EP1606590B1 - Positionsmessverfahren und positionsmesssystem zur signalperioden-vervielfachung - Google Patents

Positionsmessverfahren und positionsmesssystem zur signalperioden-vervielfachung Download PDF

Info

Publication number
EP1606590B1
EP1606590B1 EP03788883A EP03788883A EP1606590B1 EP 1606590 B1 EP1606590 B1 EP 1606590B1 EP 03788883 A EP03788883 A EP 03788883A EP 03788883 A EP03788883 A EP 03788883A EP 1606590 B1 EP1606590 B1 EP 1606590B1
Authority
EP
European Patent Office
Prior art keywords
signal
cos
sin
input
pos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03788883A
Other languages
English (en)
French (fr)
Other versions
EP1606590A1 (de
Inventor
Bernhard Hiller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baumer Huebner GmbH
Original Assignee
Baumer Huebner GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baumer Huebner GmbH filed Critical Baumer Huebner GmbH
Publication of EP1606590A1 publication Critical patent/EP1606590A1/de
Application granted granted Critical
Publication of EP1606590B1 publication Critical patent/EP1606590B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24409Interpolation using memories

Definitions

  • the invention relates to a position measuring method and a position measuring system by which the signal period number of a sine and cosine signal representing a position can be multiplied.
  • the position measuring method from a position measuring method generated by a position sensor in which, from an input sine signal and input cosine signal generated by a position sensor, a digital position signal representing a position measured by the position sensor is calculated and digitally filtered in response to the filtered position signal, an output sine signal and an output cosine signal each having a signal period multiplied from the frequency of the input signals are generated.
  • the position measuring system is provided with an input interface which can be supplied in operation with an input sine signal and input cosine signal of a position sensor, with a calculation unit, by means of which a digital, from the input sine signal and the output cosine signal. a position signal representative of the position sensor can be generated, and with a signal generating unit, in response to the position signal, an output sine signal and an output cosine signal, each with respect to the input sine signal and input cosine signal multiplied signal period can be generated, and with a arranged between the computing unit and the input interface digital filter.
  • Position measuring systems are usually used for position or Winkelbestirnmung.
  • the position of the tool relative to the workpiece must be precisely measurable in order to achieve high manufacturing accuracies.
  • a position measuring system has a scale graduation and a signal generation unit, by means of which the movement of the scale graduation relative to the signal generation unit is determined and a signal representing the relative movement is output.
  • a signal can, for example, in the form of a rectangular signal a temporal succession of pulses (high-low signals.
  • high-low signals In length measuring systems, a certain number of high-low signals is generated per unit length, for example, 10 high-low signals per millimeter.
  • the position measuring systems can generate the high-low signals by optical, magnetic, inductive or capacitive means, wherein the optical systems are distinguished for their high resolution and accuracy.
  • the light of a light-emitting diode penetrates a so-called mask, which is mounted at a small distance, typically 0.1 mm, above the scale graduation, for example an incremental disk or a linear scale.
  • the scale graduation is provided at regular intervals with transparent and non-transparent markings. If the scale division is shifted in the course of the movement to be detected with respect to the mask, regular light-dark areas are formed. These are photoelectrically scanned by a sensor to yield a sine-like position signal, e.g. can easily be converted by comparators into the high-low pulses described above.
  • a second cosine-like signal phase-shifted by 90 ° is usually generated in addition to the first sinusoidal signal.
  • the travel direction can be detected.
  • the advantage of the sine and cosine signals lies in the fact that, compared to the frequently used high-low pulses, by evaluating the signal amplitude, a considerably higher position resolution than with square-wave signals is possible. However, this procedure requires a more complex signal processing.
  • mechanical constraints such as those imposed on optical sensing principles, are such as to provide mechanical constraints.
  • the small distance of typically 0.1 mm can not be realized, so that other scanning methods are used there.
  • optical systems such as the use of position sensing systems in woodworking machines, where the chips and wood dust obstruct optical scanning despite appropriate encapsulation, are often prohibited. A magnetic or inductive scanning remains unaffected here.
  • scale graduation In a magnetic scanning process, scale graduation consists of periodically alternating magnetized markings. The distance between the markers on the graduation scale thereby moves in the millimeter range, so that according to a rule of thumb, the distance between the signal generating unit and the graduation scale can be in this size range.
  • the magnetic methods therefore allow a greater distance and in particular a greater distance variation between the signal generation unit and the scale division.
  • the sensor for example, carried out according to the magnetoresistive principle, then in turn provides each magnetic marker a sinusoidal and a cosine-like signal.
  • the input sine and input cosine signals are multiplicatively and additively linked to one another in such a way that the frequency of these signals is increased by implementing trigonometric formulas.
  • the formula calculations take place on the analog signals.
  • this requires circuits that themselves produce errors.
  • the 101 38 640 C1 forms the closest prior art.
  • the patent describes a system in which two phase-shifted analog input signals are digitized. From the digitized input signals, a digital position signal is calculated, which is digitally filtered. By hiding the higher-order bits, a digital signal with multiplied signal periods is generated.
