EP1617311A1 - Circuit intégré avec régulateur modulable à faible chute de tension - Google Patents

Circuit intégré avec régulateur modulable à faible chute de tension Download PDF

Info

Publication number
EP1617311A1
EP1617311A1 EP05291508A EP05291508A EP1617311A1 EP 1617311 A1 EP1617311 A1 EP 1617311A1 EP 05291508 A EP05291508 A EP 05291508A EP 05291508 A EP05291508 A EP 05291508A EP 1617311 A1 EP1617311 A1 EP 1617311A1
Authority
EP
European Patent Office
Prior art keywords
auxiliary
power
output
main
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05291508A
Other languages
German (de)
English (en)
Other versions
EP1617311B1 (fr
Inventor
Alexandre Pons
Fabienne Grigis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1617311A1 publication Critical patent/EP1617311A1/fr
Application granted granted Critical
Publication of EP1617311B1 publication Critical patent/EP1617311B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/56Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices characterised by the feedback circuit

Definitions

  • the invention relates to low voltage drop regulators ("LDO”) and more particularly to the realization of the power stage of such a regulator.
  • LDO low voltage drop regulators
  • a voltage regulator uses a reference current source and a supply voltage (battery) to provide a regulated output voltage i.e. independent of variations in the supply voltage.
  • the low-voltage drop regulators can be connected to a decoupling capacitor arranged parallel to a load, to which the regulator provides a charging current, via a power transistor, looped back on an operational amplifier.
  • the maximum value of the charging current depends on the dimensions of the power transistor. For the sake of optimization, it is necessary to adapt these dimensions to the load current.
  • the power transistor having a high parasitic capacitance the output stage of the operational amplifier must be adapted to the power transistor, and therefore to the maximum load current.
  • a modification of the value of the maximum charging current involves the change of the power transistor and the adaptation of the heart of the regulator comprising the operational amplifier. This technique represents a strong time constraint in the design of the integrated circuit.
  • the invention aims to provide a solution to this problem.
  • An object of the invention is to modulate the load current delivered by the low voltage drop regulator without modifying the topology of the integrated circuit.
  • Another object of the invention is to use a topologically programmable power stage (programmable by "layout”) as a function of a load current, and a core comprising an operational amplifier, identical whatever the programmed load current .
  • Another object of the invention is to obtain constant performance regardless of the programmed load current.
  • the output stage of the regulator will no longer consist of a single large power MOS transistor but a fixed power portion and one or more power modules assembled, the number of modules depending on the desired maximum output current.
  • the invention thus proposes an integrated circuit comprising a low-voltage drop regulator, said regulator comprising an operational amplifier and a power stage looped back onto the operational amplifier, and capable of delivering an output current into a load.
  • the output stage of the amplifier comprises a main output and n auxiliary outputs adapted to respectively supply a main control voltage and n auxiliary control voltages.
  • the power stage comprises a main power transistor, controlled on its gate by the main control voltage, and p topologically identical power modules with p less than or equal to n, respectively comprising p auxiliary power transistors respectively controlled on their grid by p auxiliary control voltages.
  • the number p is chosen according to a desired maximum output current.
  • the invention uses a programmable power stage at the level of the topology of the integrated circuit, by the use of several power modules, each power module comprising an auxiliary power transistor. These power modules are activated according to the desired value of the charging current delivered by the voltage regulator with low voltage drop.
  • This integrated circuit has the advantage of being able to modulate the value of the load current delivered by the regulator from a single fixed power portion.
  • the output stage comprises a main output transistor and n identical output auxiliary transistors.
  • a main internal impedance is connected between the supply voltage and the main output transistor, and n identical auxiliary internal impedances, belonging to the power stage, are respectively connected between the supply voltage and the n transistors.
  • n identical auxiliary internal impedances belonging to the power stage, are respectively connected between the supply voltage and the n transistors.
  • the topology of the integrated circuit comprises a first part incorporating the operational amplifier and its output stage with the exception of the n identical auxiliary internal impedances, and a second part formed of a first invariant sub-part comprising the transistor.
  • each power module also topologically incorporating the auxiliary internal impedance intended to be connected to the output auxiliary transistor adapted to deliver the control voltage to the auxiliary power transistor contained in this power module.
  • auxiliary internal impedances makes it possible to fix the impedance on the gates of the power transistors, which are mutually unconnected, that is to say non-interconnected. In this way, characteristics of the regulator, such as the polarization range, and its performance no longer depend on the number p of power modules.
  • the dimensions of the main transistor of the output stage are smaller than the dimensions of the n auxiliary output transistors may be smaller or the same, and the dimensions of the main power transistor are smaller than the dimensions of the p power transistors. auxiliary.
  • FIG. 1 shows an integrated circuit CI according to the invention.
  • the LDO reference represents a low voltage drop regulator. It comprises an operational amplifier AMP receiving a reference voltage V REF on the positive input. AMP amplifier is powered by a supply voltage Vdd_LDO, and consumes current Iq.
  • the LDO regulator also includes a power stage EtP connected to the output of the operational amplifier AMP.
  • the power stage EtP is powered by the supply voltage Vdd_LDO, and delivers an output voltage Vout.
  • the output of the power stage EtP is looped back to the negative input of the operational amplifier AMP and connected to a load R L.
  • the load R L receives a charge current Io, equal to the current consumed by the power stage EtP.
  • the output of the power stage EtP is also connected to a decoupling capacitor C L , connected in parallel with the load R L '
  • the capacitor C L generally has a fairly large capacitance, for example 4.7 ⁇ F. Its function is to stabilize the regulator with low LDO voltage drop.
  • the operational amplifier AMP of the LDO regulator here comprises an input stage EtE and an output stage EtS.
  • the input stage EtE is conventionally produced by a differential pair polarized by a current source I and connected to a current mirror.
  • the differential pair comprises two transistors, M1 and M2 connected by their source, for example PMOS transistors.
  • the current source I is also connected to the common source of the differential pair.
  • the current mirror is formed by two transistors M3 and M4 connected by their gate, for example NMOS transistors.
  • the common gate of the current mirror is looped back to the source of the transistor M3.
