EP1629547A1 - Encapsulation for an organic electronics component and production method therefor - Google Patents
Encapsulation for an organic electronics component and production method thereforInfo
- Publication number
- EP1629547A1 EP1629547A1 EP04703393A EP04703393A EP1629547A1 EP 1629547 A1 EP1629547 A1 EP 1629547A1 EP 04703393 A EP04703393 A EP 04703393A EP 04703393 A EP04703393 A EP 04703393A EP 1629547 A1 EP1629547 A1 EP 1629547A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- encapsulation
- electronic component
- melt
- alloy
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005538 encapsulation Methods 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000007639 printing Methods 0.000 claims abstract description 9
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims abstract description 5
- 230000001590 oxidative effect Effects 0.000 claims abstract description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 239000000155 melt Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052753 mercury Inorganic materials 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910000743 fusible alloy Inorganic materials 0.000 abstract description 14
- 238000002844 melting Methods 0.000 abstract description 14
- 230000008018 melting Effects 0.000 abstract description 13
- 238000000576 coating method Methods 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 230000001627 detrimental effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 14
- 239000011521 glass Substances 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 238000010345 tape casting Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- 238000007649 pad printing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
Definitions
- the invention relates to an encapsulation for an organic electronic component, in particular an encapsulation for an organic light emitting diode (OLED).
- OLED organic light emitting diode
- OLEDs based on OLEDs have been known since 1987. Compared to the conventional liquid crystal displays, the OLEDs offer several advantages such as self-emission, low energy consumption, compactness and short switching times.
- an OLED is made up of organic films that are arranged between electrodes. As soon as voltage is applied to the electrodes, light is emitted because holes recombine with electrons.
- the thin organic layers of the OLED are typically arranged on a glass substrate and encapsulated with a further glass or metal plate.
- attempts are also being made to replace the rigid glass or metal plates with those made of plastic.
- hermetic sealing of the inner layers of an OLED from moisture and oxygen is essential, so it is not easy to find a replacement for the materials glass or metal.
- plastic encapsulation with an applied protective layer being used.
- Plastic layers made of dielectric layers that are up to 1 ⁇ m thick are also used. However, these encapsulations are not necessarily to be classified as flexible.
- An essential point with all encapsulations is the tightness against moisture, especially water and oxi gases, especially oxygen.
- Organic materials generally have a relatively high permeability to moisture, metals and technical ceramics have a high degree of tightness against these environmental influences, but firstly it is difficult to draw a metallic film over an organic electronic component without damaging the component itself and secondly Conventional metal layers, which were applied via CVD or the like, have a relatively high number of “pinholes” through which moisture and oxygen can diffuse through.
- the invention relates to an encapsulation for an electronic component, in particular for an OLED, which can essentially be produced from the melt of a metallic alloy.
- the invention also relates to a method for producing an encapsulation for an OLED by applying the melt of a metallic alloy.
- additives such as wetting agents, adhesion promoters or the like
- wetting agents such as wetting agents, adhesion promoters or the like
- low-melting alloys are, for example, the "fusible alloys' 1 *, ie metallic alloys that have a low melting point or melting range.
- hermetically sealed encapsulations for organic electronic components are created by conventional coating methods such as printing methods, “doctor-blading ⁇ ,” spin coating or “dip-coating ⁇ , because the low-melting metal alloys, the“ fusible alloys ”, are meltable at temperatures between 30 and 200 ° C. and hence how polymers can be processed, making it possible to produce a homogeneous and extensive coating as well as a structured layer.
- the melt is applied, preferably structured, by a printing process, such as stamp or pad printing, screen printing, ink jet printing, high and / or gravure printing, stencil printing, flexographic printing and others.
- a printing process such as stamp or pad printing, screen printing, ink jet printing, high and / or gravure printing, stencil printing, flexographic printing and others.
- the alloy of the "fusible alloy 1 " is applied by means of an embossing technique or like a casting resin.
- the melt can also be applied just as well by spin coating, immersion, knife coating, etc.
- the "fusible alloys” are by their nature is known, it is, for example, alloys educational a "eutectic ⁇ to, that is at a certain percentage by mole, weight or volume of distribution of the components in the alloy, the melting point decreases the alloy or a mixture well below that of the individual components
- the eutectic alloys also have the advantage that they have a defined melting point as opposed to a melting range which can possibly extend over 10 ° C. or more.
