EP1622859A1 - Verfahren zur herstellung eines benzoes ureesters - Google Patents

Verfahren zur herstellung eines benzoes ureesters

Info

Publication number
EP1622859A1
EP1622859A1 EP04730508A EP04730508A EP1622859A1 EP 1622859 A1 EP1622859 A1 EP 1622859A1 EP 04730508 A EP04730508 A EP 04730508A EP 04730508 A EP04730508 A EP 04730508A EP 1622859 A1 EP1622859 A1 EP 1622859A1
Authority
EP
European Patent Office
Prior art keywords
benzoic acid
alcohol
reaction
acid component
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04730508A
Other languages
English (en)
French (fr)
Inventor
Petra Biehl
Andreas SÜSSENBACH
Albrecht Schwerin
Georg Fieg
Heinz-Josef KRÜPPEL
Konstantinos Scholinakis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Publication of EP1622859A1 publication Critical patent/EP1622859A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds

Definitions

  • the invention relates to a method for producing a benzoic acid ester by reacting a benzoic acid component with alcohol in the presence of a catalyst.
  • the invention is particularly suitable for the production of fatty acid esters of benzoic acid, which are used, for example, as base materials in cosmetics.
  • Such benzoic acid esters are described, for example, in U.S. Patents 4,275,222 and 4,791,097. Either methanesulfonic acid or tin oxalate is used as the catalyst for the reaction of the benzoic acid with the corresponding alcohol. After the esterification reaction, the product obtained must be washed several times for cleaning. The overall reactions are therefore relatively complex and the yield is unsatisfactory.
  • the invention thus relates to a process for the preparation of a benzoic acid ester by reacting a benzoic acid component selected from benzoic acid or a benzoic acid ester with alcohol in the presence of a catalyst which, according to the invention, is a combination of tin (II) oxide and is a phosphorus (1) compound.
  • Phosphorus (I) compounds preferred according to the invention are phosphorus (I) acid (ie phosphinic acid, hypophosphorous acid) or salts of phosphorus (I) acid (phosphinates, hypophosphites).
  • the catalyst used according to the invention leads to high conversion rates and high yields of very pure end product.
  • the benzoic acid ester obtained can generally be used without further purification steps.
  • the products obtained by the process according to the invention are distinguished by low acid numbers, water-clear colors and a weak intrinsic odor. They are therefore particularly suitable for use in cosmetic preparations.
  • the alcohol which can be used in the esterification process according to the invention is not particularly limited. However, the process according to the invention is preferably used for the esterification of fatty alcohols or hydroxyfatty alcohols. Both natural and synthetic fatty alcohols can be used here.
  • the alcohols can be saturated or unsaturated, branched or unbranched. Alcohols with a chain length of 6 to 22 carbon atoms, in particular 8 to 18 and particularly preferably 12 to 15 carbon atoms, are preferred. Mixtures of several of these alcohols can also be used. Suitable alcohol mixtures are obtainable for example under the brand name Neodol ® by Shell Chemical Company, Houston, Texas, in the trade.
  • Preferred alcohols in the esterification process according to the invention are linear primary alcohols. Ethoxylated and / or propoxylated fatty alcohols or glycols such as propylene glycol or dipropylene glycol can also be used in the process.
  • the alcohol is usually used in excess of the benzoic acid component.
  • a molar excess of 10 to 30% of the alcohol over the benzoic acid component is suitable.
  • Benzoic acid itself is used as the preferred benzoic acid component of the invention.
  • a benzoic acid ester in a transesterification reaction.
  • Esters of benzoic acid with lower alcohols are advantageously used, which can be distilled off from the reaction mixture during the esterification, if appropriate under reduced pressure.
  • the methyl ester of benzoic acid is therefore preferably used.
  • step (A) the reaction of the benzoic acid component with alcohol is initially carried out in a first step, hereinafter referred to as step (A), takes place at normal pressure with heating.
  • the reaction under normal pressure prevents the benzoic acid component from subliming out of the reaction mixture.
  • the starting material would thus not be available for the esterification and would lead to a reduced yield.
  • step (B) the esterification can therefore be continued in a second step, hereinafter referred to as step (B), at elevated temperature under reduced pressure.
  • step (B) leads to the completion of the esterification reaction.
  • the esterification reaction is ended in a high vacuum at elevated temperature in a subsequent step (C).
  • step (C) the esterification of the benzoic acid component with alcohol is practically completely completed and the excess alcohol is removed from the reaction mixture by distillation. The alcohol recovered can be used again in a subsequent reaction.
  • the benzoic acid component, alcohol and phosphorus (I) compound at the beginning of step (A), to start heating and only then to at least some of the tin (II) oxide admit.
  • the tin (II) oxide is preferably added before the reaction temperature of the reaction mixture is reached.
  • the tin (II) oxide can be added if the temperature is between two thirds of the reaction temperature and the reaction temperature of the esterification.
  • a suitable temperature range for the addition is, for example, between 150 and 190 ° C., in particular around 170 ° C.
  • the mixture is then heated further to the esterification reaction temperature.
  • step (A) is expediently continued until the residual content of the benzoic acid component in the reaction mixture has dropped to less than or equal to 5%. If benzoic acid itself is used as the benzoic acid component, the end time of the reaction after step (A) can also be determined on the basis of the acid number.
  • the reaction in step (A) is expediently completed when the acid number is less than 25. This corresponds approximately to a residual acid content of 5% or less.