  • the sources of Transistors M3 and M4 are respectively connected to the drains of transistors M1 and M2 of the differential pair.
  • the gate of the transistor M1 corresponds to the positive input of the amplifier AMP and thus receives the reference voltage Vref.
  • the gate of the transistor M2 corresponds to the negative input of the amplifier AMP and receives a voltage Vout proportional to the output voltage Vout of the power stage EtP.
  • the voltage at Vout is obtained proportional to the output voltage of the power stage EtP, for example by means of a divider bridge (not shown), known to those skilled in the art.
  • the drain of the transistor M2 (output of the input stage EtP) is connected to the output stage EtS of the amplifier AMP.
  • the output stage EtS of the amplifier AMP comprises a main output transistor MosPrinc, connected between the supply voltage Vdd_LDO and the ground.
  • the output stage further comprises n auxiliary output transistors Mos1,..., Mosn connected in parallel with the main output transistor MosPrinc between the supply voltage Vdd_LDO and the ground of the integrated circuit CI.
  • the gates of the main output transistor MosPrinc and the auxiliary output transistors Mos1,..., Mosn are connected together on the output of the input stage EtE.
  • a main internal impedance Zprinc is connected between the supply voltage Vdd_LDO and the drain of the main output transistor MosPrinc.
  • n + 1 outputs of the operational amplifier AMP The drains of the main MosPrinc and auxiliary output transistors Mos1,..., Mosn constitute n + 1 outputs of the operational amplifier AMP. These n + 1 outputs are in this example all connected to the power stage EtP, and respectively deliver a main control voltage V GPRINC and n auxiliary control voltages V G1 , ..., V Gn .
  • the power stage EtP comprises a main power transistor PMosPrinc connected between the supply voltage Vdd_LDO and the gate of the transistor M2 of the input stage EtE of the operational amplifier AMP.
  • the PMosPrinc main power transistor delivers an Iprinc current.
  • the power stage EtP further comprises p auxiliary power transistors PMos1, ..., PMosn.
  • the identical auxiliary power transistors PMos1, ... PMosn each deliver a current of the same value Iunit1, ..., Initn.
  • the gates of the main power transistor PMosPrinc and the p power transistors PMos1,..., PMosp are connected to the n + 1 outputs of the output stage EtS.
  • the number of auxiliary power transistors p can be at most equal to n.
  • the number p is determined as a function of the maximum value of the desired charging current Io. In this example, p is equal to n.
  • auxiliary internal impedances Zinternel ..., Zinternen
  • the value of the main internal impedance Zprinc is greater than the value of the internal internal impedances Zinterne1, ..., Zinternen.
  • the source voltage of the main output transistor MosPrinc of the output stage EtS is greater than the respective source voltages of the auxiliary output transistors Mos1, ..., Mosn.
  • the source voltage of the main MosPrinc output transistor is ten times greater than the voltages of the respective drains of the auxiliary output transistors Mos1, ..., Mosn.
  • the auxiliary power transistors PMos1, ..., PMosn are connected between the supply voltage Vdd_LDO and the gate of the transistor M2 of the input stage EtE of the AMP operational amplifier.
  • the power transistors are preferably PMOS transistors.
  • the dimensions of the main power transistor PMosPrinc are smaller than the dimensions of the auxiliary power transistors PMos1, ..., PMosn.
  • the dimensions are determined according to the values of currents Iprinc, Iunit1, ..., Iunitn that it is desired to deliver.
  • a PMosPrinc main power transistor delivering a current between 0 and 1mA.
  • the auxiliary power transistors PMos1, ..., PMosn then have dimensions that enable them to deliver a current Iunit1, ..., Iunitn, being between 0 and 19 mA (the current in the auxiliary power transistors PMosi starting at 0 mA).
  • the gate of the PMosPrinc main power transistor is controlled by the main control voltage V GPRINC .
  • auxiliary power transistors PMos1, ..., PMosn are respectively controlled by the n auxiliary control voltages V G1 , ..., V Gn .
  • the transistors Mos1,..., Mosn of the output stage EtS are always conductive, and the control voltages, V GPRINC , V G1 ,..., V Gn, make it possible to make the PMosPrinc main power transistors conductive or not. and auxiliary PMos1, ..., PMosn.
  • the auxiliary power transistors PMos1, ..., PMosn become conductive and each deliver a same current which will increase as a function of the request until wait for the maximum value. In this way, the output current of the LDO regulator can be modulated.
  • each auxiliary power transistor PMos1, ..., PMosn is respectively fixed by the internal impedances Zinternel, ..., Zinternen. In this way, and in combination with the fact that the gates of the power transistors are not interconnected, the number n of auxiliary power transistors is made independent of the performance of the LDO regulator.
  • the pole Fc is identical for each of the grids and independent of n. So we have both the conservation of poles and polarization, whatever n. More precisely, the polarization range is: ⁇ 0 ; ( iunit ⁇ + vt ) / Zinterne ⁇ , and is independent of n.
  • the rejection ratio of the regulator is independent of n, as is the phase margin of the regulator, which makes it possible to obtain an acceptable stability whatever the value of n.
  • the topology of the integrated circuit CI comprises two distinct parts.
  • a first portion INT comprising means for generating the reference voltage Vref as well as the operational amplifier AMP, with the exception of the internal auxiliary impedances Zinternel, ..., Zinternen.
  • a second part EXT comprises two subparts.
  • a first invariant sub-part Pinv comprises means for generating the supply voltage Vdd_LDO, a terminal delivering the output voltage Vout of the power stage EtP of the LDO regulator, as well as the supply voltage for the rail rails. Vdd power supply.
  • the invariant sub-part Pinv further comprises the main power transistor PMosPrinc, which is conductive even when the charging current Io is low.
  • the second part EXT also has a modular subpart Pmod.
  • This sub-part Pmod comprises n identical and distinct power modules, module 1, module 2, module 3, ..., module n.
  • These n power modules comprise the auxiliary power transistors of the power stage EtP of the LDO regulator, as well as the n associated auxiliary internal impedances, Zinternel, ..., Zinternen.
  • power modules module 1, module 2, module 3, ..., module n are connected together by a programming cell CP, contained in the modular sub-part Pmod including the necessary connections (not shown).
  • the use of a modular sub-part makes it possible to vary the charge current value I o delivered by the LDO regulator without modifying the topology of the integrated circuit CI.
  • the integrated circuit CI has a single core regardless of the load current Io delivered, and the module stage is programmable via the n modules. As a result, time is saved in the design and design of the integrated circuit.
  • auxiliary internal impedances in the power modules reduces the silicon area used. This also makes it possible to reduce the consumption of the circuit since the drains of the transistors Mos1,..., Mosn are in the air when the corresponding auxiliary PMOS is not used. Indeed, the outputs of the AMP operational amplifier not connected (in the case where p ⁇ n), are not associated with an auxiliary internal impedance, since these are included in the power modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

