EP1628076B1 - Canal de refroidissement, chambre de combustion et turbine à gaz - Google Patents

Canal de refroidissement, chambre de combustion et turbine à gaz Download PDF

Info

Publication number
EP1628076B1
EP1628076B1 EP20040019326 EP04019326A EP1628076B1 EP 1628076 B1 EP1628076 B1 EP 1628076B1 EP 20040019326 EP20040019326 EP 20040019326 EP 04019326 A EP04019326 A EP 04019326A EP 1628076 B1 EP1628076 B1 EP 1628076B1
Authority
EP
European Patent Office
Prior art keywords
cooling channel
cooling
side wall
turbulators
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20040019326
Other languages
German (de)
English (en)
Other versions
EP1628076A1 (fr
Inventor
Michael Dr. Huth
Diane Lauffer
Roland Dr. Liebe
Thomas Pechette
Bernhard Prof. Weigand
Jens Prof. Von Wolfersdorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20040019326 priority Critical patent/EP1628076B1/fr
Publication of EP1628076A1 publication Critical patent/EP1628076A1/fr
Application granted granted Critical
Publication of EP1628076B1 publication Critical patent/EP1628076B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/712Shape curved concave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to a cooling channel for guiding a cooling fluid.
  • the invention also relates to a combustion chamber with such a cooling channel and a gas turbine with such a combustion chamber.
  • a generic cooling channel is off EP 1 400 750 A known.
  • a combustion chamber protrudes from the US 4,944,152 A1 ,
  • the combustion chamber comprises a combustion chamber, which is surrounded by an annular space in which a cooling gas is guided.
  • a cooling gas is guided.
  • strip-shaped paragraphs are provided in the annular cooling channel, which serve to equalize the cooling effect.
  • a turbulator arrangement is known, by means of which turbulences are generated in a cooling liquid in order to increase a heat transfer.
  • the turbulators are semicircular elevations.
  • more common are elongated, rib-shaped turbulators, such as those from the US 5,426,943 f be used for the turbulence generation in cooling air for cooling a gas turbine combustor.
  • a particularly effective cooling method is the so-called impingement cooling, in which the cooling fluid flows from openings perpendicular to the surface to be cooled. With such an impingement cooling, however, a considerable pressure loss occurs. Described is such an impingement cooling, for example in the US 6,314,716 B1 ,
  • the invention is therefore based on the object to provide a cooling channel with a side wall, which allows for a low pressure loss good cooling of the sidewall area.
  • Another object of the invention is the disclosure of a particularly good coolable combustion chamber and a gas turbine with a well-cooled combustion chamber.
  • the object directed to a cooling channel is achieved by the features of claim 1.
  • the invention is based on the recognition that the concave depressions, which are also referred to as dimples as mentioned above, although allow a very good heat transfer coefficient and thus good cooling with low pressure loss, but insufficient by the generation of longitudinal vortices a sidewall region of a relative cool flat cooling channel.
  • turbulators are arranged in the edge zone of the hot gas wall. Further improved cooling of the sidewall and rim is achieved by transverse vortices, in contrast to the longitudinal vortices created by the dimples. Such transverse vortices are generated by the specified turbulators.
  • the combination of dimples in the central region of the cooling channel and preferably rib-shaped turbulators in the edge zone thus results in an optimized cooling both with regard to low pressure loss and with a view to good cooling of the edge zones and side walls.
  • the side walls on a relation to the hot gas wall inclined transition portion adjacent to the edge zone of the hot gas wall can be determined yes after constructive requirement and thermo-mechanical stress.
  • the inclined transition section moreover achieves a further improved transport of the coolant in the direction of the side wall.
  • the transition section preferably has a rounding or bevel with a radius of curvature.
  • turbulators are arranged on a side wall, in particular in the transition section of the side wall.
  • concave depressions are arranged on a side wall, in particular in the transition section of the side wall.
  • concave depressions e.g. spherical dimples
  • a sidewall which is subjected to higher thermal loads preferably has web-shaped or knob-shaped turbulators with a high cooling effect in the transition section. These may be designed as chevron, i. have substantially V-shaped geometry with an as needed acute or obtuse opening angle.
  • the turbulators in the form of longitudinal ribs, sockets, elevations (knobs) or chevrons (knobs) or, if necessary, may also include concave depressions and / or Combinations of all these a desired cooling effect causing flow elements.
  • the edge zone width is about half as large to about one and a half times as large as the cooling channel height.