- alloys which are present as a melt in the range between 30 ° C. and 200 ° C., particularly preferably below 150 ° C.
- Components of these alloys can be the following metals: bismuth, lead, tin, cadmium, indium, mercury, silver.
- the “fusible alloy is characterized by the fact that its melting point is clearly, ie measurable in degrees Celsius, below that of the individual components ,
- the "fusible alloys" or alloys that are harmless to health are particularly advantageous, that is to say those which manage with little or no cadmium, mercury and / or lead.
- the following alloys may be mentioned as examples: 57% (weight percent) bismuth, 17% tin, 26 % Indium (melting point 78 ° C); 48% tin, 52% indium (melting point 118 ° C) or 58% bismuth, 42% tin (melting point 138 ° C).
- Another great advantage of the method is that these materials produce a homogeneous film with a low defect rate, in contrast to films that were produced using physical vapor deposition (PVD) or CVD.
- PVD physical vapor deposition
- an insulator layer is applied between the organic electronic component, in particular between the OLED and the encapsulation.
- the insulating intermediate layer can be, for example, an organic layer or a ceramic layer, such as made of SiO 2 .
- the insulating intermediate layer can be by evaporation, sputtering, chemical vapor deposition (CVD), "spin-coating" or by means of printing techniques.
- the melt is applied directly to the organic electronic component, in particular the OLED, so that it solidifies on the electronic component, advantageously in a controlled manner. This most strongly suppresses imperfections and pinholes. Only because of the melting range at low temperatures can this process be used for organic electronic components without damaging them.
- This form of encapsulation is particularly suitable for flexible use (with plastic films or thin glass) because the solidified, that is to say in the solid phase, “fusible alloys * alloys, preferably in the layer thickness in which they are present during the encapsulation, are flexible.
- the layer thicknesses of the encapsulations can be between 1 and 700 ⁇ m. Layer thicknesses between 20 and 200 ⁇ m are preferred, layer thicknesses between 30 and 70 ⁇ m are particularly preferred.
- the adhesion properties of the alloys on the substrate are very favorable, so that the transition from encapsulation to substrate can also be made relatively easily sealed.
- the encapsulation can be used for all organic electronic components, in particular for passive matrix displays, flexible light sources and or organic solar cells or organic photovoltaic cells. Other applications include flexible organic detectors and integrated circuits on an organic basis.
- An organic electronic component is built on a glass substrate.
- An insulating intermediate layer is applied thereon by means of a coating process such as "spin-coating" or the like.
- a thin film for example with a thickness of 50 ⁇ m, of a metallic, low-melting alloy, for example 48% tin and 52% indium, is applied thereon. The application can, because of the low
- encapsulation for an organic electronic component in particular an OLED
- OLED organic electronic component
- fusible alloys i.e. low-melting metal alloys that combine a low melting point with high tightness against moisture and oxidizing gases.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The invention relates to an encapsulation for an organic electronics component, particularly an OLED, which can be produced by simple coating methods or printing methods and which still has a high degree of tightness with regard to environmental influences that are detrimental to the organic electronics component. This is made possible by the use of so-called fusible alloys, i.e. low-melting point metallic alloys that combine a low melting point with a high tightness from moisture and oxidizing gases.
Description
Beschreibungdescription
Verkapselung für ein organisches Elektronikbauteil und Herstellungsverfahren dazuEncapsulation for an organic electronic component and manufacturing process therefor
Die Erfindung betrifft eine Verkapselung für ein organisches Elektronikbauteil, insbesondere eine Verkapselung für eine organische Leuchtdiode (OLED) .The invention relates to an encapsulation for an organic electronic component, in particular an encapsulation for an organic light emitting diode (OLED).
Displays, die auf OLEDs basieren, sind seit 1987 bekannt. Verglichen mit den herkömmlichen Flüssigkristall-Displays bieten die OLEDs einige Vorteile, wie Eigenemission, niedriger Energieverbrauch, Kompaktheit und kurze Schaltzeiten.Displays based on OLEDs have been known since 1987. Compared to the conventional liquid crystal displays, the OLEDs offer several advantages such as self-emission, low energy consumption, compactness and short switching times.
