyamides |
US4066507A (en) * | 1976-10-13 | 1978-01-03 | Nippon Kayaku Kabushiki Kaisha | Process for producing l-leupeptins |
JPH075634B2 (ja) * | 1987-10-30 | 1995-01-25 | 日東紡績株式会社 | トリペプチド類及びこれを含有する抗プラスミン剤 |
US4906457A (en) * | 1988-09-06 | 1990-03-06 | Washington State University Research Foundation, Inc. | Compositions and methods for reducing the risk of sunlight and ultraviolet induced skin cancer |
DK166650B1 (da) * | 1991-03-15 | 1993-06-28 | Aarhus Oliefabrik As | Fedtbaser samt anvendelse af disse i kosmetiske og farmaceutiske emulsionsprodukter |
DE59209963D1 (de) * | 1991-09-13 | 2002-08-14 | Pentapharm Ag Basel | Proteinfraktion zur kosmetischen und dermatologischen Pflege der Haut |
US5972993A (en) * | 1998-03-20 | 1999-10-26 | Avon Products, Inc. | Composition and method for treating rosacea and sensitive skin with free radical scavengers |
EP1401460A2 (de) * | 2000-12-15 | 2004-03-31 | Pharmacia Corporation | Selektive cox-2-hemmung aus pflanzenextrakten |
GB0103765D0 (en) * | 2001-02-15 | 2001-04-04 | Affitech As | Assay |
US20030229029A1 (en) * | 2002-06-06 | 2003-12-11 | Charles Laudadio | Cardiac glycosides for treating muscle pain and spasm |
-
2003
- 2003-05-16 FR FR0305873A patent/FR2854799A1/fr active Pending
-
2004
- 2004-05-10 WO PCT/EP2004/004963 patent/WO2004100909A1/de active Application Filing
- 2004-05-10 EP EP04731919A patent/EP1635910A1/de not_active Withdrawn
- 2004-05-10 US US10/557,748 patent/US20070104676A1/en not_active Abandoned
- 2004-05-10 KR KR1020057021841A patent/KR20060028389A/ko not_active Application Discontinuation
- 2004-05-10 JP JP2006529770A patent/JP2006528944A/ja active Pending
-
2008
- 2008-03-12 US US12/047,044 patent/US20080160118A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2004100909A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20070104676A1 (en) | 2007-05-10 |
JP2006528944A (ja) | 2006-12-28 |
WO2004100909A1 (de) | 2004-11-25 |
US20080160118A1 (en) | 2008-07-03 |
KR20060028389A (ko) | 2006-03-29 |
FR2854799A1 (fr) | 2004-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1347768B1 (de) | Kosmetische und/oder dermopharmazeutische zubereitungen enthaltend extrakte aus den blättern der pflanze argania spinosa | |
EP1313497B1 (de) | Verwendung von extrakten der pflanze cassia alata | |
EP1296701B1 (de) | Verwendung von extrakten des pilzes grifola frondosa | |
EP1372685B1 (de) | Verwendung von extrakten der pflanze litchi chinensis sonn. | |
EP1281392A1 (de) | Kosmetische und/oder pharmaceutische Zubereitungen enthaltend Pflanzenextrakte | |
EP1339421B1 (de) | Kosmetische und/oder dermopharmazeutische zubereitungen enthaltend native proteine aus der pflanze argania spinosa | |
WO2002089758A1 (de) | Verwendung von oligomeren procyanolidinen | |
WO2003015738A1 (de) | Wirkstoffmischungen | |
EP1441747B1 (de) | Verwendung eines extraktes der vigna aconitifolia-pflanze in einer kosmetischen und/oder dermopharmazeutischen zusammensetzung | |
EP1145709A1 (de) | Verwendung von Naturstoffen zur Herstellung von kosmetischen Zubereitungen | |
US20080160118A1 (en) | Treatment of skin with cosmetic and dermatological preparations containing extracts from seeds of plants of the genus adenanthera | |
EP1276460B1 (de) | Verwendung von zubereitungen enthaltend einen extrakt der pflanze argania spinosa in kosmetischen pflegemitteln für haare und haut | |
EP1423089B1 (de) | Kosmetische und/oder pharmazeutische zubereitungen enthaltend einen extrakt aus pterocarpus marsupium | |
EP1314420A1 (de) | Anti-Ageing Mittel | |
EP1292278B1 (de) | Zubereitungen enthaltend einen extrakt der pflanze pistia stratiotes | |
WO2004071480A1 (de) | Verwendung eines extraktes aus mycorrhiza-pilzen | |
EP1247528A1 (de) | Kosmetische und/oder pharmazeutische Mittel enthaltend Extrakte aus Arachis hypogaea L | |
EP1321123A1 (de) | Verwendung eines Extraktes der Pflanze Baptisia tinctoria in einer kosmetischen Zusammensetzung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051105 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20080731 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COGNIS FRANCE, S.A.S. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100713 |