  • the turbulators are oriented on the hot gas wall to direct the cooling fluid toward the side wall.
  • the turbulators have a longitudinal extension and extend at an angle between 20 and 70 degrees, more preferably between 30 and 60 degrees measured perpendicular to the flow direction. In such an orientation results for the turbulators particularly good guidance of the cooling fluid in the direction of the side wall.
  • turbulators are arranged on the side wall adjacent to the edge zone. These turbulators can be formed both rib-shaped and pedestal-shaped or in another geometry. This additional generation of turbulence on a side wall increases the heat transfer coefficient and thus leads to a further improved cooling of the side wall.
  • the turbulators are arranged on the side wall measured from the edge zone to a height of at most 0.4, preferably 0.2 of the side wall height. Since the side wall extends transversely to the hot gas wall, the part of the side wall which is subjected to the highest thermal stress is that which borders on the hot gas wall. Therefore, only a part of the side wall needs to be intensified cooled by turbulators. In which only the indicated part of the side wall has turbulators, on the one hand the necessary cooling of the side wall, on the other hand a low pressure loss is made possible.
  • the object directed to a combustion chamber is achieved according to the invention by specifying a combustion chamber with a combustion chamber in which a hot gas can be generated and which has a cooling channel according to one of the embodiments described above. Accordingly, the object directed to a gas turbine is achieved by specifying a gas turbine with such a combustion chamber.
  • FIG. 1 shows a gas turbine 1.
  • the gas turbine 1 has a compressor 3, a combustion chamber 5 and a turbine part 7.
  • the combustion chamber 5 has a combustion chamber 6, which is bounded by lining elements, not shown, so-called liners. In these liners, each having a hot gas wall 13 toward the combustion chamber 6, a cooling channel 11 is formed.
  • ambient air 9 is sucked into the compressor 3.
  • the highly compressed air in the compressor 3 is passed as combustion air 9A in the combustion chamber 6 of the combustion chamber 5 and burned there with the addition of fuel to a hot gas 15.
  • This hot gas 15 is passed through the turbine part 7 and thereby drives the gas turbine 1 at.
  • a portion of the compressed air is passed as cooling fluid 9 B in the cooling channel 11.
  • the proportion of the cooling air 9B must remain as low as possible in the gas turbine 1 in order to have as much combustion air 9A as possible for the actual combustion, in particular, for example, in an open cooling concept. This directly influences the efficiency and also the nitrogen oxide emission of the gas turbine 1. Frequently, therefore, cooling air 9B is also returned in a closed circuit and subsequently supplied to the combustion as combustion air 9A.
  • the pressure built up in the compressor 3 stores potential energy, which in principle can also be used to drive the gas turbine 1. Pressure losses in the guide, in particular the cooling air 9B lead to a reduction of this potential energy and thus to a reduction of the efficiency.
  • the cooling channel 11 has a flat cross-section. With closed cooling, it is flowed through by cooling air 9B at high speed. This leads to high Reynolds numbers of the flow and thus in particular to problems in the cooling of the side wall portions of the flat cooling channel 11. To improve the cooling of the side walls with simultaneous low pressure loss, therefore, the cooling channel 11 is carried out as described below.
  • FIG. 2 shows in a cross section and a plan view of the embodiment of a non-inventive cooling channel 11, which is used in a lining element, a so-called liner 12, for lining the combustion chamber 5 of a gas turbine 1.
  • the liner 12 has a rectangular cross-section and is hollow, wherein the cavity forms the cooling channel 11.
  • the cooling channel 11 is thus formed of two side walls 21, a top wall 23 and a hot gas wall 13.
  • the side walls 21 are inclined relative to the Heisgaswand 13, preferably as shown here by an inclination angle of about 90 °.
  • the angle of inclination may also be less than 90 °.
  • the side wall 21 may also have a rounded, chamfered or beveled transition section, which adjoins the hot gas wall 13.
  • the side walls 21 form a cooling channel height H.
  • the hot gas wall 13 forms a cooling channel width B.
  • On the hot gas wall 13 is adjacent to a respective side wall 21, an edge zone 25 is formed, which has a edge zone width R, which is smaller than a quarter of the cooling channel width B.
  • a central zone M is formed on the hot gas wall 13.
  • the edge zone 25 of the hot gas wall 12 adjoins the side wall 21, which optionally has an inclined transition section - as already stated above.
  • concave depressions, so-called dimples 27, are arranged in the middle zone M.
  • the edge zones 25, however, are free of such Dimples 27.
