EP1608876B1 - Coolant pump, especially electric convection-cooled coolant pump with integrated directional control valve, and corresponding method - Google Patents

Coolant pump, especially electric convection-cooled coolant pump with integrated directional control valve, and corresponding method Download PDF

Info

Publication number
EP1608876B1
EP1608876B1 EP04718939A EP04718939A EP1608876B1 EP 1608876 B1 EP1608876 B1 EP 1608876B1 EP 04718939 A EP04718939 A EP 04718939A EP 04718939 A EP04718939 A EP 04718939A EP 1608876 B1 EP1608876 B1 EP 1608876B1
Authority
EP
European Patent Office
Prior art keywords
pump
coolant
housing
coolant pump
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04718939A
Other languages
German (de)
French (fr)
Other versions
EP1608876A1 (en
EP1608876B8 (en
Inventor
Franz Pawellek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec GPM GmbH
Original Assignee
Geraete und Pumpenbau GmbH Dr Eugen Schmidt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33016092&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1608876(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geraete und Pumpenbau GmbH Dr Eugen Schmidt filed Critical Geraete und Pumpenbau GmbH Dr Eugen Schmidt
Publication of EP1608876A1 publication Critical patent/EP1608876A1/en
Publication of EP1608876B1 publication Critical patent/EP1608876B1/en
Application granted granted Critical
Publication of EP1608876B8 publication Critical patent/EP1608876B8/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0016Control, e.g. regulation, of pumps, pumping installations or systems by using valves mixing-reversing- or deviation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/62Electrical actuators

Definitions

  • the present invention relates to a coolant pump according to the preamble of claim 1, and a method for this according to the preamble of claim 22.
  • thermal management refers to those measures that lead to the energetically and thermo-mechanically optimal operation of an internal combustion engine. For this purpose, an active control of the heat flows and thus the temperature distribution in the engine is required.
  • coolant pumps are increasingly used instead of the conventional, rigidly coupled to the engine speed coolant pumps whose speed is variable and thus the flow rate is adjustable.
  • the discussed there electrical coolant pump with integrated directional control valve has a coolant pump housing, which has a suction nozzle for the inlet from the radiator, a bypass nozzle for the inlet of the bypass circuit and a discharge nozzle for the supply or return of the coolant to the vehicle engine.
  • a coolant pump electric motor is arranged, the motor housing is flowed around by the circulated coolant.
  • the pump motor drives a pump impeller via a pump shaft to circulate the coolant.
  • Suction nozzle and bypass nozzle upstream of the integrated in the coolant pump directional control valve in the inlet to the pump are integrated so that when open directional control valve, a mixture of cooler coolant coming from the radiator and directly coming from the motor vehicle heated coolant sucked by the pump impeller and the pump motor over to the downstream pressure nozzle for the supply or return of this coolant mixture to the motor vehicle engine.
  • the maximum temperature of the cooled by the radiator pending at the output and from there to the pump coolant flowing 113 ° C.
  • This desired upper value has been set by the automotive industry for the design of automotive radiators. This is to ensure that when operating a motor vehicle, even in extremely hot areas, such as in the desert, cooled coolant for the motor vehicle engine is available in a temperature range available with a maximum Input temperature of 113 ° C supplied to the engine, with a remaining temperature range of at least 7 ° C to 17 ° C to a maximum allowed for conventional coolant upper limit of 120 ° C to at most 130 ° C still sufficient heat from the engine and take to the radiator can dissipate.
  • the temperature of the coolant carried away from the engine can easily reach 120 ° C or, in unfavorable cases, more, ie up to 130 ° C.
  • a short circuit or bypass circuit can be returned to the heated coolant from the engine coming via the coolant pump directly to the engine.
  • the Anürmphase the engine shortened overall, achieved a rapid warm-up of the cylinder tube after the cold start and a control of the tribologically optimum temperature are possible.
  • the coolant pump installed electronic as well as electrical components such as the electric motor that drives the pump impeller or the electronic components, sensors, transducers or control loops that allow control and / or regulation of the engine speed, the pump power, the valve position or other functions point a limited temperature compatibility and are therefore not infinitely high temperatures exposable.
  • electrical components such as the electric motor that drives the pump impeller or the electronic components, sensors, transducers or control loops that allow control and / or regulation of the engine speed, the pump power, the valve position or other functions point a limited temperature compatibility and are therefore not infinitely high temperatures exposable.
  • components can be operated in some cases only a maximum of 120 ° C. Above threatens the rapid heat death of such electrical and / or electronic components.
  • the newly proposed coolant pump for a coolant circuit of a motor vehicle internal combustion engine which has at least one radiator circuit and a bypass circuit, has a coolant pump housing having a suction port for the inlet from the radiator, a bypass port for the inlet of the bypass circuit and a pressure port for having the supply of the coolant from the motor vehicle engine.
  • the coolant pump has a coolant pump housing arranged in the coolant pump housing, the motor housing flows around the coolant is, and drives a pump impeller via a pump shaft.
  • the coolant pump has a directional control valve integrated in the coolant pump housing.
  • the suction nozzle is arranged in the region of the pump impeller facing away from the end of the pump motor. Furthermore, it is proposed for the first time that the bypass nozzle is arranged in a region downstream of the suction nozzle, in particular after the pump motor.
  • the discharge nozzle in a region lying downstream of the bypass nozzle, in particular after or in an area around the pump impeller, is arranged, finally, it is proposed for the first time that only the coolant, which through the suction nozzle for the inlet directly from Cooler can be sucked, in a sheath flow - by a, preferably from the outer wall of the pump motor housing and the facing inner wall of the pump housing and / or the facing inner wall of the directional valve limited flow channel - is fed past the pump motor, so that this and the other electronic and / or or electrical components can be optimally cooled.
  • the direction of flow through the pump is reversed for the first time, ie the cooled coolant coming from the radiator, in particular a liquid coolant based on water, is supplied to the pump from the rear, so to speak.
  • the cold, coming from the radiator coolant first flows past the pump motor, absorbs its waste heat and cools it down to allowable operating temperatures that are easily tolerated by the electric motor, before coming from the radiator coolant optionally with the supplied from the bypass circuit hot coolant mixed and this coolant mixture accelerated by the pump impeller or circulated through the discharge port to the vehicle engine off or is returned.
  • the coolant pump according to the invention is also distinguished by its improved robustness, an extended field of application and significantly reduced production costs.
  • the flow or coolant-cooled electric coolant pump according to the invention is an inexpensive and particularly reliable alternative to known solutions on the market.
  • the coolant coming from the radiator circuit can be mixed with the coolant of the bypass circuit that can be sucked in by the bypass stub after the pump motor through the directional control valve.
  • openable with the directional control valve and re-closable mouth of the bypass nozzle in an area upstream of the pump impeller is arranged so that the coolant mixture coming from the radiator cooled coolant and coming from the bypass heated coolant is accelerated or circulated together by the pump impeller can.
  • the mouth of the directional control valve is located in a region between the pump impeller and the downstream end of the flow channel.
  • the pump motor and the pump shaft are arranged coaxially to the longitudinal axis of the pump housing.
  • the pump shaft is arranged coaxially to the longitudinal axis of the pump motor, however, this assembly is arranged asymmetrically or eccentrically in the pump housing, which may possibly lead to cost advantages in the manufacture of the housing.
  • the concentric or coaxial variant is preferred because it builds much easier, due to the symmetries structurally easier to implement and fluidically provides the greatest benefits as well as probably the most cost-effective solution in terms of cost.
  • the flow channel which is bounded by the outer wall of the motor housing comprising the pump motor and the facing inner wall of the pump housing, has an annular cross section.
  • the flow channel has a constant cross section in the flow direction.
  • a constriction of the prevailing at the end of the flow channel diameter to the diameter of the discharge nozzle is specified.
  • the cooler with the Coolant pump sucked cool coolant can flow past without any loss of flow at constant cross section of the pump motor, this optimally cool and then sucked through the constriction at the end of the flow channel, sucked by the pump impeller or fed to the discharge nozzle, thereby simultaneously through the constriction of a bundling of total volume flow to the pump impeller takes place and also takes place a fluidic acceleration of the coolant.
  • pressure losses are avoided in an advantageous manner and unwanted turbulence is excluded.
  • the directional control valve is continuously switchable from a closed position "Bypass-closed” to an open position "Bypass-open".
  • the directional control valve is designed as a valve slide which is displaceable in the longitudinal direction of the coolant pump.
  • the valve slide is designed as a cylindrical sleeve. This can be made for example of metal.
  • plastics can be used, for example also be used for the production ofméstoffpumperigephinuses.
  • the coolant pump housing as the valve spool can be made particularly low, for example, in the plastic injection molding process. A reworking of these components is not necessary in an advantageous manner.
  • valve spool valve has the further advantage of a fail-safe position, so that the radiator access in case of failure of the valve is open in any case.
  • it is characterized by the lowest possible, ideally going to zero differential pressure. At the valve spool thus continues to occur advantageously no pressure drop, which ultimately leads to the fact that for switching or actuation of the valve already meets a very low switching capacity.
  • valve spool Another advantage of the valve spool is that it can be formed without any leakage. In contrast, leakage is never completely ruled out with rotary valves due to the moving transversely to the main flow direction parts.
  • the coolant pump according to the invention has the further advantage that a low pumping capacity already to achieve a desired Coolant flow rate is sufficient.
  • This pump motors can be used with a low electrical power consumption.
  • the coolant pump according to the invention has the further advantage that occurs in the valve position "radiator open" no reduction of the maximum flow cross-section, so that even for this reason a low flow rate for the circulation of the coolant is sufficient, so that the electric pump therefore also with an im Compared to commercial electric pumps lower power consumption can be produced.
  • valve spool is actuated by an actuator, such as an electric actuating magnet, a Dehnscherlement, a hydrostatic pressure element or the like, displaced by force.
  • an actuator such as an electric actuating magnet, a Dehnscherlement, a hydrostatic pressure element or the like, displaced by force.
  • Such actuators are characterized by a very low tendency to wear, offer a long service life and particularly high switching cycles and are available at low cost. In addition, such actuators work extremely reliable and are largely throsunan Meeting.
  • valve spool has a radially inwardly directed seal in the region of the supply of the coolant introduced from the bypass loop through the bypass spigot, which in the closed state of the directional control valve its mouth by a valve seat sealing against an annular sealing seat of the pump housing closes.
  • the seal may be, for example, an elastomeric seal.
  • the ring-shaped seat support guarantees an absolutely tight closing. Secondary leaks are excluded. A constriction of the distribution paths, regardless of whether the directional control valve is now in the position "Bypass closed” or in the position "Bypass open” is excluded, even in intermediate positions. This is a special streamlined valve variant specified.
  • a cylindrical sleeve can be particularly easily sealed in a cylindrical housing, so that secondary leaks are excluded for this reason.
  • Another advantage of the formed as a cylindrical sleeve valve slide is its relatively simple kinematics, so that a switching movement in the longitudinal direction is easily implemented.
  • This offers the further advantage that a continuous mixture of bypass and inlet by a simple linear movement, namely a longitudinal displacement is realized, so that a direct, in particular linear, relationship between valve position or orifice and mixing ratio and current position of the valve spool consists Accordingly, control technology can be displayed easily or without special effort.
  • the radially inwardly facing surface of the seal has a contour corresponding to the opposite contour of the motor housing.
  • the solenoid actuating magnet of the valve slide has an armature which is formed by the cylindrical sleeve of the valve slide.
  • the valve spool is used twice in an advantageous manner. On the one hand it is part of the valve and on the other hand it is at the same time a component of the solenoid solenoid. This helps to further reduce costs and increases reliability due to the reduced variety of parts. In this case, this dual function can be provided particularly favorable by a metal valve slide valve.
  • an in Plastic executed valve spool area also have metallic sections that serve as anchors.
  • the electric actuating magnet has a coil carrier arranged in the pump housing, which encloses the armature.
  • the anchor formed by the valve sleeve can be completely enclosed by the coil carrier.
  • the bobbin can thus optimally interact with the armature and move it already with low magnetic forces, so that so that the valve sleeve in the longitudinal direction relative to conventional valves can be relatively easily moved back and forth.
  • the cylindrical valve sleeve can be guided sealed radially outward against the magnet with rod seals or the like, so that even at this point no secondary leakage can occur.
  • a return for example, a heating circuit, a transmission oil heat exchanger, a lubricating oil heat exchanger, a separate cylinder block cooling circuit or the like, opens into the pump housing.
  • the coolant circuit and the engine thermal management complementary secondary circuits can be detected by the electric coolant pump according to the invention and the coolant flowing there are supported by the coolant pump in an advantageous manner.
  • a return can be coupled without a valve directly to the pump housing or, if necessary, have a valve for its targeted control, in which case advantageously the above-discussed directional control valve can be used in an adapted form.
  • the pump housing is constructed in two parts. This allows a simplified construction of the electric coolant pump. Their assembly is facilitated. It is provided in a further preferred embodiment that the electric actuating magnet in the longitudinal direction oriented coil contacts, which in an advantageous manner when joining the two housing parts via correlating contacts with a housed in the other housing part control device, such as a CPU, a control unit or the like, can be brought into contact. This additionally facilitates the assembly.
  • the coolant pump can be driven primarily mechanically via a lying outside of the pump housing pulley or the like.
  • the pulley is decoupled via a freewheel from the pump shaft drive technology.
  • a low-cost motor can take over the pump drive at a constant speed.
  • the pulley then overtakes the electric motor.
  • This also has the advantage that even in on-board networks with low electrical power, the coolant pump according to the invention can be used. This alternative is much cheaper than the expensive brushless drive motors. Ensuring the required basal metabolic pumping power is thus ensured even in case of failure of the electric motor.
  • the directional control valve or its valve slide with a Dehnscherlelement is hydraulically driven or switched.
  • the expansion element is designed, for example, as a wax element whose volume change due to a change in prevailing in the passing coolant temperature to a volume change in an adjacent, separate transmission medium, for example, also usable as a coolant water / glycol mixture leads.
  • This separate transmission medium is separated from the wax element, for example by a flexible membrane.
  • the volume change in the transmission medium is transmitted via corresponding lines, connecting holes or connecting channels to a cylinder space of the valve spool, so that it can be hydraulically actuated.
  • a restoring force can be applied to the valve spool with a spring or the like.
  • the expansion element is formed from wax. Its melting point is around 85 ° C. Its temperature-dependent volume change can then be transmitted via a separate coolant and associated connecting lines to the hydraulically driven valve spool.
  • the expansion element formed from wax should be arranged in an area adjacent to the pressure port in the pump housing.
  • it can adjoin the coolant flowing past by means of a metallic inner wall which is arranged radially inside the expansion element and which, for example, can be designed as a metallic cylinder jacket.
  • the expansion element may be separated from the associated, separate coolant with a membrane arranged radially outside of it, such that a temperature-dependent volume change of the expansion element is transferable to the coolant.
  • the separate coolant can in turn be moved over the connecting lines in a cylinder chamber of the thus hydraulically driven valve spool.
  • a method for conveying coolant with a coolant pump for a coolant circuit of an automotive internal combustion engine having at least one radiator circuit and a bypass circuit comprises the following steps: a) supplying the coolant from the radiator to the coolant pump through a suction port of the coolant pump housing, b) supplying the coolant from the bypass circuit to the coolant pump through a bypass port, c) returning the coolant from the coolant pump to the vehicle engine by a pressure port, d) circulating the coolant with a pump impeller driven by a coolant pump electric motor via a pump shaft, the motor flowing around the coolant, e) adjusting the mixing ratio of the coolant flows circulating through the coolant pump with a directional control valve integrated in the coolant pump housing.
  • the temperature detection of the mixed coolant takes place in the pump housing outlet leading to the motor vehicle engine, that is to say in the region of the discharge nozzle. This ensures that the motor vehicle engine is always supplied with a sufficient amount of coolant in the required temperature.
  • the amount and temperature of the coolant which flows through the discharge nozzle to the engine depending on the temperature and amount of supplied by the bypass hot coolant, supplied by the inlet supplied by the radiator coolant, the amount of heat entered by the electric motor and, if necessary, a heating return or another return, such as supplied by a lubricating oil heat exchanger or a cylinder block cooling circuit heated further coolant.
  • the CPU or control unit of the pump can deliver commands or voltage signals to the bobbin and the pump motor, so that the desired or required valve position is continuously adjusted and a requested engine speed is recorded.
  • a correspondingly miniaturized or adapted variant of the slide valve can be used to control the return of a heater, a transmission oil heat exchanger or the like.
  • the coolant pump housing is expanded by the valve function.
  • the functionality of the coolant pump is increased and at the same time reduces the design effort, resulting in less effort during assembly and ultimately at a lower price.
  • the split design of the housing also helps to reduce costs, since due to the housing division simpler assembly of the individual components is possible.
  • the pump impeller arranged downstream of the pump motor on the pump shaft in the flow direction has, for example, an impeller and a stator.
  • the principle used here corresponds to the already proven principle of the axial pump, as it is successfully sold in the house of the applicant.
  • the required, narrow running gap is processed in one setting, so that the necessary accuracy is ensured and post-processing is eliminated.
  • the control of the coolant pump according to the invention is designed so that even with a closed coolant circuit, ie at an open bypass circuit, no overheating of the electric motor threatens.
  • the cooled coolant coming from the radiator is in the valve position "Bypass open” and "Radiator inlet closed” to the downstream end of the pump motor housing and encloses the pump motor or its housing.
  • the coolant can still absorb a temperature interval of at least 7 ° C. of heat even in the worst case, until 120 ° C. has been reached and there is a threat of heat death of components.
  • the control unit of the pump ensures that this case can not occur.
  • the control unit ensures that the valve is briefly transferred to a position "inlet from the radiator open” and "by-pass closed”, briefly the pending coolant flows and then the valve is returned to its original position, so that then again fresh, completely cooled down coolant from the radiator encloses the electric pump and cools. Accordingly, even with a cold start and while doing some time switch position "bypass open", which is chosen to keep the warm-up phase of the vehicle internal combustion engine as short as possible, no risk to the electronic components to be feared.
  • the slide seat valve can be adjusted continuously. There are no movement gaps that would be difficult to seal.
  • the sealing ring which may be an elastomeric sealing ring, for example, lies axially against the seal seat of the housing in the "bypass closed” position. Accordingly, the elastomer sealing ring sets in a reverse manner at a position "inlet closed by the radiator” against the housing of the electric motor sealingly. Movement gaps do not exist. Secondary leaks are excluded.
  • the solenoid is mounted opposite the valve sleeve with rod seals with Abstreiffunktion. This also excludes secondary leaks.
  • valve sleeve for example, spring biased or applied with alternative means with a basic force, so that in the case of a defect in the electronics, the valve automatically in a position "inlet from the radiator open” and "Bypass closed” passes. This ensures a fail-safe position, which ensures that the motor vehicle engine can not overheat.
  • the housing of the pump motor can be made of metal, for example of aluminum or another noble metal, which is particularly good heat-conducting. This ensures optimum heat dissipation from the electrically operated pump motor to the coolant flowing around it.
  • bypass and the heating return in the non-temperature-critical region are supplied radially or tangentially from the outside to the pump center.
  • Fig. 1 an exemplary assignment of circuits circuit diagram in a motor vehicle engine thermal management with the above-discussed coolant pump is shown in a simplified schematic representation.
  • the electric coolant pump 1 is integrated in a coolant circuit 2.
  • the coolant circuit 2 has a cooler circuit 4, which runs over a cooler 6.
  • the coolant circuit 2 has a short circuit or bypass circuit 8, which closes the motor 10 directly to the coolant pump 1 short.
  • a heating circuit 12 from the engine 10 via a heater 13 to the electric coolant pump 1 back to the engine 10 is shown.
  • Other secondary circuits such as a coolant secondary circuit for a transmission oil heat exchanger for a lubricating oil heat exchanger, a separate cylinder head and a separate engine block cycle or the like are conceivable, but not shown here.
  • the electric coolant pump 1 with integrated directional control valve conveys the coolant sucked in by the engine 10 in the cooler circuit 4 via the radiator 6 back to the engine 10 or circulates it. Further, the coolant pump 1 promotes the circulating in the short-circuit 8 coolant. Last but not least, the coolant pump 1 also circulates the circulating coolant in the heating circuit 12.
  • the electrical coolant pump 1 with integrated directional control valve shown schematically in FIG. 1 with a symbol is explained in further detail in FIGS. 2 to 8 in various variants.
  • FIG. 2 shows a first exemplary embodiment of a coolant pump 1 in longitudinal section.
  • the coolant pump housing 14 is divided into two in this embodiment. It consists of a first housing part 16 and a second housing part 18. Both housing parts 16 and 18 with an annular clip, clamp or clamp 20 firmly together, tightly connected.
  • the housing 14 can also be made in three or more parts or even in one piece with a lid.
  • the coolant KZK coming from the cooler 6 in the cooler circuit 4 is fed to the pump housing 14 via the suction nozzle 22. This is symbolized by the arrow ZK pointing from the cooler 6 to the pump housing 14.
  • a coolant pump electric motor 26 is arranged in the coolant pump housing 14. Whose motor housing 28 is flowed around to cool the electric motor 26 from flowing past coolant.
  • the pump motor 26 drives a pump impeller 32 via a pump shaft 30.
  • the pump impeller 32, the pump shaft 30 and the pump motor 26 are arranged coaxially with the longitudinal axis X of the pump housing 14.
  • the coolant accelerated or circulated by the pump impeller 32 is conveyed away through a discharge nozzle 34 for the supply ZM of the coolant to the motor vehicle engine 10 symbolized with a further arrow.
  • the coolant pump 1 in addition to the impeller 32 on a likewise arranged in the discharge nozzle 34 stator 36.
  • a heating return 38 is shown, through which the supply ZH of the coolant from the heating circuit 12, symbolized in turn by an arrow, is possible for its circulation by the pump 1.
  • a continuously adjustable directional control valve 40 is integrated in the coolant pump housing 14.
  • the directional control valve can assume the position “bypass closed” or “supply from the radiator open” shown here in FIG. It can steplessly from this position on a position “bypass partially open” and “supply from the radiator partially open” (see Fig. 3) to a position “bypass open” or “supply from the radiator closed” (see FIG 4) and returned.
  • the suction nozzle 22 is arranged in an upstream region 42, which is located in the region of the end remote from the pump impeller 32 end 44 of the pump motor 26.
  • the bypass nozzle 24 is further arranged in a region 46 located downstream of the suction nozzle 22.
  • the discharge nozzle 34 is arranged in a region 48 located downstream of the bypass nozzle 24.
  • the jacket flow 50 is thereby bounded firstly on the one hand by the outer wall 52 of the pump motor housing 28 and on the other hand by the facing inner wall 54 of the pump housing 14 to form a flow channel 56.
  • the flow channel 56 is then radially outwardly through the outer wall 52 of the pump motor housing 28 facing inner wall or inner surface 60 of the directional valve 40 is limited, which adjoins the housing inner wall 54 in the flow direction in the region of the connection point of the two housing parts 16 and 18.
  • FIG. 2 The exemplary embodiment of a flow-cooled electric coolant pump 1 with integrated directional control valve 40 shown in longitudinal section in FIG. 2 is again shown in longitudinal section in FIGS. 3 and 4, FIG. 3 showing a partially open position of the directional control valve 40 and FIG Directional valve 40 shows in which the inlet of the radiator ZK closed and the inlet of the bypass ZB is fully open.
  • the mouth 62 is located between the pump impeller 32 and between the heating return 38 and the downstream end 64 of the flow channel 56th
  • the inlet ZB from the bypass circuit 8 and the inlet ZH from the heating circuit 12 are arranged in the same plane, coaxial to the Y-axis, opposite to the longitudinal axis X extending perpendicular to the image plane.
  • the corresponding nozzle can also be connected tangentially to the housing 14. This is primarily dependent on the available in the engine compartment for the pump 1 installation space and the position of the inlets and outlets.
  • the flow channel 56 delimited by the inner wall 54 of the pump housing 14 and / or by the inner wall 60 of the directional valve 40 on the one hand and on the other hand by the outer wall 52 of the pump motor 26 is annular in a particularly preferred embodiment or has an annular cross section.
  • a motor housing 28 annularly enclosing sheath flow 56 is defined, which flows past the pump motor 26 and this optimally cools.
  • the flow channel 56 has a cross section 66 which is constant in the flow direction. From the downstream end 64 of the flow channel 56 and from the downstream end 68 of the pump motor 26 to the pump impeller 32 is a continuous or continuous constriction of the prevailing at the end of the flow channel 56 diameter up to the inner diameter 70 of the discharge nozzle 34th
  • the directional control valve 40 is designed as a valve slide 72, which is displaceable in the longitudinal direction X of the coolant pump 1 and, in the variant represented here, is configured as a cylindrical sleeve.
  • the valve spool 72 is biased by a spring 73 or other suitable force-generating element so that in the event of valve control failure, the directional valve 40 is automatically transferred by the spring force of the spring 73 to a fail-safe position "inlet from the radiator open".
  • the valve spool 72 is used in addition to its valve function at the same time as an armature 74 of the valve spool 72 actuated Elektrostellmagneten 76.
  • the valve spool 72 is on its radially outer side by means of Rod seals 77 with Abstreiffunktion performed and against the housing. 14 or sealed against the other adjacent components.
  • the solenoid actuator 76 has the aforementioned armature 74 and a coil support 78 arranged in the pump housing 14, which surrounds the armature 74.
  • the armature 74 is formed in the manner of the cylindrical sleeve 72, that it is made of metal.
  • the sleeve 72 can also be made of plastic and have the armature 74 forming metallic sections.
  • the coil 80 is in turn surrounded by a radially outwardly of the coil 80 arranged iron yoke 82.
  • Radial inside is an arranged between the coil support 78 and the armature 74, annular trained further iron yoke 84 integrated with characteristic influencing.
  • the rod seals 77 are also arranged between the coil carrier 78 and the valve slide 72 formed as an armature 74, wherein a rod seal 77 connects directly to the iron yoke 84.
  • the valve spool 72 has a radially inwardly directed seal 86 in the region of the bypass nozzle 24.
  • the seal 86 may be formed as an elastomeric seal. Other seal materials are also usable.
  • the seal 86 closes in a closed position "Bypass closed" of the directional control valve 40 with its annular flat face 88, the surface normal parallel to the longitudinal axis X, sealingly seals against a correspondingly formed annular seal seat 90 of the pump housing 14.
  • the electric actuating magnet 76 has coil contacts 96 oriented in the longitudinal direction X or parallel to the X-axis. These coil contacts 96 correlate with corresponding contacts 98 of an integrated electronic component in the housing part 18, such as a control device 100, a CPU or the like, so that the control device 100 and the Elektrostellmagnet 76 directly during assembly of the two housing parts 16 and 18 without further action can be brought into contact.
  • an amplifier unit 102 is further accommodated. This can be connected from the outside by a plug 104 to corresponding control circuits.
  • FIG. 6 The exemplary embodiment of a coolant pump 1 illustrated in FIGS. 2 to 5 is illustrated in FIG. 6 in a three-dimensional view for a better understanding of the spatial allocation of the connecting piece or components.
  • FIGS. 7 and 8 show a further exemplary embodiment of a coolant pump 1.
  • the same or equivalent components are provided with the same reference numerals, as used in Fig. 2 to 5 used.
  • the coolant pump 1 shown in FIG. 7 has, in addition to the drive of the pump impeller 32 in addition to the coolant electric motor 26, a drive wheel 106 arranged outside the pump housing 14.
  • the drive gear 106 is aligned coaxially with the pump shaft 30 and mechanically couplable to the pump shaft 30 via a freewheel 108.
  • the pump shaft 30 has an additional one Bearing 110 in the right-hand end of the housing part 18 in this illustration.
  • the impeller 32 can be driven in addition to the electric motor 26 from the outside, for example via a belt or a pinion.
  • the coolant pump 1 can be driven primarily mechanically via the example formed as a pulley drive wheel 106.
  • the drive wheel 106 is decoupled via the freewheel 110 from the pump shaft 30 for this purpose.
  • the drive wheel 106 At standstill and at low speeds of the internal combustion engine, for example, takes a low-cost electric motor pump drive at a constant speed. At higher speeds of the internal combustion engine, the drive wheel 106 overtakes the electric motor.
  • This pump variant can also be used in electrical systems with low electrical power. It represents a cost-effective alternative to expensive brushless drive motors. A pumping capacity is ensured even in the event of a failure of the electric motor.
  • FIG. 8 The variant of the coolant pump 1 shown in longitudinal section in FIG. 7 is illustrated in FIG. 8 in a three-dimensional view for a better understanding of the spatial allocation of the components.
  • FIGS. 9 to 11 show a further variant of a coolant pump 1.
  • the further variant of a coolant pump 1 shown in FIG. 9 in longitudinal section and in FIG. 10 in an enlarged detail and in FIG. 11 in three-dimensional view corresponds structurally essentially to the coolant pump 1 discussed in FIGS. 1 to 6 or equivalent components are provided for simplicity with the same reference numerals.
  • FIGS. 9 to 11 of a drive of the directional control valve 40 via an expansion element 112 makes use of the volume change of the expansion element 112 as a function of the temperature prevailing in the pressure connection 34 of the coolant mixture flowing therethrough.
  • expansion element 112 comes in the variant shown here, for example, wax used.
  • the wax used here has a melting point at about 85 ° C.
  • the wax is present as wax element 112 solidified in the cold state.
  • the wax element 112 is spatially close to the pump outlet or the discharge port 34 or adjacent. It learns by the demarcation against the passing coolant flowing metallic inner shell 114 any temperature change in the coolant flowing to the engine ZM directly. Temperature influences from the outside are prevented by the insulating effect of the pump housing 14 made of plastic.
  • the resulting change in volume is transmitted via a membrane 116 to a stored in a reservoir 118 transmission medium or coolant 120.
  • the coolant 120 may be, for example, a water / glycol mixture.
  • the spiral spring 73 shown in the embodiments of FIGS. 1 to 8, which provided there to ensure a fail-safe position of the directional valve 40 is now used to achieve a closing function in the directional control valve variant shown here, and no longer used to create a fail-safe position.
  • the valve spool 72 is in the relaxed state of the spring 127 in a position "bypass open” or "cooler inlet closed” before. Accordingly, heating the expansion element 112 made in wax and the resulting volume expansion of the wax leads to a curvature of the membrane 116 and thus to a change in the volume of the reservoir 118, which ultimately results in a displacement of coolant 120 from the reservoir 118 into the cylinder chamber 126.
  • the drive of the directional control valve 40 via an expansion element 112 offers the additional advantage over an electromagnetic drive that considerable weight can be saved.
  • a drive of the directional control valve 40 via an electromagnet 76 as illustrated in Figures 1 to 8, means additional weight by the electromagnet 76.
  • the light expansion element 112 in conjunction with the designed for a hydraulic drive valve slide 72 its weight and partially also play some cost advantages.
  • expansion element 112 not shown here cooling and / or heating elements. This can, possibly using the existing control device or CPU 100, corresponding temperature sensors and possibly control circuits or the like, active on the volume expansion of the expansion element 112 to adjust, if necessary, other control states of the directional valve 40, than those that would arise by itself.
  • the coolant 120 can be introduced into the storage chamber 118 or into the system by means of a filling opening 130 which can be closed by a screw plug 128.
  • the running in wax expansion element 112 is so dimensionally stable in a cold state that it can be installed as a finished component when assembling the pump 1 with the same.
  • Sealing rings 132 or the like serve to seal the valve spool 72 against the housing 14.
  • FIG. 10 shows particularly clearly how the spring 127 forms a force pair with the expansion element 112 via the transmission medium 120 and generates a permanent counterforce to the expansion element 112.
  • the expansion element 112 commercial wax wax can be used.
  • the transfer medium or coolant 120 may be a water / glycol mixture.
  • the filled with coolant 120 storage space 118, connecting lines 122 and 124 and cylinder chamber 126 formed hydraulic system 134 is filled bubble-free with overpressure during assembly of the coolant pump.
  • the expansion element 112 formed of wax is inserted during assembly of the pump 1 in the housing 14, in the space 136 of the metallic cylinder jacket 114, which limits the radial clearance of the impeller 32 and the inner wall of the elastomeric membrane 116, that is hermetically delimited.
  • the wax has a melting point of about 85 ° C. Influence of the wax 112 is possible in principle via a heating and / or a cooling element.
  • FIG. 11 The variant of the coolant pump 1 shown in longitudinal section in FIG. 9 and in an enlarged partial section in FIG. 10 is illustrated in FIG. 11 in a three-dimensional view for a better understanding of the spatial allocation of the components.
  • the structural design of the wax element is matched to the structural conditions of the coolant pump.
  • the with the expansion element ultimately hydraulically driven directional control valve acts advantageously similar to an electrically adjustable thermostat.
  • a map-controlled thermostat is a component that has a positive influence on the fuel consumption and the reduction of the emission.
  • Conventional thermostats are set to a fixed opening temperature that can not be changed.
  • an electrically controllable map thermostat the opening temperature of a valve can be varied depending on various parameters, e.g. Load, rotational speed, ignition angle, outside temperature, engine oil temperature, driving speed, etc.
  • the wax element may optionally be additionally heated or cooled.
  • a non-illustrated rod heater can be used. This takes over the heating of the wax element while it is in direct contact with the wax.
  • the heating of the rod heater can be done for example via a coiled on a ceramic body resistance wire.
  • Unheated so that the thus formed thermostat can be set for example to a temperature of 110 ° C. By heating the temperature can be lowered, for example, to about 70 ° C. The full opening temperature is thus reached at 15 ° C above the normal opening temperature.
  • the reaction time of the thermostat can be influenced by heating power, immersion depth of the rod heater in the wax element, and the surface design of the wax element.
  • an electronics unit was developed by the applicant. This makes it possible to process all input variables used in engine management.
  • the required outputs for example via appropriate control circuits, the control device or CPU 100 or the like, are subsequently activated.
  • the links are freely programmable depending on the internal combustion engine.
  • the program can then be stored, for example, in the engine electronics of the respective internal combustion engine. A separate electronics is not required.
  • the present invention provides for the first time a coolant pump for a coolant circuit of an automotive internal combustion engine having at least one radiator circuit and a bypass circuit.
  • the coolant pump housing has a suction nozzle, a bypass nozzle and a discharge nozzle, and arranged in the coolant pump housing coolant pump electric motor, the motor housing is flowed around by the coolant, and drives a pump impeller via a pump shaft, as well as an integrated in the coolant pump housing directional control valve.
  • the suction nozzle is for the first time arranged in the region of the pump impeller facing away from the end of the pump motor.
  • the bypass nozzle is further arranged in a region downstream of the suction nozzle.
  • the discharge nozzle is arranged in a region downstream of the bypass nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Multiple-Way Valves (AREA)