Le régulateur (LDO) comprend un étage de sortie (EtS) de l'amplificateur (AMP) qui comporte une sortie principale et n sortie auxiliaires aptes à délivrer respectivement une tension de commande principale (VGPRINC) et n tensions de commande auxiliaires (VG1, ..., VGn) ; et un étage de puissance (EtP) qui comporte un transistor de puissance principal (PMosPrinc), commandé sur sa grille par la tension de commande principale (VGPRINC), et p modules de puissance (module 1, ..., module n) topologiquement identiques avec p inférieur ou égal à n, comportant respectivement p transistors de puissances auxiliaires (PMos1, ..., PMosn) respectivement commandé sur leur grille par p tensions de commande auxiliaires (VG1, ..., VGn). Le nombre p est choisi en fonction d'un courant de sortie maximum désiré.

Description

  • L'invention concerne les régulateurs à faible chute de tension (« LDO » : « LowDropOut voltage regulator » en langue anglaise) et plus particulièrement la réalisation de l'étage de puissance d'un tel régulateur.
  • Un régulateur de tension utilise une source de courant de référence et une tension d'alimentation (batterie) pour délivrer une tension de sortie régulée c'est-à-dire indépendante des variations de la tension d'alimentation.
  • Pour des raisons de stabilité, les régulateurs à faible chute de tension peuvent être connectés à un condensateur de découplage disposé parallèlement à une charge, à laquelle le régulateur fournit un courant de charge, par l'intermédiaire d'un transistor de puissance, rebouclé sur un amplificateur opérationnel. La valeur maximale du courant de charge dépend des dimensions du transistor de puissance. Par souci d'optimisation, il est nécessaire d'adapter ces dimensions au courant de charge. En outre, le transistor de puissance ayant une forte capacité parasite, l'étage de sortie de l'amplificateur opérationnel doit être adapté au transistor de puissance, et donc au courant maximal de charge. Ainsi, une modification de la valeur du courant maximal de charge implique le changement du transistor de puissance et l'adaptation du coeur du régulateur comprenant l'amplificateur opérationnel. Cette technique représente une forte contrainte de temps au niveau de la conception du circuit intégré.
  • L'invention vise à apporter une solution à ce problème.
  • Un but de l'invention est de moduler le courant de charge délivré par le régulateur à faible chute de tension sans modifier la topologie du circuit intégré.
  • Un autre but de l'invention est d'utiliser un étage de puissance topologiquement programmable (programmable par « layout ») en fonction d'un courant de charge, et un coeur comprenant un amplificateur opérationnel, identique quel que soit le courant de charge programmé.
  • Un autre but de l'invention est d'obtenir des performances constantes quel que soit le courant de charge programmé.
  • À cet effet, selon l'invention, l'étage de sortie du régulateur va être constitué non plus d'un seul gros transistor MOS de puissance mais d'une partie de puissance fixe et d'un ou plusieurs modules de puissance assemblés, le nombre de modules étant fonction du courant de sortie maximum souhaité.
  • L'invention propose ainsi un circuit intégré comprenant un régulateur à faible chute de tension, ledit régulateur comprenant un amplificateur opérationnel et un étage de puissance rebouclé sur l'amplificateur opérationnel, et apte à délivrer un courant de sortie dans une charge. Selon une caractéristique générale de l'invention, l'étage de sortie de l'amplificateur comporte une sortie principale et n sorties auxiliaires aptes à délivrer respectivement une tension de commande principale et n tensions de commande auxiliaires. Par ailleurs, l'étage de puissance comporte un transistor de puissance principal, commandé sur sa grille par la tension de commande principale, et p modules de puissance topologiquement identiques avec p inférieur ou égal à n, comportant respectivement p transistors de puissance auxiliaires respectivement commandé sur leur grille par p tensions de commande auxiliaires. Le nombre p est choisi en fonction d'un courant de sortie maximum désiré.
  • En d'autres termes, l'invention utilise un étage de puissance programmable au niveau de la topologie du circuit intégré, par l'utilisation de plusieurs modules de puissance, chaque module de puissance comprenant un transistor de puissance auxiliaire. Ces modules de puissance sont activés en fonction de la valeur souhaitée du courant de charge délivré par le régulateur de tension à faible chute de tension.
  • Ce circuit intégré a pour avantage de pouvoir moduler la valeur du courant de charge délivré par le régulateur à partir d'une seule partie de puissance fixe.