  • the cooling channel 11 is now flowed through by the cooling air 9B.
  • the dimples 27 thereby generate longitudinal swirls in the flow and thereby ensure a considerable amount improved heat transfer coefficient and thus for improved cooling.
  • the solution with dimples 27 has a significantly lower pressure loss. Nevertheless, the pressure loss in the central zone M is still greater than that of the uninfluenced flow in the edge zones 25. This means that a transverse flow component in the direction of the side walls 21 is set perpendicular to the flow direction of the cooling air 9B. This in turn means an increased cooling of the side walls 21 and the edge zones 25.
  • the dimples 27 Since, actually, increased cooling is achieved by the dimples 27, the omission of such dimples 27 initially seems paradoxical with a view to setting improved cooling. However, according to the invention, the dimples 27 generate a longitudinal swirling which does not lead to effective cooling in the region of the side walls 21 and edge zones R. By now with the omission of Dimples 27 in the edge zones 25, a flow component is generated in the direction of the side walls 21 so, as stated above, an increased cooling of the side areas.
  • FIG. 3 shows one of the FIG. 2 corresponding cooling channel 11, but now 25 turbulators 31 are arranged in the edge zones.
  • the turbulators 31 are formed as longitudinal ribs, which are aligned parallel to each other and perpendicular to the flow direction, ie perpendicular to the side walls 21, at an angle ⁇ .
  • This angle ⁇ is preferably between 30 and 70 degrees, wherein particularly particularly at 45 degrees a particularly good effect could be determined.
  • the effect of these turbulators 31 is that turbulence generation improves the heat transfer and, on the other hand, the cooling fluid 9B in addition to that in FIG FIG. 2 described effect of the pressure loss difference is more strongly directed to the side wall 21 and the edge zone 25.
  • the turbulators 31 extend substantially over the entire edge zone width R, which, as well as in the free configuration of turbulators 31 of FIG FIG. 2 preferably about one to three times as large as the cooling channel height H.
  • the turbulators 31 are fragmented in their longitudinal direction, whereby a further improvement in the turbulence generation is achieved.
  • FIGS. 5 to 8 For example, additional turbulators 41 are arranged on the side wall 21, both as longitudinal ribs, as in FIGS. 5 and 6 shown, as well as in the form of sockets or surveys according to FIGS. 7 and 8 can be trained.
  • the side walls 21 are inclined relative to the Heisgaswand 13, preferably as shown here by an inclination angle of about 90 °. However, the angle of inclination may also be less than 90 °. In this case, the side wall 21 may also have a rounded, bevelled, or beveled transition section, which adjoins the hot gas wall 13.
  • the hot gas wall 13 comprises - as in FIG. 2 Not shown in detail is the additional or alternative arrangement of concave depressions, such as Dimples 27, on a side wall 21, which is possible depending on the cooling requirement. Preferably, these are arranged in a transition section of the side wall 21, in particular beyond the dimple-free edge zone 25.
  • the cooling channel height H is provided by the side wall 21 measured by the hot gas wall 13 with such turbulators 41.
  • the thermally higher loaded part of the side wall 21 is effectively cooled.
  • mutually opposite side walls 21 which delimit the cooling channel 11 may be configured with different turbulators 31 in shape and arrangement.
  • dimples 27 are then preferably in the region of the transition section of a thermally lower loaded side wall 21.
  • a thermally higher loaded side wall 21 preferably has web-shaped or knob-shaped turbulators 41 with high cooling effect in the transition section on.
  • the turbulators 41 in the form of longitudinal ribs, sockets or projections (knobs) or - as not shown - include concave depressions (dimples) can and combinations of it.
  • FIG. 9 shows a gas turbine blade 51.
  • the gas turbine blade 51 has a blade leading edge 53 and a trailing edge 55, between which a pressure side 57 and a suction side 59 extend.
  • the pressure side 57 and the suction side 59 enclose a cavity through which cooling air 9B is led along the blade axis.
  • the cavity forms the cooling channel 11.
  • this cooling channel 11 does not have a rectangular cross-section, it is nevertheless designed in the area of the blade leading edge 53 and the trailing edge 55 with edge zones corresponding to the previously described configurations.
  • the cooling channel 11 in the edge zones 25 without dimples 27, but with turbulators 31 and otherwise provided with dimples 27, a low-pressure-loss but effective cooling can be carried out especially the thermally stressed blade edges.
  • the cavity may also be divided by longitudinal ribs, so that a plurality of cooling channels 11 is formed be through which the cooling air 9B passes, for example, meandering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (14)