  • the position measuring method for signal-to-multiple splitting in that in the course of filtering from the position signal, a digital position signal is formed with a relation to the calculated position signal increased resolution.
  • the position signal has a resolution of i bits in front of the digital filter and a resolution of k bits after the digital filter, where k > i .
  • This solution makes it possible in a simple manner to increase the resolution of the position measuring method or of the position measuring system.
  • By forming the position signal from the input sine signal and the input cosine signal errors included only in each one of the two input signals can be easily eliminated so that they are not included in the output signals , Thereby, the accuracy in the output sine signal and the output cosine signal formed in response to the position signal can be increased.
  • the position value thus determined can be increased in its resolution using a fast digital filter, while at the same time higher-frequency interference can be suppressed by the digital filter.
  • increasing the resolution is to be understood a representation of the position value with an increased number of data bits.
  • the position signal is formed from the arctangent ( atan ) of the quotient of the input sine signal and the input cosine signal.
  • the atan can be determined by reading a look-up table or z. B. be calculated by the so-called Cordic algorithm.
  • other methods can be used. For example, so-called Naehlaufvedahren are also suitable.
  • two output tables can be provided in a memory of the device or of the signal generator, which are each assigned to an output signal and are addressed and read out in parallel.
  • the frequency increase in the two output signals can be reliably performed.
  • the output tables can be stored in the at least one output table, so that these tables only have to be read out.
  • a calculation of a sine and a cosine signal from the high-resolution position value by the signal generator is possible.
  • the high-resolution momentary value of the position signal in the form of a digital K word, ie a digital number of k bits, where only m consecutive bits are read from the k word, where ( m ⁇ k ) holds for integer positive and otherwise arbitrary values k and m .
  • the output sine signal and the output cosine signal are generated, preferably by addressing the output table by the m word.
  • the advantage of this embodiment is that the frequency multiplication can be set in a very easy to implement manner by the position of the m word within the k word: Surprisingly, it has been found that a frequency increase by a factor of 2 (k-km ) between the input and output signals when the most significant bit of the m word is at the position k m , k m ⁇ k . The signal sequence formed from the m word changes with this increased periodicity compared to the periodicity of the position signal.
  • a number of further advantageous embodiments are concerned with the processing of the input signals in order to be able to calculate the position signal as accurately as possible. In this way it is prevented that the errors present in the input signals are increasingly reflected in the output signals with a multiplied signal period. All these filtering operations before the actual frequency increase take place in a signal conditioning unit.
  • a signal conditioning unit can be provided, can be calculated by the deviations in the input sine and input cosine of the desired shape and traceable to compensate for these deviations to the input sine and the input cosine.
  • the feedback conditioning of the input signals before and / or after their digitization by analog-to-digital converters take place, ie the signal conditioning can be purely analog, or purely digital or mixed analog and digital. Due to the simple structure, the adjustment of the already digitized input signals is preferred.
  • Conditioning error correction may include detecting deviations-the amplitude of the input sine from the amplitude of the input cosine, and compensating for any amplitude differences, or adjusting both signal amplitudes to a common set point.
  • signal offsets i. Deviations of the average of the input sine signal and the input cosine signal calculated over one or more periods from a desired average value, for example a predetermined zero position, are calculated and corrected.
  • the relative phase of the input sine signal to the input cosine signal can be detected in the course of signal conditioning and deviations from the desired phase position 90 ° can be compensated in particular by mutual addition of a portion of the other input signal.
  • the signal conditioning unit may comprise a digital filter, in particular a low-pass filter, respectively for the already digitized at high sampling input sine and the input cosine signal, the high-frequency noise and noise caused by, for example, reduced by frequency and thus the Quality of digitized input signals increased.
  • the cutoff frequency of this digital filter which can be realized in a variety of ways, but preferably as an easy to implement digital mean value filter, can be such that it is at maximum travel speed or speed below the then occurring frequency of the input signals.
  • a further processing step can be provided in further, per se advantageous embodiments, by means of which error components inherent in the signal source are filtered out.
  • such preferably digital filtering takes place only after the calculation of the digital position signal. Compared to filtering each of the two input signals, the computational effort can thereby be reduced.
  • the error components which depend on the measuring system and on the ambient conditions can be filtered out, for example, by calculating that from the input signals, which can also be pre-processed as described above
  • Position signal is compared with pre-stored error characteristics.
  • various characteristics can be stored for various errors typical for measuring systems. If the position signal coincides with a predetermined error characteristic or with a plurality of previously determined error characteristics, predetermined algorithms determined as a function of this error characteristic may be used or by using pre-stored look-up tables, the signal transmitter-dependent errors in the position signal are eliminated.
  • the measurement systems are experimentally examined for system-related errors. For example, depending on the errors discovered in these investigations, look-up tables are generated containing values that account for these errors, thereby correcting the erroneous values.
  • the measurement system-dependent error and in particular noise components (also quantization noise) occurring in the position signal can be filtered out by one or more digital filters, for example digital low-pass filters.
  • the cut-off frequency of the low-pass filters must be higher than the frequency relevant for the subsequent control.