  • Selon un mode de réalisation, l'étage de sortie comporte un transistor principal de sortie et n transistors auxiliaires de sortie identiques. En outre, une impédance interne principale est connectée entre la tension d'alimentation et le transistor principal de sortie, et n impédances internes auxiliaires identiques, appartenant à l'étage de puissance, sont respectivement connectées entre la tension d'alimentation et les n transistors auxiliaires de sortie. Par ailleurs, la topologie du circuit intégré comporte une première partie incorporant l'amplificateur opérationnel et son étage de sortie à l'exception des n impédances internes auxiliaires identiques, et une deuxième partie formée d'une première sous-partie invariante comprenant le transistor de puissance principal, et d'une seconde sous-partie modulable comprenant p modules de puissance topologiquement identiques, chaque module de puissance incorporant également topologiquement l'impédance interne auxiliaire destinée à être connectée au transistor auxiliaire de sortie apte à délivrer la tension de commande sur le transistor de puissance auxiliaire contenu dans ce module de puissance.
  • L'ajout d'impédances internes auxiliaires permet de fixer l'impédance sur les grilles des transistors de puissance, qui sont mutuellement non connectées, c'est-à-dire dire non interconnectées. De cette façon des caractéristiques du régulateur, telles que la gamme de polarisation, et ses performances ne dépendent plus du nombre p de modules de puissance.
  • Selon un mode de réalisation, les dimensions du transistor principal de l'étage de sortie sont inférieures aux dimensions des n transistors auxiliaires de sortie peuvent être inférieures ou identiques, et les dimensions du transistor principal de puissance sont inférieures aux dimensions des p transistors de puissance auxiliaires.
  • D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de réalisation de l'invention nullement limitatif, et des dessins annexés sur lesquels :
    • la figure 1 représente schématiquement un mode de réalisation d'un circuit intégré selon l'invention,
    • la figure 2 représente schématiquement mais plus en détail certaines parties de la figure 1, selon l'invention,
    • la figure 3 représente schématiquement un exemple d'un circuit intégré selon l'invention.
  • Sur la figure 1, on a représenté un circuit intégré CI selon l'invention.
  • La référence LDO représente un régulateur à faible chute de tension. Il comprend un amplificateur opérationnel AMP recevant une tension de référence VREF sur l'entrée positive. L'amplificateur AMP est alimenté par une tension d'alimentation Vdd_LDO, et consomme un courant Iq.
  • Le régulateur LDO comporte également un étage de puissance EtP, connecté à la sortie de l'amplificateur opérationnel AMP. L'étage de puissance EtP est alimenté par la tension d'alimentation Vdd_LDO, et délivre une tension de sortie Vout. La sortie de l'étage de puissance EtP est rebouclée sur l'entrée négative de l'amplificateur opérationnel AMP et connectée sur une charge RL.
  • La charge RL reçoit un courant de charge Io, égal au courant consommé par l'étage de puissance EtP.
  • La sortie de l'étage de puissance EtP est également reliée à un condensateur de découplage CL, connecté parallèlement à la charge RL' Le condensateur CL a généralement une capacité assez importante, par exemple 4,7 µF. Sa fonction est de stabiliser le régulateur à faible chute de tension LDO.
  • On se réfère à présent à la figure 2, qui représente plus précisément le régulateur LDO.
  • L'amplificateur opérationnel AMP du régulateur LDO comprend ici un étage d'entrée EtE et un étage de sortie EtS.
  • L'étage d'entrée EtE est réalisé de façon classique par une paire différentielle polarisée par une source de courant I et connectée sur un miroir de courant. La paire différentielle comprend deux transistors, M1 et M2 reliés par leur source, par exemple des transistors PMOS. La source de courant I est également connectée sur la source commune de la paire différentielle. Le miroir de courant est formé par deux transistors M3 et M4 reliés par leur grille, par exemple des transistors NMOS. La grille commune du miroir de courant est rebouclée sur la source du transistor M3. En outre, les sources des transistors M3 et M4 sont respectivement connectées sur les drains des transistors M1 et M2 de la paire différentielle.
