EP1608928B1 - Verfahren zur auslegung von flachrohren für kraftfahrzeug-wärmetauscher - Google Patents

Verfahren zur auslegung von flachrohren für kraftfahrzeug-wärmetauscher Download PDF

Info

Publication number
EP1608928B1
EP1608928B1 EP04721949A EP04721949A EP1608928B1 EP 1608928 B1 EP1608928 B1 EP 1608928B1 EP 04721949 A EP04721949 A EP 04721949A EP 04721949 A EP04721949 A EP 04721949A EP 1608928 B1 EP1608928 B1 EP 1608928B1
Authority
EP
European Patent Office
Prior art keywords
tube
channels
channel
section
σyeild
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04721949A
Other languages
English (en)
French (fr)
Other versions
EP1608928A1 (de
Inventor
Youming Calsonic Kansei UK Limited YUAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Systems UK Ltd
Original Assignee
Calsonic Kansei UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei UK Ltd filed Critical Calsonic Kansei UK Ltd
Publication of EP1608928A1 publication Critical patent/EP1608928A1/de
Application granted granted Critical
Publication of EP1608928B1 publication Critical patent/EP1608928B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • F28F1/045Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular with assemblies of stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Definitions

  • the present invention relates to a method for providing flat tube designs and in particular to a method for providing flat tube designs for use in automotive heat exchangers, particularly automotive HVAC heat exchangers.
  • HFC refrigerant is known to have limited ozone depleting effects, it still has a significantly high global warming potential, about 1,300 times higher than carbon dioxide gas of the same amount. This is increasingly becoming environmentally unacceptable.
  • Such environmental pressure has led to international treaties, protocols and proposed legislation in some countries to either ban completely the use of HFC refrigerants over a short period of time, or to penalise its usage by levying a hefty environmental tax. Therefore, increased efforts and investment have been made by the automotive industry to seek new alternative refrigerants, which can eliminate or alleviate the environmental impacts of mobile HVAC system.
  • Carbon dioxide has been shown to be one of the most promising candidates for an environmentally friendly refrigerant.
  • CO 2 has been used before the adoption of CFC refrigerant and it is still used as a refrigerant in deep freezing industry today. Due to the particular thermophysical properties of carbon dioxide (its low critical temperature of about 31°C), however, when used for mobile air conditioning, it has to be operated in a transcritical cycle in most mobile air conditioning usage, when the ambient air temperature is likely to be high.
  • the heat exchanger that dissipates heat to the ambient air also known as gas cooler
  • the heat exchanger that dissipates heat to the ambient air also known as gas cooler
  • Its operation in supercritical state also means that in part of the gas cooler the temperature tends to be very high and that the refrigerant temperature varies significantly (known as temperature slide) through the gas cooler.
  • coefficient of performance which is defined as the ratio of cooling capacity to the power consumed
  • EP0881448 A describes a multi-bored flat tube having outermost unit passages located at both ends of the tube and intermediate unit passages between the outermost unit passages.
  • the outermost unit passage has a circular-based inner surface in cross-section, such as a circumferentially smooth curved shape in cross-section like a perfect circular shape or elliptical shape, or has a circular-based inner surface in cross-section having a plurality of inner fins extending in a longitudinal direction of the tube.
  • the intermediate unit passage has a non-circular based cross-sectional shape, such as a rectangular, triangular, trapezoidal, or circular based shape including a plurality of inner fins.
  • EP 0990828 A2 discloses a multichannel flat tube for a heat exchanger comprising a plurality of parallel flow channels.
  • the channels are adjacent to one another in a transversal direction with regard to the tube and have an oval cross-section.
  • the outer surfaces of the tube have a wave-shaped cross-section corresponding to the flow channels in such a way that the flat tube is thinner in the vertical direction of the tube between each two flow channels than in the area of a respective flow channel.
  • the present invention provides a method for providing flat tube designs for an automotive heat exchanger according to claim 1.
  • the present invention provides a method for providing flat tube designs for an automotive heat exchanger according to claim 2.
  • the present invention provides flat tube designs with non-circular cross-section channel geometry, that are narrow to reduce airside pressure drop, strong to withstand high pressure, of light weight and that also offer higher heat conductance and lower pressure drop compared to flat tube with circular cross-section channel with the same tube cross-section size.
  • the tube is extruded, the channels preferably being formed in the extrusion process.
  • the tube is preferably used in an HVAC gas cooler having a working fluid operating in a substantially supercritical state.