Abstract

A coolant pump and method thereof for a coolant circuit of the internal combustion engine of a motor vehicle including at least a radiator circuit and a bypass circuit is disclosed. The coolant pump contains a coolant pump housing ( 14 ) which is provided with an intake pipe ( 22 ), a bypass pipe ( 24 ), and a pressure pipe ( 34 ). A coolant pump electric motor ( 26 ) is arranged in the coolant pump housing ( 14 ), the motor housing ( 28 ) of which is situated in the coolant flow, drives a pump impeller ( 32 ) via a pump shaft ( 30 ). A directional control valve ( 40 ) is integrated into the coolant pump housing ( 14 ). The intake pipe ( 22 ) is arranged in the area of the end of the pump motor facing away from the pump impeller ( 32 ). Furthermore the bypass pipe is arranged in an area downstream of the intake pipe ( 22 ).The pressure pipe ( 34 ) is arranged in an area downstream of the bypass pipe ( 24 ). Only the coolant that can be taken in by the radiator via the intake pipe is adapted to be guided past the pump motor in a peripheral flow ( 50 ) in particular through a flow channel ( 56 ) limited by the outer wall ( 52 ) of the pump motor housing ( 28 ) and the facing inner wall ( 54 ) of the pump housing and/or the facing inner wall ( 60 ) of the directional control valve ( 40 ).

Description

Die vorliegende Erfindung betrifft eine Kühlmittelpumpe nach dem Oberbegriff des Anspruchs 1, sowie ein Verfahren hierfür nach dem Oberbegriff des Anspruchs 22.The present invention relates to a coolant pump according to the preamble of claim 1, and a method for this according to the preamble of claim 22.

Jüngste Untersuchungen zum Kraftstoffverbrauch von Kraftfahrzeugverbrennungsmotoren zeigen, daß ein konsequent durchgeführtes Thermomanagement bei einem modernen Kraftfahrzeugverbrennungsmotor eine Kraftstoffeinsparung von etwa 3 bis 5 % bringen kann. Das Thermomanagement bezeichnet dabei jene Maßnahmen, die zum energetisch und thermomechanisch optimalen Betrieb eines Verbrennungsmotors führen. Hierfür ist eine aktive Steuerung der Wärmeströme und damit der Temperaturverteilung im Motor erforderlich.Recent studies on the fuel consumption of automotive internal combustion engines show that consistent thermal management in a modern automotive internal combustion engine can provide fuel savings of about 3 to 5%. The thermal management refers to those measures that lead to the energetically and thermo-mechanically optimal operation of an internal combustion engine. For this purpose, an active control of the heat flows and thus the temperature distribution in the engine is required.

Damit wird auch eine präzise Regelung des Kühlmitteldurchsatzes und der Temperatur des durchgesetzten Kühlmittels erforderlich. Dementsprechend werden anstatt der herkömmlichen, starr an die Motorendrehzahl gekoppelten Kühlmittelpumpen verstärkt Kühlmittelpumpen genutzt, deren Drehzahl variabel und damit deren Förderleistung regelbar ist.Thus, a precise control of the coolant flow rate and the temperature of the enforced coolant is required. Accordingly, coolant pumps are increasingly used instead of the conventional, rigidly coupled to the engine speed coolant pumps whose speed is variable and thus the flow rate is adjustable.

Hierfür hat die Anmelderin bereits eine beispielhafte elektrische Kühlmittelpumpe in der Anmeldung DE 100 47 387 diskutiert. Diese bewährte elektrische Kühlmittelpumpe ist von der Anmelderin konsequent weiterentwickelt worden. Eine darauf aufbauende, verbesserte elektrische Kühlmittelpumpe mit integriertem Wegeventil ist in der DE 102 07 653 beschrieben.For this purpose, the applicant already has an exemplary electric coolant pump in the application DE 100 47 387 discussed. This proven electric coolant pump has been developed consistently by the applicant. An ensuing, improved electric coolant pump with integrated directional control valve is in the DE 102 07 653 described.

Die dort diskutierte elektrische Kühlmittelpumpe mit integriertem Wegeventil weist ein Kühlmittelpumpengehäuse auf, das über einen Saugstutzen für den Zulauf vom Kühler, einen Bypass-Stutzen für den Zulauf vom Bypass-Kreis und einen Druckstutzen für die Zufuhr bzw. Rückführung des Kühlmittels zum Kraftfahrzeugmotor verfügt. Im Kühlmittelpumpengehäuse ist ein Kühlmittelpumpenelektromotor angeordnet, dessen Motorgehäuse vom umgewälzten Kühlmittel umströmt ist. Der Pumpenmotor treibt über eine Pumpenwelle ein Pumpenlaufrad an, zur Umwälzung des Kühlmittels. Saugstutzen und Bypass-Stutzen sind stromauf vor dem im Kühlmittelpumpengehäuse integrierten Wegeventil im Zulauf zur Pumpe integriert, so daß bei geöffnetem Wegeventil eine Mischung aus vom Kühler kommenden kühlerem Kühlmittel und direkt vom Kraftfahrzeugmotor kommenden erhitzten Kühlmittel vom Pumpenlaufrad angesaugt und am Pumpenmotor vorbei zum stromab liegenden Druckstutzen für die Zufuhr bzw. Rückführung dieses Kühlmittelgemisches zum Kraftfahrzeugmotor erfolgt.The discussed there electrical coolant pump with integrated directional control valve has a coolant pump housing, which has a suction nozzle for the inlet from the radiator, a bypass nozzle for the inlet of the bypass circuit and a discharge nozzle for the supply or return of the coolant to the vehicle engine. In the coolant pump housing, a coolant pump electric motor is arranged, the motor housing is flowed around by the circulated coolant. The pump motor drives a pump impeller via a pump shaft to circulate the coolant. Suction nozzle and bypass nozzle upstream of the integrated in the coolant pump directional control valve in the inlet to the pump are integrated so that when open directional control valve, a mixture of cooler coolant coming from the radiator and directly coming from the motor vehicle heated coolant sucked by the pump impeller and the pump motor over to the downstream pressure nozzle for the supply or return of this coolant mixture to the motor vehicle engine.

Wenngleich sich diese elektrische Kühlmittelpumpe mit integriertem Wegeventil bereits bewährt hat, zeigten jüngste Untersuchungen der Anmelderin, daß die in der Kühlmittelpumpe verbauten elektrischen und/oder elektronischen Komponenten trotz der Umströmung des Elektromotorgehäuses mit dem umgewälzten Kühlmittelgemisch zumindest zeitweilig einer extrem hohen Wärmebelastung ausgesetzt sein können.Although this electric coolant pump with integrated directional control valve has already proven itself, recent investigations by the applicant showed that the electrical and / or electronic components installed in the coolant pump can at least temporarily be exposed to an extremely high heat load despite the flow around the electric motor housing with the circulated coolant mixture.

So beträgt beispielsweise die maximale Temperatur des vom Kühler gekühlten, an dessen Ausgang anstehenden und von dort zur Pumpe strömenden Kühlmittels 113°C. Dieser gewünschte obere Wert ist von der Automobilbranche für die Auslegung von Kraftfahrzeugkühlern festgelegt worden. Damit soll sichergestellt sein, daß beim Betrieb eines Kraftfahrzeuges selbst in extrem heißen Gegenden, wie beispielsweise in der Wüste, gekühltes Kühlmittel für den Kraftfahrzeugmotor in einem Temperaturbereich zur Verfügung steht, das mit einer maximalen Eingangstemperatur von 113°C dem Motor zugeführt, mit einer verbleibenden Temperaturspanne von wenigstens 7°C bis 17°C bis zu einem maximal für herkömmliche Kühlmittel erlaubten oberen Grenzwert von 120°C bis höchstens 130°C noch ausreichend Wärme vom Verbrennungsmotor aufnehmen und zum Kühler abführen kann.For example, the maximum temperature of the cooled by the radiator, pending at the output and from there to the pump coolant flowing 113 ° C. This desired upper value has been set by the automotive industry for the design of automotive radiators. This is to ensure that when operating a motor vehicle, even in extremely hot areas, such as in the desert, cooled coolant for the motor vehicle engine is available in a temperature range available with a maximum Input temperature of 113 ° C supplied to the engine, with a remaining temperature range of at least 7 ° C to 17 ° C to a maximum allowed for conventional coolant upper limit of 120 ° C to at most 130 ° C still sufficient heat from the engine and take to the radiator can dissipate.

Dementsprechend kann die Temperatur des vom Motor weggeführten Kühlmittels leicht 120°C oder in ungünstigen Fällen auch mehr, also bis zu 130°C erreichen.Accordingly, the temperature of the coolant carried away from the engine can easily reach 120 ° C or, in unfavorable cases, more, ie up to 130 ° C.

Ferner ist bei modernen Verbrennungsmotoren ein Kurzschlußkreis bzw. Bypass-Kreis vorgesehen, mit dem erwärmtes Kühlmittel vom Motor kommend über die Kühlmittelpumpe direkt zum Motor zurückgeführt werden kann. Damit soll beispielsweise beim Kaltstart die Anwärmphase des Motors insgesamt verkürzt, ein rascher Warmlauf des Zylinderrohrs nach dem Kaltstart erreicht und eine Regelung der tribologisch optimalen Temperatur ermöglicht werden.Further, in modern internal combustion engines, a short circuit or bypass circuit is provided, can be returned to the heated coolant from the engine coming via the coolant pump directly to the engine. Thus, for example, during the cold start the Anwärmphase the engine shortened overall, achieved a rapid warm-up of the cylinder tube after the cold start and a control of the tribologically optimum temperature are possible.