  • the esterification is then continued after step (B), i.e. under reduced pressure.
  • Step (B) serves to esterify the remaining amount of benzoic acid component.
  • the pressure in the reaction vessel is expediently set such that at the selected reaction temperature Water or alcohol formed (methanol in the case of methyl benzoate as starting material) is distilled off from the reaction mixture in order to shift the reaction equilibrium to the side of the products.
  • the vacuum should, if possible, not be so great that larger amounts of benzoic acid component are drawn off from the reaction mixture.
  • a vacuum in the range of approximately 200 mbar has proven to be suitable.
  • step (A) If only part of the tin (II) oxide was initially added in step (A), the remaining amount of this catalyst component is now added.
  • the renewed addition of the tin oxide in step (B) is advantageous for as complete an esterification as possible.
  • the reaction in step (B) is expediently continued until the residual content of the benzoic acid component in the reaction mixture has dropped to not more than 1%.
  • step (C) the esterification reaction in a high vacuum is ended in step (C).
  • the negative pressure in the reaction vessel is increased so much that water is virtually completely removed from the reaction mixture in the case of benzoic acid or lower alcohol in the case of a benzoic acid ester as a starting product.
  • the esterification of the benzoic acid component is also completed, so that at the end of step (C) the acid number in the reactor is usually below 0.3 and the residual content of benzoic acid component in the reaction mixture has dropped to less than or equal to 0.1% , This means that the esterification reaction using the process according to the invention is practically complete and essentially without losses of benzoic acid component.
  • step (C) of the esterification process according to the invention the reaction mixture is allowed to cool and the catalyst used according to the invention is precipitated.
  • the addition of phosphoric acid is particularly suitable for this.
  • the precipitated catalyst is then filtered off.
  • the benzoic acid ester obtained is water-clear, has a very low acid number and a weak intrinsic odor. It can be used without further cleaning or preparation steps and can be used, for example, as received in preparations for cosmetic applications.
  • the amount of catalyst used in the process according to the invention depends on the starting components used in the esterification. The optimum amount for the particular esterification reaction can easily be determined by a person skilled in the art.
  • the amount of tin (II) oxide is between 0.01 and 0.6% by weight, in particular their 0.03 to 0.1 wt .-%, based on the benzoic acid component.
  • the amount of phosphorus (I) compound is preferably between 0.02 and 1% by weight and in particular between 0.07 and 0.3% by weight, again based on the amount of benzoic acid component used.
  • the tin (II) oxide can be added to the reaction mixture in several stages. It has proven advantageous to add a large part of the amount of tin oxide in step (A), amounts of between 60 and 95%, in particular between 75 and 90%, of the total amount of the tin oxide having proven to be expedient. The remaining amount is added in step (B).
  • reaction temperatures also largely depend on the starting materials used.
  • the reaction temperatures are generally between 150 and 290 ° C. A temperature range between 200 and 240 ° C. is particularly preferred.
  • the temperature in steps (A), (B) and (C) differs from one another.
  • the reaction temperature can be increased in the course of the esterification reaction in order to achieve the most complete possible reaction of the benzoic acid component with the alcohol.
  • the esterification process according to the invention provides benzoic acid esters which can be used as basic substances in cosmetic preparations.
  • alcohol and benzoic acid with 0.1% by weight of phosphoric (1) acid based on the amount of benzoic acid, are initially introduced at room temperature and under normal pressure.
  • the reaction mixture is gradually heated with stirring.
  • tin (II) oxide based on the amount of benzoic acid used, is added.
  • the reaction mixture is further heated to a reaction temperature of 220 ° C. with stirring.
  • the water formed during the esterification is distilled off from the reaction mixture.
  • the reaction is continued at 220 ° C. under normal pressure until the residual acid content in the reaction mixture has dropped to below 5%.
  • the acid number of the reaction mixture is less than 25.
  • the esterification reaction is continued while maintaining the temperature of about 220 ° C. and applying a vacuum of about 200 mbar until a residual acid content of about 0.9% is reached in the reaction mixture.
  • the vacuum is then increased to less than 10 mbar in order to separate unreacted alcohol from the reaction mixture.
  • the acid number in the reactor drops to less than 0.3 and the residual acid content reaches a value of less than 0.065%.
  • reaction mixture After the unreacted alcohol has been completely removed from the reaction mixture, the reaction mixture is allowed to cool to room temperature and phosphoric acid is added to precipitate the catalyst from the reaction mixture. The precipitated catalyst is separated off using a filter press.
  • the benzoic acid ester obtained is dried in vacuo.
  • the product is water-clear, has a low acid number and only a very weak smell. It is commercially available under the Cetiol ® AB brand from Cognis GmbH & Co. KG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Benzoesäureesters durch Umsetzung einer Benzoesäure­-Komponente, die aus Benzoesäure und einem Benzoesäureester ausgewählt ist, mit Alkohol in Gegenwart eines Katalysators. Als Katalysator wird Zinn-(II)-oxid in Kombination mit einer Phosphor-(I)-Verbindung, insbesondere Phosphor-(I)-Säure oder einem Salz derselben, eingesetzt. Das Verfahren eignet sich besonders zur Veresterung von Benzoesäure mit Fettalkoholen oder Hydroxyfettalkoholen. Die erhaltenen Produkte können als Komponenten in kosmetischen Zubereitungen eingesetzt werden.