Eine OLED ist im Prinzip aus organischen Filmen aufgebaut, die zwischen Elektroden angeordnet sind. Sobald Spannung an die Elektroden angelegt wird, wird Licht emittiert, weil sich Löcher mit Elektronen rekombinieren. Die dünnen organischen Schichten der OLED sind typischerweise auf einem Glassubstrat angeordnet und mit einer weiteren Glas- oder Metallplatte verkapselt. In dem Bestreben flexible organische Displays herzustellen wird auch versucht, die starren Glas- oder Metallplatten durch solche aus Kunststoff zu ersetzen. Jedoch ist eine hermetische Abschottung der inneren Schichten einer OLED vor Feuchtigkeit und Sauerstoff essentiell, deshalb ist es nicht leicht, Ersatz für die Werkstoffe Glas oder Metall zu finden.In principle, an OLED is made up of organic films that are arranged between electrodes. As soon as voltage is applied to the electrodes, light is emitted because holes recombine with electrons. The thin organic layers of the OLED are typically arranged on a glass substrate and encapsulated with a further glass or metal plate. In the effort to produce flexible organic displays, attempts are also being made to replace the rigid glass or metal plates with those made of plastic. However, hermetic sealing of the inner layers of an OLED from moisture and oxygen is essential, so it is not easy to find a replacement for the materials glass or metal.
Momentan werden mehrere Verkapselungstechniken angewendet, wobei Kunststoffverkapselungen mit einer aufgebrachten Schutzschicht eingesetzt werden. Auch werden Kunststoffschichten aus dielektrischen Schichten verwendet, die bis zu lμm dick sind. Allerdings sind diese Verkapselungen nicht unbedingt als flexibel einzustufen.Several encapsulation techniques are currently used, plastic encapsulation with an applied protective layer being used. Plastic layers made of dielectric layers that are up to 1 μm thick are also used. However, these encapsulations are not necessarily to be classified as flexible.
Ein essentieller Punkt bei allen Verkapselungen ist die Dichtigkeit gegenüber Feuchtigkeit, insbesondere Wasser und oxi-
dierenden Gasen, insbesondere Sauerstoff. Organische Materialien haben in der Regel eine relativ hohe Durchlässigkeit für Feuchtigkeit, Metalle und technische Keramiken haben zwar eine hohe Dichtigkeit gegenüber diesen Umwelteinflüssen, jedoch ist es erstens schwierig einen metallischen Film über ein organisches Elektronikbauteil zu ziehen, ohne das Bauteil selbst zu beschädigen und zweitens haben herkömmliche Metallschichten, die über CVD oder ähnliches aufgebracht wurden, eine relativ hohe Anzahl an „pinholes" durch die Feuchtigkeit und Sauerstoff durchdiffundieren können.An essential point with all encapsulations is the tightness against moisture, especially water and oxi gases, especially oxygen. Organic materials generally have a relatively high permeability to moisture, metals and technical ceramics have a high degree of tightness against these environmental influences, but firstly it is difficult to draw a metallic film over an organic electronic component without damaging the component itself and secondly Conventional metal layers, which were applied via CVD or the like, have a relatively high number of “pinholes” through which moisture and oxygen can diffuse through.
Es ist Aufgabe der vorliegenden Erfindung, eine gegen Feuchtigkeit und oxidierende Gase dichte Verkapselung für ein organisches Elektronikbauteil, insbesondere eine OLED zu schaf- fen, die unter normalen Prozessbedingungen aufgebracht werden kann und die biegsam ist, so dass sie für flexible Anwendungen geeignet ist.It is an object of the present invention to provide an encapsulation which is impervious to moisture and oxidizing gases for an organic electronic component, in particular an OLED, which can be applied under normal process conditions and which is flexible, so that it is suitable for flexible applications.
Gegenstand der Erfindung ist eine Verkapselung für ein Elekt- ronikbauteil, insbesondere für eine OLED, die im wesentlichen aus der Schmelze einer metallischen Legierung herstellbar ist. Außerdem ist Gegenstand der Erfindung ein Verfahren zur Herstellung einer Verkapselung für eine OLED durch Aufbringen der Schmelze einer metallischen Legierung.The invention relates to an encapsulation for an electronic component, in particular for an OLED, which can essentially be produced from the melt of a metallic alloy. The invention also relates to a method for producing an encapsulation for an OLED by applying the melt of a metallic alloy.
Mit „im wesentlichen* aus einer metallischen Legierung ist gemeint, dass der Legierung noch (übliche) Additive, wie Benetzungsmittel, Haftvermittler oder ähnliches zugesetzt sein können.By "essentially * made of a metallic alloy it is meant that additives (such as wetting agents, adhesion promoters or the like) can also be added to the alloy.