  • one possibility for filtering out the encoder-dependent error signals is that a moving average value is formed from the digital position signal from a plurality of values that occur in short chronological succession.
  • a moving average value is formed from the digital position signal from a plurality of values that occur in short chronological succession.
  • a further advantage of the formation of a moving average is that the mean value can be given with a resolution which is greater than the resolution of the individual values to be averaged. If, for example, the mean value is formed from a plurality of temporally short successive position signals, each having a resolution of i bits, then the calculated mean value can have a resolution of k bits, where k is greater than i .
  • the output, sine and cosine signal is then generated in the signal generation unit.
  • the position signal may be used to address the output tables of the output sine and the output cosine.
  • the propagation delay which occurs due to the averaging can be compensated in an advantageous development.
  • the mean value is corrected as a function of the previous signal profile and as a function of the number of bases flowing into the mean value in order to come as close as possible to the actual instantaneous value.
  • the output sine signal and the output cosine signal which have a higher frequency than the input sine signal and the input cosine signal, respectively, as mentioned above, can finally be converted into analog signals by means of a digital-to-analogue converter be converted and passed as analog signals to a, usually located in the control module or the controller, evaluation.
  • the reference signals in their phase position and pulse duration can be adapted to the increased signal period number.
  • Fig. 1 the system according to the invention for multiplying the signal period is shown schematically as a functional block 1 between a distance measuring means 2 and an evaluation unit 3.
  • the distance measuring means 2 comprises a scale graduation 4 which is provided at regular intervals with markings 5, 6, as well as a position sensor 7 movable relative thereto.
  • the scale graduation 4 is scanned by the position sensor 7.
  • the path measuring means or the signal generator 2 supplies to the system 1 an input sine signal SIN and an input cosine signal COS.
  • the markers 5, 6 may represent light-dark areas or transparent and non-transparent areas; in magnetic operation, the marks 5, 6 are areas that are magnetized differently.
  • other functional principles such as inductive and capacitive principles are possible.
  • the distance measuring means 2 periodically modulated, analog incremental signals SIN and COS generated. About this is both the position information relative to the relative position of scale division 4 and position sensor 7 and the corresponding information about the direction of movement available.
  • a path measuring means 2 which detects a linear relative movement 4 via a linear scale graduation.
  • a scale graduation 4 can be provided which detects a rotational movement.
  • a disc-scale scale instead of the linear scale division 4, as shown in FIG Fig. 1 is shown, a disc-scale scale used. The scanning principle remains essentially the same.
  • a reference signal REF from a sensor 10 can be made available via one or more markings 9.
  • the reference signal REF serves to mark one or more predefined positions 11 as reference positions.
  • the signals SIN, COS and REF are supplied to the system 1, which generates from the input signals modified output signals SIN ', COS' and REF '.
  • the output signals SIN 'and COS' in this case have a relation to the input signals SIN and COS increased period number, i. increased frequency, up.
  • the signal REF ' is adjusted accordingly by the device 1.
  • the output signals SIN 'and COS' enable, compared to the input signals SIN and COS, a resolution of the position-measuring means 4 which is improved by the factor of the number of periods Fig. 1 not shown drives, axes or positioning devices, inter alia, to which the position measuring system is mounted, regulate or control more precisely.
  • Fig. 2 schematically shows the structure of an embodiment of the device 1 of Fig. 1 ,
  • the input signals SIN and COS are first supplied to an interpolation unit 12, where they are digitized, error-corrected and converted into a position signal representative of the position of the measuring means, POS with a resolution of i bit.
  • the change in position of the scale graduation 4 relative to the signal generating unit 7 is shown. With constant movement in one direction, sawtooth-shaped waveforms result.
  • the position signal POS is then passed into a digital filter 13, where various types of errors are filtered out and any signal delays that may occur due to the filtering are compensated.
  • the filter 13 in particular noise and noise components in the position signal POS, caused by corresponding, the position measuring system 2 due to its design immanent noise and noise components in the input signals, balanced.
  • the resolution of the position signal is increased.
  • a corrected, high-resolution position value POS ' which is stored in a register 14, is obtained.
  • the corrected position value POS ' is as in Fig. 3 is represented in register 14 as a digital value of k bits, hereinafter referred to as k word, stored, preferably in integer format. Since the accuracy of the corrected position signal POS 'relative to the position signal POS from the interpolation unit is increased by the correction algorithms in the digital filter 13, the relationship ( k > i ) holds.
  • m word From the k word in the register 14 15 m contiguous consecutive bits, hereinafter referred to as m word, preferably with at least the same clock rate read by a readout unit with which the high-resolution position value POS 'is updated in the register 14.
  • the value of the m word changes periodically with a higher frequency than the value of the k word if the most significant bit of the m word does not fall on the most significant bit of the k word:
  • the location of the read m word in the k word is determined by the position k m of its most significant bit m .
  • the frequency with which the m word that is read changes by a factor of 2 ( k - km ) to the frequency with which the sawtooth-like position signal POS 'varies with constant relative movement of the scale division and the signal generation unit.
  • the increased signal period number of the m word is in Fig.