Description

Verfahren zur Herstellung eines Benzoesäureesters
Gebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur Herstellung eines Benzoesäureesters durch Umsetzung einer Benzoesäure-Komponente mit Alkohol in Gegenwart eines Katalysators. Die Erfindung eignet sich besonders zur Herstellung von Fettsäureestern der Benzoesaure, die beispielweise als Grundstoffe in Kosmetika eingesetzt werden.
Stand der Technik
Derartige Benzoesäureester werden beispielsweise in den US-Patenten 4,275,222 und 4,791,097 beschrieben. Als Katalysator für die Umsetzung der Benzoesaure mit dem entsprechenden Alkohol wird entweder Methansulfonsäure oder Zinnoxalat verwendet. Nach der Veresterungsreaktion muss das erhaltene Produkt zur Reinigung mehrfach gewaschen werden. Die Umsetzungen sind daher insgesamt relativ aufwändig, und die Ausbeute ist nicht zufriedenstellend.
Es bestand daher ein Bedarf an einem Verfahren zur Herstellung von Benzoesäureestern, welches einfach durchzuführen ist und ohne zusätzliche Aufarbeitungs- oder Reinigungsschritte zu hoch reinen Produkten führt, welche sich unter anderem in kosmetischen Zubereitungen verwenden lassen. Aufgabe der Erfindung ist es entsprechend, ein solches Verfahren anzugeben.
Beschreibung der Erfindung
Die Lösung dieser Aufgabe gelingt mit dem Verfahren gemäß Anspruch 1. Bevorzugte Verfahrensvarianten sind in den Unteransprüchen beschrieben.
In ihrem breitesten Aspekt betrifft die Erfindung also ein Verfahren zur Herstellung eines Benzoesäureesters durch Umsetzung einer Benzoesäure-Komponente, die aus Benzoes ure oder einem Benzoesäureester ausgewählt ist, mit Alkohol in Gegenwart eines Katalysators, der erfindungsgemäß eine Kombination von Zinn-(ll)-oxid und einer Phosphor-(l)-Verbindung ist. Erfindungsgemäß bevorzugte Phosphor-(l)-Verbindungen sind Phosphor-(l)-Säure (d.h. Phosphinsäure, unterphosphorige Säure) oder Salze der Phosphor-(l)-Säure (Phosphinate, Hypophosphite). Der erfindungsgemäß verwendete Katalysator führt zu hohen Umsetzungsraten und hohen Ausbeuten an sehr reinem Endprodukt. Nach dem Ausfällen und Abtrennen des Katalysators kann der erhaltene Benzoesäureester in der Regel ohne weitere Reinigungsschritte eingesetzt werden. Die nach dem erfindungsgemäßen Verfahren erhaltenen Produkte zeichnen sich durch niedrige Säurezahlen, wasserklare Farben und schwachen Eigengeruch aus. Sie eignen sich daher vorzüglich zum Einsatz in kosmetischen Zubereitungen.
Der Alkohol, der im erfindungsgemäßen Veresterungsverfahren eingesetzt werden kann, ist nicht besonders beschränkt. Bevorzugt wird das erfindungsgemäße Verfahren jedoch zur Veresterung von Fettalkoholen oder Hydroxyfettalkoholen eingesetzt. Hier können sowohl natürliche als auch synthetische Fettalkohole Verwendung finden. Die Alkohole können gesättigt oder ungesättigt, verzweigt oder unverzweigt sein. Bevorzugt sind Alkohole mit einer Kettenlänge von 6 bis 22 Kohlenstoffatomen, insbesondere 8 bis 18 und besonders bevorzugt 12 bis 15 Kohlenstoffatomen. Auch Mischungen mehrerer dieser Alkohole können eingesetzt werden. Geeignete Alkoholgemische sind beispielsweise unter der Marke Neodol® von der Shell Chemical Company, Houston, Texas, im Handel erhältlich.
Bevorzugte Alkohole des erfindungsgemäßen Veresterungsverfahrens sind lineare primäre Alkohole. Auch ethoxylierte und/oder propoxylierte Fettalkohole oder auch Glykole wie Propylenglykol oder Dipropylenglykol können im Verfahren eingesetzt werden.