Die sogenannten niedrigschmelzenden Legierungen sind beispielsweise die „fusible alloys'1*, also metallische Legierungen, die einen niedrigen Schmelzpunkt oder Schmelzbereich haben.The so-called low-melting alloys are, for example, the "fusible alloys' 1 *, ie metallic alloys that have a low melting point or melting range.
Mit Hilfe dieser Materialien können hermetisch dichte Verkapselungen für organische Elektronikbauteile, insbesondere
OLEDs, durch herkömmliche Beschichtungsmethoden wie beispielsweise Druckmethoden, „doctor-bladingλλ , „spin coating oder „dip-coatingλ geschaffen werden, weil die niedrig schmelzenden metallischen Legierungen, die „fusible alloys" bei Temperaturen zwischen 30 und 200°C schmelzbar sind und daher wie Polymere verarbeitet werden können. So ist es möglich, eine homogene und weitflächige Beschichtung ebenso wie eine strukturierte Schicht herzustellen.With the help of these materials, hermetically sealed encapsulations for organic electronic components, in particular OLEDs are created by conventional coating methods such as printing methods, “doctor-blading λλ ,” spin coating or “dip-coating λ , because the low-melting metal alloys, the“ fusible alloys ”, are meltable at temperatures between 30 and 200 ° C. and hence how polymers can be processed, making it possible to produce a homogeneous and extensive coating as well as a structured layer.
Nach einer bevorzugten Ausführungsform des Verfahrens wird die Schmelze, bevorzugt strukturiert, durch einen Druckpro- zess, wie Stempel- oder Tampondruck, Siebdruck, Tintenstrahl- druck, Hoch- und/oder Tiefdruck, Schablonendruck, Flexodruck und sonstige aufgebracht.According to a preferred embodiment of the method, the melt is applied, preferably structured, by a printing process, such as stamp or pad printing, screen printing, ink jet printing, high and / or gravure printing, stencil printing, flexographic printing and others.
Nach einer weiteren Ausführungsform des Verfahrens wird die Legierung des „fusible alloys1" mittels einer Prägetechnik oder wie ein Gießharz aufgebracht.According to a further embodiment of the method, the alloy of the "fusible alloy 1 " is applied by means of an embossing technique or like a casting resin.
Ebenso gut kann die Schmelze auch durch Spin Coating, Eintauchen, Rakelverfahren etc. aufgebracht.The melt can also be applied just as well by spin coating, immersion, knife coating, etc.
Die „fusible alloys" sind ihrer Art nach bekannt, es handelt sich beispielweise um Legierungen, die ein „EutektikumΛ bil- den, das heißt bei einer bestimmten prozentualen Mol-, Gewichts- oder Volumenverteilung der Komponenten in der Legierung sinkt der Schmelzpunkt der Legierung oder Mischung weit unter den der Einzelkomponenten. Die eutektischen Legierungen haben außerdem den Vorteil, dass sie einen definierten Schmelzpunkt haben im Gegensatz zu einem Schmelzbereich, der sich unter Umständen über 10°C oder mehr erstrecken kann.The "fusible alloys" are by their nature is known, it is, for example, alloys educational a "eutectic Λ to, that is at a certain percentage by mole, weight or volume of distribution of the components in the alloy, the melting point decreases the alloy or a mixture well below that of the individual components The eutectic alloys also have the advantage that they have a defined melting point as opposed to a melting range which can possibly extend over 10 ° C. or more.
Bevorzugt handelt es sich um eine Legierung, die im Bereich zwischen 30°C und 200°C, insbesondere bevorzugt unterhalb von 150°C, als Schmelze vorliegt.