  • La grille du transistor M1 correspond à l'entrée positive de l'amplificateur AMP et reçoit donc la tension de référence Vref. La grille du transistor M2 correspond à l'entrée négative de l'amplificateur AMP et reçoit une tension a Vout proportionnelle à la tension de sortie Vout de l'étage de puissance EtP. On obtient la tension a Vout proportionnelle à la tension de sortie de l'étage de puissance EtP, par exemple par l'intermédiaire d'un pont diviseur (non représenté), connu de l'homme de métier.
  • Le drain du transistor M2 (sortie de l'étage d'entrée EtP) est connectée sur l'étage de sortie EtS de l'amplificateur AMP.
  • L'étage de sortie EtS de l'amplificateur AMP comprend un transistor principal de sortie MosPrinc, connecté entre la tension d'alimentation Vdd_LDO et la masse.
  • L'étage de sortie comprend en outre n transistors auxiliaires de sortie Mos1, ..., Mosn connectés parallèlement au transistor principal de sortie MosPrinc entre la tension d'alimentation Vdd_LDO et la masse du circuit intégré CI. Les grilles du transistor principal de sortie MosPrinc et des transistors auxiliaires de sortie Mos1, ..., Mosn sont connectées ensemble sur la sortie de l'étage d'entrée EtE.
  • En outre, une impédance interne principale Zprinc est connectée entre la tension d'alimentation Vdd_LDO et le drain du transistor principal de sortie MosPrinc.
  • Les drains des transistors de sortie principal MosPrinc et auxiliaires Mos1, ..., Mosn constituent n+1 sorties de l'amplificateur opérationnel AMP. Ces n+1 sorties sont dans cet exemple toutes connectées à l'étage de puissance EtP, et délivrent respectivement une tension de commande principale VGPRINC et n tensions de commande auxiliaires VG1, ..., VGn.
  • L'étage de puissance EtP comprend un transistor de puissance principal PMosPrinc connecté entre la tension d'alimentation Vdd_LDO et la grille du transistor M2 de l'étage d'entrée EtE de l'amplificateur opérationnel AMP. Le transistor de puissance principal PMosPrinc délivre un courant Iprinc.
  • L'étage de puissance EtP comprend en outre p transistors de puissance auxiliaires PMos1, ..., PMosn. Les transistors de puissance auxiliaires identiques PMos1, ...PMosn délivre chacun un courant de même valeur Iunit1, ..., Initn. Les grilles du transistor de puissance principal PMosPrinc et des p transistors de puissance PMos1, ..., PMosp sont connectées aux n+1 sortie de l'étage de sortie EtS. Le nombre de transistors de puissance auxiliaires p peut être au plus égal à n. Le nombre p est déterminé en fonction de la valeur maximale du courant de charge Io désiré. Dans cet exemple, p est égal à n.
  • De plus, n impédances internes auxiliaires identiques Zinternel, ..., Zinternen, sont connectées entre la tension d'alimentation Vdd_LDO et les grilles des transistors de puissance auxiliaires de sortie PMos1, ..., PMosn. La valeur de l'impédance interne principale Zprinc est supérieure à la valeur des impédances internes auxiliaires Zinterne1, ..., Zinternen. Ainsi la tension de source du transistor principal de sortie MosPrinc de l'étage de sortie EtS est supérieure aux tensions de sources respectives des transistors auxiliaires de sortie Mos1, ..., Mosn. Par exemple, pour une impédance interne principale Zprinc trois fois supérieures à la valeur d'une impédance interne auxiliaire, la tension de la source du transistor principal de sortie MosPrinc est dix fois supérieure aux tensions des drains respectifs des transistors auxiliaires de sortie Mos1, ..., Mosn.
  • De la même façon que pour le transistor de puissance principal PMosPrinc, les transistors de puissance auxiliaires PMos1, ..., PMosn sont connectés entre la tension d'alimentation Vdd_LDO et la grille du transistor M2 de l'étage d'entrée EtE de l'amplificateur opérationnel AMP.
  • Les transistors de puissance sont de préférence des transistors PMOS. En outre, les dimensions du transistor de puissance principal PMosPrinc sont inférieures aux dimensions des transistors de puissance auxiliaires PMos1, ..., PMosn. Les dimensions sont déterminées en fonction des valeurs des courants Iprinc, Iunit1, ..., Iunitn que l'on souhaite délivrer.
  • Par exemple, on choisit un transistor de puissance principal PMosPrinc délivrant un courant compris entre 0 et 1mA. Les transistors de puissance auxiliaires PMos1, ..., PMosn ont alors des dimensions qui leur permettent de délivrer chacun un courant Iunit1, ..., Iunitn, étant compris entre 0 et 19 mA (le courant dans les transistors de puissance auxiliaires PMosi démarrant à 0 mA).
  • La grille du transistor de puissance principal PMosPrinc est commandée par la tension de commande principale VGPRINC.
  • Les grilles des transistors de puissance auxiliaires PMos1, ..., PMosn sont respectivement commandés par les n tensions de commande auxiliaires VG1, ..., VGn.