Üblicherweise wird der Alkohol im Überschuss zur Benzoesäure-Komponente eingesetzt. Geeignet ist beispielsweise ein molarer Überschuss von 10 bis 30 % des Alkohols über die Benzoesäure- Komponente.
Als bevorzugte Benzoesäure-Komponente der Erfindung wird Benzoesaure selbst eingesetzt. Es ist jedoch ebenfalls möglich, einen Benzoesäureester in einer Umesterungsreaktion einzusetzen. Vorteilhaft werden Ester der Benzoesaure mit niederen Alkoholen eingesetzt, die sich bei der Veresterung aus der Reaktionsmischung, gegebenenfalls bei reduziertem Druck, abdestillieren lassen. Bevorzugt wird daher der Methylester der Benzoesaure eingesetzt.
Besonders gute Ergebnisse bei der Durchführung des erfindungsgemäßen Verfahrens werden erzielt, wenn die Umsetzung der Benzoesäure-Komponente mit Alkohol zunächst in einem ersten Schritt, nachfolgend als Schritt (A) bezeichnet, bei Normaldruck unter Erwärmung erfolgt. Die Umsetzung unter Normaldruck verhindert, dass die Benzoesäure-Komponente aus der Reaktionsrnischung absublimiert. Damit würde das Edukt für die Veresterung nicht zur Verfügung stehen und zu einer reduzierten Ausbeute führen. Mit fortschreitender Umsetzung der Benzoesäure-Komponente nimmt die Gefahr, dass Ausgangsmaterial durch Sublimieren verloren geht, zunehmend ab. In einem fortgeschrittenen Stadium der Veresterung kann deshalb in einem zweiten Schritt, nachfolgend als Schritt (B) bezeichnet, die Veresterung bei erhöhter Temperatur unter reduziertem Druck fortgesetzt werden. Schritt (B) führt zur Vervollständigung der Veresterungsreaktion. Ist die Umsetzung weitgehend abgeschlossen, wird in einem nachfolgenden Schritt (C) die Veresterungsreaktion im Hochvakuum bei erhöhter Temperatur beendet. In diesem Schritt (C) wird die Veresterung der Benzoesäure-Komponente mit Alkohol praktisch vollständig abgeschlossen, und der überschüssige Alkohol wird aus der Reaktionsmischung destillativ entfernt. Der zurückgewonnene Alkohol kann in einer nachfolgenden Umsetzung wieder eingesetzt werden.
Als zweckmäßig hat es sich erwiesen, zu Beginn des Schritts (A) zunächst die Benzoesäure- Komponente, Alkohol und Phosphor-(l)-Verbindung vorzulegen, mit der Erwärmung zu beginnen und erst anschließen zumindest einen Teil des Zinn-(ll)-oxids zuzugeben. Bevorzugt folgt die Zugabe des Zinn-(ll)-oxids, bevor die Umsetzungstemperatur der Reaktionsmischung erreicht ist. Beispielsweise kann die Zugabe des Zinn-(ll)-oxids erfolgen, wenn die Temperatur zwischen zwei Dritteln der Umsetzungstemperatur und der Umsetzungstemperatur der Veresterung liegt. Ein geeigneter Temperaturbereich für die Zugabe liegt beispielsweise zwischen 150 und 190 °C, insbesondere bei etwa 170 °C. Anschließend wird auf die Umsetzungstemperatur der Veresterung weiter erwärmt.
Die Umsetzung in Schritt (A) wird zweckmäßig so lange fortgesetzt, bis der Restgehalt der Benzoesäure-Komponente in der Reaktionsmischung auf kleiner/gleich 5 % zurückgegangen ist. Wird als Benzoesäure-Komponente Benzoesaure selbst eingesetzt, kann der Endzeitpunkt der Umsetzung nach Schritt (A) auch anhand der Säurezahl ermittelt werden. Zweckmäßig wird die Umsetzung in Schritt (A) abgeschlossen, wenn die Säurezahl kleiner als 25 ist. Dies entspricht etwa einem Restsäuregehalt von kleiner/gleich 5 %. Anschließend wird die Veresterung nach Schritt (B) fortgesetzt, d.h. unter reduziertem Druck.