Die Kühlmittelpumpen verbauten elektronischen wie auch elektrischen Bauteile, wie beispielsweise der Elektromotor, der das Pumpenlaufrad antreibt oder die elektronischen Bausteine, Sensoren, Wandler oder Regelkreise, die eine Steuerung und/oder Regelung der Motordrehzahl, der Pumpenleistung, der Ventilstellung oder weiterer Funktionen erlauben, weisen eine begrenzte Temperaturverträglichkeit auf und sind damit nicht unbegrenzt hohen Temperaturen aussetzbar. Zu einem vernünftigen Preis bezahlbare, im Kraftfahrzeugbau zugelassene und in ausreichenden Stückzahlen verfügbare Bauteile können teilweise maximal nur bis 120°C betrieben werden. Darüber droht der rasche Hitzetod solcher elektrischer und/oder elektronischer Bauteile. Demzufolge ist beispielsweise bei einer Umwälzung des möglicherweise auf bis zu 130°C erhitzen Kühlmittels des Bypass-Kreises durch die Kühlmittelpumpe nicht auszuschließen, daß die elektrischen und/oder elektronischen Bauteile der Kühlmittelpumpe einer Wärmebelastung ausgesetzt werden, die zu einem Versagen dieser Bauteile führt.The coolant pump installed electronic as well as electrical components, such as the electric motor that drives the pump impeller or the electronic components, sensors, transducers or control loops that allow control and / or regulation of the engine speed, the pump power, the valve position or other functions point a limited temperature compatibility and are therefore not infinitely high temperatures exposable. At a reasonable price affordable, approved in the automotive industry and available in sufficient quantities components can be operated in some cases only a maximum of 120 ° C. Above threatens the rapid heat death of such electrical and / or electronic components. Accordingly, for example, in a circulation of possibly up to 130 ° C heated coolant of the bypass circuit by the coolant pump can not be ruled out that the electrical and / or electronic components of the coolant pump are exposed to a heat load, which leads to failure of these components.

Nicht zuletzt sind die beiden Schaltstellungen eines 3/2-Wege-Ventils, wie beispielsweise bei der in der DE 102 07 653 diskutierten elektrischen Kühlmittelpumpe, von der Automobilindustrie für umfangreichere Anwendungsfälle teilweise als nicht ausreichend betrachtet worden.Last but not least, the two switching positions of a 3/2-way valve, such as in the in the DE 102 07 653 The electric coolant pump discussed by the automotive industry has sometimes been considered insufficient for more extensive applications.

Dementsprechend ist es Aufgabe der vorliegenden Erfindung, unter Vermeidung vorstehend genannter Nachteile, eine strömungsgekühlte elektrische Kühlmittelpumpe mit integriertem Wegeventil vorzuschlagen, bei der keine Gefahr einer Überhitzung der darin verbauten elektronischen und/oder elektrischen Bauteile besteht. Weiterhin ist es Aufgabe der vorliegenden Erfindung, ein hierfür geeignetes Verfahren anzugeben.Accordingly, it is an object of the present invention, while avoiding the aforementioned disadvantages, to propose a flow-cooled electric coolant pump with integrated directional control valve, in which there is no risk of overheating of the electronic and / or electrical components installed therein. It is another object of the present invention to provide a method suitable for this purpose.

Diese Aufgabe wird in vorrichtungstechnischer Hinsicht gelöst durch die Merkmale des Anspruchs 1, sowie in verfahrenstechnischer Hinsicht durch die Merkmale des Anspruchs 22.This object is achieved in device-technical terms by the features of claim 1, and in procedural terms by the features of claim 22nd

Dabei wird - ausgehend von der in der DE 102 07 653 beschriebenen elektrischen Kühlmittelpumpe mit integriertem Wegeventil - eine weiterentwickelte Kühlmittelpumpe dieser Art vorgeschlagen. Die neu vorgeschlagene Kühlmittelpumpe für einen Kühlmittelkreislauf eines Kraftfahrzeugverbrennungsmotors, der zumindest einen Kühlerkreis und einen Bypass-Kreis aufweist, verfügt über ein Kühlmittelpumpengehäuse, das einen Saugstutzen für den Zulauf vom Kühler, einen Bypass-Stutzen für den Zulauf vom Bypass-Kreis und einen Druckstutzen für die Zufuhr des Kühlmittels vom Kraftfahrzeugmotor aufweist. Weiterhin verfügt die Kühlmittelpumpe über einen im Kühlmittelpumpengehäuse angeordneten Kühlmittelpumpenelektromotor, dessen Motorgehäuse vom Kühlmittel umströmt ist, und der über eine Pumpenwelle ein Pumpenlaufrad antreibt. Ferner weist die Kühlmittelpumpe ein im Kühlmittelpumpengehäuse integriertes Wegeventil auf.It is - starting from the in the DE 102 07 653 described electric coolant pump with integrated directional valve - an advanced coolant pump of this type proposed. The newly proposed coolant pump for a coolant circuit of a motor vehicle internal combustion engine, which has at least one radiator circuit and a bypass circuit, has a coolant pump housing having a suction port for the inlet from the radiator, a bypass port for the inlet of the bypass circuit and a pressure port for having the supply of the coolant from the motor vehicle engine. Furthermore, the coolant pump has a coolant pump housing arranged in the coolant pump housing, the motor housing flows around the coolant is, and drives a pump impeller via a pump shaft. Furthermore, the coolant pump has a directional control valve integrated in the coolant pump housing.

Dabei wird erstmals vorgeschlagen, daß der Saugstutzen im Bereich des vom Pumpenlaufrad abgewandten Endes des Pumpenmotors angeordnet ist. Weiterhin wird erstmals vorgeschlagen, daß der Bypass-Stutzen in einem stromab vom Saugstutzen liegenden Bereich, insbesondere nach dem Pumpenmotor, angeordnet ist. Ferner wird vorgeschlagen, daß der Druckstutzen in einem stromab vom Bypass-Stutzen liegenden Bereich, insbesondere nach dem oder in einem Bereich um das Pumpenlaufrad, angeordnet ist, schließlich wird erstmals vorgeschlagen, daß lediglich das Kühlmittel, welches durch den Saugstutzen für den Zulauf direkt vom Kühler ansaugbar ist, in einer Mantelströmung - durch einen, vorzugsweise von der Außenwand des Pumpenmotorgehäuses und der zugewandten Innenwand des Pumpengehäuses und/oder der zugewandten Innenwand des Wegeventils begrenzten, Strömungskanal - am Pumpenmotor vorbeiführbar ist, so daß dieser als auch die sonstigen elektronischen und/oder elektrischen Bauteile damit optimal gekühlt werden können.It is proposed for the first time that the suction nozzle is arranged in the region of the pump impeller facing away from the end of the pump motor. Furthermore, it is proposed for the first time that the bypass nozzle is arranged in a region downstream of the suction nozzle, in particular after the pump motor. It is also proposed that the discharge nozzle in a region lying downstream of the bypass nozzle, in particular after or in an area around the pump impeller, is arranged, finally, it is proposed for the first time that only the coolant, which through the suction nozzle for the inlet directly from Cooler can be sucked, in a sheath flow - by a, preferably from the outer wall of the pump motor housing and the facing inner wall of the pump housing and / or the facing inner wall of the directional valve limited flow channel - is fed past the pump motor, so that this and the other electronic and / or or electrical components can be optimally cooled.

Bei der erfindungsgemäßen Kühlmittelpumpe wird im Gegensatz zu bekannten elektrischen Kühlmittelpumpen mit integriertem Wegeventil erstmals die Strömungsrichtung durch die Pumpe umgekehrt, d. h. das vom Kühler kommende gekühlte Kühlmittel, insbesondere ein flüssiges Kühlmittel auf der Basis von Wasser, wird der Pumpe sozusagen von hinten zugeführt. Damit strömt das kalte, vom Kühler kommende Kühlmittel zuerst am Pumpenmotor vorbei, nimmt dessen Abwärme auf und kühlt diesen damit auf zulässige Betriebstemperaturen herunter, die vom Elektromotor problemlos verträglich sind, bevor das vom Kühler kommende Kühlmittel gegebenenfalls mit dem vom Bypass-Kreis zugeführten heißen Kühlmittel gemischt und diese Kühlmittel-Mischung durch das Pumpenlaufrad beschleunigt bzw. umgewälzt durch den Druckstutzen zum Kraftfahrzeugmotor ab- bzw. zurückgeführt wird.In the case of the coolant pump according to the invention, in contrast to known electric coolant pumps with integrated directional valve, the direction of flow through the pump is reversed for the first time, ie the cooled coolant coming from the radiator, in particular a liquid coolant based on water, is supplied to the pump from the rear, so to speak. Thus, the cold, coming from the radiator coolant first flows past the pump motor, absorbs its waste heat and cools it down to allowable operating temperatures that are easily tolerated by the electric motor, before coming from the radiator coolant optionally with the supplied from the bypass circuit hot coolant mixed and this coolant mixture accelerated by the pump impeller or circulated through the discharge port to the vehicle engine off or is returned.

Damit können in vorteilhafter Weise elektronische Komponenten und/oder elektrische Bauteile in der Kühlmittelpumpe Verwendung finden, deren Temperaturverträglichkeit in einem Grenzbereich von etwa 115 °C bis 120°C endet. Denn aufgrund der maximalen Temperatur des vom Kühler kommenden Kühlmittels von 113 °C ist eine Überhitzung dieser Bauteile und/oder Komponenten erstmals grundsätzlich ausgeschlossen.In this way, electronic components and / or electrical components in the coolant pump can advantageously be used whose temperature compatibility ends in a border region of approximately 115.degree. C. to 120.degree. Because of the maximum temperature of the coolant coming from the cooler of 113 ° C overheating of these components and / or components is excluded for the first time in principle.

Damit ist selbst beim Betrieb eines Kraftfahrzeuges in heißen Gegenden, wie beispielsweise in der Wüste, aufgrund der von der Kraftfahrzeugindustrie festgelegten maximalen Kühlertemperatur eine ausreichende Wärmeabfuhr vom Kraftfahrzeugmotor gewährleistet, ohne in der Kühlmittelpumpe ein Überschreiten der für manche Bauteile kritischen Temperaturgrenze von 120 °C befürchten zu müssen, so daß es letztendlich in vorteilhafter Weise möglich ist, für die elektrische Kühlmittelpumpe sogar elektronische Bauteile oder elektrische Komponenten vorzusehen, bei denen nicht erst bei 120 °C der Hitzetod droht, sondern die beispielsweise lediglich bis maximal 115 °C zuverlässig betreibbar sind. Damit können wesentlich günstigere elektronische Bauteile verbaut werden.Thus, even when operating a motor vehicle in hot areas, such as in the desert, due to the set by the automotive industry maximum radiator temperature sufficient heat dissipation guaranteed by the motor vehicle engine, without fear in the coolant pump exceeding the critical for some components temperature limit of 120 ° C. must, so that it is ultimately possible in an advantageous manner, even for the electric coolant pump to provide electronic components or electrical components in which not only at 120 ° C, the heat death threatens, but for example, only up to 115 ° C are reliably operated. This can be installed much cheaper electronic components.

Die erfindungsgemäße Kühlmittelpumpe zeichnet sich zudem durch deren verbesserte Robustheit, einen erweiterten Einsatzbereich und deutlich reduzierte Herstellungskosten aus. Die erfindungsgemäße strömungs- bzw. kühlmittelgekühlte elektrische Kühlmittelpumpe ist im Vergleich zu auf den Markt befindlichen, bekannten Lösungen eine preiswerte und besonders zuverlässige Alternative.The coolant pump according to the invention is also distinguished by its improved robustness, an extended field of application and significantly reduced production costs. The flow or coolant-cooled electric coolant pump according to the invention is an inexpensive and particularly reliable alternative to known solutions on the market.

Weiterhin können erstmals größere bzw. leistungsstärkere Elektromotoren zur Anwendung kommen. Diese produzieren zwar häufig eine höhere Wärmelast, welche jedoch aufgrund der erfindungsgemäß immer am Elektromotor verfügbaren kühlen Kühlmittelmenge problemlos abgeführt werden kann. Die bislang im Kraftfahrzeug-Kühlmittelpumpenbau als unüberwindbar eingeschätzte Leistungsgrenze mit einer maximalen Leistungsaufnahme von 500 Watt bei einer Batteriespannung von 12 Volt bedeutet somit erstmals keine unüberwindbare Barriere mehr.Furthermore, larger or more powerful electric motors can be used for the first time. Although these often produce a higher heat load, which, however, can be removed easily due to the invention according to the invention always available on the electric motor cool coolant. The hitherto estimated in motor vehicle coolant pump construction as insurmountable power limit with a maximum power consumption of 500 watts at a battery voltage of 12 volts thus means for the first time no insurmountable barrier more.

Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Merkmalen der Unteransprüche.Advantageous developments of the invention will become apparent from the features of the dependent claims.

In einer bevorzugten Ausführungsform ist vorgesehen, daß dem vom Kühlerkreis kommenden Kühlmittel das durch den Bypass-Stutzen ansaugbare Kühlmittel des Bypass-Kreises nach dem Pumpenmotor durch das Wegeventil zumischbar ist. Hierfür ist eine mit dem Wegeventil öffnenbare und wieder verschließbare Mündung des Bypass-Stutzen in einem Bereich stromauf vor dem Pumpenlaufrad angeordnet, so daß das Kühlmittel-Gemisch aus vom Kühler kommenden gekühltem Kühlmittel und vom Bypass kommenden erhitzten Kühlmittel gemeinsam vom Pumpenlaufrad beschleunigt bzw. umgewälzt werden kann. Dabei ist in einer weiter bevorzugten Ausführungsform vorgesehen, daß die Mündung des Wegeventil in einem Bereich zwischen dem Pumpenlaufrad und dem stromab liegenden Ende des Strömungskanals liegt.In a preferred embodiment, it is provided that the coolant coming from the radiator circuit can be mixed with the coolant of the bypass circuit that can be sucked in by the bypass stub after the pump motor through the directional control valve. For this purpose, openable with the directional control valve and re-closable mouth of the bypass nozzle in an area upstream of the pump impeller is arranged so that the coolant mixture coming from the radiator cooled coolant and coming from the bypass heated coolant is accelerated or circulated together by the pump impeller can. It is provided in a further preferred embodiment that the mouth of the directional control valve is located in a region between the pump impeller and the downstream end of the flow channel.

Damit ist sichergestellt, daß das vom Kühler kommende gekühlte Kühlmittel unverfälscht bzw. unvermischt vollständig dem Pumpenmotor zu dessen Kühlung und gegebenenfalls auch noch zur Kühlung von im Bereich des Pumpenmotors angeordneten weiteren elektrischen und/oder elektronischen Bauteilen zur Verfügung steht. Zudem ist weiterhin sichergestellt, daß ein Wärmeeintrag durch das vom Bypass-Kreis kommende erhitzte Kühlmittel in das vom Kühlerkreis kommende heruntergekühlte Kühlmittel erst nach dem Kühlmittelpumpenelektromotor erfolgt und somit eine gewünschte bzw. vom Motormanagement angeforderte Mischungstemperatur gezielt eingestellt bzw. geregelt werden kann, ohne eine optimale Kühlung des Pumpenmotors zu beeinträchtigen.This ensures that the cooled coolant coming from the radiator is completely or unmixed completely available to the pump motor for its cooling and optionally also for cooling further electrical and / or electronic components arranged in the region of the pump motor. In addition, it is further ensured that a heat input by the coming from the bypass circuit heated coolant in the coming from the radiator cooled down coolant only after the Kühlmittelpumpenelektromotor and thus a desired or requested by the engine management mixture temperature can be set or regulated targeted, without an optimal Affecting cooling of the pump motor.

In einer weiter bevorzugten Ausführungsform ist vorgesehen, daß der Pumpenmotor und die Pumpenwelle koaxial zur Längsachse des Pumpengehäuses angeordnet sind. Wenngleich konstruktive Alternativen vorstellbar sind, bei denen die Pumpenwelle koaxial zur Längsachse des Pumpenmotors angeordnet ist, diese Baugruppe jedoch asymmetrisch bzw. außermittig im Pumpengehäuse angeordnet wird, die möglicherweise zu Kostenvorteilen bei der Herstellung des Gehäuses führen können. Gleichwohl wird die konzentrische bzw. koaxiale Variante vorgezogen, da diese wesentlich einfacher baut, aufgrund der Symmetrien konstruktiv leichter realisierbar ist und strömungstechnisch die größten Vorteile bietet als auch vermutlich kostentechnisch die günstigste Lösung darstellt.In a further preferred embodiment it is provided that the pump motor and the pump shaft are arranged coaxially to the longitudinal axis of the pump housing. Although constructive alternatives are conceivable in which the pump shaft is arranged coaxially to the longitudinal axis of the pump motor, however, this assembly is arranged asymmetrically or eccentrically in the pump housing, which may possibly lead to cost advantages in the manufacture of the housing. Nevertheless, the concentric or coaxial variant is preferred because it builds much easier, due to the symmetries structurally easier to implement and fluidically provides the greatest benefits as well as probably the most cost-effective solution in terms of cost.

In einer weiter bevorzugten Ausführungsform ist vorgesehen, daß der Strömungskanal, der von der Außenwand des den Pumpenmotor umfassenden Motorgehäuses und der zugewandten Innenwand des Pumpengehäuses begrenzte ist, einen ringförmigen Querschnitt aufweist. Durch diesen ringförmigen Strömungskanal ist - beginnend vom Pumpenlaufrad abgewandten Ende des Pumpenmotors - Kühlmittel, das durch den Zulauf vom Kühler gekühlt ansaugbar ist, in einer das Motorgehäuse ringförmig umschließenden Mantelströmung am Pumpenmotor vorbeiführbar. Damit wird in vorteilhafter Weise die vom Elektromotor erzeugte Wärme rundum gleichmäßig abgeführt. Eine punktuell oder teilflächig auftretende Erhitzung oder gar sogenannte "hot spots" sind damit ausgeschlossen. Damit ist ein dauerhaft zuverlässiger Betrieb bei für den Pumpenmotor verträglichen Temperaturen sichergestellt.In a further preferred embodiment, it is provided that the flow channel, which is bounded by the outer wall of the motor housing comprising the pump motor and the facing inner wall of the pump housing, has an annular cross section. Through this annular flow channel is - starting from the pump impeller end remote from the pump motor - coolant, which is sucked cooled by the inlet from the radiator, in a ring surrounding the motor housing sheath flow on the pump motor vorbeiführbar. Thus, the heat generated by the electric motor is dissipated all around evenly in an advantageous manner. A point or partial surface occurring heating or even so-called "hot spots" are excluded. This ensures long-term reliable operation at temperatures compatible with the pump motor.

Entsprechend einer weiter bevorzugten Ausführungsform ist vorgesehen, daß der Strömungskanal einen in Strömungsrichtung konstanten Querschnitt aufweist. Dabei erfolgt vom stromabliegenden Ende des Pumpenmotors bis zum Pumpenlaufrad eine Einschnürung des am Ende des Strömungskanales vorherrschenden Durchmessers auf den Durchmesser des Druckstutzen. Somit ist eine strömungstechnisch besonders günstigste Variante angegeben. Das vom Kühler mit der Kühlmittelpumpe angesaugte kühle Kühlmittel kann ohne jeglichen Strömungsverlust bei gleichbleibendem Querschnitt am Pumpenmotor vorbeiströmen, diesen gleichzeitig optimal kühlen und dann durch die Einschnürung am Ende des Strömungskanales hindurch, vom Pumpenlaufrad angesaugt bzw. beschleunigt dem Druckstutzen zugeführt werden, wobei hierdurch zugleich durch die Einschnürung eine Bündelung des gesamten Volumenstroms zum Pumpenlaufrad hin stattfindet und zudem eine strömungsmechanische Beschleunigung des Kühlmittels erfolgt. Ferner sind in vorteilhafter Weise Druckverluste vermieden sowie unerwünschte Turbulenzen ausgeschlossen.According to a further preferred embodiment, it is provided that the flow channel has a constant cross section in the flow direction. In this case, from the downstream end of the pump motor to the pump impeller, a constriction of the prevailing at the end of the flow channel diameter to the diameter of the discharge nozzle. Thus, a fluidically particularly favorable variant is specified. The cooler with the Coolant pump sucked cool coolant can flow past without any loss of flow at constant cross section of the pump motor, this optimally cool and then sucked through the constriction at the end of the flow channel, sucked by the pump impeller or fed to the discharge nozzle, thereby simultaneously through the constriction of a bundling of total volume flow to the pump impeller takes place and also takes place a fluidic acceleration of the coolant. Furthermore, pressure losses are avoided in an advantageous manner and unwanted turbulence is excluded.

In einer weiter bevorzugten Ausführungsform ist das Wegeventil stufenlos von einer geschlossenen Stellung "Bypass-geschlossen" in eine offene Stellung "Bypass-offen" umschaltbar.In a further preferred embodiment, the directional control valve is continuously switchable from a closed position "Bypass-closed" to an open position "Bypass-open".

Damit werden nicht nur die Vorzüge des bereits aus der DE 102 07 653 bekannten 3/2-Wege-Ventils genutzt, sondern diese Vorzüge werden um die stufenlose Regelbarkeit des Ventils erweitert. Damit kann jedes gewünschte bzw. vom Thermomanagement für den Kraftfahrzeugmotor angeforderte Temperaturmischungsverhältnis aus kühlem Kühlmittel und heißem Bypass-Kühlmittel eingestellt werden. Das Motormanagement bzw. das Thermomanagement des Kraftfahrzeugmotors kann damit aktiv optimale Betriebsbedingungen für den Motor einstellen.This will not only the benefits of already from the DE 102 07 653 used known 3/2-way valve, but these benefits are extended to the infinite controllability of the valve. Thus, any desired or required by the thermal management for the motor vehicle temperature mixing ratio of cool coolant and hot bypass coolant can be adjusted. The engine management or thermal management of the motor vehicle engine can thus actively set optimum operating conditions for the engine.

In einer weiter bevorzugten Ausführungsform ist das Wegeventil als ein in Längsrichtung der Kühlmittelpumpe verschieblicher Ventilschieber ausgebildet. In einer besonders bevorzugten Ausführungsform ist der Ventilschieber dabei als zylindrische Hülse ausgebildet. Diese kann beispielsweise aus Metall hergestellt sein. Alternativ ist es denkbar, den Ventilschieber auch aus Kunststoff oder dergleichen zu bilden. Dabei können Kunststoffe zum Einsatz gelangen, die beispielsweise auch für die Herstellung des Kühlmittelpumperigehäuses herangezogen werden.In a further preferred embodiment, the directional control valve is designed as a valve slide which is displaceable in the longitudinal direction of the coolant pump. In a particularly preferred embodiment, the valve slide is designed as a cylindrical sleeve. This can be made for example of metal. Alternatively, it is conceivable to form the valve slide also made of plastic or the like. In this case, plastics can be used, for example also be used for the production of Kühlmittelpumperigehäuses.

Das Kühlmittelpumpengehäuse wie der Ventilschieber können beispielsweise im Kunststoff-Spritzgußverfahren besonders günstig hergestellt werden. Eine Nachbearbeitung dieser Bauteile ist dabei in vorteilhafter Weise nicht notwendig.The coolant pump housing as the valve spool can be made particularly low, for example, in the plastic injection molding process. A reworking of these components is not necessary in an advantageous manner.