  • Les transistors Mos1, ..., Mosn de l'étage de sortie EtS sont toujours conducteurs, et les tensions de commande, VGPRINC, VG1, ..., VGn permettent de rendre conducteurs ou non les transistors de puissance principal PMosPrinc et auxiliaires PMos1, ..., PMosn. Ainsi, dans le cas de faibles courants, seul le transistor de puissance principal PMosPrinc conduit étant donné ses dimensions. Puis, selon la valeur de la tension différentielle sur l'étage d'entrée EtE de l'amplificateur opérationnel AMP, les transistors de puissance auxiliaires PMos1, ..., PMosn deviennent conducteurs et délivrent chacun un même courant qui va augmenter en fonction de la demande jusqu'à attendre la valeur maximale. On peut de cette manière moduler le courant de sortie du régulateur LDO.
  • L'impédance de grille de chaque transistor de puissance auxiliaire PMos1, ..., PMosn est fixée respectivement par les impédances internes Zinternel, ..., Zinternen. De cette façon, et en combinaison avec le fait que les grilles des transistors de puissance ne sont pas interconnectées, on rend indépendant du nombre n de transistors de puissance auxiliaires, les performances du régulateur LDO.
  • Plus précisément, lorsque l'on connecte une impédance interne sur chaque transistor auxiliaire de sortie, le pôle Le pôle de fréquence de coupure Fc, qui est le premier pôle secondaire du régulateur LDO, vu sur chacune des grilles des transistors de puissance auxiliaires est : Fc = 1 2 * π * Zinternet * C gPMOSi ,
    Figure imgb0001
    C gPMOSi représentant la capacité parasite pour chaque transistor de puissance auxiliaire.
  • Le pôle Fc est identique pour chacune des grilles et indépendant de n. On a donc à la fois la conservation des pôles et de la polarisation, quel que soit n. Plus précisément, la gamme de polarisation vaut : 0 ; ( Iunit β + Vt ) / Zinterne
    Figure imgb0002
    , et est indépendant de n.
  • Ainsi, selon l'invention, le taux de réjection du régulateur est indépendant de n, de même que la marge de phase du régulateur, ce qui permet d'obtenir une stabilité acceptable quelle que soit la valeur de n.
  • On se réfère à présent à la figure 3, qui représente l'implémentation du circuit intégré CI, décrit précédemment.
  • La topologie du circuit intégré CI comprend deux parties distinctes. Une première partie INT comprenant des moyens de génération de la tension de référence Vref ainsi que l'amplificateur opérationnel AMP, à l'exception des impédances internes auxiliaires Zinternel, ..., Zinternen.
  • Une seconde partie EXT comprend deux sous-parties. Une première sous-partie invariante Pinv, comprend des moyens de génération de la tension d'alimentation Vdd_LDO, une borne délivrant la tension de sortie Vout de l'étage de puissance EtP du régulateur LDO, ainsi que la tension d'alimentation des rails d'alimentation Vdd. La sous-partie invariante Pinv comprend en outre le transistor de puissance principal PMosPrinc, qui est conducteur même lorsque le courant de charge Io est faible.
  • La seconde partie EXT comporte également une sous-partie modulable Pmod. Cette sous-partie Pmod comprend n modules de puissance identiques et distincts, module 1, module 2, module 3,..., module n. Ces n modules de puissance comprennent les transistors de puissance auxiliaires de l'étage de puissance EtP du régulateur LDO, ainsi que les n impédances internes auxiliaires associées, Zinternel, ..., Zinternen.
  • Les n modules de puissance module 1, module 2, module 3,..., module n, sont connectés entre eux par une cellule de programmation CP, contenue dans la sous-partie modulable Pmod comprenant les connexions nécessaires (non représentées).
  • L'utilisation d'une sous-partie modulable permet de faire varier la valeur de courant de charge Io délivré par le régulateur LDO sans modifier la topologie du circuit intégré CI. En effet, le circuit intégré CI possède un coeur unique quel que soit le courant de charge Io délivré, et l'étage de module est programmable par l'intermédiaire des n modules. On réalise par conséquent un gain de temps sur le dessin et la conception du circuit intégré.
  • En outre, le fait d'inclure les impédances internes auxiliaires dans les modules de puissance permet de réduire la surface de silicium utilisée. Cela permet aussi de réduire la consommation du circuit puisque les drains des transistors Mos1, ..., Mosn sont en l'air lorsque le PMOS auxiliaire correspondant n'est pas utilisé. En effet, les sorties de l'amplificateur opérationnel AMP non connectées (dans le cas où p<n), ne sont pas associées à une impédance interne auxiliaire, puisque celles-ci sont comprises dans les modules de puissance.