Schritt (B) dient der Veresterung der Restmenge an Benzoesäure-Komponente. Der Druck im Reaktionsgefäß wird dabei zweckmäßig so eingestellt, dass bei der gewählten Umsetzungstemperatur hinrei- chend gebildetes Wasser oder gebildeter Alkohol (Methanol im Falle von Benzoesäuremethylester als Edukt) aus der Reaktionsmischung abdestilliert, um das Reaktionsgleichgewicht auf die Seite der Produkte zu verlagern. Das Vakuum sollte jedoch möglichst nicht so groß sein, dass größere Mengen an Benzoesäure-Komponente aus der Reaktionsmischung abgezogen werden. Ein Vakuum im Bereich von etwa 200 mbar hat sich als geeignet erwiesen.
Wenn in Schritt (A) zunächst nur ein Teil des Zinn-(ll)-oxids zugegeben wurde, wird nun die restliche Menge dieser Katalysatorkomponente zugefügt. Die erneute Zugabe des Zinnoxids in Schritt (B) ist für eine möglichst vollständige Veresterung von Vorteil. Zweckmäßig wird die Umsetzung in Schritt (B) fortgesetzt, bis der Restgehalt der Benzoesäure-Komponente im Reaktionsgemisch auf nicht mehr als 1 % gesunken ist.
Im Anschluss an Schritt (B) wird die Veresterungsreaktion im Hochvakuum in Schritt (C) beendet. Der Unterdruck im Reaktionsgefäß wird dabei so stark erhöht, dass Wasser im Fall der Benzoesaure oder niederer Alkohol im Fall eines Benzoesäureesters als Ausgangsprodukt aus der Reaktionsmischung praktisch vollständig entfernt wird. Währenddessen wird auch die Veresterung der Benzoesäure- Komponente vervollständigt, so dass am Ende von Schritt (C) die Säurezahl im Reaktor üblicherweise unter 0,3 liegt und entsprechend der Restgehalt an Benzoesäure-Komponente im Reaktionsgemisch auf kleiner/gleich 0,1 % abgesunken ist. Das heißt, die Veresterungsreaktion nach dem erfindungsgemäßen Verfahren läuft praktisch vollständig und im Wesentlichen ohne Verluste an Benzoesäure- Komponente ab.
Im Anschluss an Schritt (C) des erfindungsgemäßen Veresterungsverfahrens lässt man die Reaktionsmischung abkühlen, und der erfindungsgemäß eingesetzte Katalysator wird ausgefällt. Hierfür eignet sich insbesondere die Zugabe von Phosphorsäure. Anschließend wird der ausgefällte Katalysator abfiltriert. Der erhaltene Benzoesäureester ist wasserklar, besitzt eine sehr niedrige Säurezahl und einen schwachen Eigengeruch. Er kann ohne weitere Reinigungs- oder Aufbereitungsschritte verwendet und beispielsweise wie erhalten in Zubereitungen für kosmetische Anwendungen eingesetzt werden.
Die Menge an Katalysator, die im erfindungsgemäßen Verfahren eingesetzt wird, richtet sich nach den bei der Veresterung eingesetzten Ausgangskomponenten. Die für die jeweilige Veresterungsreaktion optimale Menge kann vom Fachmann ohne weiteres festgestellt werden. In einer bevorzugten Ausführungsform des Verfahrens wird die Menge an Zinn-(ll)-oxid zwischen 0,01 und 0,6 Gew.-%, insbeson- dere 0,03 bis 0,1 Gew.-%, bezogen auf die Benzoesäure-Komponente, betragen. Die Menge an Phos- phor-(l)-Verbindung liegt vorzugsweise zwischen 0,02 und 1 Gew.-% und insbesondere zwischen 0,07 und 0,3 Gew.-%, erneut bezogen auf die Menge an eingesetzter Benzoesäure-Komponente.
Wie bereits erwähnt, kann das Zinn-(ll)-oxid der Reaktionsmischung in mehreren Etappen zugefügt werden. Als vorteilhaft hat es sich dabei erwiesen, einen Großteil der Zinnoxid-Menge in Schritt (A) zuzufügen, wobei sich Mengen zwischen 60 und 95%, insbesondere zwischen 75 und 90%, der Gesamtmenge des Zinnoxids als zweckmäßig erwiesen haben. Die restliche Menge wird in Schritt (B) zugegeben.