Das mit einem Ventilschieber ausgestattete Wegeventil bietet den weiteren Vorteil einer Fail-Safe-Stellung, so daß der Kühlerzugang im Versagensfall des Ventils auf jeden Fall offen ist. Zudem zeichnet es sich durch einen möglichst geringen, im Idealfall gegen Null gehenden Differenzdruck aus. Am Ventilschieber tritt somit weiterhin vorteilhaft kein Druckabfall auf, was letztendlich dazu führt, daß zum Schalten bzw. Betätigen des Ventils bereits eine sehr geringe Schaltleistung genügt.The equipped with a valve spool valve has the further advantage of a fail-safe position, so that the radiator access in case of failure of the valve is open in any case. In addition, it is characterized by the lowest possible, ideally going to zero differential pressure. At the valve spool thus continues to occur advantageously no pressure drop, which ultimately leads to the fact that for switching or actuation of the valve already meets a very low switching capacity.

Dieser positive Effekt wird noch dadurch verstärkt, daß der Ventilschieber aufgrund der zur Hauptstömungsrichtung des vom Kühler kommenden, am Pumpenmotor und am Ventilschieber vorbei strömenden Kühlmittels parallel liegenden Bewegungsrichtung besonders geringe Reibungs- bzw. Bewegungsverluste aufweist.This positive effect is exacerbated by the fact that the valve slide due to the coming to the main flow direction of coming from the radiator, the pump motor and the valve spool flowing past coolant parallel movement direction has particularly low friction or movement losses.

Ein weiterer Vorteil des Ventilschiebers ist, daß dieser ohne jegliche Leckage ausgebildet werden kann. Demgegenüber ist bei Drehschieberventilen aufgrund der quer zur Hauptströmungsrichtung bewegten Teile eine Leckage nie gänzlich auszuschließen.Another advantage of the valve spool is that it can be formed without any leakage. In contrast, leakage is never completely ruled out with rotary valves due to the moving transversely to the main flow direction parts.

Darüber hinaus bietet die erfindungsgemäße Kühlmittelpumpe den weiteren Vorteil, daß eine geringe Pumpenförderleistung bereits zur Erzielung eines gewünschten Kühlmitteldurchsatzes ausreicht. Damit können auch Pumpenmotoren mit einer geringen elektrischen Leistungsaufnahme verwendet werden.In addition, the coolant pump according to the invention has the further advantage that a low pumping capacity already to achieve a desired Coolant flow rate is sufficient. This pump motors can be used with a low electrical power consumption.

Zudem bietet die erfindungsgemäße Kühlmittelpumpe den weiteren Vorteil, daß bei der Ventilstellung "Kühler offen" keine Reduzierung des maximalen Förderquerschnittes eintritt, so daß auch aus diesem Grund eine geringe Förderleistung für die Umwälzung des Kühlmittels genügt, so daß die elektrische Pumpe auch deshalb mit einer im Vergleich zu handelsüblichen elektrischen Pumpen geringeren Leistungsaufnahme hergestellt werden kann.In addition, the coolant pump according to the invention has the further advantage that occurs in the valve position "radiator open" no reduction of the maximum flow cross-section, so that even for this reason a low flow rate for the circulation of the coolant is sufficient, so that the electric pump therefore also with an im Compared to commercial electric pumps lower power consumption can be produced.

In einer weiter bevorzugten Ausführungsform ist der Ventilschieber durch ein Stellglied, wie beispielsweise einen Elektro-Stellmagneten, ein Dehnstoffelement, ein hydrostatisches Druckelement oder dergleichen, kraftbetätigt verschiebbar. Derlei Stellglieder zeichnen sich durch eine sehr geringe Verschleißneigung aus, bieten eine hohe Lebensdauer bzw. besonders hohe Schaltzyklen und sind kostengünstig verfügbar. Zudem arbeiten solche Stellglieder äußerst zuverlässig und sind weitestgehend störungsunanfällig.In a further preferred embodiment, the valve spool is actuated by an actuator, such as an electric actuating magnet, a Dehnstoffelement, a hydrostatic pressure element or the like, displaced by force. Such actuators are characterized by a very low tendency to wear, offer a long service life and particularly high switching cycles and are available at low cost. In addition, such actuators work extremely reliable and are largely störungsunanfällig.

Einer weiter bevorzugten Ausführungsform zufolge weist der Ventilschieber im Bereich der Zufuhr des vom Bypass-Kreis durch den Bypass-Stutzen herangeführten Kühlmittels eine radial nach innen gerichtete Dichtung auf, die im geschlossenen Zustand des Wegeventils dessen Mündung durch einen gegen einen ringförmigen Dichtungssitz des Pumpengehäuses abdichtenden Ventilsitz verschließt.According to a further preferred embodiment, the valve spool has a radially inwardly directed seal in the region of the supply of the coolant introduced from the bypass loop through the bypass spigot, which in the closed state of the directional control valve its mouth by a valve seat sealing against an annular sealing seat of the pump housing closes.

Die Dichtung kann beispielsweise eine Elastomerdichtung sein. Die ringförmige Sitzauflage garantiert ein absolut dichtes Schließen. Sekundärleckagen sind ausgeschlossen. Eine Einschnürung der Verteilerwege, gleichgültig ob das Wegeventil nun in der Stellung "Bypass geschlossen" oder in der Stellung "Bypass offen" steht, ist selbst bei Zwischenstellungen ausgeschlossen. Damit ist eine besonders strömungsgünstige Ventilvariante angegeben. Zudem kann eine zylindrische Hülse besonders einfach in einem zylindrischen Gehäuse abgedichtet werden, so daß auch aus diesem Grund Sekundärleckagen ausgeschlossen sind.The seal may be, for example, an elastomeric seal. The ring-shaped seat support guarantees an absolutely tight closing. Secondary leaks are excluded. A constriction of the distribution paths, regardless of whether the directional control valve is now in the position "Bypass closed" or in the position "Bypass open" is excluded, even in intermediate positions. This is a special streamlined valve variant specified. In addition, a cylindrical sleeve can be particularly easily sealed in a cylindrical housing, so that secondary leaks are excluded for this reason.

Ein weiterer Vorteil des als zylindrische Hülse ausgebildeten Ventilschiebers ist dessen relativ einfache Kinematik, so daß eine Schaltbewegung in Längsrichtung problemlos realisierbar ist. Dies bietet den weiteren Vorteil, daß eine stufenlose Mischung von Bypass und Zulauf durch eine einfache lineare Bewegung, nämlich eine Längsverschiebung realisierbar wird, so daß ein direkter, insbesondere linearer, Zusammenhang zwischen Ventilstellung bzw. Mündungsöffnung und Mischungsverhältnis sowie aktueller Position des Ventilschiebers besteht, der dementsprechend regelungstechnisch einfach bzw. ohne besonderen Aufwand abgebildet werden kann.Another advantage of the formed as a cylindrical sleeve valve slide is its relatively simple kinematics, so that a switching movement in the longitudinal direction is easily implemented. This offers the further advantage that a continuous mixture of bypass and inlet by a simple linear movement, namely a longitudinal displacement is realized, so that a direct, in particular linear, relationship between valve position or orifice and mixing ratio and current position of the valve spool consists Accordingly, control technology can be displayed easily or without special effort.

In einer weiter bevorzugten Ausführungsform weist die radial nach innen weisende Oberfläche der Dichtung eine der gegenüberliegenden Kontur des Motorgehäuses entsprechende Kontur auf. Damit kann die Kühlmittelströmung optimal, insbesondere laminar, durch den hierbei ausgebildeten Strömungskanalabschnitt hindurch strömen. Strömungsverluste werden vermieden. Verwirbelungen sind ausgeschlossen.In a further preferred embodiment, the radially inwardly facing surface of the seal has a contour corresponding to the opposite contour of the motor housing. Thus, the coolant flow can flow optimally, in particular laminar, through the flow channel section formed in this case. Flow losses are avoided. Turbulence is excluded.

Entsprechend einer weiter bevorzugten Ausführungsform weist der Elektro-Stellmagnet des Ventilschiebers einen Anker auf, der von der zylindrischen Hülse des Ventilschiebers gebildet ist. Damit wird in vorteilhafter Weise der Ventilschieber doppelt genutzt. Zum einen ist er Bestandteil des Ventils und zum anderen ist er zugleich eine Komponente des Elektrostellmagneten. Dies hilft die Kosten weiter zu senken und erhöht die Zuverlässigkeit aufgrund der reduzierten Teilvielfalt. Dabei kann diese Doppelfunktion besonders günstig durch einen in Metall ausgeführten Ventilschieber bereit gestellt werden. Alternativ kann ein in Kunststoff ausgeführter Ventilschieber bereichsweise auch über metallische Abschnitte verfügen, die als Anker dienen.According to a further preferred embodiment, the solenoid actuating magnet of the valve slide has an armature which is formed by the cylindrical sleeve of the valve slide. Thus, the valve spool is used twice in an advantageous manner. On the one hand it is part of the valve and on the other hand it is at the same time a component of the solenoid solenoid. This helps to further reduce costs and increases reliability due to the reduced variety of parts. In this case, this dual function can be provided particularly favorable by a metal valve slide valve. Alternatively, an in Plastic executed valve spool area also have metallic sections that serve as anchors.

Dementsprechend ist in einer weiter bevorzugten Ausführungsform vorgesehen, daß der Elektro-Stellmagnet einen im Pumpengehäuse angeordneten Spulenträger aufweist, der den Anker umschließt. Der von der Ventilhülse gebildete Anker kann vom Spulenträger vollständig umschlossen werden. Der Spulenträger kann somit optimal mit dem Anker zusammen wirken und diesen bereits mit geringen Magnetkräften bewegen, so daß damit die Ventilhülse in Längsrichtung im Vergleich zu herkömmlichen Ventilen relativ einfach vor- und zurückgezogen werden kann. Dabei kann die zylinderförmige Ventilhülse radial nach außen gegen den Magneten mit Stabdichtungen oder dergleichen abgedichtet geführt werden, so daß auch an dieser Stelle keine Sekundärleckagen auftreten können. Somit ist eine besonders preiswerte Ausführungsform einer zuverlässigen, stufenlos regelbaren Wegeventil-Variante angegeben.Accordingly, it is provided in a further preferred embodiment that the electric actuating magnet has a coil carrier arranged in the pump housing, which encloses the armature. The anchor formed by the valve sleeve can be completely enclosed by the coil carrier. The bobbin can thus optimally interact with the armature and move it already with low magnetic forces, so that so that the valve sleeve in the longitudinal direction relative to conventional valves can be relatively easily moved back and forth. In this case, the cylindrical valve sleeve can be guided sealed radially outward against the magnet with rod seals or the like, so that even at this point no secondary leakage can occur. Thus, a particularly inexpensive embodiment of a reliable, continuously variable directional valve variant is specified.

In einer weiter bevorzugten Ausführungsform ist vorgesehen, daß stromab nach dem Bypass-Stutzen und noch vor dem Pumpenlaufrad ein Rücklauf, beispielsweise für einen Heizungskreislauf, einen Getriebeölwärmetauscher, einen Schmierölwärmetauscher, einen separaten Zylinderblock-Kühlkreislauf oder dergleichen, in das Pumpengehäuse mündet. Damit können in vorteilhafter Weise weitere, den Kühlmittelkreislauf bzw. das Motor-Thermomanagement ergänzende Sekundärkreisläufe von der erfindungsgemäßen elektrischen Kühlmittelpumpe mit erfaßt und die dort strömenden Kühlmittelteilmengen von der Kühlmittelpumpe mit gefördert werden. Dabei kann ein solcher Rücklauf ohne Ventil direkt an das Pumpengehäuse gekoppelt sein oder bei Bedarf ein Ventil zu dessen gezielter Regelung aufweisen, wobei dann in vorteilhafter Weise das vorstehend diskutierte Wegeventil in angepaßter Form Verwendung finden kann.In a further preferred embodiment it is provided that downstream of the bypass nozzle and before the impeller, a return, for example, a heating circuit, a transmission oil heat exchanger, a lubricating oil heat exchanger, a separate cylinder block cooling circuit or the like, opens into the pump housing. Thus, further, the coolant circuit and the engine thermal management complementary secondary circuits can be detected by the electric coolant pump according to the invention and the coolant flowing there are supported by the coolant pump in an advantageous manner. In this case, such a return can be coupled without a valve directly to the pump housing or, if necessary, have a valve for its targeted control, in which case advantageously the above-discussed directional control valve can be used in an adapted form.

In einer weiter bevorzugten Ausführungsform ist das Pumpengehäuse zweiteilig aufgebaut. Dies ermöglicht eine vereinfachte Konstruktion der elektrischen Kühlmittelpumpe. Deren Zusammenbau wird erleichtert. Dabei ist in einer weiter bevorzugten Ausführungsform vorgesehen, daß der Elektro-Stellmagnet in Längsrichtung orientierte Spulenkontakte aufweist, die in vorteilhafter Weise beim Zusammenfügen der beiden Gehäuseteile über korrelierende Kontakte mit einer im anderen Gehäuseteil untergebrachten Regeleinrichtung, wie beispielsweise einer CPU, einer Regeleinheit oder dergleichen, in Kontakt bringbar sind. Dies erleichtert die Montage zusätzlich.In a further preferred embodiment, the pump housing is constructed in two parts. This allows a simplified construction of the electric coolant pump. Their assembly is facilitated. It is provided in a further preferred embodiment that the electric actuating magnet in the longitudinal direction oriented coil contacts, which in an advantageous manner when joining the two housing parts via correlating contacts with a housed in the other housing part control device, such as a CPU, a control unit or the like, can be brought into contact. This additionally facilitates the assembly.

Nicht zuletzt ist in einer weiter bevorzugten Ausführungsform vorgesehen, daß zusätzlich zum Antrieb des Pumpenlaufrades durch den Kühlmittelpumpenelektromotor ein koaxial zur Pumpenwelle außerhalb des Pumpengehäuses angeordnetes Antriebsrad vorgesehen ist, das über einen Freilauf an die Pumpenwelle gekoppelt ist. Damit kann die Kühlmittelpumpe primär mechanisch über ein außerhalb des Pumpengehäuse liegendes Riemenrad oder dergleichen angetrieben werden. Das Riemenrad ist über einen Freilauf von der Pumpenwelle antriebstechnisch entkoppelt. Im Stillstand und bei kleinen Drehzahlen kann ein Low-Cost-Motor den Pumpenantrieb mit konstanter Drehzahl übernehmen. Bei höheren Drehzahlen überholt das Riemenrad dann den Elektromotor. Dies bietet weiterhin den Vorteil, daß auch in Bordnetzen mit kleiner elektrischer Leistung die erfindungsgemäße Kühlmittelpumpe verwendbar ist. Diese Alternative ist wesentlich kostengünstiger gegenüber den teueren bürstenlosen Antriebsmotoren. Eine den erforderlichen Grundumsatz gewährleistende Pumpleistung ist somit auch bei Ausfall des Elektromotors sichergestellt.Not least is provided in a further preferred embodiment, that in addition to the drive of the pump impeller by the coolant pump electric motor arranged coaxially with the pump shaft outside the pump housing drive wheel is provided, which is coupled via a freewheel to the pump shaft. Thus, the coolant pump can be driven primarily mechanically via a lying outside of the pump housing pulley or the like. The pulley is decoupled via a freewheel from the pump shaft drive technology. At standstill and at low speeds, a low-cost motor can take over the pump drive at a constant speed. At higher speeds, the pulley then overtakes the electric motor. This also has the advantage that even in on-board networks with low electrical power, the coolant pump according to the invention can be used. This alternative is much cheaper than the expensive brushless drive motors. Ensuring the required basal metabolic pumping power is thus ensured even in case of failure of the electric motor.

Schließlich ist in einer weiter bevorzugten Ausführungsform vorgesehen, daß das Wegeventil bzw. dessen Ventilschieber mit einem Dehnstoffelelement hydraulisch antreibbar bzw. schaltbar ist.Finally, it is provided in a further preferred embodiment that the directional control valve or its valve slide with a Dehnstoffelelement is hydraulically driven or switched.

Hierfür ist vorgesehen, daß das Dehnstoffelement beispielsweise als Wachselement ausgeführt ist, dessen Volumenänderung aufgrund einer Veränderung der im vorbei strömenden Kühlmittel vorherrschenden Temperatur zu einer Volumenänderung in einem benachbarten, separaten Übertragungsmedium, beispielsweise einer auch als Kühlmittel nutzbaren Wasser/Glykol-Mischung, führt. Dieses separate Übertragungsmedium ist vom Wachselement beispielsweise durch eine flexible Membran getrennt. Die Volumenänderung im Übertragungsmedium wird über entsprechende Leitungen, Verbindungsbohrungen oder Verbindungskanäle zu einem Zylinderraum des Ventilschiebers übertragen, so daß dieser hydraulisch betätigt werden kann. Eine Rückstellkraft kann mit einer Feder oder dergleichen auf den Ventilschieber aufgebracht werden.For this purpose, it is provided that the expansion element is designed, for example, as a wax element whose volume change due to a change in prevailing in the passing coolant temperature to a volume change in an adjacent, separate transmission medium, for example, also usable as a coolant water / glycol mixture leads. This separate transmission medium is separated from the wax element, for example by a flexible membrane. The volume change in the transmission medium is transmitted via corresponding lines, connecting holes or connecting channels to a cylinder space of the valve spool, so that it can be hydraulically actuated. A restoring force can be applied to the valve spool with a spring or the like.

Dabei ist in weiter einer bevorzugten Ausführungsform vorgesehen, daß das Dehnstoffelement aus Wachs gebildet ist. Dessen Schmelzpunkt liegt bei ca. 85°C. Dessen temperaturabhängige Volumenänderung kann dann über ein separates Kühlmittel und zugeordnete Verbindungsleitungen zum hydraulisch antreibbaren Ventilschieber übertragen werden.It is further provided in a preferred embodiment that the expansion element is formed from wax. Its melting point is around 85 ° C. Its temperature-dependent volume change can then be transmitted via a separate coolant and associated connecting lines to the hydraulically driven valve spool.

Entsprechend einer weiter bevorzugten Ausführungsform soll das aus Wachs gebildete Dehnstoffelement in einem dem Druckstutzen benachbarten Bereich im Pumpengehäuse angeordnet sein. Es kann dabei mit einer radial innerhalb des Dehnstoffelements angeordneten metallischen Innenwandung, die z.B. als metallischer Zylindermantel ausgebildet sein kann, an das vorbeiströmende Kühlmittel angrenzen. Das Dehnstoffelement kann mit einer radial außerhalb davon angeordneten Membran von dem zugeordneten, separaten Kühlmittel derart getrennt sein, daß eine temperaturabhängige Volumenänderung des Dehnstoffelements auf das Kühlmittel übertragbar ist. Das separate Kühlmittel kann seinerseits über die Verbindungsleitungen in einen Zylinderraum des damit hydraulisch antreibbaren Ventilschiebers verschoben werden.According to a further preferred embodiment, the expansion element formed from wax should be arranged in an area adjacent to the pressure port in the pump housing. In this case, it can adjoin the coolant flowing past by means of a metallic inner wall which is arranged radially inside the expansion element and which, for example, can be designed as a metallic cylinder jacket. The expansion element may be separated from the associated, separate coolant with a membrane arranged radially outside of it, such that a temperature-dependent volume change of the expansion element is transferable to the coolant. The separate coolant can in turn be moved over the connecting lines in a cylinder chamber of the thus hydraulically driven valve spool.

In verfahrenstechnischer Hinsicht wird die Aufgabe durch die Merkmale des Anspruchs 22 gelöst.In procedural terms, the object is achieved by the features of claim 22.

Dabei wird ein Verfahren zur Förderung von Kühlmittel mit einer Kühlmittelpumpe für einen zumindest einen Kühlerkreis und einen Bypass-Kreis aufweisenden Kühlmittelkreislauf eines Kraftfahrzeugverbrennungsmotors vorgeschlagen. Das Verfahren weist die nachfolgenden Schritte auf: a) Zufuhren des Kühlmittels vom Kühler zur Kühlmittelpumpe durch einen Saugstutzen des Kühlmittelpumpengehäuses, b) Zuführen des Kühlmittels vom Bypass-Kreis zur Kühlmittelpumpe durch einen Bypass-Stutzen, c) Zurückführen des Kühlmittels von der Kühlmittelpumpe zum Kraftfahrzeugmotor durch einen Druckstutzen, d) Umwälzen des Kühlmittels mit einem Pumpenlaufrad, das von einem Kühlmittelpumpenelektromotor über eine Pumpenwelle angetrieben wird, wobei der Motor vom Kühlmittel umströmt ist, e) Einstellen des Mischungsverhältnisses der durch die Kühlmittelpumpe zirkulierenden Kühlmittelströme mit einem im Kühlmittelpumpengehäuse integrierten Wegeventil.In this case, a method for conveying coolant with a coolant pump for a coolant circuit of an automotive internal combustion engine having at least one radiator circuit and a bypass circuit is proposed. The method comprises the following steps: a) supplying the coolant from the radiator to the coolant pump through a suction port of the coolant pump housing, b) supplying the coolant from the bypass circuit to the coolant pump through a bypass port, c) returning the coolant from the coolant pump to the vehicle engine by a pressure port, d) circulating the coolant with a pump impeller driven by a coolant pump electric motor via a pump shaft, the motor flowing around the coolant, e) adjusting the mixing ratio of the coolant flows circulating through the coolant pump with a directional control valve integrated in the coolant pump housing.

Hierbei wird erstmals vorgeschlagen, das vom Kühler kommende Kühlmittel über den Saugstutzen im Bereich des vom Pumpenlaufrad abgewandten Endes des Pumpenmotors zuzuführen, wobei das vom Bypass kommende Kühlmittel über den Bypass-Stutzen in einem stromab vom Saugstutzen liegenden Bereich zugeführt wird, und wobei das Kühlmittel über den Druckstutzen in einem stromab vom Bypass-Stutzen liegenden Bereich weggeführt wird. Dabei soll lediglich das durch den Saugstutzen vom Kühler heran geförderte Kühlmittel in einer Mantelströmung, durch einen, insbesondere von der Außenwand des Pumpenmotorgehäuses und der zugewandten Innenwand des Pumpengehäuses und/oder der zugewandten Innenwand des Wegeventils begrenzten, Strömungskanal, am Pumpenmotor vorbei geführt wird.In this case, it is proposed for the first time to supply the coolant coming from the radiator via the suction nozzle in the region of the pump impeller facing away from the pump motor, wherein the coolant coming from the bypass is supplied via the bypass nozzle in a region downstream of the suction nozzle, and wherein the coolant over the pressure port is led away in a lying downstream of the bypass nozzle area. In this case, only the through the suction port from the radiator conveyed forward coolant in a sheath flow, by a, in particular from the outer wall of the pump motor housing and the facing inner wall of the pump housing and / or the facing inner wall of the directional valve limited flow channel, is guided past the pump motor.