Bestandteile dieser Legierungen können die folgenden Metalle sein: Wismut, Blei, Zinn, Cadmium, Indium, Quecksilber, Silber, wobei das „fusible alloy sich dadurch auszeichnet, dass sein Schmelzpunkt deutlich, also messbar in Grad Celsius, un- ter dem der Einzelbestandteile liegt.It is preferably an alloy which is present as a melt in the range between 30 ° C. and 200 ° C., particularly preferably below 150 ° C. Components of these alloys can be the following metals: bismuth, lead, tin, cadmium, indium, mercury, silver. The “fusible alloy is characterized by the fact that its melting point is clearly, ie measurable in degrees Celsius, below that of the individual components ,
Besonders vorteilhaft sind die gesundheitlich unbedenklichen „fusbile alloys" oder Legierungen, also die, die mit wenig oder ohne Cadmium, Quecksilber und/oder Blei auskommen. Bei- spielhaft genannt seien folgende Legierungen: 57% (Gewichtsprozent) Wismut, 17% Zinn, 26% Indium (Schmelzpunkt 78°C) ; 48% Zinn, 52% Indium (Schmelzpunkt 118°C) oder 58% Wismut, 42%Zinn (Schmelzpunkt 138°C) .The "fusible alloys" or alloys that are harmless to health are particularly advantageous, that is to say those which manage with little or no cadmium, mercury and / or lead. The following alloys may be mentioned as examples: 57% (weight percent) bismuth, 17% tin, 26 % Indium (melting point 78 ° C); 48% tin, 52% indium (melting point 118 ° C) or 58% bismuth, 42% tin (melting point 138 ° C).
Ein großer Vorteil der Methode ist außerdem, dass diese Materialien einen homogenen Film ergeben mit einer niedrigen Fehlstellenrate im Gegensatz zu Filmen, die über physical va- pour deposition (PVD) oder CVD hergestellt wurden. Herkömmliche Verkapselungen, die über CVD/PVD hergestellt wurden, ha- ben eine hohe Fehlstellenrate oder viele „pinholes" , die ein Hauptgrund für mangelnde Dichtigkeit von metallischen/keramischen Verkapselungen ist.Another great advantage of the method is that these materials produce a homogeneous film with a low defect rate, in contrast to films that were produced using physical vapor deposition (PVD) or CVD. Conventional encapsulations, which were produced via CVD / PVD, have a high defect rate or many "pinholes", which is a main reason for the lack of tightness of metallic / ceramic encapsulations.
Mit der erfindungsgemäßen Methode zur Herstellung von Verkap- seiungen konnten dünne Filme hergestellt werden, die eineWith the method according to the invention for the production of encapsulations, thin films could be produced, the one
Biegsamkeit zeigten, mit denen sie für flexible Anwendungen geeignet sind.Showed flexibility with which they are suitable for flexible applications.
Nachdem die niedrigschmelzenden metallischen Legierungen elektrisch leitend sind, wird, nach einer Ausführungsform des Verfahrens, zwischen dem organischen Elektronikbauteil, insbesondere zwischen der OLED und der Verkapselung eine Isolatorschicht angebracht. Die isolierende Zwischenschicht kann beispielsweise eine organische Schicht sein oder eine kerami- sehe, wie aus Si02. Die isolierende Zwischenschicht kann durch Verdampfen, Aufsputtern, Chemical Vapour Deposition
(CVD) , „spin-coating" oder mittels Drucktechniken aufgebracht werden.After the low-melting metal alloys are electrically conductive, according to one embodiment of the method, an insulator layer is applied between the organic electronic component, in particular between the OLED and the encapsulation. The insulating intermediate layer can be, for example, an organic layer or a ceramic layer, such as made of SiO 2 . The insulating intermediate layer can be by evaporation, sputtering, chemical vapor deposition (CVD), "spin-coating" or by means of printing techniques.
Nach einer Ausführungsform des Verfahrens wird die Schmelze direkt auf das organische Elektronikbauteil, insbesondere die OLED aufgebracht, so dass sie auf dem Elektronikbauteil, vorteilhafterweise kontrolliert, erstarrt. Dadurch werden Fehlstellen und Pinholes am stärksten unterdrückt. Nur wegen des Schmelzbereichs bei niedrigen Temperaturen ist dieses Verfah- ren für organische Elektronikbauteile einsetzbar ohne diese zu beschädigen.According to one embodiment of the method, the melt is applied directly to the organic electronic component, in particular the OLED, so that it solidifies on the electronic component, advantageously in a controlled manner. This most strongly suppresses imperfections and pinholes. Only because of the melting range at low temperatures can this process be used for organic electronic components without damaging them.
Diese Form der Verkapselung ist insbesondere für die flexible Anwendung (mit Plastikfolien oder dünnem Glas) geeignet, weil die erstarrten, also in fester Phase vorliegenden „fusible alloys* Legierungen, bevorzugt in der Schichtdicke in der sie bei der Verkapselung vorliegen, biegsam sind.This form of encapsulation is particularly suitable for flexible use (with plastic films or thin glass) because the solidified, that is to say in the solid phase, “fusible alloys * alloys, preferably in the layer thickness in which they are present during the encapsulation, are flexible.