Auch die Umsetzungstemperaturen hängen wesentlich von den eingesetzten Ausgangsmaterialien ab. Für die Fettalkohole oder Fettalkohol-Derivate, die im erfindungsgemäßen Verfahren bevorzugt veres- tert werden, liegen die Umsetzungstemperaturen in der Regel zwischen 150 und 290 °C. Besonders bevorzugt ist ein Temperaturbereich zwischen 200 und 240 °C. Nach dem Aufwärmen der Reaktionsmischung in Schritt (A) kann die Temperatur im weiteren Verlauf der Veresterungsreaktion im Wesentlichen konstant bleiben. Es ist jedoch ebenfalls möglich, dass sich die Temperatur in den Schritten (A), (B) und (C) voneinander unterscheidet. Beispielsweise kann die Reaktionstemperatur im Verlauf der Veresterungsreaktion gesteigert werden, um eine möglichst vollständige Umsetzung der Benzoesäure- Komponente mit dem Alkohol zu erreichen.
Gewerbliche Anwendbarkeit
Das erfindungsgemäß Veresterungsverfahren liefert Benzoesäureester, die sich als Grundstoffe in kosmetischen Zubereitungen einsetzen lassen.
Die Erfindung soll nachfolgend anhand eines Beispiels näher erläutert werden.
Beispiele
Beispiel 1
Herstellung von Cetiol® AB
Ein Gemisch von primären linearen Alkoholen mit einer Kettenlänge von 12 bis 15 Kohlenstoffatomen, das unter der Marke Neodol® 25 E von der Shell Chemical Company, Houston, Texas, im Handel ist, wird in einem molaren Überschuss von 25 % mit Benzoesaure umgesetzt. Hierzu werden Alkohol und Benzoes ure mit 0,1 Gew.-% Phosphor-(l)-Säure, bezogen auf die Menge der Benzoesaure, bei Raumtemperatur und unter Normaldruck vorgelegt. Die Reaktionsmischung wird unter Rühren allmählich erhitzt. Wenn die Reaktionsmischung eine Temperatur von 170°C erreicht hat, werden 0,05 Gew.- % Zinn-(ll)-oxid, bezogen auf die Menge an eingesetzter Benzoesaure, zugefügt. Die Reaktionsmischung wird unter Rühren weiter auf eine Reaktionstemperatur von 220°C erhitzt. Das während der Veresterung gebildete Wasser wird aus der Reaktionsmischung abdestilliert. Die Reaktion wird bei 220°C unter Normaldruck so lange fortgesetzt, bis der Restsäuregehalt in der Reaktionsmischung auf unter 5 % gesunken ist. Die Säurezahl der Reaktionsmischung liegt bei weniger als 25.
Nach Erreichen des Restsäuregehaltes von weniger als 5 % wird die Veresterungsreaktion unter Beibehaltung der Temperatur von etwa 220°C unter Anlegen eines Vakuums von etwa 200 mbar fortgesetzt, bis ein Restsäuregehalt in der Reaktionsmischung von etwa 0,9 % erreicht ist.
Anschließend wird das Vakuum auf weniger als 10 mbar erhöht, um nicht abreagierten Alkohol aus der Reaktionsmischung abzutrennen. Im Verlauf der Abtrennung des Restalkohols sinkt die Säurezahl im Reaktor auf unter 0,3, und der Restsäuregehalt erreicht einen Wert von unter 0,065 %.
Nachdem der nicht umgesetzte Alkohol vollständig aus der Reaktionsmischung entfernt wurde, lässt man die Reaktionsmischung auf Raumtemperatur abkühlen und versetzt sie mit Phosphorsäure, um den Katalysator aus der Reaktionsmischung auszufällen. Der gefällte Katalysator wird über eine .Filterpresse abgetrennt.
Der erhaltene Benzoesäureester wird im Vakuum getrocknet. Das Produkt ist wasserklar, besitzt eine niedrige Säurezahl und nur einen sehr schwachen Eigengeruch. Es ist unter der Marke Cetiol® AB von der Cognis Deutschland GmbH & Co. KG im Handel erhältlich.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Benzoesäureesters durch Umsetzung einer Benzoesäure- Komponente, ausgewählt aus Benzoes ure oder einem Benzoesäureester, mit Alkohol in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass als Katalysator Zinn-(ll)-oxid in Kombination mit einer Phosphor- (I)-Verbindung eingesetzt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Phosphor-(l)-Verbindung Phosphor-(l)-Säure oder ein Salz derselben verwendet wird .