Damit ist in vorteilhafter Weise eine effektive und zuverlässige Kühlung des Pumpenmotors möglich. Ferner sind die bereits vorstehend diskutierten Vorteile mit dem Verfahren ebenfalls erzielbar.Thus, an effective and reliable cooling of the pump motor is possible in an advantageous manner. Furthermore, the advantages discussed above with the method are also achievable.

Bei der erfindungsgemäßen Kühlmittelpumpe erfolgt die Temperaturerkennung des gemischten Kühlmittels im zum Kraftfahrzeugmotor führenden Pumpengehäuseausgang, also im Bereich des Druckstutzen. Damit ist sicher gestellt, daß dem Kraftfahrzeugmotor immer eine ausreichende Menge an Kühlmittel in der geforderten Temperatur zugeführt wird. Dabei regeln sich Menge und Temperatur des Kühlmittels, das durch den Druckstutzen zum Motor strömt in Abhängigkeit von der Temperatur und Menge des vom Bypass zugeführten heißen Kühlmittels, dem vom Zulauf zugeführten vom Kühler gekühlten Kühlmittel, der vom Elektromotor eingetragenen Wärmemenge und ggfs. einem Heizungsrücklauf oder einem sonstigen Rücklauf, wie beispielsweise von einem Schmierölwärmetauscher oder einem Zylinderblockkühlkreislauf zugeführten erwärmten weiteren Kühlmittel. Dementsprechend kann die CPU oder Regeleinheit der Pumpe Befehle bzw. Spannungssignale an den Spulenträger und den Pumpenmotor abgeben, so daß die gewünschte bzw. erforderliche Ventilstellung stufenlos eingestellt und eine abgefragte Motordrehzahl aufgenommen wird. Eine entsprechend miniaturisierte bzw. angepaßte Variante des Schieberventils kann dabei zur Regelung des Rücklaufs von einer Heizung, einem Getriebeöl-Wärmetauscher oder dergleichen Verwendung finden.In the case of the coolant pump according to the invention, the temperature detection of the mixed coolant takes place in the pump housing outlet leading to the motor vehicle engine, that is to say in the region of the discharge nozzle. This ensures that the motor vehicle engine is always supplied with a sufficient amount of coolant in the required temperature. In this case, the amount and temperature of the coolant, which flows through the discharge nozzle to the engine depending on the temperature and amount of supplied by the bypass hot coolant, supplied by the inlet supplied by the radiator coolant, the amount of heat entered by the electric motor and, if necessary, a heating return or another return, such as supplied by a lubricating oil heat exchanger or a cylinder block cooling circuit heated further coolant. Accordingly, the CPU or control unit of the pump can deliver commands or voltage signals to the bobbin and the pump motor, so that the desired or required valve position is continuously adjusted and a requested engine speed is recorded. A correspondingly miniaturized or adapted variant of the slide valve can be used to control the return of a heater, a transmission oil heat exchanger or the like.

Bei der erfindungsgemäßen Kühlmittelpumpe wird das Kühlmittelpumpengehäuse um die Ventilfunktion erweitert. Damit wird die Funktionalität der Kühlmittelpumpe erhöht und zugleich der konstruktive Aufwand reduziert, was zu einem geringerem Aufwand bei der Montage und letztendlich zu einem geringeren Preis führt. Hierbei hilft die geteilte Ausführung des Gehäuses zusätzlich die Kosten zu senken, da aufgrund der Gehäuseteilung ein einfacherer Zusammenbau der einzelnen Komponenten möglich ist.In the coolant pump according to the invention, the coolant pump housing is expanded by the valve function. Thus, the functionality of the coolant pump is increased and at the same time reduces the design effort, resulting in less effort during assembly and ultimately at a lower price. In this case, the split design of the housing also helps to reduce costs, since due to the housing division simpler assembly of the individual components is possible.

Das stromab in Fließrichtung nach dem Pumpenmotor auf der Pumpenwelle angeordnete Pumpenlaufrad weist beispielsweise ein Laufrad und ein Leitrad auf. Das Hierbei zum Einsatz kommende Prinzip entspricht dem bereits bewährten Prinzip der Axialpumpe, wie es im Hause der Anmelderin erfolgreich vertrieben wird. Der geforderte, enge Laufspalt wird dabei in einer Aufspannung bearbeitet, so daß die notwendige Genauigkeit sicher gestellt ist und eine Nachbearbeitung entfällt.The pump impeller arranged downstream of the pump motor on the pump shaft in the flow direction has, for example, an impeller and a stator. The principle used here corresponds to the already proven principle of the axial pump, as it is successfully sold in the house of the applicant. The required, narrow running gap is processed in one setting, so that the necessary accuracy is ensured and post-processing is eliminated.

Die Steuerung der erfindungsgemäßen Kühlmittelpumpe ist so ausgelegt, daß selbst bei einem geschlossenen Kühlmittelkreislauf, d.h. bei einem offenen Bypass-Kreislauf, keine Überhitzung des Elektromotors droht. Das vom Kühler kommende gekühlte Kühlmittel steht in der Ventilstellung "Bypass offen" und "Kühlerzulauf geschlossen" bis zum stromab liegenden Ende des Pumpenmotorgehäuses an und umschließt den Pumpenmotor bzw. dessen Gehäuse. Damit kann das Kühlmittel selbst im schlimmsten Fall bei maximal 113 °C noch immer ein Temperaturintervall von zumindest 7 °C an Wärme aufnehmen, bis 120 °C erreicht sind und eine Hitzetod von Bauteilen droht. Dabei sorgt die Regeleinheit der Pumpe dafür, daß dieser Fall nicht eintreten kann. Sollte bei dieser Schaltstellung eine Überhitzung drohen, sorgt die Regeleinheit dafür, daß das Ventil kurzzeitig in eine Stellung "Zulauf vom Kühler offen" und "Bypass geschlossen" überführt wird, kurzzeitig das anstehende Kühlmittel strömt und dann das Ventil wieder in seine Ausgangslage zurückgeführt wird, so daß danach wieder frisches, vollständig herunter gekühltes Kühlmittel vom Kühler die Elektropumpe umschließt und kühlt. Dementsprechend ist selbst bei einem Kaltstart und der dabei einige Zeit vorliegenden Schaltstellung "Bypass offen", die gewählt wird, um die Aufwärmphase des Kraftfahrzeugverbrennungsmotors möglichst kurz zu halten, keine Gefährdung der elektronischen Bauteile zu befürchten.The control of the coolant pump according to the invention is designed so that even with a closed coolant circuit, ie at an open bypass circuit, no overheating of the electric motor threatens. The cooled coolant coming from the radiator is in the valve position "Bypass open" and "Radiator inlet closed" to the downstream end of the pump motor housing and encloses the pump motor or its housing. Thus, even at worst, at a maximum of 113 ° C., the coolant can still absorb a temperature interval of at least 7 ° C. of heat even in the worst case, until 120 ° C. has been reached and there is a threat of heat death of components. The control unit of the pump ensures that this case can not occur. Should this switch position threaten to overheat, the control unit ensures that the valve is briefly transferred to a position "inlet from the radiator open" and "by-pass closed", briefly the pending coolant flows and then the valve is returned to its original position, so that then again fresh, completely cooled down coolant from the radiator encloses the electric pump and cools. Accordingly, even with a cold start and while doing some time switch position "bypass open", which is chosen to keep the warm-up phase of the vehicle internal combustion engine as short as possible, no risk to the electronic components to be feared.

Aufgrund der Schiebersitzventilvariante sind sämtliche Mischungen möglich. Das Schiebersitzventil kann stufenlos verstellt werden. Es entstehen keine Bewegungsspalten, die nur schlecht abzudichten wären. Der Dichtungsring, der beispielsweise ein Elastomerdichtungsring sein kann, legt sich axial am Dichtungssitz des Gehäuses in der Stellung "Bypass geschlossen" an. Entsprechend legt sich der Elastomerdichtungsring in umgekehrter Weise bei einer Stellung "Zulauf vom Kühler geschlossen" gegen das Gehäuse des Elektromotors dichtschließend an. Bewegungsspalte bestehen dabei nicht. Sekundärleckagen sind ausgeschlossen.Due to the slide seat valve variant, all mixtures are possible. The slide seat valve can be adjusted continuously. There are no movement gaps that would be difficult to seal. The sealing ring, which may be an elastomeric sealing ring, for example, lies axially against the seal seat of the housing in the "bypass closed" position. Accordingly, the elastomer sealing ring sets in a reverse manner at a position "inlet closed by the radiator" against the housing of the electric motor sealingly. Movement gaps do not exist. Secondary leaks are excluded.

Der Elektromagnet ist gegenüber der Ventilhülse mit Stangendichtungen mit Abstreiffunktion gelagert. Damit sind ebenfalls Sekundärleckagen ausgeschlossen.The solenoid is mounted opposite the valve sleeve with rod seals with Abstreiffunktion. This also excludes secondary leaks.

Die Ventilhülse wird beispielsweise federvorgespannt oder mit alternativen Mitteln mit einer Grundkraft beaufschlagt, so daß im Falle eines Defektes der Elektronik das Ventil automatisch in eine Stellung "Zulauf vom Kühler offen" und "Bypass geschlossen" übergeht. Damit ist eine Fail-Safe-Stellung gewährleistet, die dafür sorgt, daß der Kraftfahrzeugmotor nicht überhitzen kann.The valve sleeve, for example, spring biased or applied with alternative means with a basic force, so that in the case of a defect in the electronics, the valve automatically in a position "inlet from the radiator open" and "Bypass closed" passes. This ensures a fail-safe position, which ensures that the motor vehicle engine can not overheat.

Das Gehäuse des Pumpenmotors kann aus Metall, beispielsweise aus Aluminium oder einem anderen Edelmetall, das besonders gut Wärme leitend ist, hergestellt werden. Damit ist eine optimale Wärmeabfuhr vom elektrisch betriebenen Pumpenmotor zum diesen umströmenden Kühlmittel gewährleistet.The housing of the pump motor can be made of metal, for example of aluminum or another noble metal, which is particularly good heat-conducting. This ensures optimum heat dissipation from the electrically operated pump motor to the coolant flowing around it.

Bei der hier bevorzugten Kühlmittelpumpenvariante wird der Bypass und der Heizungsrücklauf im temperaturunkritischen Bereich radial bzw. tangential von außen zur Pumpenmitte zugeführt.In the coolant pump variant preferred here, the bypass and the heating return in the non-temperature-critical region are supplied radially or tangentially from the outside to the pump center.

Die vorstehend beschriebene Erfindung wird nachfolgend in Ausführungsbeispielen anhand der Figuren der Zeichnung näher erläutert. Es zeigt:

Fig. 1
in einer schematisch vereinfachten Skizze eine Zuordnung der Kühlkreisläufe mit beispielhaftem Einsatz der elektrischen Kühlmittelpumpe mit integriertem Wegeventil;
Fig. 2.
einen Längsschnitt durch eine beispielhafte Ausführungsform der Kühlmittelpumpe, mit dem Wegeventil in der Stellung "Bypass geschlossen" bzw. "Zulauf vom Kühler offen";
Fig. 3
die in Fig. 2 gezeigte Ausführungsform der Kühlmittelpumpe wiederum im Längsschnitt mit der Ventilstellung "Bypass teilweise offen" bzw. "Zulauf vom Kühler teilweise geschlossen";
Fig. 4
die in Fig. 2 und 3 gezeigte Kühlmittelpumpen-Variante mit der Ventilstellung "Zulauf vom Kühler geschlossen" bzw. "Bypass offen";
Fig. 5
einen Schnitt durch die in Fig. 4 gezeigte Kühlmittelpumpe längs der Schnittlinie B-B;
Fig. 6
eine 3D-Ansicht der in Fig. 2 bis 5 gezeigten Pumpe;
Fig. 7
einen Längsschnitt durch eine weitere Variante der Pumpe;
Fig. 8
eine 3D-Ansicht der weiteren Variante gemäß Fig. 7;
Fig. 9
eine weitere Variante der in Fig. 1 bis 8 gezeigten Kühlmittelpumpe mit einer Betätigung des Wegeventils durch ein Dehnstoffelement, im Längsschnitt dargestellt;
Fig. 10
ein vergrößerter Ausschnitt des in Fig. 9 gezeigten Längsschnitts entlang der dortigen Schnittlinie A-A; und
Fig. 11
eine dreidimensionale Ansicht dieser Kühlmittelpumpenvariante von außen.
The invention described above is explained in more detail in exemplary embodiments with reference to the figures of the drawing. It shows:
Fig. 1
in a schematically simplified sketch, an assignment of the cooling circuits with exemplary use of the electric coolant pump with integrated directional control valve;
Fig. 2.
a longitudinal section through an exemplary embodiment of the coolant pump, with the directional control valve in the position "Bypass closed" or "inlet from the radiator open";
Fig. 3
the embodiment of the coolant pump shown in Figure 2 again in longitudinal section with the valve position "bypass partially open" or "inlet from the radiator partially closed".
Fig. 4
the coolant pump variant shown in Figures 2 and 3 with the valve position "inlet closed by the radiator" or "bypass open".
Fig. 5
a section through the coolant pump shown in Figure 4 along the section line BB.
Fig. 6
a 3D view of the pump shown in Figures 2 to 5;
Fig. 7
a longitudinal section through a further variant of the pump;
Fig. 8
a 3D view of the further variant of FIG. 7;
Fig. 9
a further variant of the coolant pump shown in Figures 1 to 8 with an actuation of the directional control valve by an expansion element, shown in longitudinal section.
Fig. 10
an enlarged section of the longitudinal section shown in Figure 9 along the section line AA there. and
Fig. 11
a three-dimensional view of this coolant pump variant from the outside.

In Fig. 1 ist in einer schematisch vereinfachten Darstellung eine beispielhafte Zuordnung von Kreisläufen Schaltbild bei einem Kraftfahrzeugmotor-Thermomanagement mit der vorstehend diskutierten Kühlmittelpumpe gezeigt. Die elektrische Kühlmittelpumpe 1 ist in einem Kühlmittelkreislauf 2 integriert. Der Kühlmittelkreislauf 2 weist einen Kühlerkreis 4 auf, der über einen Kühler 6 verläuft. Ferner weist der Kühlmittelkreislauf 2 einen Kurzschlußkreis bzw. Bypass-Kreis 8 auf, der den Motor 10 direkt auf die Kühlmittelpumpe 1 kurz schließt. Weiterhin ist beispielhaft ein Heizungskreislauf 12 vom Motor 10 über eine Heizung 13 zur elektrischen Kühlmittelpumpe 1 zurück zum Motor 10 gezeigt. Weitere Sekundärkreisläufe, wie beispielsweise ein Kühlmittelsekundärkreislauf für einen Getriebeölwärmetauscher, für einen Schmierölwärmetauscher, einen separaten Zylinderkopf- und einen separaten Motorblockkreislauf oder dergleichen sind denkbar, jedoch hier nicht näher dargestellt.In Fig. 1, an exemplary assignment of circuits circuit diagram in a motor vehicle engine thermal management with the above-discussed coolant pump is shown in a simplified schematic representation. The electric coolant pump 1 is integrated in a coolant circuit 2. The coolant circuit 2 has a cooler circuit 4, which runs over a cooler 6. Furthermore, the coolant circuit 2 has a short circuit or bypass circuit 8, which closes the motor 10 directly to the coolant pump 1 short. Furthermore, by way of example, a heating circuit 12 from the engine 10 via a heater 13 to the electric coolant pump 1 back to the engine 10 is shown. Other secondary circuits, such as a coolant secondary circuit for a transmission oil heat exchanger for a lubricating oil heat exchanger, a separate cylinder head and a separate engine block cycle or the like are conceivable, but not shown here.

Die elektrische Kühlmittelpumpe 1 mit integriertem Wegeventil fördert das vom Motor 10 im Kühlerkreis 4 über den Kühler 6 angesaugte Kühlmittel zum Motor 10 zurück bzw. wälzt diese um. Ferner fördert die Kühlmittelpumpe 1 das im Kurzschlußkreis 8 zirkulierende Kühlmittel. Nicht zuletzt wälzt die Kühlmittelpumpe 1 auch das im Heizungskreislauf 12 zirkulierende Kühlmittel um.The electric coolant pump 1 with integrated directional control valve conveys the coolant sucked in by the engine 10 in the cooler circuit 4 via the radiator 6 back to the engine 10 or circulates it. Further, the coolant pump 1 promotes the circulating in the short-circuit 8 coolant. Last but not least, the coolant pump 1 also circulates the circulating coolant in the heating circuit 12.

Die in Fig. 1 schematisch vereinfacht mit einem Symbol gezeigte elektrische Kühlmittelpumpe 1 mit integriertem Wegeventil ist in Fig. 2 bis 8 in verschiedenen Varianten weiter im Detail erläutert.The electrical coolant pump 1 with integrated directional control valve shown schematically in FIG. 1 with a symbol is explained in further detail in FIGS. 2 to 8 in various variants.

Fig. 2 zeigt hierbei eine erste beispielhafte Ausführungsform einer Kühlmittelpumpe 1 im Längsschnitt. Das Kühlmittelpumpengehäuse 14 ist in dieser Ausführungsform zweigeteilt. Es besteht aus einem ersten Gehäuseteil 16 und einem zweiten Gehäuseteil 18. Beide Gehäuseteile 16 und 18 sind mit einer ringförmigen Spange, Klemmschelle oder Klammer 20 fest miteinander, dichtschließend verbunden. Das Gehäuse 14 kann auch drei- oder mehrteilig oder auch einteilig mit einem Deckel ausgeführt werden.FIG. 2 shows a first exemplary embodiment of a coolant pump 1 in longitudinal section. The coolant pump housing 14 is divided into two in this embodiment. It consists of a first housing part 16 and a second housing part 18. Both housing parts 16 and 18 with an annular clip, clamp or clamp 20 firmly together, tightly connected. The housing 14 can also be made in three or more parts or even in one piece with a lid.

Das im Kühlerkreis 4 vom Kühler 6 kommende Kühlmittel KZK wird dem Pumpengehäuse 14 über den Saugstutzen 22 zugeführt. Dies ist mit dem vom Kühler 6 zum Pumpengehäuse 14 weisenden Pfeil ZK symbolisiert.The coolant KZK coming from the cooler 6 in the cooler circuit 4 is fed to the pump housing 14 via the suction nozzle 22. This is symbolized by the arrow ZK pointing from the cooler 6 to the pump housing 14.

Das vom Bypass- bzw. Kurzschlußkreis 8 über den mit einem Pfeil symbolisierten Zulauf ZB kommende, vom Kraftfahrzeugmotor 10 erhitzte Kühlmittel wird über den Bypass-Stutzen 24 dem Pumpengehäuse 14 zugeführt.The from the bypass or short circuit 8 via the symbolized by an arrow inlet ZB, heated by the motor vehicle engine 10 coolant is supplied to the pump housing 14 via the bypass port 24.

Im Kühlmittelpumpengehäuse 14 ist ein Kühlmittelpumpenelektromotor 26 angeordnet. Dessen Motorgehäuse 28 ist zur Kühlung des Elektromotors 26 vom vorbei strömenden Kühlmittel umströmt. Der Pumpenmotor 26 treibt über eine Pumpenwelle 30 ein Pumpenlaufrad 32 an. In der hier gezeigten Variante sind das Pumpenlaufrad 32, die Pumpenwelle 30 und der Pumpenmotor 26 koaxial zur Längsachse X des Pumpengehäuses 14 angeordnet.In the coolant pump housing 14, a coolant pump electric motor 26 is arranged. Whose motor housing 28 is flowed around to cool the electric motor 26 from flowing past coolant. The pump motor 26 drives a pump impeller 32 via a pump shaft 30. In the variant shown here, the pump impeller 32, the pump shaft 30 and the pump motor 26 are arranged coaxially with the longitudinal axis X of the pump housing 14.

Das vom Pumpenlaufrad 32 beschleunigte bzw. umgewälzte Kühlmittel wird für die mit einem weiteren Pfeil symbolisierte Zufuhr ZM des Kühlmittels zum Kraftfahrzeugmotor 10 durch einen Druckstutzen 34 weg gefördert.The coolant accelerated or circulated by the pump impeller 32 is conveyed away through a discharge nozzle 34 for the supply ZM of the coolant to the motor vehicle engine 10 symbolized with a further arrow.

Bei der dargestellten Ausführungsform weist die Kühlmittelpumpe 1 ergänzend zum Laufrad 32 ein ebenfalls im Druckstutzen 34 angeordnetes Leitrad 36 auf.In the illustrated embodiment, the coolant pump 1 in addition to the impeller 32 on a likewise arranged in the discharge nozzle 34 stator 36.

Weiterhin ist beispielhaft ein Heizungsrücklauf 38 dargestellt, durch den die wiederum mit einem Pfeil symbolisierte Zufuhr ZH des Kühlmittels vom Heizkreislauf 12 für dessen Umwälzung durch die Pumpe 1 möglich ist.Furthermore, by way of example, a heating return 38 is shown, through which the supply ZH of the coolant from the heating circuit 12, symbolized in turn by an arrow, is possible for its circulation by the pump 1.

Im Kühlmittelpumpengehäuse 14 ist ein stufenlos einstellbares Wegeventil 40 integriert. Das Wegeventil kann die hier in Fig. 2 gezeigte Stellung "Bypass geschlossen" bzw. "Zufuhr vom Kühler offen" einnehmen. Es kann aus dieser Stellung heraus stufenlos über eine Stellung "Bypass teilweise offen" und "Zufuhr vom Kühler teilweise offen" (vgl. Fig. 3) bis in eine Stellung "Bypass offen" bzw. "Zufuhr vom Kühler geschlossen" (vgl. Fig. 4) überführt und wieder zurück geführt werden.In the coolant pump housing 14, a continuously adjustable directional control valve 40 is integrated. The directional control valve can assume the position "bypass closed" or "supply from the radiator open" shown here in FIG. It can steplessly from this position on a position "bypass partially open" and "supply from the radiator partially open" (see Fig. 3) to a position "bypass open" or "supply from the radiator closed" (see FIG 4) and returned.