  • the signal period with which the bit k m1 changes in the k word and thus determines the signal period of the m word is in this case the 2 ( k - km1 ) -fold, ie the 2 ( km ) -fold, of the signal period of the k word. Because in this position of the m word the difference ( k- k m1 ) is the maximum for given m and k , this represents the maximum possible period multiplication.
  • a frequency doubling is achieved.
  • the signal period of the m word corresponds to the signal period of the k word. In this case, only error correction by the interpolation unit 12 and the digital filter 13 takes place by the device 1.
  • the frequency increase method described above allows an adjustable frequency increase to be implemented in a simple manner: by a simple bit shift, indicated by the double arrow 15 'in FIG Fig. 2 , the m word within the k word can be frequency multiplies in power of two steps between 2 and 2 ( k - m ) reach.
  • the displacement of the m word within the k word can be done by simple bit masking and bit shift by the readout unit 15.
  • the output sine signal SIN ' is generated as a function of the m word by a sine-wave generator 16a, the output cosine signal COS' by a cosine generator 16b.
  • the m word of the read-out unit is used for addressing output signal tables 16a, 16b in the sine or cosine generating device, which are stored in the device 1 in a volatile or non-volatile memory.
  • Table 16b contains, for example, in the form of a one-dimensionally addressable field, the successive digital values of a cosine signal COS 'in a resolution of p bits.
  • the bit resolution p of the output signal COS ' is independent of the bit resolution i of the input signal COS or the bit resolution k of the position signal POS.
  • the output signal table 16b accordingly includes an output sine signal SIN '.
  • the table for generating the SIN 'and the COS' signal is read out at two positions which are at a constant distance from each other. Taking into account the read-out frequency, this distance corresponds to the phase offset of 90 ° between sine and cosine. It is likewise conceivable to use a calculation algorithm instead of the generation of the SIN 'and the COS' signal by the table 16 or the tables 16a and 16b. For this purpose, preferably the Cordic algorithm can be used.
  • the register 14, the sine-generating device 16a and the cosine-generating device 16b and, in a corresponding embodiment, the readout or addressing unit 15 can be functionally combined to form a signal generating unit 16 which generates the output signals in response to the position signal.
  • Each of the two output tables 16a, 16b has, in accordance with the value range of the m word, a number of 2 m tabulated sine or cosine values and preferably represents the complete course of a period of the respective sine or cosine signal. Consequently, the period of the respective sine and cosine signals SIN 'and COS' in the tables 16a, 16b is resolved with 2 m consecutive nodes of p bits each.
  • the value of the m word is used to address the output tables 16a, 16b. This is in the Fig. 3 represented by the representation of the value of the read-out m word in the form * ("value of the m word"). If, for example, the m word read out has the numerical value 0, then the value of the two output tables 16a, 16b located at position 0 is read out. This value is in Fig. 3 symbolically represented by * (0).
  • the m word can maximally assume the value (2 m - 1), if all bits of the m word are set to 1. In this case, the last value of the respective table 16a, 16b is read out at the position (2 m -1). This value is in Fig. 3 symbolically represented by * (2 m -1).
  • Each of the values read from the output table 16a, 16b is finally supplied to a digital-to-analog converter 17a, 17b, which converts it into analog signals.
  • the analog signals are then passed out of the device 1.
  • amplifier circuits are set to standardized signal levels and smoothed by filters, also not shown.
  • a pulse pattern (PWM) corresponding to the values of the output tables 16a and 16b can be output, which is generated at high frequency and generates the signals SIN 'and COS' filtered by a low-pass filter.
  • the device 1 finally contains a unit 19 with which the reference signal REF is adapted to the modified signals SIN 'and COS'.
  • the reference signal REF ' is newly synthesized by the unit 19 so that it occurs only in the quadrants of the signals SIN' and COS 'corresponding to the location of the original quadrants of the signal REF in the input signals SIN and COS.
  • the unit 19 uses the position value POS 'interpolated by the interpolation unit 12 and filtered by the digital filter 13.
  • the interpolation unit 12 and the digital filter 13 are functionally part of a position determining unit 20, by which the corrected and high-resolution position signal POS 'is generated whose signal period still corresponds to the signal period of the input signals SIN and COS, but whose resolution is increased with k bits.
  • the analog input signals SIN and COS from the position measuring system 2 are supplied to the interpolation unit 12, where they are digitized separately in an input interface 21 by an analog-to-digital converter 22a, 22b and supplied to a signal conditioning unit 23 in digital form.
  • a single data line can also be provided be, wherein the input signals SIN and COS can then be processed in a multiplex process.
  • the signals SIN and COS may already be in digital form, so that the analog-to-digital converters 22a, 22b can be dispensed with.
  • the signal conditioning unit 23 serves to improve the signal quality of the input signals SIN and COS before further processing.
  • the signal conditioning unit 23 calculates deviations from desired states of the input signals SIN and COS and corrects the input signals SIN and COS.
  • the interpolation unit 12 can in particular have the functions that are described in Kirchberger, R., and Hiller, B., "Oversampling method for improving the detection of position and speed on electric drives with incremental encoder system", in: SPS / IPC / Drives, Nümberg 1999, Conf.-rec. pp. 598-606 , are described.