  • the tube material is aluminium.
  • the refrigerant is CO 2 .
  • a heat exchange tube (1) typically of extruded aluminium material is provided with a series of substantially parallel working fluid (refrigerant) channels 2.
  • working fluid typically the tubes extend between headers and are stacked in a row having air-gaps between adjacent tubes.
  • An airway or fin matrix may be provided in thermal contact with adjacent spaced tubes in order to maximise heat transfer.
  • the heat exchanger is brazed together.
  • One of the preferred realisations of the invention is a flat tube 1 with multiple channels 2 of triangular cross-section.
  • the second realisation is a flat tube of multiple channels of rectangular cross-section and yet a third realisation is a flat tube of multiple channels with a shape modified from rectangular cross-section.
  • the performance of the three realisations are compared to the benchmark round channel flat tubes under the same overall tube cross-section size.
  • the maximum channel dimension in the tube minor axis direction is fixed as the same as the round channel diameter.
  • the variation of the total heat conductance for each tube, incorporating a typical airside surface design and airside flow condition, and of the pressure drop through one tube, for a fixed tube length, are calculated with the variation of the channel width.
  • the merits of each design are judged by these two performance parameters compared to the benchmark circular cross-section channel flat tube.
  • the maximisation of total channel cross-section area needs also to result in a tube design having sufficient structural robustness. Therefore, the maximum dimension of the channel in the tube minor axis direction should be no more than a fixed fraction of the tube minor axis dimension. Similarly, over any intersection line between the tube end surface and any plane perpendicular to the tube end surface, the ratio of the total length falling into the channels to the total line length should not be greater than a fixed fraction. The exact value of these fraction numbers should ideally be a function of the desired burst pressure and the yield stress of the tube material.
  • FIG. 2 The performance of this realisation, compared to the round channel case, is shown in Figure 2 . It shows that for a fixed tube width illustrated here, a channel width (triangle base dimension) greater than 0.5 mm offers improved heat transfer conductance at the same or very slight increase in pressure drop. Considering, however, the structural requirements, the ratio of channel width to the triangle height should be limited by a maximum of about 3. Thus the optimal range of channel dimension should give 30° ⁇ ⁇ ⁇ 65°.
  • FIG. 7 shows the result of the refrigerant temperatures in a flat tube of preferred triangular channel and in a benchmark circular cross-section channel flat tube. It can be seen that preferred triangular channel tube is more effective and cools the refrigerant to the same extent as a circular cross-section channel tube of a third longer length. For the same length, the new triangular channel tube will give a heat transfer rate about 7% higher.
  • Figure 3 shows the second realisation with rectangular channel.
  • the total channel cross-section area is increased by 27% compared to the benchmark round channel case and correspondingly the weight of the tube is reduced significantly.
  • the limitation on the two ratios as discussed in first realisation still holds.
  • FIG. 5 A further and third realisation is schematically shown in Figure 5 .
  • the rectangular channel in the second realisation is modified to improve structural robustness of the rectangular channel.
  • This design still offers weight reduction compared to the benchmark round channel flat tube.
  • the limitation on the two ratios as discussed in first realisation still holds.
  • the ratio of the maximum channel dimension in section in the tube minor axis direction to the tube minor axis dimension is less than a factor of the ratio between the bursting pressure and the tube material yield stress: H / Ltminor ⁇ A ⁇ yeild / ⁇ yeild + Pburst ; where A is a safety factor and A ⁇ 1.
  • the ratio of the sum of the length of all the channel widths to the tube major axis dimension is less than a factor of the ratio between the bursting pressure and the tube material yield stress: Swi / Ltmajor ⁇ B ⁇ yeild / ⁇ yeild + Pburst ; where B is a safety factor and B ⁇ 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (7)

  1. Verfahren zur Bereitstellung von Gestaltungen von Flachrohren für einen Automobil-Wärmetauscher, wobei das Rohr (1) eine Vielzahl von StrömungsKanälen (2) aufweist, welche sich in longitudinaler Richtung des Rohres erstrecken, wobei die Kanäle im Wesentlichen eine nicht-kreisförmige Querschnittsgeometrie aufweisen,
    dadurch gekennzeichnet, dass das Rohr (1) dazu gestaltet ist, einen vorbestimmten Berstdruck (Pberst) für die Streckgrenze (σstreck) des Materials aufzuweisen, wobei ein nutzerdefinierter Sicherheitsfaktor (A) in die Berechnung zur Bestimmung des maximalen Kanalausmaßes (H) im Abschnitt in Richtung der Nebenachse des Rohres zu dem Ausmaß der Nebenachse des Rohres (Ltneben) einbezogen wird, gemäß dem Verhältnis H / Ltneben < A σ streck / σstreck + Pberst ,
    Figure imgb0005