Der Saugstutzen 22 ist in einem stromauf liegenden Bereich 42 angeordnet, der im Bereich des vom Pumpenlaufrad 32 abgewandten Endes 44 des Pumpenmotors 26 liegt. Der Bypass-Stutzen 24 ist ferner in einem stromab vom Saugstutzen 22 liegenden Bereich 46 angeordnet. Weiterhin ist der Druckstutzen 34 in einem stromab vom Bypass-Stutzen 24 liegenden Bereich 48 angeordnet.The suction nozzle 22 is arranged in an upstream region 42, which is located in the region of the end remote from the pump impeller 32 end 44 of the pump motor 26. The bypass nozzle 24 is further arranged in a region 46 located downstream of the suction nozzle 22. Furthermore, the discharge nozzle 34 is arranged in a region 48 located downstream of the bypass nozzle 24.

Damit ist sichergestellt, daß lediglich das Kühlmittel KZK, das durch den Saugstutzen-Zulauf ZK vom Kühler 6 angesaugt wird, in einer Mantelströmung 50 am Pumpenmotor 26 vorbei geführt wird. Die Mantelströmung 50 wird dabei zunächst einerseits durch die Außenwand 52 des Pumpenmotorgehäuses 28 und andererseits durch die zugewandte Innenwand 54 des Pumpengehäuses 14 unter Ausbildung eines Strömungskanals 56 begrenzt Der Strömungskanal 56 wird dann im weiteren Strömungsverlauf radial außen durch die der Außenwand 52 des Pumpenmotorgehäuses 28 zugewandte Innenwand bzw. Innenfläche 60 des Wegeventils 40 begrenzt, die sich in Strömungsrichtung im Bereich der Verbindungsstelle der beiden Gehäuseteile 16 und 18 an die Gehäuseinnenwand 54 anschließt.This ensures that only the coolant KZK, which is sucked in by the suction port inlet ZK from the radiator 6, is guided in a sheath flow 50 past the pump motor 26. The jacket flow 50 is thereby bounded firstly on the one hand by the outer wall 52 of the pump motor housing 28 and on the other hand by the facing inner wall 54 of the pump housing 14 to form a flow channel 56. The flow channel 56 is then radially outwardly through the outer wall 52 of the pump motor housing 28 facing inner wall or inner surface 60 of the directional valve 40 is limited, which adjoins the housing inner wall 54 in the flow direction in the region of the connection point of the two housing parts 16 and 18.

Die in Fig. 2 im Längsschnitt dargestellte beispielhafte Ausführungsform einer strömungsgekühlten elektrischen Kühlmittelpumpe 1 mit integriertem Wegeventil 40 ist in Fig. 3 und 4 wiederum im Längsschnitt gezeigt, wobei Fig. 3 eine teilweise geöffnete Stellung des Wegeventils 40 und Fig. 4 eine weitere Stellung des Wegeventils 40 zeigt, bei welcher der Zulauf vom Kühler ZK geschlossen und der Zulauf vom Bypass ZB vollständig geöffnet ist.The exemplary embodiment of a flow-cooled electric coolant pump 1 with integrated directional control valve 40 shown in longitudinal section in FIG. 2 is again shown in longitudinal section in FIGS. 3 and 4, FIG. 3 showing a partially open position of the directional control valve 40 and FIG Directional valve 40 shows in which the inlet of the radiator ZK closed and the inlet of the bypass ZB is fully open.

Das mit der Kühlmittelpumpe 1 umgewälzte, vom Kühlerkreis 4 kommende Kühlmittel KZK wird mit dem durch den Bypass-Stutzen 24 herangeförderten Kühlmittel KZB, welches vom Bypass-Kreis 8 stammt, durch das Wegeventil 40 zugemischt. Dabei ist eine mit dem Wegeventil 40 öffnenbare und wieder verschließbare Mündung 62 des Bypass-Stutzen 24 in dem Bereich 46 stromauf vor dem Pumpenlaufrad 32 angeordnet.The circulating with the coolant pump 1, coming from the radiator circuit 4 coolant KZK is mixed with the hinzuförderten by the bypass port 24 coolant KZB, which comes from the bypass circuit 8, through the directional control valve 40. Here, an openable with the directional control valve 40 and reclosable mouth 62 of the bypass port 24 in the region 46 upstream of the pump impeller 32 is arranged.

In der hier dargestellten Variante liegt die Mündung 62 zwischen dem Pumpenlaufrad 32 bzw. zwischen dem Heizungsrücklauf 38 und dem stromab liegenden Ende 64 des Strömungskanals 56.In the variant shown here, the mouth 62 is located between the pump impeller 32 and between the heating return 38 and the downstream end 64 of the flow channel 56th

Wie dies aus Fig. 5 deutlicher hervor geht, sind der Zulauf ZB vom Bypass-Kreis 8 und der Zulauf ZH vom Heizungskreislauf 12 in der selben Ebene, koaxial zur Y-Achse, gegenüberliegend radial zur senkrecht zur Bildebene verlaufenden Längsachse X angeordnet. Alternativ können die entsprechenden Stutzen auch tangential am Gehäuse 14 angeschlossen werden. Das ist in erster Linie vom im Motorraum für die Pumpe 1 verfügbaren Einbauraum sowie der Lage der Zu- und Ableitungen abhängig.As is clearer from FIG. 5, the inlet ZB from the bypass circuit 8 and the inlet ZH from the heating circuit 12 are arranged in the same plane, coaxial to the Y-axis, opposite to the longitudinal axis X extending perpendicular to the image plane. Alternatively, the corresponding nozzle can also be connected tangentially to the housing 14. This is primarily dependent on the available in the engine compartment for the pump 1 installation space and the position of the inlets and outlets.

Ferner geht besonders gut aus Fig. 5 in Verbindung mit Fig. 2 bis 4 hervor, daß bei der hier gezeigten Variante der Pumpenmotor 26, die Pumpenwelle 30, das Pumpenlaufrad 32, das Leitrad 36 und das Pumpengehäuse 14 zueinander koaxial zur Längsachse X angeordnet sind.Furthermore, it can be seen particularly well from Fig. 5 in conjunction with Fig. 2 to 4, that in the variant shown here, the pump motor 26, the pump shaft 30, the Pump impeller 32, the stator 36 and the pump housing 14 are arranged coaxially with each other to the longitudinal axis X.

Der von der Innenwand 54 des Pumpengehäuses 14 und/oder von der Innenwand 60 des Wegeventils 40 einerseits und andererseits von der Außenwand 52 des Pumpenmotors 26 begrenzte Strömungskanal 56 ist in einer besonders bevorzugten Ausführungsform ringförmig ausgebildet bzw. weist einen ringförmigen Querschnitt auf. Damit ist eine das Motorgehäuse 28 ringförmig umschließende Mantelströmung 56 definiert, die am Pumpenmotor 26 vorbei strömt und diesen damit optimal kühlt.The flow channel 56 delimited by the inner wall 54 of the pump housing 14 and / or by the inner wall 60 of the directional valve 40 on the one hand and on the other hand by the outer wall 52 of the pump motor 26 is annular in a particularly preferred embodiment or has an annular cross section. Thus, a motor housing 28 annularly enclosing sheath flow 56 is defined, which flows past the pump motor 26 and this optimally cools.

Der Strömungskanal 56 weist dabei einen in Strömungsrichtung konstanten Querschnitt 66 auf. Vom stromab liegenden Ende 64 des Strömungskanals 56 bzw. vom stromab liegenden Ende 68 des Pumpenmotors 26 bis zum Pumpenlaufrad 32 erfolgt eine kontinuierliche bzw. stetige Einschnürung des am Ende des Strömungskanals 56 vorherrschenden Durchmessers bis auf den Innendurchmesser 70 des Druckstutzen 34.The flow channel 56 has a cross section 66 which is constant in the flow direction. From the downstream end 64 of the flow channel 56 and from the downstream end 68 of the pump motor 26 to the pump impeller 32 is a continuous or continuous constriction of the prevailing at the end of the flow channel 56 diameter up to the inner diameter 70 of the discharge nozzle 34th

Das Wegeventil 40 ist als ein in Längsrichtung X der Kühlmittelpumpe 1 verschieblicher Ventilschieber 72 ausgebildet, der in der hier dargestellten Variante als konstruktiv als zylindrische Hülse durchgebildet ist. Der Ventilschieber 72 ist mittels einer Feder 73 oder einem anderen geeigneten krafterzeugenden Element vorgespannt, so daß im Falle eines Versagens der Ventilsteuerung das Wegeventil 40 automatisch durch die Federkraft der Feder 73 in eine Fail-Safe-Stellung "Zulauf vom Kühler offen" überführt wird.The directional control valve 40 is designed as a valve slide 72, which is displaceable in the longitudinal direction X of the coolant pump 1 and, in the variant represented here, is configured as a cylindrical sleeve. The valve spool 72 is biased by a spring 73 or other suitable force-generating element so that in the event of valve control failure, the directional valve 40 is automatically transferred by the spring force of the spring 73 to a fail-safe position "inlet from the radiator open".

Der Ventilschieber 72 wird zusätzlich zu seiner Ventilfunktion gleichzeitig als Anker 74 eines den Ventilschieber 72 betätigenden Elektrostellmagneten 76 genutzt. Der Ventilschieber 72 ist an seiner radial außen liegenden Seite mittels Stangendichtungen 77 mit Abstreiffunktion geführt und gegen das Gehäuse. 14 bzw. gegen die weiteren benachbarten Bauteile abgedichtet.The valve spool 72 is used in addition to its valve function at the same time as an armature 74 of the valve spool 72 actuated Elektrostellmagneten 76. The valve spool 72 is on its radially outer side by means of Rod seals 77 with Abstreiffunktion performed and against the housing. 14 or sealed against the other adjacent components.

Der Elektrostellmagnet 76 weist den vorgenannten Anker 74 und einen im Pumpengehäuse 14 angeordneten Spulenträger 78 auf, der den Anker 74 umschließt. Der Anker 74 ist in der Weise von der zylindrischen Hülse 72 gebildet, daß diese aus Metall hergestellt ist. Die Hülse 72 kann auch aus Kunststoff hergestellt sein und den Anker 74 ausbildende metallische Abschnitte aufweisen. Auf dem Spulenträger 78 ist die zugehörige Spule 80 angeordnet. Die Spule 80 ist wiederum von einem radial außerhalb der Spule 80 angeordneten Eisenrückschluß 82 umfaßt. Radial innerhalb ist ein zwischen dem Spulenträger 78 und dem Anker 74 angeordneter, ringförmig ausgebildeter weiterer Eisenrückschluß 84 mit Kennlinienbeeinflußung integriert. Die Stangendichtungen 77 sind ebenfalls zwischen dem Spulenträger 78 und dem als Anker 74 ausgebildeten Ventilschieber 72 angeordnet, wobei sich eine Stangendichtung 77 direkt an den Eisenrückschluß 84 anschließt.The solenoid actuator 76 has the aforementioned armature 74 and a coil support 78 arranged in the pump housing 14, which surrounds the armature 74. The armature 74 is formed in the manner of the cylindrical sleeve 72, that it is made of metal. The sleeve 72 can also be made of plastic and have the armature 74 forming metallic sections. On the bobbin 78, the associated coil 80 is arranged. The coil 80 is in turn surrounded by a radially outwardly of the coil 80 arranged iron yoke 82. Radial inside is an arranged between the coil support 78 and the armature 74, annular trained further iron yoke 84 integrated with characteristic influencing. The rod seals 77 are also arranged between the coil carrier 78 and the valve slide 72 formed as an armature 74, wherein a rod seal 77 connects directly to the iron yoke 84.

Der Ventilschieber 72 weist im Bereich des Bypass-Stutzen 24 eine radial nach innen gerichtete Dichtung 86 auf. Die Dichtung 86 kann als Elastomerdichtung ausgebildet sein. Es sind auch andere Dichtungsmaterialien verwendbar. Die Dichtung 86 schließt in einer geschlossenen Stellung "Bypass geschlossen" des Wegeventils 40 mit ihrer ringförmigen ebenen Stirnfläche 88, deren Flächennormale parallel zur Längsachse X verläuft, gegen einen entsprechend ausgebildeten ringförmigen Dichtungssitz 90 des Pumpengehäuses 14 abdichtend verschließt. In einer offenen Stellung "Bypass offen" die dementsprechend auch als "Zulauf vom Kühler geschlossen" bezeichnet werden kann, schließt die Dichtung 86 mit ihrer radial nach innen weisenden ringförmigen Spitze 92 den Zulauf vom Kühler ZK am Ende 68 des Elektromotors 26 bzw. am Ende 64 des Strömungskanals 56 gegen das Motorengehäuse 28 bzw. ein sich daran anschließendes Pumpenwellengehäuse 94 dicht ab. Alternativ zur Dichtung 86 sind auch andere Dichtungsvarianten denkbar, mit denen ein in axialer Richtung dichtes Abschließen des Wegeventils 40 gegen das Gehäuse 14 und mit denen in radialer Richtung ein dichtes Abschließen des Wegeventils 40 gegen das Pumpenwellengehäuse 94 oder das Pumpenmotorgehäuse 28 möglich ist. Solche Dichtungen 86 können auch mehr als einen Dichtungssitz oder eine oder mehrere Dichtungslippen oder dergleichen aufweisen.The valve spool 72 has a radially inwardly directed seal 86 in the region of the bypass nozzle 24. The seal 86 may be formed as an elastomeric seal. Other seal materials are also usable. The seal 86 closes in a closed position "Bypass closed" of the directional control valve 40 with its annular flat face 88, the surface normal parallel to the longitudinal axis X, sealingly seals against a correspondingly formed annular seal seat 90 of the pump housing 14. In an open position "Bypass open" which accordingly can also be referred to as "inlet closed by the radiator" closes the seal 86 with its radially inwardly facing annular tip 92 the inlet from the radiator ZK at the end 68 of the electric motor 26 and at the end 64 of the flow channel 56 against the motor housing 28 and a subsequent pump shaft housing 94 tightly. Alternatively to the seal 86 are also other seal variants conceivable, with which in the axial direction dense completion of the directional valve 40 against the housing 14 and with which in the radial direction a tight completion of the directional control valve 40 against the pump shaft housing 94 or the pump motor housing 28 is possible. Such seals 86 may also include more than one seal seat or one or more seal lips or the like.

Der Elektro-Stellmagnet 76 weist in Längsrichtung X bzw. parallel zur X-Achse orientierte Spulenkontakte 96 auf. Diese Spulenkontakte 96 korrelieren mit entsprechenden Kontakten 98 eines im Gehäuseteils 18 integrierten elektronischen Bauteils, wie beispielsweise einer Regeleinrichtung 100, einer CPU oder dergleichen, so daß die Regeleinrichtung 100 und der Elektrostellmagnet 76 direkt bei der Montage der beiden Gehäuseteile 16 und 18 ohne weiteres Zutun miteinander in Kontakt bringbar sind. Im Gehäuseteil 18 ist weiterhin eine Verstärkereinheit 102 untergebracht. Diese kann von außen durch einen Stecker 104 an entsprechende Regelkreise angeschlossen werden.The electric actuating magnet 76 has coil contacts 96 oriented in the longitudinal direction X or parallel to the X-axis. These coil contacts 96 correlate with corresponding contacts 98 of an integrated electronic component in the housing part 18, such as a control device 100, a CPU or the like, so that the control device 100 and the Elektrostellmagnet 76 directly during assembly of the two housing parts 16 and 18 without further action can be brought into contact. In the housing part 18, an amplifier unit 102 is further accommodated. This can be connected from the outside by a plug 104 to corresponding control circuits.

Die in Fig. 2 bis 5 dargestellte beispielhafte Ausführungsform einer Kühlmittelpumpe 1 ist in Fig. 6 in einer dreidimensionalen Ansicht zum besseren Verständnis der räumlichen Zuordnung der Stutzen bzw. der Bauteile veranschaulicht.The exemplary embodiment of a coolant pump 1 illustrated in FIGS. 2 to 5 is illustrated in FIG. 6 in a three-dimensional view for a better understanding of the spatial allocation of the connecting piece or components.

In Fig. 7 und 8 ist eine weitere beispielhafte Ausführungsform einer Kühlmittelpumpe 1 gezeigt. Gleiche oder gleichwirkende Bauteile sind mit den selben Bezugszeichen versehen, wie bereist in Fig. 2 bis 5 verwendet.FIGS. 7 and 8 show a further exemplary embodiment of a coolant pump 1. The same or equivalent components are provided with the same reference numerals, as used in Fig. 2 to 5 used.

Die in Fig. 7 gezeigte Kühlmittelpumpe 1 verfügt zusätzlich zum Antrieb des Pumpenlaufrades 32 ergänzend zum Kühlmittelelektromotor 26 über ein außerhalb des Pumpengehäuses 14 angeordnetes Antriebsrad 106. Das Antriebsrad 106 ist koaxial zur Pumpenwelle 30 ausgerichtet und über einen Freilauf 108 mit der Pumpenwelle 30 mechanisch koppelbar. Die Pumpenwelle 30 weist ein zusätzliches Lager 110 im in dieser Darstellung rechten Ende des Gehäuseteils 18 auf. Über das Antriebsrad 106 kann das Pumpenlaufrad 32 in Ergänzung zum elektrischen Motor 26 von außen beispielsweise über einen Riemen oder einen Zahntrieb angetrieben werden. Damit kann die Kühlmittelpumpe 1 primär mechanisch über das beispielsweise als Riemenrad ausgebildete Antriebsrad 106 angetrieben werden. Das Antriebsrad 106 ist hierfür über den Freilauf 110 von der Pumpenwelle 30 entkoppelt. Im Stillstand und bei kleinen Drehzahlen des Verbrennungsmotors übernimmt beispielsweise ein low-cost Elektromotor den Pumpenantrieb mit konstanter Drehzahl. Bei höheren Drehzahlen des Verbrennungsmotors überholt das Antriebsrad 106 den Elektromotor. Diese Pumpenvariante ist auch in Bordnetzen mit kleiner elektrischer Leistung verwendbar. Sie stellt eine gegenüber teuren bürstenlosen Antriebsmotoren kostengünstige Alternative dar. Eine Pumpleistung ist auch bei einem Ausfall des Elektromotors sichergestellt.The coolant pump 1 shown in FIG. 7 has, in addition to the drive of the pump impeller 32 in addition to the coolant electric motor 26, a drive wheel 106 arranged outside the pump housing 14. The drive gear 106 is aligned coaxially with the pump shaft 30 and mechanically couplable to the pump shaft 30 via a freewheel 108. The pump shaft 30 has an additional one Bearing 110 in the right-hand end of the housing part 18 in this illustration. About the drive gear 106, the impeller 32 can be driven in addition to the electric motor 26 from the outside, for example via a belt or a pinion. Thus, the coolant pump 1 can be driven primarily mechanically via the example formed as a pulley drive wheel 106. The drive wheel 106 is decoupled via the freewheel 110 from the pump shaft 30 for this purpose. At standstill and at low speeds of the internal combustion engine, for example, takes a low-cost electric motor pump drive at a constant speed. At higher speeds of the internal combustion engine, the drive wheel 106 overtakes the electric motor. This pump variant can also be used in electrical systems with low electrical power. It represents a cost-effective alternative to expensive brushless drive motors. A pumping capacity is ensured even in the event of a failure of the electric motor.

Die in Fig. 7 im Längsschnitt dargestellte Variante der Kühlmittelpumpe 1 ist in Fig. 8 in einer dreidimensionalen Ansicht zum bessern Verständnis der räumlichen Zuordnung der Bauteile verdeutlicht.The variant of the coolant pump 1 shown in longitudinal section in FIG. 7 is illustrated in FIG. 8 in a three-dimensional view for a better understanding of the spatial allocation of the components.

In Fig. 9 bis 11 ist eine weitere Variante einer Kühlmittelpumpe 1 dargestellt. Die in Fig. 9 im Längsschnitt und in Fig. 10 in einem vergrößerten Ausschnitt sowie in Fig. 11 in dreidimensionaler Ansicht von außen gezeigte weitere Variante einer Kühlmittelpumpe 1 entspricht vom Aufbau her im wesentlichen der in Fig. 1 bis 6 diskutierten Kühlmittelpumpe 1. Gleiche oder gleichwirkende Bauteile sind zur Vereinfachung mit den selben Bezugszeichen versehen.FIGS. 9 to 11 show a further variant of a coolant pump 1. The further variant of a coolant pump 1 shown in FIG. 9 in longitudinal section and in FIG. 10 in an enlarged detail and in FIG. 11 in three-dimensional view corresponds structurally essentially to the coolant pump 1 discussed in FIGS. 1 to 6 or equivalent components are provided for simplicity with the same reference numerals.

Die in Fig. 9 bis 11 gezeigten beispielhaften Modifikationen hinsichtlich des hier näher ausgeführten Antriebs des Wegeventils 40 über ein Dehnstoffelement 112 sind auch auf die in Fig. 1 bis 6 sowie auf die in Fig. 7 und 8 gezeigten Kühlmittelpumpen-Varianten entsprechend übertragbar.The exemplary modifications shown in FIGS. 9 to 11 with regard to the driving of the directional control valve 40 in more detail here via an expansion element 112 can also be correspondingly transferred to the coolant pump variants shown in FIGS. 1 to 6 as well as in the coolant pump variants shown in FIGS.

Die in Fig. 9 bis 11 gezeigte Alternative eines Antriebs des Wegeventils 40 über ein Dehnstoffelement 112 nutzt die Volumenänderung des Dehnstoffelements 112 in Abhängigkeit von der im Druckstutzen 34 vorherrschenden Temperatur des dort hindurchströmenden Kühlmittelgemisches aus. Als Dehnstoffelement 112 kommt in der hier dargestellten Variante zum Beispiel Wachs zum Einsatz. Das hier verwendete Wachs hat einen Schmelzpunkt bei etwa 85°C. Das Wachs liegt als im kalten Zustand verfestigtes Wachselement 112 vor. Das Wachselement 112 ist dem Pumpenausgang bzw. dem Druckstutzen 34 räumlich nah zugeordnet bzw. benachbart. Es erfährt durch den zur Abgrenzung gegenüber dem vorbei strömenden Kühlmittel vorgesehen metallischen Innenmantel 114 jede Temperaturänderung im zum Motor abströmenden Kühlmittel ZM unmittelbar. Temperatureinflüsse von außen werden durch die Isolationswirkung des aus Kunststoff bestehenden Pumpengehäuses 14 unterbunden. Bei Erwärmung oder Abkühlung des aus Wachs gebildeten Dehnstoffelements 112 wird die dabei resultierende Volumenänderung über eine Membran 116 auf ein in einem Vorratsraum 118 bevorratetes Übertragungsmedium bzw. Kühlmittel 120 übertragen. Das Kühlmittel 120 kann beispielsweise ein Wasser/Glykol-Gemisch sein.The alternative shown in FIGS. 9 to 11 of a drive of the directional control valve 40 via an expansion element 112 makes use of the volume change of the expansion element 112 as a function of the temperature prevailing in the pressure connection 34 of the coolant mixture flowing therethrough. As expansion element 112 comes in the variant shown here, for example, wax used. The wax used here has a melting point at about 85 ° C. The wax is present as wax element 112 solidified in the cold state. The wax element 112 is spatially close to the pump outlet or the discharge port 34 or adjacent. It learns by the demarcation against the passing coolant flowing metallic inner shell 114 any temperature change in the coolant flowing to the engine ZM directly. Temperature influences from the outside are prevented by the insulating effect of the pump housing 14 made of plastic. When heating or cooling of the expansion element 112 formed from wax, the resulting change in volume is transmitted via a membrane 116 to a stored in a reservoir 118 transmission medium or coolant 120. The coolant 120 may be, for example, a water / glycol mixture.