  • the signal offsets ie, for example, the mean values of the input signals SIN and COS over a predetermined time period
  • the signal conditioning unit 23 is calculated by the signal conditioning unit 23 and corrected in deviation from their desired value via the compensation units 24a, 24b.
  • the adjustment takes place separately for each input signal SIN or COS.
  • the adjustment is in Fig. 3 schematically represented by the dotted arrows 25a, 25b.
  • the compensation units 24a, 24b are shown in the analog signal path of SIN and COS, respectively.
  • an off-set correction can also be made to the already digitized signals SIN and COS.
  • the signal conditioning unit 23 also determines the relative signal amplitudes of the input sine signal SIN and the input cosine signal COS. In the ideal state, both input signals SIN and COS have the same amplitude. Deviations in the amplitude of the actually present Signals SIN and COS are also corrected by feedback from the compensation units 24a, 24b.
  • the signal conditioning unit 23 can detect phase errors in the input signals SIN and COS and correct them via the compensation units 24a, 24b. Not exactly sinusoidal curves of the input signals SIN and COS can be corrected by a correction table (not shown) stored in the signal conditioning unit 23. Of course, an amplitude and phase correction can also be performed on the already digitized signals SIN and COS.
  • the resolution of the digitized input signals SIN and COS can be increased by a fast digital filter implemented in the signal conditioning unit 23 over the resolution of the AD converters, and the quantization noise and other noise can be reduced.
  • the error-corrected and regulated digital intermediate signals SINd and COSd are routed to a calculation unit 30.
  • a position signal POS is generated from the two signals SINd and COSd, which reproduces the position of the scale graduation 4 over time.
  • the position signal is ideally a straight line whose slope corresponds to the speed of movement.
  • a periodic position signal POS is preferably formed from the input signals SIN and COS in order to make the calculation of the position simple and to make better use of the limited stock of values of the digital numerical values.
  • a periodic position signal POS essentially has the form of a saw tooth with an oblique and a vertical flank.
  • the period of the position signal corresponds to the period of the SIN and COS signal
  • the slope of the oblique branch of the position signal POS corresponds to the speed of movement of the scale division 4 relative to the signal generating unit 7.
  • the calculation of the arctangent of the quotient SINd / COSd can take place, for example, via a look-up table or via the CORDIC algorithm.
  • the position signal POS is calculated with an accuracy of i bits and updated in a very short time sequence, for example every microsecond. After its calculation, the digital position signal POS is passed to the digital filter 13.
  • the digital filter 13 operates at a high clock frequency, for example 1 MHz.
  • the digital filter 13 reduces noise components and higher-frequency error components in the position word POS and at the same time increases the resolution of the position word POS from i to k bits of the corrected, high-resolution position word POS '.
  • the delay resulting from the filtering process is compensated by a correction value which is dependent on the previous signal history of the position signal POS and added to the filtered position value.
  • the correction value can be determined from the previously measured movement speed, which can be easily calculated from one or more position values POS 'determined at a time interval.
  • the digital filter 13 may apply various filtering algorithms singly or in combination.
  • high-frequency noise components can be formed by forming a moving average of q successive values of the position signal POS.
  • the digital filter 13 acts as a low-pass filter. It should be noted that the digital filter 13 is not information-carrying, i. for the subsequent control or control relevant frequencies in the position signal POS filters out.
  • the digital filter 13 filter out signal-dependent errors.
  • typical error curves of known position measuring systems can be determined experimentally in advance and stored in the digital filter 13.
  • Such an error curve in the form of a fault characteristic is in Fig. 3 indicated schematically as ERR.
  • the signal transmitter-dependent errors in the position signal POS can then be compensated by multiplication in the frequency domain with a transfer function stored in advance in the digital filter 13.
  • the error curves can also be stored as time series or frequency curves, which are continuously compared in the digital filter with the course or the frequency content of the position signal POS. With a predetermined degree of coincidence between the position signal POS and the stored error curve, a predetermined error compensation can then be performed.
  • the quality of the input signals can be improved so far that the increased resolution of the position word with k bits can be fully utilized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Positionsmessverfahren und ein Positionsmesssystem, durch welche die Signalperiodenanzahl eines eine Position repräsentierenden Sinus- und Cosinus-Signals vervielfacht werden kann. Bei dem Positionsmessverfahren wird aus einem von einem Positionssensor erzeugten Positionsmessverfahren, bei dem aus einem von einem Positionssensor erzeugten Eingangs-Sinus-Signal und Eingangs-Cosinus-Signal, ein digitales Positionssignal, das eine vom Positionssensor gemessene Position repräsentiert, berechnet und digital gefiltert, wobei in Abhängigkeit vom gefilterten Positionssignal ein Ausgangs-Sinus-Signal und ein Ausgangs-Cosinus-Signal mit jeweils einer gegenüber der Frequenz der Eingangs-Signale vervielfachten Signalperiode erzeugt werden. Das Positionsmesssystem ist versehen mit einer Eingangsschnittstelle die im Betrieb ein Eingangs-Sinus-Signal und Eingangs-Cosinus-Signal eines Positionssensors zuführbar ist, mit einer Berechnungseinheit, durch die aus dem Eingangs-Sinus-Signal und dem Ausgangs-Cosinus-Signal ein digitales, eine vom Positionssensor gemessene Position repräsentierendes Positionssignal erzeugbar ist, und mit einer Signalerzeugungseinheit, durch die in Abhängigkeit vom Positionssignal ein Ausgangs-Sinus-Signal und ein Ausgangs-Cosinus-Signal mit jeweils einer gegenüber dem Eingangs-Sinus-Signal und Eingangs-Cosinus-Signal vervielfachten Signalperiode erzeugbar ist, und mit einem zwischen der Berechnungseinheit und der Eingangsschnittstelle angeordneten Digitalfilter.