Claims (3)

  1. Circuit intégré comprenant un régulateur à faible chute de tension (LDO), ledit régulateur (LDO) comprenant un amplificateur opérationnel (AMP) et un étage de puissance (EtP) rebouclé sur l'amplificateur opérationnel (AMP), et apte à délivrer un courant de sortie (Io) dans une charge (RL), caractérisé par le fait que :
    - l'étage de sortie (EtS) de l'amplificateur (AMP) comporte une sortie principale et n sorties auxiliaires aptes à délivrer respectivement une tension de commande principale (VGPRINC) et n tensions de commande auxiliaires (VG1, ..., VGn)'
    - par le fait que l'étage de puissance (EtP) comporte un transistor de puissance principal (PMosPrinc), commandé sur sa grille par la tension de commande principale (VGPRINC), et p modules de puissance (module 1, ..., module n) topologiquement identiques avec p inférieur ou égal à n, comportant respectivement p transistors de puissance auxiliaires (PMos1, ..., PMosn) respectivement commandé sur leur grille par p tensions de commande auxiliaires (VG1, ..., VGn),
    - et par le fait que le nombre p est choisi en fonction d'un courant de sortie maximum désiré.
  2. Circuit intégré selon la revendication 1, caractérisé par le fait que l'étage de sortie comporte un transistor principal de sortie (MosPrinc) et n transistors auxiliaires de sortie identiques (Mos1, ..., Mosn), par le fait qu'une impédance interne principale (MosPrinc) est connectée entre la tension d'alimentation (Vdd_LDO) et le transistor principal de sortie (MosPrinc), par le fait n impédances internes auxiliaires identiques (Zinterne1, ..., Zinternen), appartenant à l'étage de puissance, sont respectivement connectées entre la tension d'alimentation (Vdd_LDO) et les n transistors auxiliaires de sortie (Mos1, ..., Mosn), et par le fait que la topologie du circuit intégré (CI) comporte une première partie (INT) incorporant l'amplificateur opérationnel (AMP) et son étage de sortie (EtS) à l'exception des n impédances internes auxiliaires identiques (Zinterne1, ..., Zinternen), et une deuxième partie (EXT) formée d'une première sous-partie invariante (Pinv) comprenant le transistor de puissance principal (PMosPrinc), et d'une seconde sous-partie modulable (Pmod) comprenant p modules de puissance (module 1, module 2, module 3,..., module n) topologiquement identiques, chaque module de puissance incorporant également topologiquement l'impédance interne auxiliaire destinée à être connectée au transistor auxiliaire de sortie apte à délivrer la tension de commande sur le transistor de puissance auxiliaire contenu dans ce module de puissance.
  3. Circuit intégré selon la revendication 2, caractérisé par le fait que les dimensions du transistor principal de puissance (PMosPrinc) sont inférieures aux dimensions des p transistors de puissance auxiliaires (PMos1, ..., PMosn).
EP05291508A 2004-07-15 2005-07-13 Circuit intégré avec régulateur modulable à faible chute de tension Ceased EP1617311B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0407853A FR2873216A1 (fr) 2004-07-15 2004-07-15 Circuit integre avec regulateur modulable a faible chute de tension

Publications (2)

Publication Number Publication Date
EP1617311A1 true EP1617311A1 (fr) 2006-01-18
EP1617311B1 EP1617311B1 (fr) 2007-03-21

Family

ID=34947947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05291508A Ceased EP1617311B1 (fr) 2004-07-15 2005-07-13 Circuit intégré avec régulateur modulable à faible chute de tension

Country Status (4)