  1. Canal ( 11 ) de refroidissement pour conduire un fluide ( 9B ) de refroidissement le long d'une direction d'écoulement, ayant une hauteur ( H ) s'étendant transversalement à la direction d'écoulement et formée par des parois ( 21 ) latérales et une largeur ( B ) formée par une paroi ( 13 ) pour du gaz chaud, la largeur ( B ) du canal de refroidissement étant plus grande que la hauteur ( H ) du canal de refroidissement et une zone ( 25 ) marginale, voisine de l'une des parois ( 21 ) latérales et s'étendant le long de la direction d'écoulement, étant formée sur la paroi ( 13 ) pour du gaz chaud en ayant une largeur ( R ) de zone marginale mesurée transversalement à la direction d'écoulement, qui s'étend au maximum jusqu'à un quart de la largeur ( B ) du canal de refroidissement, des cavités concaves étant disposées sur la paroi ( 11 ) pour du gaz chaud seulement à l'extérieur de la zone ( 25 ) marginale, caractérisé en ce que des dispositifs ( 31 ) donnant des turbulences sont disposés dans la zone ( 25 ) marginale de la paroi ( 13 ) pour du gaz chaud.
  2. Canal ( 11 ) de refroidissement suivant la revendication 1,
    caractérisé en ce que la paroi ( 21 ) latérale à une section de transition qui est inclinée par rapport à la paroi ( 13 ) pour du gaz chaud et qui est voisine de la zone ( 25 ) marginale de la paroi ( 13 ) pour du gaz chaud.
  3. Canal ( 11 ) de refroidissement suivant la revendication 2,
    caractérisé en ce que la section de transition comporte un arrondi ou un biseau.
  4. Canal ( 11 ) de refroidissement suivant la revendication 2 ou 3,
    caractérisé en ce que des dispositifs ( 31 ) donnant des turbulences sont disposés sur une paroi ( 21 ) latérale, notamment dans la section de transition.
  5. Canal ( 11 ) de refroidissement suivant l'une des revendications 2 à 4,
    caractérisé en ce que des cavités concaves sont disposées sur une paroi ( 21 ) latérale, notamment dans la section de transition.
  6. Canal ( 11 ) de refroidissement suivant l'une des revendications précédentes,
    caractérisé en ce que la largeur ( B ) de la zone marginale est égale de la moitié environ le double de la hauteur du canal de refroidissement.
  7. Canal ( 11 ) de refroidissement suivant l'une des revendications précédentes,
    caractérisé en ce que la largeur ( B ) de la zone marginale est égale de au moins la moitié à une fois et demie la hauteur ( H ) du canal de refroidissement.
  8. Canal ( 11 ) de refroidissement suivant l'une des revendications précédentes,
    caractérisé en ce que les dispositifs ( 31 ) donnant des turbulences sont orientés sur la paroi ( 13 ) pour du gaz chaud de manière à conduire le fluide ( 9B ) de refroidissement en direction de la paroi ( 21 ) latérale.
  9. Canal ( 11 ) de refroidissement suivant l'une des revendications précédentes,
    caractérisé en ce que des dispositifs ( 41 ) donnant des turbulences sont disposés sur la paroi ( 21 ) latérale voisine de la zone ( 25 ) marginale.
  10. Canal ( 11 ) de refroidissement suivant la revendication 9,
    caractérisé en ce que les dispositifs ( 41 ) donnant des turbulences sont disposés sur la paroi ( 21 ) latérale, mesurée à partir de la zone ( 25 ) marginale jusqu'à une hauteur de 0,4 fois au plus, de préférence, de 0,2 fois la hauteur de la paroi latérale.
  11. Canal ( 11 ) de refroidissement suivant l'une des revendications précédentes,
    caractérisé en ce que les dispositifs ( 31, 41 ) donnant des turbulences ont une étendue en longueur et s'étendent suivant un angle compris entre 20 et 70 degrés de préférence entre 30 et 60 degrés, mesuré perpendiculairement à la direction d'écoulement.
  12. Chambre de combustion ( 5 ) comprenant un espace ( 6 ) de combustion dans lequel un gaz chaud peut être produit et un canal ( 11 ) de refroidissement selon l'une des revendications précédentes, dans laquelle la paroi ( 13 ) pour du gaz chaud délimite l'espace ( 6 ) de combustion.
  13. Aube ( 51 ) de turbine à gaz qui est creuse, la cavité formant un canal ( 11 ) de refroidissement suivant l'une des revendications précédentes.
  14. Turbine ( 1 ) à gaz ayant une chambre de combustion ( 5 ) suivant la revendication 12.
EP20040019326 2004-08-13 2004-08-13 Canal de refroidissement, chambre de combustion et turbine à gaz Expired - Lifetime EP1628076B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20040019326 EP1628076B1 (fr) 2004-08-13 2004-08-13 Canal de refroidissement, chambre de combustion et turbine à gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20040019326 EP1628076B1 (fr) 2004-08-13 2004-08-13 Canal de refroidissement, chambre de combustion et turbine à gaz