  • Stand der Technik
  • Positionsmesssysteme werden üblicherweise zur Lage- bzw. Winkelbestirnmung eingesetzt. So muss beispielsweise in Werkzeugmaschinen die Lage des Werkzeuges relativ zum Werkstück genau messbar sein, um hohe Fertigungsgenauigkeiten zu erzielen. Üblicherweise weist ein Positionsmesssystem eine Maßstabsteilung und eine Signalerzeugungseinheit auf, durch die die Bewegung der Maßstabsteilung relativ zur Signalerzeugungseinheit bestimmt und ein die Relativbewegung repräsen- tierendes Signal ausgegeben wird. Ein solches Signal kann beispielsweise in Form eines Rechtecksignals eine zeitliche Aufeinanderfolge von Impulsen (High-Low-Signale. Bei Längenmesssystemen wird pro Längeneinheit eine bestimmte Anzahl von High-Low-Signalen erzeugt, beispielsweise 10 High-Low-Signale pro Millimeter.
  • Aus der Anzahl der High-Low-Signale pro Zeiteinheit lässt sich dann einfach die Drehzahl bzw. die Relativgeschwindigkeit der Maßstabsteilung gegenüber der Signalerzeugungseinheit berechnen.
  • Die Positionsmesssysteme können die High-Low-Signale auf optischem, magnetischem, induktivem oder kapazitivem Wege erzeugen, wobei sich die optischen Systeme wegen ihrer hohen Auflösung und Genauigkeit auszeichnen.
  • Bei den optischen Systemen durchstrahlt beispielsweise das Licht einer Leuchtdiode eine sogenannte Maske, die im geringen Abstand, typischerweise 0,1 mm, über der Maßstabsteilung, beispielsweise einer Inkrementalscheibe oder einem Längenmaßstab, angebracht ist. Die Maßstabsteilung ist in regelmäßigen Abständen mit transparenten und nicht transparenten Markierungen versehen. Wenn die Maßstabsteilung im Zuge der zu erfassenden Bewegung gegenüber der Maske verschoben wird, bilden sich regelmäßige Hell-Dunkel-Bereiche. Diese werden fotoelektrisch durch einen Sensor abgetastet, wobei man ein sinusähnliches Positionssignal erhält, das z.B. durch Komparatoren leicht in die oben beschriebenen High-Low-Impulse umgesetzt werden kann.
  • Durch entsprechende Anordnung weiterer fotoelektrischer Sensoren wird üblicherweise neben dem ersten sinusähnlichen Signal auch ein zweites um 90° phasenverschobenes cosinusähnliches Signal erzeugt. Dadurch lässt sich die Verfahrrichtung detektieren. Der Vorteil der Sinus- und Cosinus-Signale liegt darin, dass aufgrund der gegenüber den häufig verwendeten High-Low-Impulsen durch Auswertung der Signalamplitude eine wesentlich höhere Positionsauflösung als bei Rechtecksignalen möglich ist. Allerdings erfordert dieses Vorgehen eine aufwendigere Signalverarbeitung.
  • Allerdings ist bei der Auswertung der Sinus- und Cosinus-Signale darauf zu achten, dass deren Frequenzen durch die nachfolgende Auswerteelektronik noch erfasst werden können. Um die Frequenzen eingehender, hochfrequenter Sinus- und Cosinus-Signale von optischen Wegmeßsystemen zu verringern und nachfolgend verarbeiten zu können, sind im Stand der Technik Systeme bekannt, durch die die Auflösung der Positionssignale vergröbert wird. Auf elektronischem Wege wird dies durch die Vorrichtungen und Verfahren der EP 0 872 714 A1 , der DE 198 15 438 A1 , der US 6,097,318 und der US 6,265,992 B1 erreicht.
  • Bei einigen Anwendungen sind an die mit optischen Abtastprinzipien arbeitenden Positionsmesssysteme zu stellenden mechanischen Randbedingungen wie z.B. der kleine Abstand von typischerweise 0,1 mm nicht realisierbar, so dass dort andere Abtastverfahren zur Anwendung kommen. Außerdem verbieten sich in vielen Fällen optische Systeme, wie beispielsweise bei der Verwendung von Positionsmesssystemen in Holzbearbeitungsmaschinen, wo die Späne und der Holzstaub die optische Abtastung trotz entsprechender Kapselung behindern. Eine magnetische oder induktive Abtastung bleibt hier unbeeinträchtigt.