Über Verbindungsbohrungen 122 und 124 gelangt das dabei entstehende Differenzvolumen in eine Zylinderkammer 126 des Ventilschiebers 72 des Wegeventils 40. Damit wird eine hydraulische Wegübersetzung realisiert. Das bei Ausdehnung des Wachses 112 durch Wölbung der Membran 116 vom Vorratsraum 118 zum Zylinderraum 126 strömende Kühlmittel 120 - oder entsprechend bei einer Abkühlung des Wachses 112 vom Zylinderraum 126 zurück zum Vorratsraum 118 strömenden Kühlmittels 120 - bewirkt eine Verschiebung des Ventilschiebers 72 des Wegeventils 40 in einer Richtung parallel zur Längsachse X der Kühlmittelpumpe 1.Via connecting bores 122 and 124, the resulting difference volume passes into a cylinder chamber 126 of the valve spool 72 of the directional valve 40. Thus, a hydraulic path ratio is realized. The expansion of the wax 112 by curvature of the diaphragm 116 from the reservoir 118 to the cylinder chamber 126 flowing coolant 120 - or corresponding to cooling of the wax 112 from the cylinder chamber 126 back to the reservoir 118 flowing coolant 120 - causes a shift of the valve spool 72 of the directional control valve 40 in a direction parallel to the longitudinal axis X of the coolant pump. 1

Die in den Ausführungsformen gemäß Fig. 1 bis 8 gezeigte Spiralfeder 73, die dort zur Gewährleistung einer Fail-Safe-Stellung des Wegenventils 40 vorgesehen ist, wird bei der hier dargestellten Wegeventil-Variante nunmehr zur Erzielung einer Schließfunktion genutzt, und nicht mehr zum Erzeugen einer Fail-Safe-Stellung heran gezogen. Wie in Fig. 9 und 10 gezeigt, liegt der Ventilschieber 72 im entspannten Zustand der Feder 127 in einer Position "Bypass offen" bzw. "Kühlerzulauf geschlossen" vor. Eine Erwärmung des in Wachs ausgeführten Dehnstoffelements 112 und die daraus resultierende Volumenausdehnung des Wachses führt dementsprechend zu einer Wölbung der Membran 116 und damit zu einer Veränderung des Volumens des Vorratsbehälters 118, woraus letztendlich eine Verschiebung von Kühlmittel 120 vom Vorratsbehälter 118 in den Zylinderraum 126 resultiert. Diese Verschiebung von Kühlmittel 120 in den Zylinderraum 126 verursacht eine Kraft, die gegen die Federkraft der Feder 127 wirkt und somit den Ventilschieber 72 in eine Stellung "Bypass geschlossen" bzw. "Kühlerzulauf offen" verschiebt. Die Feder 127 sorgt dementsprechend bei Abkühlung des Dehnstoffelements 112 für den erforderlichen Rückhub des Ventilschiebers 72. Da es sich um ein geschlossenes System handelt, ist dieser Vorgang beliebig of wiederholbar.The spiral spring 73 shown in the embodiments of FIGS. 1 to 8, which provided there to ensure a fail-safe position of the directional valve 40 is now used to achieve a closing function in the directional control valve variant shown here, and no longer used to create a fail-safe position. As shown in Fig. 9 and 10, the valve spool 72 is in the relaxed state of the spring 127 in a position "bypass open" or "cooler inlet closed" before. Accordingly, heating the expansion element 112 made in wax and the resulting volume expansion of the wax leads to a curvature of the membrane 116 and thus to a change in the volume of the reservoir 118, which ultimately results in a displacement of coolant 120 from the reservoir 118 into the cylinder chamber 126. This displacement of coolant 120 into the cylinder chamber 126 causes a force which acts against the spring force of the spring 127 and thus shifts the valve spool 72 to a "bypass closed" or "radiator inlet open" position. The spring 127 accordingly provides for cooling the expansion element 112 for the required return stroke of the valve spool 72. Since it is a closed system, this process is arbitrarily repeatable.

Der Antrieb des Wegeventils 40 über ein Dehnstoffelement 112 bietet gegenüber einem elektromagnetischen Antrieb den zusätzlichen Vorteil, daß erhebliches Gewicht eingespart werden kann. Denn ein Antrieb des Wegeventils 40 über einen Elektromagneten 76, wie in den Figuren 1 bis 8 veranschaulicht, bedeutet zusätzliches Gewicht durch den Elektromagneten 76. Hier kann das leichte Dehnstoffelement 112 im Zusammenspiel mit dem für einen hydraulischen Antrieb ausgebildeten Ventilschieber 72 seine Gewichts- und teilweise auch gewisse Kostenvorteile ausspielen.The drive of the directional control valve 40 via an expansion element 112 offers the additional advantage over an electromagnetic drive that considerable weight can be saved. For a drive of the directional control valve 40 via an electromagnet 76, as illustrated in Figures 1 to 8, means additional weight by the electromagnet 76. Here, the light expansion element 112 in conjunction with the designed for a hydraulic drive valve slide 72 its weight and partially also play some cost advantages.

Darüber hinaus ist es möglich, dem Dehnstoffelement 112 hier nicht näher dargestellte Kühl- und/oder Heizelemente zuzuordnen. Damit kann, ggf. unter Nutzung der vorhandenen Regeleinrichtung bzw. CPU 100, entsprechender Temperatursensoren und ggf. Regelkreise oder dergleichen, aktiv auf die Volumenausdehnung des Dehnstoffelements 112 Einfluß genommen werden, um erforderlichenfalls andere Regelzustände des Wegeventils 40 einzustellen, als jene, die sich von selbst ergeben würden.In addition, it is possible to assign the expansion element 112 not shown here cooling and / or heating elements. This can, possibly using the existing control device or CPU 100, corresponding temperature sensors and possibly control circuits or the like, active on the volume expansion of the expansion element 112 to adjust, if necessary, other control states of the directional valve 40, than those that would arise by itself.

Das Kühlmittel 120 kann durch eine mit einer Verschlußschraube 128 verschließbare Befüllöffnung 130 in die Vorratskammer 118 bzw. in das System gegeben werden. Das in Wachs ausgeführte Dehnstoffelement 112 ist in kaltem Zustand so formstabil, daß es als fertiges Bauteil beim Zusammenbau der Pumpe 1 gleich mit eingebaut werden kann. Dichtungsringe 132 oder dergleichen dienen zum Abdichten des Ventilschiebers 72 gegen das Gehäuse 14.The coolant 120 can be introduced into the storage chamber 118 or into the system by means of a filling opening 130 which can be closed by a screw plug 128. The running in wax expansion element 112 is so dimensionally stable in a cold state that it can be installed as a finished component when assembling the pump 1 with the same. Sealing rings 132 or the like serve to seal the valve spool 72 against the housing 14.

In Fig. 10 ist besonders gut erkennbar, wie die Feder 127 über das Übertragungsmedium 120 mit dem Dehnstoffelement 112 ein Kräftepaar bildet und eine permanente Gegenkraft zum Dehnstoffelement 112 erzeugt. Für das Dehnstoffelement 112 kann handelsüblicher Dehnstoff-Wachs verwendet werden. Das Übertragungsmedium bzw. Kühlmittel 120 kann ein Wasser/Glykol-Gemisch sein. Das aus mit Kühlmittel 120 gefülltem Vorratsraum 118, Verbindungsleitungen 122 und 124 und Zylinderraum 126 gebildete hydraulische System 134 wird bei der Montage der Kühlmittelpumpe 1 blasenfrei mit Überdruck eingefüllt. Das aus Wachs gebildete Dehnstoffelement 112 wird bei der Montage der Pumpe 1 in das Gehäuse 14 eingelegt, und zwar in den Zwischenraum 136 vom metallischen Zylindermantel 114, welcher das Radialspiel des Laufrades 32 begrenzt sowie der Innenwandung der Elastomermembran 116, ist also hermetisch abgegrenzt. Das Wachs hat einen Schmelzpunkt von ca. 85°C. Eine Beeinflussung des Wachses 112 ist prinzipiell über ein Heiz- und/oder ein Kühlelement möglich.FIG. 10 shows particularly clearly how the spring 127 forms a force pair with the expansion element 112 via the transmission medium 120 and generates a permanent counterforce to the expansion element 112. For the expansion element 112 commercial wax wax can be used. The transfer medium or coolant 120 may be a water / glycol mixture. The filled with coolant 120 storage space 118, connecting lines 122 and 124 and cylinder chamber 126 formed hydraulic system 134 is filled bubble-free with overpressure during assembly of the coolant pump. The expansion element 112 formed of wax is inserted during assembly of the pump 1 in the housing 14, in the space 136 of the metallic cylinder jacket 114, which limits the radial clearance of the impeller 32 and the inner wall of the elastomeric membrane 116, that is hermetically delimited. The wax has a melting point of about 85 ° C. Influence of the wax 112 is possible in principle via a heating and / or a cooling element.

Die in Fig. 9 im Längsschnitt und in Fig. 10 im vergrößerten Teilschnitt dargestellte Variante der Kühlmittelpumpe 1 ist in Fig. 11 in einer dreidimensionalen Ansicht zum bessern Verständnis der räumlichen Zuordnung der Bauteile verdeutlicht.The variant of the coolant pump 1 shown in longitudinal section in FIG. 9 and in an enlarged partial section in FIG. 10 is illustrated in FIG. 11 in a three-dimensional view for a better understanding of the spatial allocation of the components.

Die konstruktive Ausführung des Wachselementes ist auf die baulichen Gegebenheiten der Kühlmittelpumpe abgestimmt. Das mit dem Dehnstoffelement letztendlich hydraulisch angetriebene Wegeventil wirkt vorteilhaft ähnlich wie ein elektrisch regelbarer Thermostat. Die Komponenten eines Fahrzeuges, die Einfluß auf Verbrauch und Emission haben, stehen heute ganz besonders im Blickpunkt. Ein kennfeldgeregelter Thermostat ist dabei ein Bauteil, das auf den Kraftstoffverbrauch und die Reduzierung der Emission positiv Einfluß nimmt. Herkömmliche Thermostate sind auf eine feste Öffnungstemperatur eingestellt, die nicht verändert werden kann. Mit einem elektrisch regelbaren Kennfeldthermostaten kann die Öffnungstemperatur eines Ventils in Abhängigkeit verschiedener Parameter variiert werden, z.B. Last, Drehzahl, Zündwinkel, Außentemperatur, Motoröltemperatur, Fahrgeschwindigkeit etc.. Diese Vorteile werden auch mit dem elektromagnetisch oder hydraulisch über ein Dehnstoffelement betriebenen Wegeventil der erfindungsgemäßen Kühlmittelpumpe erzielt.The structural design of the wax element is matched to the structural conditions of the coolant pump. The with the expansion element ultimately hydraulically driven directional control valve acts advantageously similar to an electrically adjustable thermostat. The components of a vehicle that have an impact on fuel consumption and emissions are the focus of attention today. A map-controlled thermostat is a component that has a positive influence on the fuel consumption and the reduction of the emission. Conventional thermostats are set to a fixed opening temperature that can not be changed. With an electrically controllable map thermostat, the opening temperature of a valve can be varied depending on various parameters, e.g. Load, rotational speed, ignition angle, outside temperature, engine oil temperature, driving speed, etc. These advantages are also achieved with the electromagnetic valve or hydraulically operated via a Dehnstoffelement directional control valve of the coolant pump according to the invention.

Das Wachselement kann ggf. zusätzlich beheizt oder gekühlt werden. Zum Beheizen kann eine nicht näher dargestellte Stabheizung eingesetzt werden. Diese übernimmt die Beheizung des Wachselementes wobei sie in unmittelbarer Berührung mit dem Wachs steht. Die Erwärmung der Stabheizung kann beispielsweise über einen auf einem Keramikkörper aufgewickelten Widerstandsdraht erfolgen. Unbeheizt kann damit der hierdurch ausgebildete Thermostat beispielsweise auf eine Temperatur von 110°C eingestellt werden. Durch Beheizen kann die Temperatur beispielsweise auf ca.70°C abgesenkt werden. Die volle Öffnungstemperatur wird somit jeweils bei 15°C über der normalen Öffnungstemperatur erreicht. Die Reaktionszeit des Thermostaten kann durch Heizleistung, Eintauchtiefe der Stabheizung in das Wachselement, und der Oberflächengestaltung des Wachselements beeinflußt werden.The wax element may optionally be additionally heated or cooled. For heating a non-illustrated rod heater can be used. This takes over the heating of the wax element while it is in direct contact with the wax. The heating of the rod heater can be done for example via a coiled on a ceramic body resistance wire. Unheated so that the thus formed thermostat can be set for example to a temperature of 110 ° C. By heating the temperature can be lowered, for example, to about 70 ° C. The full opening temperature is thus reached at 15 ° C above the normal opening temperature. The reaction time of the thermostat can be influenced by heating power, immersion depth of the rod heater in the wax element, and the surface design of the wax element.

Um die vorgenannte Applikation in der Entwicklungsphase testen zu können, wurde von der Anmelderin eine Elektronik entwickelt. Diese gestattet es, alle Eingangsgrößen, die im Motormanagement verwendet werden, zu verarbeiten. Über entsprechende Verknüpfungen werden in der Folge die erforderlichen Ausgänge, beispielsweise über entsprechende Regelkreise, die Regeleinrichtung bzw. CPU 100 oder dergleichen angesteuert. Dabei sind die Verknüpfungen je nach Verbrennungsmotor frei programmierbar. Im Serieneinsatz kann dann das Programm beispielsweise in der Motorelektronik des jeweiligen Verbrennungsmotors abgelegt werden. Eine separate Elektronik ist dann nicht erforderlich.In order to be able to test the aforementioned application in the development phase, an electronics unit was developed by the applicant. This makes it possible to process all input variables used in engine management. By means of corresponding links, the required outputs, for example via appropriate control circuits, the control device or CPU 100 or the like, are subsequently activated. The links are freely programmable depending on the internal combustion engine. In series production, the program can then be stored, for example, in the engine electronics of the respective internal combustion engine. A separate electronics is not required.

Die vorliegende Erfindung gibt erstmals eine Kühlmittelpumpe für einen Kühlmittelkreislauf eines Kraftfahrzeugverbrennungsmotors an, der wenigstens einen Kühlerkreis und einen Bypass-Kreis aufweist. Das Kühlmittelpumpengehäuse weist einen Saugstutzen, einen Bypass-Stutzen und einen Druckstutzen auf, sowie einen im Kühlmittelpumpengehäuse angeordneten Kühlmittelpumpenelektromotor, dessen Motorgehäuse vom Kühlmittel umströmt ist, und der über eine Pumpenwelle ein Pumpenlaufrad antreibt, als auch ein im Kühlmittelpumpengehäuse integriertes Wegeventil. Der Saugstutzen ist dabei erstmalig im Bereich des vom Pumpenlaufrad abgewandten Endes des Pumpenmotors angeordnet. Der Bypass-Stutzen ist ferner in einem stromab vom Saugstutzen liegenden Bereich angeordnet. Der Druckstutzen ist in einem stromab vom Bypass-Stutzen liegenden Bereich angeordnet. Lediglich das Kühlmittel, das durch den Saugstutzen-Zulauf vom Kühler ansaugbar ist, soll in einer Mantelströmung - durch einen von der Außenwand des Pumpenmotorgehäuses und der zugewandten Innenwand des Pumpengehäuses und/oder der zugewandten Innenwand des Wegeventils begrenzten Strömungskanal - am Pumpenmotor vorbeiführbar sein.The present invention provides for the first time a coolant pump for a coolant circuit of an automotive internal combustion engine having at least one radiator circuit and a bypass circuit. The coolant pump housing has a suction nozzle, a bypass nozzle and a discharge nozzle, and arranged in the coolant pump housing coolant pump electric motor, the motor housing is flowed around by the coolant, and drives a pump impeller via a pump shaft, as well as an integrated in the coolant pump housing directional control valve. The suction nozzle is for the first time arranged in the region of the pump impeller facing away from the end of the pump motor. The bypass nozzle is further arranged in a region downstream of the suction nozzle. The discharge nozzle is arranged in a region downstream of the bypass nozzle. Only the coolant, which can be sucked in by the suction port inlet from the cooler, should be able to be guided past the pump motor in a sheath flow, through a flow channel bounded by the outer wall of the pump motor housing and the facing inner wall of the pump housing and / or the facing inner wall of the directional control valve.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
KühlmittelpumpeCoolant pump
22
KühlmittelkreislaufCoolant circuit
44
Kühlerkreiscooler Closed
66
Kühlercooler
88th
Bypass-KreisBypass circuit
1010
Motorengine
1212
HeizungskreislaufHeating circuit
1313
Heizungheater
1414
Pumpengehäusepump housing
1616
Erstes GehäuseteilFirst housing part
1818
Zweites GehäuseteilSecond housing part
2020
Spange, Klemmschelle oder KlammerClasp, clamp or clip
2222
Saugstutzensuction
2424
Bypass-StutzenBypass pipe
2626
KühlmittelpumpenelektromotorCoolant pump electric motor
2828
Motorgehäusemotor housing
3030
Pumpenwellepump shaft
3232
Pumpenlaufradpump impeller
3434
Druckstutzenpressure port
3636
Leitradstator
3838
HeizungsrücklaufHeating return
4040
Wegeventilway valve
4242
Bereich, stromauf liegendArea, lying upstream
4444
stromauf liegendes Ende des Pumpenmotorsupstream end of the pump motor
4646
Bereich, stromab vom Saugstutzen liegendArea, lying downstream of the suction nozzle
4848
Bereich, stromab vom Bypass-Stutzen liegendArea, lying downstream of the bypass spigot
5050
MantelsrömungMantelsrömung
5252
Außenwand des PumpenmotorsOuter wall of the pump motor
5454
Innenwand des PumpengehäusesInner wall of the pump housing
5656
Strömungskanalflow channel
5858
6060
Innenwand des WegeventilsInner wall of the directional control valve
6262
Mündung des BypassMouth of the bypass
6464
stromab liegendes Ende des Strömungskanalsdownstream end of the flow channel
6666
Querschnitt des StrömungskanalsCross section of the flow channel
6868
stromab liegendes Ende des Pumpenmotorgehäusesdownstream end of the pump motor housing
7070
Innendurchmesser des DruckstutzenInner diameter of the discharge nozzle
7272
Wegeventil, als Ventilschieber ausgebildetDirectional valve, designed as a valve spool
7373
Spiralfederspiral spring
7474
Ventilschieber zugleich als Anker des Stellmagneten ausgebildetValve slide also designed as an anchor of the solenoid
7676
Elektro-StellmagnetOperating solenoid
7878
Spulenträger des Elektro-StellmagnetenCoil carrier of the solenoid actuator
8080
Spule des StellmagnetenCoil of the solenoid
8282
Eisenrückschluß, radial außerhalb Spule, selbige umfassendIron yoke, radially outside coil, selbige comprising
8484
Eisenrückschluß mit Kennlinienbeeinflußung, zwischen Spule und AnkerIron yoke with characteristic influencing, between coil and armature
8686
Dichtung aus ElastomerSeal made of elastomer
8888
Stirnflächeface
9090
Dichtungssitz, im PumpengehäuseSeal seat, in the pump housing
9292
radial nach innen weisende Dichtungsspitzeradially inward facing sealing tip
9494
PumpenwellengehäusePump shaft housing
9696
Spulenkontakte, axial bzw. parallel zur X-Achse orientiertCoil contacts, oriented axially or parallel to the X-axis
100100
Regeleinrichtung bzw. CPUControl device or CPU
102102
Verstärkereinheitamplifier unit
104104
Steckerplug
106106
Antriebsraddrive wheel
108108
Freilauffreewheel
110110
Wellenlagershaft bearing
112112
Dehnstoffelement, in Wachs ausgeführtExpansion element, executed in wax
114114
metallischer Innenmantelmetallic inner jacket
116116
Membranmembrane
118118
Vorratsvolumen/VorratsraumStorage volume / pantry
120120
Kühlmittelcoolant
122122
Verbindungsbohrungconnecting bore
124124
Verbindungsbohrungconnecting bore
126126
Zylinderraumcylinder space
127127
Federfeather
128128
VerschlußschraubeScrew
130130
Befüllöffnungfilling
132132
Dichtungsringeseals
134134
hydraulisches Systemhydraulic system
136136
Zwischenraumgap

Claims (22)