Publications (2)

Publication Number Publication Date
EP1628076A1 EP1628076A1 (fr) 2006-02-22
EP1628076B1 true EP1628076B1 (fr) 2012-01-04

Family

ID=34926171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040019326 Expired - Lifetime EP1628076B1 (fr) 2004-08-13 2004-08-13 Canal de refroidissement, chambre de combustion et turbine à gaz

Country Status (1)

Country Link
EP (1) EP1628076B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8522557B2 (en) 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component
EP2031302A1 (fr) * 2007-08-27 2009-03-04 Siemens Aktiengesellschaft Turbine à gaz comprenant un composant refroidissable
EP2317270B1 (fr) * 2008-08-22 2019-04-03 Mitsubishi Heavy Industries Aero Engines, Ltd. Chambre de combustion avec paroi de séparation à échange de chaleur
CN108954383A (zh) * 2018-08-10 2018-12-07 北京航天动力研究所 一种提高预燃室温度均匀性的组合扰流装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797726A (en) * 1997-01-03 1998-08-25 General Electric Company Turbulator configuration for cooling passages or rotor blade in a gas turbine engine
US5738493A (en) * 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
US6722134B2 (en) * 2002-09-18 2004-04-20 General Electric Company Linear surface concavity enhancement
US6761031B2 (en) * 2002-09-18 2004-07-13 General Electric Company Double wall combustor liner segment with enhanced cooling

Also Published As

Publication number Publication date
EP1628076A1 (fr) 2006-02-22

Similar Documents

Publication Publication Date Title
DE69414209T2 (de) Kühlung der Vorderkante einer Schaufel
DE3789514T2 (de) Gekühlte Gasturbinenschaufel.
DE69216501T2 (de) Turbinenschaufel mit Innenkühlungskanal
DE602005000350T2 (de) Turbinenstatorschaufel mit verbesserter Kühlung
EP2611990B1 (fr) Aube de turbine pour une turbine à gaz
EP1512489B1 (fr) Aube pour turbine
EP2350441B1 (fr) Aube directrice pour une turbine à gaz et turbine à gaz associée
EP2992270B1 (fr) Bouclier thermique
EP1126136B1 (fr) Aube de turbine avec carenage d'extremité refroidie
EP1114976A2 (fr) Dispositif de refroidissement d'une paroi d'un conduit comprenant au moins une ailette
EP1904717B1 (fr) Element de carter conducteur de gaz chaud, enveloppe de protection d'arbre et systeme de turbine a gaz
DE3508976C2 (de) Gekühlte Turbinenleitschaufel
WO2010086419A1 (fr) Aube refroidie pour turbine à gaz
EP1022437A1 (fr) Elément de construction à l'usage d'une machine thermique
EP1247602B1 (fr) Procédé pour la fabrication d'une aube de turbine
EP1668236B1 (fr) Chambre de combustion comprenant un dispositif de refroidissement, et procede de production de cette chambre de combustion
DE102004003354A1 (de) Turbinen-Laufschaufel und Gasturbine
EP2584148A1 (fr) Aube de turbine refroidie par film pour une turbomachine
EP1628076B1 (fr) Canal de refroidissement, chambre de combustion et turbine à gaz
DE102017110051A1 (de) Schaufel mit belastungsreduzierendem bauchigem Vorsprung an einer Wendeöffnung von Kühlmittelkanälen
EP1118831B1 (fr) Paroi ailetée pour échangeur de chaleur
EP3132201B1 (fr) Élément de bouclier thermique révêtu latéralement avec refroidissement par impact aux surfaces non-couverts
EP3762586B1 (fr) Paroi de composant à gaz chaud
EP2489836A1 (fr) Composant pouvant être refroidi
DE19940556A1 (de) Vorrichtung zum Kühlen von Leit- oder Laufschaufeln in einer Gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060421

AKX Designation fees paid

Designated state(s): CH DE GB IT LI

17Q First examination report despatched

Effective date: 20100924

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 25/12 20060101ALI20110708BHEP

Ipc: F01D 5/18 20060101ALI20110708BHEP

Ipc: F01D 11/24 20060101ALI20110708BHEP

Ipc: F23R 3/00 20060101AFI20110708BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013195

Country of ref document: DE

Effective date: 20120301

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013195

Country of ref document: DE

Effective date: 20121005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161109

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170811

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180829

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013195

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190813