Die Schichtdicken der Verkapselungen können zwischen 1 und 700μm liegen. Bevorzugt handelt es sich um Schichtdicken zwischen 20 und 200 μ , insbesondere bevorzugt um Schichtdicken zwischen 30 und 70μm.The layer thicknesses of the encapsulations can be between 1 and 700 μm. Layer thicknesses between 20 and 200 μm are preferred, layer thicknesses between 30 and 70 μm are particularly preferred.
Außerdem sind die Haftungseigenschaften der Legierungen auf dem Substrat wie Glas und/oder organische Folien sehr günstig, so dass der Übergang von Verkapselung und Substrat auch relativ leicht dicht zu machen ist.In addition, the adhesion properties of the alloys on the substrate, such as glass and / or organic foils, are very favorable, so that the transition from encapsulation to substrate can also be made relatively easily sealed.
Die Verkapselung ist für alle organischen Elektronikbauteile, insbesondere für Passive Matrix Displays, flexible Lichtquellen und oder organische Solarzellen oder organische photovol- taische Zellen einsetzbar. Weitere Anwendungen sind flexible organische Detektoren und integrierte Schaltungen auf organischer Basis.The encapsulation can be used for all organic electronic components, in particular for passive matrix displays, flexible light sources and or organic solar cells or organic photovoltaic cells. Other applications include flexible organic detectors and integrated circuits on an organic basis.
Beispielhaft wird die Verkapselung eines organischen Elektronikbauteils wie eines passiv matrix displays, einer Solarzel-
le oder einer flexiblen Lichtquelle (flexible light source) beschrieben:The encapsulation of an organic electronic component such as a passive matrix display, a solar cell le or a flexible light source:
Ein organisches Elektronikbauteil wird auf einem Glassubstrat aufgebaut. Darauf wird eine isolierende Zwischenschicht über ein Beschichtungsverfahren wie „spin-coating" oder ähnliches aufgebracht. Darauf wiederum wird ein dünner Film, beispielsweise mit einer Dicke von 50μm, einer metallischen niedrigschmelzenden Legierung, beispielsweise 48% Zinn und 52% Indi- um, aufgebracht. Die Aufbringung kann, wegen des niedrigenAn organic electronic component is built on a glass substrate. An insulating intermediate layer is applied thereon by means of a coating process such as "spin-coating" or the like. A thin film, for example with a thickness of 50 μm, of a metallic, low-melting alloy, for example 48% tin and 52% indium, is applied thereon. The application can, because of the low
Schmelzpunktes der Legierung, durch einfache Drucktechnik erfolgen.Melting point of the alloy, done by simple printing technology.
Hier wird erstmals eine Verkapselung für ein organischen Elektronikbauteil, insbesondere eine OLED vorgeschlagen, die sich durch einfache Beschichtungsmethoden oder Druckmethoden herstellen l sst und trotzdem eine hohe Dichtigkeit gegenüber (für das organische Elektronikbauteil) schädlichen Umwelteinflüsse hat. Dies ist möglich durch den Einsatz sogenannter fusible alloys, also niedrigschmelzender metallischer Legierungen, die einen niedrigen Schmelzpunkt mit der hohen Dichtheit gegenüber Feuchtigkeit und oxidierenden Gasen verbinden.
Here, encapsulation for an organic electronic component, in particular an OLED, is proposed for the first time, which can be produced by simple coating methods or printing methods and nevertheless has a high degree of tightness against (for the organic electronic component) harmful environmental influences. This is possible through the use of so-called fusible alloys, i.e. low-melting metal alloys that combine a low melting point with high tightness against moisture and oxidizing gases.
Claims
1. Verkapselung für ein organisches Elektronikbauteil, die im wesentlichen aus einer Schmelze einer metallischen Legierung gefertigt ist.1. Encapsulation for an organic electronic component, which is essentially made from a melt of a metallic alloy.
2. Verkapselung nach Anspruch 1, wobei die Legierung in einem Temperaturbereich von 30 bis 200°C als Schmelze vorliegt.2. Encapsulation according to claim 1, wherein the alloy is in a temperature range from 30 to 200 ° C as a melt.
3. Verkapselung nach einem der Ansprüche 1 oder 2, wobei die metallische Legierung in erstarrter Form dicht gegenüber Feuchtigkeit und/oder oxidierenden Gasen ist.3. Encapsulation according to one of claims 1 or 2, wherein the metallic alloy in solidified form is tight against moisture and / or oxidizing gases.