  1. A coolant pump (1) for a coolant circuit (2) of an automotive internal combustion engine (10) including at least a radiator circuit (4) and a bypass circuit (8), which comprises:
    - a coolant pump housing (14) having an intake pipe (22) for the supply (ZK) from the radiator (6), a bypass pipe (24) for the supply (ZB) from the bypass circuit (8), and a pressure pipe (34) for the supply (ZM) of coolant to the automotive vehicle engine (10),
    - a coolant pump electric motor (26) arranged in the coolant pump housing (14), the motor housing (28) of which is situated in the coolant flow, and which drives a pump impeller (32) through the intermediary of a pump shaft (30), and
    - a directional control valve (40) integrated into the coolant pump housing (14),
    characterized in that
    - the intake pipe (22) is arranged in the area (42) of the end (44) of the pump motor (26) facing away from the pump impeller (32),
    - the bypass pipe (24) is arranged in an area (42) situated downstream of the intake pipe (22),
    - the pressure pipe (34) is arranged in an area (42) situated downstream of the bypass pipe (24), and
    - only the coolant (KZK) that can be taken in by the intake pipe (22) as a supply (ZK) from the radiator (6) may be taken past the pump motor (26) in a peripheral flow (50) through a flow channel (56) preferentially defined by the outer wall (52) of the pump motor housing (28) and the facing inner wall (54) of the pump housing (14) and/or the facing inner wall (60) of the directional control valve (40).
  2. The coolant pump (1) in accordance with claim 1, characterized in that the coolant (KZB) of the bypass circuit (8) that may be taken in through the bypass pipe (24) may be admixed to the coolant (KZK) arriving from the radiator circuit (4) with the aid of the directional control valve (40), wherein an outlet (62) of the bypass pipe (24) adapted to be opened and closed again with the aid of the directional control valve (40) is disposed in an area (42) upstream of the pump impeller (32).
  3. The coolant pump (1) in accordance with claim 2, characterized in that the outlet (62) of the directional control valve (40) is disposed in an area (42) between the pump impeller (32) and the downstream end (64) of the flow channel (56).
  4. The coolant pump (1) in accordance with any one of claims 1 to 3, characterized in that the pump motor (26) and the pump shaft (30) are arranged coaxially with the longitudinal axis X of the pump housing (14).
  5. The coolant pump (1) in accordance with any one of claims 1 to 4, characterized in that the flow channel (56) defined by the outer wall (52) of the motor housing (28) enclosing the pump motor (26) and the facing inner wall (54) of the pump housing (14) and/or the facing inner wall (60) of the directional control valve (40) has an annular cross-section through which the coolant (KZK) that can be taken in through the intake pipe (22) for the supply (ZK) from the radiator (6) may be taken past the pump motor (26) in a peripheral flow (56) annularly enclosing the motor housing (28).
  6. The coolant pump (1) in accordance with any one of claims 1 to 5, characterized in that the flow channel (56) has a cross-section (66) that is constant in the direction of flow, wherein a constriction from the diameter present at the end of the flow channel (56) to the inner diameter (70) of the pressure pipe (34) takes place from the downstream end (68) of the pump motor (26) to the pump impeller (32).
  7. The coolant pump (1) in accordance with any one of claims 1 to 6, characterized in that the directional control valve (40) may be switched continuously from a closed position of "bypass closed" into an open position of "bypass open."
  8. The coolant pump (1) in accordance with any one of claims 1 to 7, characterized in that the directional control valve (40) has the form of a valve spool (72) slidingly displaceable in the longitudinal direction X of the coolant pump (1).
  9. The coolant pump (1) in accordance with claim 8, characterized in that the valve spool has the form of a cylindrical sleeve (72).
  10. The coolant pump (1) in accordance with any one of claims 8 or 9, characterized in that the valve spool (72) may be displaced by an actuator such as, e.g., an operating solenoid (76), a thermally expandable element (112), a hydrostatic pressure member, etc.
  11. The coolant pump (1) in accordance with any one of claims 8 to 10, characterized in that the valve spool (72) has downstream in the area of the outlet (62) a radially inner, annular peripheral seal (86), which in the closed postion, "bypass closed", of the directional control valve (40) sealingly closes the outlet (62) thereof by means of an end face (88) against an annular seal seat (90) of the pump housing (14), and/or in the open condition, "bypass open", sealingly closes the flow channel (56) by means of a radially inwardly directed seal lip (92) against the pump motor housing (28) or the pump shaft housing (94).
  12. The coolant pump (1) in accordance with claim 11, characterized in that the radially inwardly directed surface of the seal (86) has a contour corresponding to the opposite contour of the motor housing (28) or of the pump shaft housing (94).
  13. The coolant pump (1) in accordance with any one of claims 8 to 12, characterized in that the operating solenoid (76) of the valve spool (72) includes an armature (74) formed by the cylindrical sleeve of the valve spool (72).
  14. The coolant pump (1) in accordance with claim 13, characterized in that the operating solenoid (76) includes a coil carrier (78) arranged in the pump housing (14) and enclosing the armature (74).
  15. The coolant pump (1) in accordance with any one of claims 1 to 14, characterized in that downstream following the bypass pipe (24) and still upstream of the pump impeller (32), a return flow (38), e.g. for a heating circuit, a transmission oil heat exchanger, a lubricant oil heat exchanger, a cylinder block cooling circuit or the like, merges into the pump housing (14).
  16. The coolant pump (1) in accordance with any one of claims 1 to 15, characterized in that the pump housing (14) is constructed in two parts (16, 18).
  17. The coolant pump (1) in accordance with any one of claims 1 to 16, characterized in that the operating solenoid (76) has coil terminals (96) oriented in the longitudinal direction X, which may by means of correlating terminals (98) be taken into contact with control means (100) accommodated in the other housing part (18) such as a CPU etc., upon joining together the two housing parts (16, 18).
  18. The coolant pump (1) in accordance with any one of claims 1 to 17, characterized in that in addition to driving the pump impeller (32) by the coolant pump electric motor (26), a drive wheel (106) is provided which is arranged coaxially with the pump shaft (30) externally of the pump housing (14) and coupled to the pump shaft (30) via a free-wheel (108).
  19. The coolant pump (1) in accordance with any one of claims 1 to 18, characterized in that the thermally expandable element (112) is in operative connection with the directional control valve (40) via connection lines (122, 124) such that the directional control valve (40) may be switched hydraulically through a volume change of the thermally expandable element (112).
  20. The coolant pump (1) in accordance with any one of claims 1 to 19, characterized in that the thermally expandable element (112) is formed of wax, the temperature-dependent volume change of which may be transferred to the hydraulically actuatable valve spool (72) via a separate coolant (120) and connection lines (122, 124).
  21. The coolant pump (1) in accordance with any one of claims 1 to 20, characterized in that the thermally expandable element (112) formed of wax is arranged in an area adjacent the pressure pipe (34) in the pump housing (14) and is separated from the associated, separate coolant (120) through a diaphragm (116), such that a temperature-dependent volume change of the thermally expandable element (112) may be transferred to the coolant (120), which in turn may be displaced via the connection lines (122, 124) into a cylinder chamber (126) of the valve spool (72) thus adapted to be actuated hydraulically.
  22. A method for conveying coolant by means of a coolant pump (1) for a coolant circuit (2) of an automotive internal combustion engine (10) comprising at least a radiator circuit (4) and a bypass circuit (8), comprising the steps:
    - supplying the coolant from the radiator (6) to the coolant pump (1) through an intake pipe (22) of the coolant pump housing (14) for the supply (ZK),
    - supplying the coolant from the bypass circuit (8) to the coolant pump (1) of the coolant pump housing (14) through a bypass pipe (24) for the supply (ZB),
    - returning the coolant from the coolant pump (1) to the automotive vehicle engine (10) through a pressure pipe (34) for the coolant return (ZM),
    - circulating the coolant (1) by means of a pump impeller (32) arranged in the coolant pump housing (14) and driven by a coolant pump electric motor (26) via a pump shaft (30), wherein the engine (26) is situated in a flow of the coolant,
    - adjusting the mixing ratio of the coolant flows circulating through the coolant pump by means of a directional control valve (40) integrated into the coolant pump housing (14),
    characterized in that
    - the coolant arriving from the radiator (6) is supplied via the intake pipe (22) in the area (42) of the end (44) of the pump motor (26) facing away from the pump impeller (32),
    - the coolant arriving from the bypass is supplied via the bypass pipe (24) in an area (42) located downstream of the intake pipe (22),
    - the coolant is taken away via the pressure pipe (34) in an area (42) located downstream of the bypass pipe (24), and
    - only the coolant (KZK) supplied from the radiator (6) through the intake pipe (22) as a supply (ZK) is taken in a peripheral flow (50) past the pump motor (26) through a flow channel (56) preferentially defined by the outer wall (52) of the pump motor housing (28) and the facing inner wall (54) of the pump housing (14) and/or the facing inner wall (60) of the directional control valve (40).
EP04718939A 2003-03-31 2004-03-10 Coolant pump, especially electric convection-cooled coolant pump with integrated directional control valve, and corresponding method Expired - Lifetime EP1608876B8 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2003114526 DE10314526B4 (en) 2003-03-31 2003-03-31 Coolant pump, in particular flow-cooled electric coolant pump with integrated directional control valve
DE10314526 2003-03-31
PCT/EP2004/002455 WO2004088143A1 (en) 2003-03-31 2004-03-10 Coolant pump, especially electric convection-cooled coolant pump with integrated directional control valve, and corresponding method

Publications (3)

Publication Number Publication Date
EP1608876A1 EP1608876A1 (en) 2005-12-28
EP1608876B1 true EP1608876B1 (en) 2007-07-18
EP1608876B8 EP1608876B8 (en) 2007-10-03

Family

ID=33016092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04718939A Expired - Lifetime EP1608876B8 (en) 2003-03-31 2004-03-10 Coolant pump, especially electric convection-cooled coolant pump with integrated directional control valve, and corresponding method

Country Status (7)

Country Link
US (1) US7334543B2 (en)
EP (1) EP1608876B8 (en)
JP (1) JP4545143B2 (en)
AT (1) ATE367532T1 (en)
DE (2) DE10314526B4 (en)
ES (1) ES2286621T3 (en)
WO (1) WO2004088143A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439317A (en) * 2009-04-30 2012-05-02 欧根·施密特博士仪器和泵制造有限责任公司 Switchable coolant pump

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054637B4 (en) * 2004-11-12 2007-04-26 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Adjustable coolant pump
DE102005024827A1 (en) * 2005-05-27 2006-11-30 Fev Motorentechnik Gmbh Mechatronic coolant pump drive connection
PL1767788T3 (en) * 2005-09-23 2009-01-30 Bsh Hausgeraete Gmbh Drain pump for home appliances
DE102005056200A1 (en) * 2005-11-25 2007-06-06 Audi Ag Fluid medium pump e.g. cooling medium pump, for internal combustion engine of motor vehicle, has regulating unit that is mechanically adjustable, where flow rate is regulatable by wax type thermostat depending on cooling medium temperature
DE102005062200B3 (en) 2005-12-23 2007-02-22 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Adjustable coolant pump for internal combustion engine has annular valve pusher fitted to several piston rods movable in pump housing
DE102006034952B4 (en) * 2006-07-28 2008-04-03 Audi Ag Adjustable axial pump for a cooling circuit of an internal combustion engine
WO2008057522A1 (en) * 2006-11-06 2008-05-15 Borgwarner Inc. Dual inlet regenerative air pump
DE202006018152U1 (en) * 2006-11-28 2008-04-10 Weidmüller Interface GmbH & Co. KG Additional connection for terminal blocks
DE102007004187B4 (en) 2007-01-27 2008-09-25 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Adjustable coolant pump
JP2010001739A (en) * 2008-02-20 2010-01-07 Toyota Motor Corp Thermostat device
US8029248B2 (en) * 2008-06-05 2011-10-04 Dana Canada Corporation Integrated coolant pumping module
DE102008030768A1 (en) * 2008-06-28 2009-12-31 Audi Ag Internal combustion engine, has disk valve with end area rotatably accommodated with intake mouth such that coolant opening lies in intake opening and/or end area rotatably overlaps mouth so that intake opening lies in coolant opening
WO2010081161A1 (en) * 2009-01-12 2010-07-15 Tourgee & Associates, Inc. Method and apparatus for mounting optically coupled instruments in harsh environments
EP2224137B1 (en) * 2009-02-26 2011-06-01 Grundfos Management A/S Motor pump unit
DE102009012923B3 (en) * 2009-03-12 2010-07-01 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Adjustable coolant pump
DE102009014038B4 (en) * 2009-03-19 2015-07-02 Schaeffler Technologies AG & Co. KG Thermal management module with prismatic control slide
BRPI0905651B1 (en) * 2009-11-03 2020-03-10 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda ARRANGEMENT OF ECCENTRIC AXLE ASSEMBLY IN A COOLING COMPRESSOR BLOCK
US8731789B2 (en) * 2010-09-28 2014-05-20 Ford Global Technologies, Llc Transmission fluid heating via heat exchange with engine cylinder walls
BR112013006039B1 (en) * 2010-11-12 2021-12-28 Aisin Seiki Kabushiki Kaisha CONTROL VALVE
DE102010053510B4 (en) 2010-12-04 2014-01-23 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Coolant pump
CN102121477B (en) * 2011-03-31 2012-12-26 宁波巨神制泵实业有限公司 Large submerged sewage pump
WO2014098656A1 (en) * 2012-12-21 2014-06-26 Volvo Truck Corporation Cooling system for a mechanically and hydraulically powered hybrid vehicle
DE102013210288B3 (en) 2013-04-30 2014-07-10 Magna Powertrain Ag & Co. Kg Direct current drive for cooling system of motor vehicle, has direct current motor with commutation, valve for influencing coolant flow of internal combustion engine, and controller which feeds temperature value of coolant by valve
DE102013019298A1 (en) 2013-11-16 2015-05-21 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Setting device of an electric coolant pump
DE102013019299B4 (en) 2013-11-16 2017-10-12 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Electromotive coolant pump with arranged in the pump housing and actuated by the coolant Stellaktor
WO2015070955A1 (en) * 2013-11-16 2015-05-21 Brose Fahrzeugteile Gmbh & Co Kommanditgesellschaft, Würzburg Electromotive coolant pump
DE102014101437A1 (en) * 2014-02-05 2015-08-06 Eto Magnetic Gmbh Solenoid valve and internal combustion engine cooling system with solenoid valve
CN104005963B (en) * 2014-05-23 2016-03-02 哈尔滨电气动力装备有限公司 Small nuclear power plant Structure of RCP
DE102014113412B3 (en) * 2014-09-17 2015-09-24 Nidec Gpm Gmbh Flow-cooled coolant pump with wet rotor
DE102015000805B3 (en) 2015-01-22 2016-01-21 Nidec Gpm Gmbh Adjustable coolant pump
JP2017014984A (en) * 2015-06-30 2017-01-19 株式会社荏原製作所 Fluid machine
CN108368950B (en) * 2015-10-02 2019-08-23 康卓(马克多夫)有限公司 Cooling circuit for cooling down engine is arranged and method
WO2017076444A1 (en) * 2015-11-04 2017-05-11 Volvo Truck Corporation Method of operating an internal combustion engine
US10295076B2 (en) * 2016-11-02 2019-05-21 Schaeffler Technologies AG & Co. KG Modular electro-mechanical rotary valve with activated seal interface
US11541727B2 (en) 2016-12-02 2023-01-03 Carrier Corporation Cargo transport heating system
CN106640594A (en) * 2016-12-14 2017-05-10 江门市腾飞科技有限公司 Booster pump and water purifier with same
DE102017102769B3 (en) 2017-02-13 2018-06-07 Nidec Gpm Gmbh Hybrid drive for a coolant pump
DE102017118264A1 (en) 2017-08-10 2019-02-14 Nidec Gpm Gmbh Coolant pump with hybrid drive and control method
DE102017120191B3 (en) 2017-09-01 2018-12-06 Nidec Gpm Gmbh Controllable coolant pump for main and secondary conveying circuit
KR20190072934A (en) * 2017-12-18 2019-06-26 현대자동차주식회사 Water pump for vehicle
KR102451915B1 (en) * 2018-03-27 2022-10-06 현대자동차 주식회사 Coolant pump and cooling system provided with the same for vehicle
KR101936853B1 (en) 2018-05-16 2019-01-09 지엠비코리아(주) Multiway valve apparatus
KR20200116676A (en) * 2019-04-02 2020-10-13 현대자동차주식회사 Water pump
DE102019120235B3 (en) * 2019-07-26 2020-09-17 Bayerische Motoren Werke Aktiengesellschaft Electromechanical water pump with a housing
DE102019122717A1 (en) * 2019-08-23 2021-02-25 Nidec Gpm Gmbh Adjustable coolant pump with piston rod guide
DE102020003431A1 (en) 2020-06-08 2021-12-09 Daimler Ag Coolant pump for a motor vehicle, in particular for a motor vehicle
US11863051B2 (en) 2021-05-13 2024-01-02 General Electric Company Thermal management system
CN114483281A (en) * 2022-01-29 2022-05-13 重庆长安汽车股份有限公司 Water pump arrangement structure of engine, engine and automobile
DE102022202215A1 (en) * 2022-03-04 2023-09-07 Vitesco Technologies GmbH valve-pump unit
DE102022202217A1 (en) * 2022-03-04 2023-09-07 Vitesco Technologies GmbH valve-pump unit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3739494A1 (en) * 1987-11-21 1989-06-01 Sueddeutsche Kuehler Behr VALVE FOR CONTROLLING THE COOLING WATER CIRCUIT IN COMBUSTION ENGINES
DE3817952A1 (en) * 1988-05-27 1989-11-30 Wahler Gmbh & Co Gustav Cooling water regulator for internal combustion engines
DE9013459U1 (en) 1990-09-25 1992-01-30 Robert Bosch Gmbh, 7000 Stuttgart Cooling system for internal combustion engines
US5415134A (en) * 1993-10-29 1995-05-16 Stewart Components Engine cooling system for cooling a vehicle engine
DE4422749C2 (en) * 1994-06-29 1996-08-29 Holter Gmbh & Co Pump protection valve
DE19534108A1 (en) * 1995-09-14 1997-03-20 Wilo Gmbh Cooling system for internal combustion engine
DE19809123B4 (en) 1998-03-04 2005-12-01 Daimlerchrysler Ag Water pump for the cooling circuit of an internal combustion engine
AT412664B (en) * 1998-04-27 2005-05-25 Andritz Ag Maschf STORAGE FOR A PUMP, ESPECIALLY MAIN COOLANT PUMP
DE19846737A1 (en) * 1998-10-12 2000-04-20 Voit Stefan Electrically powered pump element for motor vehicle cooling system has one suction side connection for connection to heat exchanger output, and one for connection to output of cooled device
DE19943981A1 (en) * 1999-09-14 2001-03-15 Behr Thermot Tronik Gmbh & Co Valve for regulating temperature of internal combustion engine is arranged on suction side of coolant pump whose pressure side is associated with engine inlet
DE10047387B4 (en) * 2000-09-25 2013-09-12 GPM Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt, Merbelsrod Electrically driven coolant pump
JP2002130190A (en) * 2000-10-19 2002-05-09 Koyo Seiko Co Ltd Motor-driven water pump device
US6499442B2 (en) * 2000-12-18 2002-12-31 Thomas J. Hollis Integral water pump/electronic engine temperature control valve
DE10207653C1 (en) * 2002-02-22 2003-09-25 Gpm Geraete Und Pumpenbau Gmbh Electric coolant pump with integrated valve, and method for controlling it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439317A (en) * 2009-04-30 2012-05-02 欧根·施密特博士仪器和泵制造有限责任公司 Switchable coolant pump
CN102439317B (en) * 2009-04-30 2014-07-02 欧根·施密特博士仪器和泵制造有限责任公司 Switchable coolant pump

Also Published As

Publication number Publication date
ES2286621T3 (en) 2007-12-01
ATE367532T1 (en) 2007-08-15
JP4545143B2 (en) 2010-09-15
EP1608876A1 (en) 2005-12-28
DE10314526A1 (en) 2004-10-21
WO2004088143A1 (en) 2004-10-14
DE502004004367D1 (en) 2007-08-30
DE10314526B4 (en) 2007-11-29
JP2006522259A (en) 2006-09-28
EP1608876B8 (en) 2007-10-03
US7334543B2 (en) 2008-02-26
US20060216166A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
EP1608876B1 (en) Coolant pump, especially electric convection-cooled coolant pump with integrated directional control valve, and corresponding method
DE10302629B4 (en) Flow control valve
DE19606202B4 (en) Cooling system for an internal combustion engine
DE102005040897B4 (en) Heat exchanger assembly of an automatic transmission
DE4420841A1 (en) Motor vehicle heater
DE10239288B4 (en) Torque converter, which is provided with a converter lock-up clutch and is arranged for effective heat dissipation
DE10025500A1 (en) Internal combustion engine has additional wall for turbine housing creating hollow space which has inlet and outlet connection for intake and discharge of heat-absorbing cooling fluid upstream of heat exchanger
DE69835959T2 (en) DEVICE FOR ASSEMBLING THE EXHAUST GAS VALVE
DE102014219252A1 (en) Internal combustion engine
DE112009001025T5 (en) Electronically controlled viscous fan drive with socket
DE102008015707B4 (en) Water pump and method for its control
DE3211793A1 (en) COOLANT TEMPERATURE CONTROL SYSTEM FOR A MOTOR VEHICLE COMBUSTION ENGINE
DE102009014050A1 (en) Heat management module for cooling system of internal combustion engine, has supply connection for cooling water of bypass cycle, where supply connection is arranged at valve housing
DE102019118585A1 (en) DEVICE AND METHOD FOR CONTROLLING AN ENGINE COOLANT FLOW RATE BY MEANS OF A THERMOSTAT
DE102016214122A1 (en) Heat conduction system for a vehicle and method for its use and manufacture
DE102011083803A1 (en) Control valve for use as rotary valve in refrigerant circuit of combustion engine, has sealing elements supported with outer contour complementary to contact zone of valve element to form common sealing surfaces
DE4446152C2 (en) Heating system, in particular for motor vehicles
DE19908146B4 (en) Device for changing the timing of gas exchange valves of an internal combustion engine
EP1746280A2 (en) Heat exchanger valve system
DE102018217006B4 (en) Vehicle cooling circuit with a flow control valve
DE112009000950T5 (en) Integrated oil pump, water pump and oil cooler module
DE3728330C2 (en)
EP0658708B1 (en) Arrangement for temperature control of hydraulic fluid in an automatic gearbox and torque converter
DE10318711A1 (en) Arrangement for driving coolant pump for internal combustion engine has planetary gear components, coupling and brake structurally integrated into common housing
EP1291207B1 (en) Heating device, especially for motor vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070718

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004004367

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2286621

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071218

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071019

26 Opposition filed

Opponent name: PIERBURG PUMP TECHNOLOGIES GMBH

Effective date: 20080408

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

BERE Be: lapsed

Owner name: GERATE- UND PUMPENBAU G.M.B.H.

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080310

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20091224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080119

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150323

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004004367

Country of ref document: DE

Representative=s name: KUHNEN & WACKER PATENT- UND RECHTSANWALTSBUERO, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004004367

Country of ref document: DE

Owner name: NIDEC GPM GMBH, DE

Free format text: FORMER OWNER: GERAETE- UND PUMPENBAU GMBH, 98673 MERBELSROD, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: RM

Effective date: 20151228

Ref country code: FR

Ref legal event code: CD

Owner name: NIDEC GPM GMBH, DE

Effective date: 20151228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: NIDEC GPM GMBH

Effective date: 20160404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160307

Year of fee payment: 13

Ref country code: ES

Payment date: 20160215

Year of fee payment: 13

Ref country code: IT

Payment date: 20160302

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160309

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160331

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004367

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170310

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170310

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170310

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170311