  • Bei einem magnetischen Abtastverfahren besteht die Maßstabsteilung aus periodisch wechselnd magnetisierten Markierungen. Der Abstand zwischen den Markierungen auf der Maßstabsteilung bewegt sich dabei im Millimeter-Bereich, so dass nach einer Faustformel der Abstand zwischen der Signalerzeugungseinheit und der Maßstabsteilung in diesem Größenbereich liegen kann. Die magnetischen Verfahren lassen daher einen größeren Abstand und insbesondere eine größere Abstandsvariation zwischen der Signalerzeugungseinheit und der Maßstabsteilung zu. Der Sensor, beispielweise ausgeführt nach dem magnetoresistiven Prinzip, liefert dann wiederum je magnetischer Markierung ein sinus- und ein cosinusähnliches Signal.
  • Aufgrund der gröberen Maßverkörperung werden bei magnetischen und induktiven Positionsmesssystemen wesentlich weniger Signale pro Umdrehung bzw. pro Längeneinheit ausgegeben. Um dennoch eine hohe Positionsauflösung erzielen zu können, sind hohe Anforderungen an die Qualität der von einem Positionsmesssystem gelieferten Signale zu stellen: Diese müssen in ihrer Signalamplitude möglichst gleich sein, sollten keinen Signaloffset besitzen, eine möglichst perfekte Sinusform aufweisen, keine Rauschanteile besitzen und um möglichst exakt 90 Grad gegeneinander in der Phase verschoben sein. Zusätzlich darf auch die Auswerteeinheit, die die Sinus-und Cosinus-Signale verarbeitet, keine derartigen oder weitere Fehler aufweisen, da anderenfalls nur eine mit Fehlern behaftete Positionsbestimmung möglich ist.
  • Da die Fehlerfreiheit der Signale des Messsystems und der Auswerteeinheit, die üblicherweise Bestandteil eines Servoreglers bzw. einer Steuerung ist, in der Praxis nicht oder nur unzureichend gewährleistet werden kann, wäre es wünschenswert, aus relativ groben, sinusähnlichen Signalen durch entsprechende Signalverarbei-tung qualitativ hochwertige sinusähnliche Signale mit einer höheren Anzahl von Signalperiode je Weg- bzw. Winkelstück zu erzeugen. Die Fehler der üblicherweise eingesetzten Auswerteeinheiten sind dann weit weniger gewichtig.
  • Im Stand der Technik sind Verfahren zur Erhöhung der Signalfrequenz, bzw. zur Signalperioden-Vervielfachung in der DE 101 38 640 C1 , in der EP 0 552 726 B1 und in der EP 1 236 973 A2 beschrieben.
  • Bei dem Verfahren und der Vorrichtung der EP 0 552 726 B1 werden das Eingangs-Sinus-und Eingangs-Cosinus-Signal multiplikativ und additiv so miteinander verknüpft, dass durch Implementierung trigonornetrischer Formeln die Frequenz dieser Signale erhöht wird. Dabei finden die Formelberechnungen an den analogen Signalen statt. Dies erfordert jedoch Schaltungen, die selbst wiederum Fehler produzieren.
  • In der EP 1 236 973 A2 wird die relative Phasenlage des Sinus-und Cosinus-Signals dazu ausgenutzt, Rechtecksignale höherer Frequenz zu erzeugen. Der Nachteil dieser Vorrichtung liegt darin, dass die erzeugten Rechtecksignale nur eine vergleichsweise geringe Positionsauflösung zulassen bzw. die maximale Verfahrge- schwindigkeit bzw. Drehzahl durch die dann auftretenden sehr hohen Frequenzen der Rechtecksignale beschränkt ist.
  • Die 101 38 640 C1 bildet den nächstkommenden Stand der Technik. In der Patentschrift ist ein System beschrieben, bei dem zwei phasenverschobene, analoge Eingangssignale digitalisiert werden. Aus den digitalisierten Eingangssignalen wird ein digitales Positionssignal berechnet, das digital gefiltert wird. Durch Ausblenden der höherwertigen Bits wird ein digitales Signal mit vervielfachten Signalperioden erzeugt.
  • Darstellung der Erfindung
  • In Anbetracht der Nachteile der aus dem Stand der Technik bekannten Verfahren zur Vervielfachung einer der Erfindung daher die Aufgabe zugrunde, ein Positionsmessverfahren und eine Positionsmessvorrichtung zu schaffen, die fehlerrobust die Anzahl der Signalperioden in Signalen von Weg- und Winkelmesssystemen vervielfachen.
  • Diese Aufgabe wird beim erfindungsgemäßen Positionsmessverfahren zur Signalerioden-Vewielfachung dadurch gelöst, dass im Zuge der Filterung aus dem Positionssignal ein digitales Positionssignal mit einer gegenüber dem berechneten Positionssignal erhöhten Auflösung gebildet wird. Beim eingangs genannten Positionsmesssystem ist vorgesehen, dass das Positionssignal vor dem Digitalfilter eine Auflösung von i Bit und nach dem Digitalfilter eine Auflösung von k Bit aufweist, wobei k > i gilt.