4.Verkapselung nach einem der vorstehenden Ansprüche, wobei die Legierung zumindest ein Metall, ausgewählt aus der Gruppe folgender Metalle umfasst: Cadmium, Zinn, Wismut, Blei, Indium, Quecksilber und/oder Silber.4. Encapsulation according to one of the preceding claims, wherein the alloy comprises at least one metal selected from the group of the following metals: cadmium, tin, bismuth, lead, indium, mercury and / or silver.
5. Verkapselung nach einem der vorstehenden Ansprüche, wobei die Dicke der Verkapselungsschicht zwischen 1 und 700μm beträgt.5. Encapsulation according to one of the preceding claims, wherein the thickness of the encapsulation layer is between 1 and 700 microns.
6. Verfahren zur Verkapselung eines Elektronikbauteils durch Aufbringen der Schmelze einer metallischen Legierung.6. Process for encapsulating an electronic component by applying the melt of a metallic alloy.
7. Verfahren nach Anspruch 6, wobei die Aufbringung der Schmelze durch einen Druckprozess erfolgt.7. The method according to claim 6, wherein the application of the melt is carried out by a printing process.
8. Verfahren nach Anspruch 6 oder 7, wobei die Schmelze auf dem organischen Elektronikbauteil erstarrt.8. The method according to claim 6 or 7, wherein the melt solidifies on the organic electronic component.
9. Verfahren nach einem der Ansprüche 6 bis 8, wobei vor der Verkapselung noch eine isolierende Zwischenschicht auf das organische Elektronikbauteil aufgebracht wird. 9. The method according to any one of claims 6 to 8, wherein an insulating intermediate layer is applied to the organic electronic component before the encapsulation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10302145 | 2003-01-21 | ||
PCT/EP2004/000429 WO2004066409A1 (en) | 2003-01-21 | 2004-01-20 | Encapsulation for an organic electronics component and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1629547A1 true EP1629547A1 (en) | 2006-03-01 |
Family
ID=32747466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04703393A Withdrawn EP1629547A1 (en) | 2003-01-21 | 2004-01-20 | Encapsulation for an organic electronics component and production method therefor |
Country Status (5)
Country | Link |
---|---|
US (1) | US20060226419A1 (en) |
EP (1) | EP1629547A1 (en) |
JP (1) | JP2006515716A (en) |
CN (1) | CN1742394A (en) |
WO (1) | WO2004066409A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005059524A1 (en) * | 2005-09-30 | 2007-04-05 | Osram Opto Semiconductors Gmbh | Housing for an electromagnetic radiation-emitting optoelectronic component, component and method for producing a housing or a component |
DE102006015043A1 (en) * | 2006-03-31 | 2007-10-11 | Siemens Ag | A method of encapsulating an organic photoactive device and encapsulating a photoactive electronic device |
KR101108157B1 (en) * | 2009-11-19 | 2012-01-31 | 삼성모바일디스플레이주식회사 | Organic light emitting display apparatus |
KR101604139B1 (en) | 2009-11-30 | 2016-03-17 | 엘지디스플레이 주식회사 | Organic light emitting diodde desplay device and fabricating method thereof |
US9620478B2 (en) | 2011-11-18 | 2017-04-11 | Apple Inc. | Method of fabricating a micro device transfer head |
US8349116B1 (en) | 2011-11-18 | 2013-01-08 | LuxVue Technology Corporation | Micro device transfer head heater assembly and method of transferring a micro device |
US8426227B1 (en) | 2011-11-18 | 2013-04-23 | LuxVue Technology Corporation | Method of forming a micro light emitting diode array |
US8573469B2 (en) | 2011-11-18 | 2013-11-05 | LuxVue Technology Corporation | Method of forming a micro LED structure and array of micro LED structures with an electrically insulating layer |
JP6100275B2 (en) * | 2011-11-18 | 2017-03-22 | アップル インコーポレイテッド | Micro LED structure with electrically insulating layer and method of forming an array of micro LED structures |
JP2014007192A (en) * | 2012-06-21 | 2014-01-16 | Industrial Technology Research Institute | Method for bonding led wafer, method for manufacturing led chip, and bonding structure |
DE102013106855B4 (en) * | 2013-07-01 | 2017-10-12 | Osram Oled Gmbh | Method for producing an optoelectronic component and optoelectronic component using a liquid first alloy |
CN105097881A (en) * | 2015-07-28 | 2015-11-25 | 合肥京东方光电科技有限公司 | Display panel and packaging method thereof, and display apparatus |