    mit A < 1.
  2. Verfahren zur Bereitstellung von Gestaltungen von Flachrohren für einen Automobil-Wärmetauscher, wobei das Rohr (1) eine Vielzahl von StrömungsKanälen (2) aufweist, welche sich in longitudinaler Richtung des Rohres erstrecken, wobei die Kanäle im Wesentlichen eine nicht-kreisförmige Querschnittsgeometrie aufweisen,
    dadurch gekennzeichnet, dass das Rohr (1) dazu gestaltet ist, einen vorbestimmten Berstdruck (Pberst) für die Streckgrenze (σstreck) des Materials aufzuweisen, wobei ein nutzerdefinierter Sicherheitsfaktor (B) in die Berechnung zur Bestimmung der Summe der Länge aller Kanalbreiten (Sbr) bezogen auf das Ausmaß der Hauptachse des Rohres (Lthaupt) einbezogen wird, gemäß dem Verhältnis Sbr / Lthaupt < B σ streck / σstreck + Pberst ,
    Figure imgb0006

    mit B < 1.
  3. Verfahren nach Anspruch 1 oder 2, wobei
    i) das Rohr (1) extrudiert ist, und/oder
    ii) das Rohr (1) in einem HVAC Gaskühler verwendet wird, wobei das Arbeitsfluid im Betrieb in einem im Wesentlichen überkritischen Zustand ist, und/oder
    iii) das Rohr (1) in einem HVAC Gaskühler verwendet wird, wobei das Arbeitsfluid CO2 ist, welches im Betrieb in einem im Wesentlichen überkritischen Zustand ist.
  4. Verfahren nach einem der vorstehenden Ansprüche, wobei
    i) das Rohr (1) aus Aluminiummaterial ist, und/oder
    ii) das Ausmaß der Nebenachse des Rohres (1) im Wesentlichen in dem Bereich 1 mm bis 2,5mm liegt.
  5. Verfahren nach einem der vorstehenden Ansprüche, wobei
    i) der Betriebsdruck des Fluids in dem Rohr (1) im Wesentlichen bei oder über 100bar liegt, und/oder
    ii) die Kanäle (2) Kanäle mit im Wesentlichen dreieckigen Abschnitten aufweisen, und/oder
    iii) die Kanäle mit im Wesentlichen dreieckigen Abschnitten in tesselierender Relation im Wesentlichen Seite-an-Seite in einer Reihe angeordnet sind,
    wobei vorzugsweise der dreieckige Abschnitt der Kanäle (2) im Wesentlichen konform ist zu einem gleichschenkligen Dreieck und die entsprechenden Basiswinkel (α) im Wesentlichen im Bereich 30° ≤α ≤65° liegen.
  6. Verfahren nach einem der vorstehenden Ansprüche, wobei die Kanäle (2) Kanäle mit im Wesentlichen rechteckigen Abschnitten aufweisen, und die Relation von Kanalbreite (b) zu Kanalhöhe (H) vorzugsweise im Wesentlichen im Bereich 0,5 ≤ w/H ≤2,2 liegt.
  7. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Kanäle (2) Kanäle aufweisen, die im Wesentlichen konform zu einem rechteckigen Abschnitt sind und einen verengten taillierten Mittelkanal entlang ihrer Breite aufweisen, wobei vorzugsweise das Verhältnis von Kanalbreite (b) zu der maximalen Kanalhöhe (H) im Wesentlichen in dem Bereich 0,6 ≤w/H ≤1,6 liegt.
EP04721949A 2003-03-19 2004-03-19 Verfahren zur auslegung von flachrohren für kraftfahrzeug-wärmetauscher Expired - Fee Related EP1608928B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0306269A GB2399623A (en) 2003-03-19 2003-03-19 Flat tube heat exchanger for a vehicle air conditioning system
GB0306269 2003-03-19
PCT/GB2004/001215 WO2004083762A1 (en) 2003-03-19 2004-03-19 Heat exchanger tubes

Publications (2)

Publication Number Publication Date
EP1608928A1 EP1608928A1 (de) 2005-12-28
EP1608928B1 true EP1608928B1 (de) 2010-09-29

Family

ID=9955060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04721949A Expired - Fee Related EP1608928B1 (de) 2003-03-19 2004-03-19 Verfahren zur auslegung von flachrohren für kraftfahrzeug-wärmetauscher