Country Link
US (1) US7218084B2 (fr)
EP (1) EP1617311B1 (fr)
DE (1) DE602005000736D1 (fr)
FR (1) FR2873216A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417416B2 (en) * 2005-10-27 2008-08-26 International Business Machines Corporation Regulator with load tracking bias
TWI365365B (en) * 2008-01-30 2012-06-01 Realtek Semiconductor Corp Linear regulator and voltage regulation method
US7710144B2 (en) * 2008-07-01 2010-05-04 International Business Machines Corporation Controlling for variable impedance and voltage in a memory system
US8089813B2 (en) * 2008-07-18 2012-01-03 International Business Machines Corporation Controllable voltage reference driver for a memory system
US7932705B2 (en) * 2008-07-24 2011-04-26 International Business Machines Corporation Variable input voltage regulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403942A2 (fr) * 1989-06-21 1990-12-27 National Semiconductor Corporation Régulateur de tension à chute faible avec courant commun faible
EP1061428A1 (fr) * 1999-06-16 2000-12-20 STMicroelectronics S.r.l. Régulateur de tension à faible tension de déchet en technologie BICMOS / CMOS
US20030178978A1 (en) * 2002-03-25 2003-09-25 Biagi Hubert J. Output stage compensation circuit
US6765374B1 (en) * 2003-07-10 2004-07-20 System General Corp. Low drop-out regulator and an pole-zero cancellation method for the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246221B1 (en) * 2000-09-20 2001-06-12 Texas Instruments Incorporated PMOS low drop-out voltage regulator using non-inverting variable gain stage
US6518737B1 (en) * 2001-09-28 2003-02-11 Catalyst Semiconductor, Inc. Low dropout voltage regulator with non-miller frequency compensation
US6703816B2 (en) * 2002-03-25 2004-03-09 Texas Instruments Incorporated Composite loop compensation for low drop-out regulator
US6703815B2 (en) * 2002-05-20 2004-03-09 Texas Instruments Incorporated Low drop-out regulator having current feedback amplifier and composite feedback loop
US6465994B1 (en) * 2002-03-27 2002-10-15 Texas Instruments Incorporated Low dropout voltage regulator with variable bandwidth based on load current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403942A2 (fr) * 1989-06-21 1990-12-27 National Semiconductor Corporation Régulateur de tension à chute faible avec courant commun faible
EP1061428A1 (fr) * 1999-06-16 2000-12-20 STMicroelectronics S.r.l. Régulateur de tension à faible tension de déchet en technologie BICMOS / CMOS
US20030178978A1 (en) * 2002-03-25 2003-09-25 Biagi Hubert J. Output stage compensation circuit
US6765374B1 (en) * 2003-07-10 2004-07-20 System General Corp. Low drop-out regulator and an pole-zero cancellation method for the same

Also Published As

Publication number Publication date
DE602005000736D1 (de) 2007-05-03
EP1617311B1 (fr) 2007-03-21
US7218084B2 (en) 2007-05-15
US20060049812A1 (en) 2006-03-09
FR2873216A1 (fr) 2006-01-20

Similar Documents

Publication Publication Date Title
EP1936541B1 (fr) Chargeur de batterie fonctionnant par &#34;tout ou rien&#34; avec circuit de protection d&#39;alimentation pour circuits intégrés monolithiques utilisant l&#39;énergie de l&#39;antenne
EP1916762B1 (fr) Oscillateur à quartz asservi en amplitude avec domaine étendu de tension et de température
EP0591022A1 (fr) Circuit élévateur de tension de type pompe de charge avec oscillateur bootstrappe
FR2819064A1 (fr) Regulateur de tension a stabilite amelioree
FR2864271A1 (fr) Circuit de pompe a charge a rendement eleve, a faible cout
EP3101793A1 (fr) Convertisseur dc-dc à démarrage à basse puissance et à basse tension
FR2819652A1 (fr) Regulateur de tension a rendement ameliore
EP1617311B1 (fr) Circuit intégré avec régulateur modulable à faible chute de tension
EP3032729B1 (fr) Convertisseur continu-continu à démarrage à froid
EP0161154A1 (fr) Amplificateur à large bande à double contre-réaction de mode commun
FR2829653A1 (fr) Dispositif d&#39;alimentation a decoupage adapte pour les faibles consommations de courant, et telephone cellulaire dote d&#39;un tel dispositif
EP0279345B1 (fr) Dispositif comportant un circuit électronique de traitement d&#39;un signal analogique
WO2014091088A1 (fr) Circuit de comparaison d&#39;une tension a un seuil et conversion d&#39;energie electrique
FR2693283A1 (fr) Circuit de tension de référence avec compensation en température positive.
FR3104751A1 (fr) Procédé de lissage d’un courant consommé par un circuit intégré et dispositif correspondant
FR2490895A1 (fr) Circuit d&#39;entretien pour oscillateur a faible consommation de courant
FR2874467A1 (fr) Circuit pour un generateur d&#39;eeprom haute tension
FR2682801A1 (fr) Circuit pour produire une tension d&#39;alimentation en courant interne dans un dispositif de memoire a semiconducteurs.
EP1258975B1 (fr) Circuit de régulation pour un générateur haute tension
EP0678868A1 (fr) Circuit multiplicateur de tension
EP3579233A1 (fr) Cellule elementaire et pompes de charges comprenant une telle cellule elementaire
EP0678801B1 (fr) Circuit régulateur avec référence ZENER
FR2461395A1 (fr) Convertisseur de tension alternative en tension continue
EP3724962B1 (fr) Batterie à accumulateurs commutés
WO2004013949A2 (fr) Convertisseur tension/tension pour circuits integres.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060629

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070403

REF Corresponds to:

Ref document number: 602005000736

Country of ref document: DE

Date of ref document: 20070503

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070622

26N No opposition filed

Effective date: 20071227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180621

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731