CN107623085B (en) * | 2017-10-16 | 2019-12-10 | 深圳市华星光电半导体显示技术有限公司 | Packaging method and packaging structure of OLED panel |
CN107785501B (en) * | 2017-10-17 | 2019-12-24 | 深圳市华星光电半导体显示技术有限公司 | Packaging method and packaging structure of flexible OLED panel |
CN108461652A (en) * | 2018-03-30 | 2018-08-28 | 武汉华星光电半导体显示技术有限公司 | The packaging method of packaging body, display device and display panel |
CN111114157B (en) * | 2018-10-31 | 2022-03-01 | 北京梦之墨科技有限公司 | Flexographic printing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69707233T2 (en) * | 1996-05-28 | 2002-07-11 | Koninklijke Philips Electronics N.V., Eindhoven | ORGANIC ELECTROLUMINESCENT DEVICE |
US6602395B1 (en) * | 2000-04-11 | 2003-08-05 | Innovative Technology Licensing, Llc | Patterning of polymer light emitting devices using electrochemical polymerization |
TW533446B (en) * | 2000-12-22 | 2003-05-21 | Koninkl Philips Electronics Nv | Electroluminescent device and a method of manufacturing thereof |
-
2004
- 2004-01-20 EP EP04703393A patent/EP1629547A1/en not_active Withdrawn
- 2004-01-20 US US10/542,978 patent/US20060226419A1/en not_active Abandoned
- 2004-01-20 CN CNA2004800025605A patent/CN1742394A/en active Pending
- 2004-01-20 WO PCT/EP2004/000429 patent/WO2004066409A1/en not_active Application Discontinuation
- 2004-01-20 JP JP2005518644A patent/JP2006515716A/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2004066409A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2006515716A (en) | 2006-06-01 |
WO2004066409A1 (en) | 2004-08-05 |
US20060226419A1 (en) | 2006-10-12 |
CN1742394A (en) | 2006-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1629547A1 (en) | Encapsulation for an organic electronics component and production method therefor | |
DE69707233T2 (en) | ORGANIC ELECTROLUMINESCENT DEVICE | |
DE69630162T2 (en) | Passivation of organic devices | |
DE112005000839B4 (en) | Encapsulation for an organic electronic component and use | |
DE69524429T2 (en) | METHOD FOR SEALING AN ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT ELEMENT | |
DE69831243T2 (en) | A manufacturing method of an active matrix light-emitting display device | |
WO2009121196A1 (en) | Composite object and method for the production thereof | |
EP2308117B1 (en) | Radiation-emitting device and method for producing a radiation-emitting device | |
EP1162238A2 (en) | Compositions containing polythiophene and solvent | |
DE69817505T2 (en) | ORGANIC ELECTROLUMINESCENT DEVICE | |
DE10261609A1 (en) | Light emitting arrangement | |
DE102015116418A1 (en) | Process for applying the protective layer, protective layer itself and semifinished product with a protective layer | |
EP3317906B1 (en) | Organic light-emitting component and method for producing an organic light-emitting component | |
DE102004022004A1 (en) | Layer arrangement for an organic light emitting diode | |
DE102014100837A1 (en) | Light-emitting component and method for producing a light-emitting component | |
EP1586128B1 (en) | Cathode for an organic electronics component | |
DE102016108681A1 (en) | Optoelectronic component and method for producing an optoelectronic component | |
DE102004049955A1 (en) | Production process for an optical component especially an OLED encapsulates optical region between semiconductor and cover using plastic or other connecting material | |
DE102008051656A1 (en) | Method for applying a metallic electrode to a polymer layer | |
WO2017029367A1 (en) | Method for producing an optoelectronic component and optoelectronic component | |
DE2814770C2 (en) | Process for the production of layers applied to a substrate and containing conductive pigments | |
WO2016156026A1 (en) | Organic light-emitting diode and method for producing an organic light-emitting diode | |
DE102005044246A1 (en) | Process for producing vapor-deposited glass layers and product produced according to the method | |
DE102009061071B3 (en) | Method for producing semiconductor component used for laser-fired contact solar cell module, involves producing electrically conductive contact between contact layer made of easily solderable metal, and semiconductor substrate | |
WO2004066408A1 (en) | Metal layer of an electronic component and method for the production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050701 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20060926 |