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Alkohol ein Fettalkohol oder ein Hydroxyfettalkohol mit 6 bis 22 Kohlenstoff atomen, bevorzugt 8 bis 18 Kohlenstoffatomen und insbesondere 12 bis 15 Kohlenstoffatomen, oder ein Gemisch mehrerer dieser Alkohole umgesetzt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Alkohol ein linearer primärer Alkohol umgesetzt wird.
5. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Alkohol ein ethoxylierter und/oder propoxylierter Fettalkohol eingesetzt wird.
6. Verfahren nach Anspruch 1 oder 2,
. dadurch gekennzeichnet, dass als Alkohol ein Glykol eingesetzt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Alkohol im Überschuss und insbesondere in einem molaren Überschuss von 10 bis 30 % zur Benzoesäure-Komponente eingesetzt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Benzoesäureester Benzoesäuremethylester eingesetzt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Umsetzung der Benzoesäure-Komponente mit Alkohol zunächst in einem ersten Schritt (A) bei Normaldruck unter Erwärmung erfolgt, dann in einem zweiten Schritt (B) unter reduziertem Druck bei erhöhter Temperatur fortgesetzt und anschließend in einem Schritt (C) unter Hochvakuum bei erhöhter Temperatur abgeschlossen wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass Benzoesäure-Komponente, Alkohol und Phosphor-(l)-Verbindung vorgelegt werden und zumindest ein Teil des Zinn-(ll)-oxids in Schritt (A) nach Beginn der Erwärmung bei erhöhter Temperatur zugesetzt wird.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Umsetzung in Schritt (A) bis zu einem Restgehalt der Benzoesäure-Komponente in der Reaktionsmischung von kleiner/gleich 5 % fortgesetzt wird.
12. Verfahren nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass in Schritt (B) ein restlicher Anteil des Zinn-(ll)-oxids zugesetzt wird.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Umsetzung in Schritt (B) bis zu einem Restgehalt der Benzoesäure-Komponente von kleiner/gleich 1 % in der Reaktionsmischung fortgesetzt wird.
14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die Umsetzung in Schritt (C) fortgesetzt wird, bis ein Restgehalt der Benzoesäure-Komponente in der Reaktionsmischung von kleiner/gleich 0,1 % erreicht ist.
15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass der Katalysator nach Schritt (C) ausgefällt, insbesondere durch Zugabe von Phosphorsäure ausgefällt, und abfiltriert wird.
16. Verfahren nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, dass das Zinn-(ll)-oxid in einer Menge von 0,01 bis 0,6 Gew.-%, insbesondere 0,03 bis 0,1 Gew.-%, bezogen auf die Benzoesäure-Komponente, und die Phosphor-(l)- Verbindung in einer Menge von 0,02 bis 1 Gew.-%, besonders 0,07 bis 0,3 Gew.-%, bezogen auf die Benzoesäure-Komponente, eingesetzt wird.
17. Verfahren nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, dass 60 bis 95%, insbesondere 75 bis 90%, des Zinn-(ll)-oxids in Schritt (A) und die restliche Menge in Schritt (B) zugesetzt werden.
18. Verfahren nach einem der Ansprüche 9 bis 17, dadurch gekennzeichnet, dass die Umsetzung bei einer Temperatur von 150 bis 290 °C, insbesondere bei 200 bis 240 °C, erfolgt.
EP04730508A 2003-05-09 2004-04-30 Verfahren zur herstellung eines benzoes ureesters Withdrawn EP1622859A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10321107A DE10321107A1 (de) 2003-05-09 2003-05-09 Verfahren zur Herstellung eines Benzoesäureesters
PCT/EP2004/004589 WO2004099117A1 (de) 2003-05-09 2004-04-30 Verfahren zur herstellung eines benzoesäureesters