Country Status (4)

Country Link
EP (1) EP1608928B1 (de)
DE (1) DE602004029338D1 (de)
GB (1) GB2399623A (de)
WO (1) WO2004083762A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016540A1 (de) * 2005-04-08 2006-10-12 Behr Gmbh & Co. Kg Mehrkanalflachrohr
EP1983272A1 (de) * 2007-04-18 2008-10-22 Aic S.A. Gebranntes Wärmetauscherbündel
US20190162455A1 (en) * 2017-11-29 2019-05-30 Lennox Industries, Inc. Microchannel heat exchanger

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694080B1 (fr) * 1992-07-24 1996-06-21 Furukawa Electric Co Ltd Tube condenseur plat et poreux.
JP3113100B2 (ja) * 1992-11-05 2000-11-27 株式会社デンソー 多穴管押出用ダイス及び多穴管
JPH06300473A (ja) * 1993-04-19 1994-10-28 Sanden Corp 偏平冷媒管
JPH0972680A (ja) * 1995-09-05 1997-03-18 Akutoronikusu Kk 多孔扁平管の構造とその製造方法
JPH1144498A (ja) 1997-05-30 1999-02-16 Showa Alum Corp 熱交換器用偏平多孔チューブ及び同チューブを用いた熱交換器
US6216776B1 (en) * 1998-02-16 2001-04-17 Denso Corporation Heat exchanger
JP2000046421A (ja) * 1998-07-27 2000-02-18 Calsonic Corp 二酸化炭素冷凍サイクル用熱交換器
DE19845336A1 (de) 1998-10-01 2000-04-06 Behr Gmbh & Co Mehrkanal-Flachrohr
DE19921407A1 (de) * 1999-05-08 2000-11-09 Behr Gmbh & Co Stranggepreßtes Mehrkammerrohr, insbesondere für einen Wärmeübertrager

Also Published As

Publication number Publication date
WO2004083762A1 (en) 2004-09-30
DE602004029338D1 (de) 2010-11-11
GB2399623A (en) 2004-09-22
GB0306269D0 (en) 2003-04-23
EP1608928A1 (de) 2005-12-28

Similar Documents

Publication Publication Date Title
US6357522B2 (en) Multi-channel flat tube
US20070131393A1 (en) Heat exchanger
EP2857788B1 (de) Wärmetauscher
EP3370027B1 (de) Aluminiumextrudiertes flaches perforiertes rohr und wärmetauscher
EP2175223A1 (de) Kühlverdampfer
JP2008503705A (ja) 冷却システムで使用するための一体型の熱交換器
JP2007298197A (ja) 熱交換器
EP1998133A1 (de) Wärmetauscher und integrierter wärmetauscher
JP2002098486A (ja) 熱交換器及びその製造方法
JP4659779B2 (ja) 熱交換器及びこの熱交換器を備えた空気調和機
JP2006322699A (ja) 熱交換器
JP2008533427A (ja) 熱交換器の配置
JP2006200881A (ja) 熱交換器
EP3062037A1 (de) Wärmetauscher und kältekreislaufvorrichtung mit diesem wärmetauscher
EP1608928B1 (de) Verfahren zur auslegung von flachrohren für kraftfahrzeug-wärmetauscher
JP2002098424A (ja) 冷凍サイクル
WO2007063978A1 (ja) 熱交換器
JP4852307B2 (ja) 熱交換器
AU1373000A (en) Regulating device for a coolant circuit of an air conditioning system
JP2008304109A (ja) 熱交換器
EP1460364A2 (de) Wärmetauscher für ein Kraftfahrzeug
US20040104016A1 (en) Heat exchanger
WO2006068262A1 (en) Heat exchanger
CN101251320A (zh) 一种专用于空调机的平行流热交换器
JP2002372340A (ja) 凝縮器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070125

RTI1 Title (correction)

Free format text: METHOD FOR MANUFACTURING HEAT EXCHANGER TUBES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR DESIGNING HEAT EXCHANGER TUBES

RTI1 Title (correction)

Free format text: METHOD FOR PROVIDING FLAT TUBE DESIGNS FOR AN AUTOMOTIVE HEAT EXCHANGER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004029338

Country of ref document: DE

Date of ref document: 20101111

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004029338

Country of ref document: DE

Effective date: 20110630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150224

Year of fee payment: 12

Ref country code: FR

Payment date: 20150319

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004029338

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160319

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160319