Publications (1)

Publication Number Publication Date
EP1622859A1 true EP1622859A1 (de) 2006-02-08

Family

ID=33394462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04730508A Withdrawn EP1622859A1 (de) 2003-05-09 2004-04-30 Verfahren zur herstellung eines benzoes ureesters

Country Status (5)

Country Link
US (1) US20070185345A1 (de)
EP (1) EP1622859A1 (de)
CN (1) CN1784375A (de)
DE (1) DE10321107A1 (de)
WO (1) WO2004099117A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060058547A1 (en) * 2004-09-07 2006-03-16 Kao Corporation Process for producing salicylic esters
EP1905483A1 (de) * 2006-09-27 2008-04-02 Cognis IP Management GmbH Alkylbenzoat Gemische
CA2810361A1 (en) * 2010-09-07 2012-03-15 Daiichi Sankyo Company, Limited Process for preparing benzoic acid esters
CN112136810A (zh) * 2020-10-13 2020-12-29 江苏科技大学 一种苯甲酸甲酯熏蒸剂及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182397A (en) * 1937-07-09 1939-12-05 Procter & Gamble Manufacture of ether derivatives of polyhydric alcohols
US3972962A (en) * 1973-10-23 1976-08-03 Emery Industries, Inc. Non-migrating polymeric plasticizers for polyvinyl chloride
US4275222A (en) * 1978-10-10 1981-06-23 Finetex, Inc. Benzoate ester compositions
US4548746A (en) * 1984-05-14 1985-10-22 Westvaco Corporation Rosin pentaerythritol ester preparation improvement
US4737569A (en) * 1986-12-30 1988-04-12 General Electric Company Process for the production of substantially monoester-free diaryl esters of aromatic dicarboxylic acids
US4791097A (en) * 1987-03-09 1988-12-13 Finetex, Inc. Benzoic acid esters and their use
US5006585A (en) * 1989-09-05 1991-04-09 Huls America Inc. Stain-resistant plasticizer compositions and method of making same
US5959130A (en) * 1996-07-02 1999-09-28 Finetex, Inc. Castor based benzoate esters
DE10110746A1 (de) * 2001-03-07 2002-09-12 Bayer Ag Verfahren zur Herstellung von Hydroxybenzoesäurebenzylestern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004099117A1 *

Also Published As

Publication number Publication date
WO2004099117A1 (de) 2004-11-18
CN1784375A (zh) 2006-06-07
US20070185345A1 (en) 2007-08-09
DE10321107A1 (de) 2004-11-25

Similar Documents

Publication Publication Date Title
DE69434318T2 (de) Organozinn katalysierte Transesterifizierung
EP0984917B1 (de) Verfahren zur herstellung von esterweichmachern
DE69808029T2 (de) Verfahren zum Herstellen von Fettsäureester
EP1141183B1 (de) Verfahren zur umesterung von fett und/oder öl biologischen ursprungs mittels alkoholyse
WO1991001291A1 (de) Alkoxilierungsprodukte von oh-gruppenhaltigen carbonsäurederivaten und/oder carbonsäuren
DE3516776A1 (de) Verfahren zur herstellung von kolophonium-pentaerythritester
DE3346097A1 (de) Verfahren zur herstellung von polyglycerinen
DE10043644A1 (de) Verfahren zur kontinuierlichen Herstellung von Biomethanol- und Bioethanoldiesel in Kleinstanlagen
WO2010003709A2 (de) Verfahren zur herstellung von (meth)acrylsäureestern
DE19940622C1 (de) Verfahren zur Herstellung von Di(meth)acrylsäureestern
EP2358851B2 (de) Verwendung von methansulfonsäure zur herstellung von fettsäureestern
EP0595942B1 (de) Verfahren zur herstellung von polyolverbindungen
EP1358306A1 (de) Verfahren zur umesterung von fett und/oder öl mittels alkoholyse
DE69122662T2 (de) Verfahren zur Herstellung von wenig gefärbten Kolophoniumestern
WO2004099117A1 (de) Verfahren zur herstellung eines benzoesäureesters
EP0728176B1 (de) Verfahren zur herstellung von fettsäureniedrigalkylestern
EP1318972A1 (de) Verfahren zur herstellung von verzweigten alkoholen und/oder kohlenwasserstoffen
DE2447069A1 (de) Verfahren zur herstellung von carbonsaeuren und/oder carbonsaeureestern
DE2023433A1 (de) Verfahren zur Herstellung von Estern
EP1092703A1 (de) Verfahren zur Herstellung von Fettsäuremethylestern
DE2601520A1 (de) Verfahren zur herstellung von 2-hydroxyalkylphosphinen
DE832751C (de) Verfahren zur Darstellung von Ricinenoel aus Ricinusoel
DE19741913C1 (de) Verfahren zur Herstellung von Fettsäureestern mit vermindertem Schwermetallgehalt
DE2013525C (de) Verfahren zur Herstellung von Epsilon Caprolacton
DE961621C (de) Verfahren zur Herstellung von AEther- bzw. Thioaethergruppen enthaltenden Estern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRUEPPEL, HEINZ-JOSEF

Inventor name: FIEG, GEORG

Inventor name: SUESSENBACH, ANDREAS

Inventor name: SCHOLINAKIS, KONSTANTINOS

Inventor name: SCHWERIN, ALBRECHT

Inventor name: BIEHL, PETRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BIEHL, PETRA

Inventor name: FIEG, GEORG

Inventor name: KRUEPPEL, HEINZ-JOSEF

Inventor name: SCHWERIN, ALBRECHT

Inventor name: SCHOLINAKIS, KONSTANTINOS

Inventor name: SUESSENBACH, ANDREAS

17Q First examination report despatched

Effective date: 20090330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100310