  • Durch diese Lösung ist es auf einfache Weise möglich, die Auflösung des Positionsmessverfahrens bzw. des Positionsmesssystems zu erhöhen. Durch die Bildung des Positionssignals aus dem Eingangs-Sinus-Signal und dem Eingangs-Cosinus-Signal lassen sich Fehler, die nur in jeweils einem der beiden Eingangs-Signale enthalten sind, leicht eliminieren, so dass sie nicht in den Ausgangs-Signalen enthalten sind. Dadurch kann die Genauigkeit in dem in Abhängigkeit von dem Positionssignal gebildeten Ausgangs-Sinus-Signal und Ausgangs-Cosinus-Signal erhöht werden.
  • Der so bestimmte Positionswert kann unter Verwendung eines schnellen Digitalfilters in seiner Auflösung erhöht werden, wobei gleichzeitig durch den Digitalfilter höherfrequente Störungen unterdrückt werden können. Unter der Erhöhung der Auflösung ist dabei eine Darstellung des Positionswertes mit einer erhöhten Anzahl von Datenbits zu verstehen.
  • Diese einfache Lösung kann durch die folgenden Ausgestaltungen hinsichtlich ihrer Genauigkeit und Fehlerrobustheit weiter verbessert werden. Die einzelnen Ausgestaltungen sind dabei jeweils unabhängig voneinander kombinierbar.
  • Bevorzugt wird das Positionssignal aus dem Arkustangens (atan) des Quotienten aus dem Eingangs-Sinus-Signal und dem Eingangs-Cosinus-Signal gebildet. Der atan kann durch Auslesen einer Look-up-Tabelle bestimmt oder z. B. durch den sogenannten Cordic-Algorithmus berechnet werden. Daneben können auch andere Verfahren zum Einsatz kommen. Beispielsweise eignen sich auch sogenannte Naehlaufvedahren.
  • Die Berechnung des atan des Quotienten des Eingangs-Sinus-Signals und des Eingangs-Cosinus-Signals bietet den erheblichen Vorteil, dass gleichzeitige Amplitudenschwankungen in den Eingangs-Signalen keine Fehler in dem daraus berechneten Positionswert bewirken. Bei vielen anderen Verfahren kann dies nicht gewährleistet werden.
  • So können in einer vorteilhaften Ausgestaltung in einem Speicher der Vorrichtung bzw. des Signalgenerators zwei Ausgangstabellen vorgesehen sein, die jeweils ei- nem Ausgangs-Signal zugeordnet sind und parallel adressiert und ausgelesen wer- den. Durch diese Maßnahme kann auf einfache Weise eine gleichphasige Erzeu- gung der Ausgangs-Signale und ein hohe Phasentreue auch bei sehr hohen sefrequenzen sichergestellt werden.
  • Durch die hochaufgelöste Berechnung des Positionssignals, das den Verlauf der Lage des Messmittels über die Zeit als Digitalwert wiedergibt, kann die Frequenzerhöhung in den beiden Ausgangs-Signalen zuverlässig durchgeführt werden. Um den Berechnungsaufwand zu minimieren, können die Ausgangstabellen in der wenigstens einen Ausgangs-Tabelle gespeichert sein, so dass diese Tabellen lediglich ausgelesen werden müssen. Selbstverständlich ist aber auch eine Berechnung eines Sinus- und eines Cosinussignals aus dem hochaufgelösten Positionswert durch den Signalgenerator möglich.
  • In einer besonders vorteilhaften Ausgestaltung kann der hochaufgelöste momentane Wert des Positionssignals in Form eines digitalen K-Wortes, also einer digitalen Zahl aus k Bits, ausgegeben werden, wobei aus dem k-Wort lediglich m aufeinanderfolgende Bits ausgelesen werden, wobei (m < k) für ganzzahlige positive und ansonsten beliebige Werte k und m gilt. In Abhängigkeit von dem aus dem längeren k-Wort ausgelesenen m-Wort werden das Ausgangs-Sinus-Signal und das Ausgangs-Cosinus-Signal erzeugt, vorzugsweise indem die Ausgangstabelle durch das m-Wort adressiert wird.
  • Der Vorteil bei dieser Ausgestaltung liegt darin, dass die Frequenzvervielfachung auf sehr leicht zu implementierende Weise durch die Position des m-Wortes innerhalb des k-Wortes eingestellt werden kann: Überraschend hat sich nämlich ergeben, dass eine Frequenzerhöhung um den Faktor 2(k-km) zwischen den Eingangs- und Ausgangs-Signalen erhalten wird, wenn das höchstwertige Bit des m-Wortes an der Position km, km≤k, liegt. Die aus dem m-Wort gebildete Signalfolge ändert sich mit dieser erhöhten Periodizität gegenüber der Periodizität des Positionssignals.
  • Eine Reihe von weiteren vorteilhaften Ausgestaltungen befasst sich mit der Aufbereitung der Eingangs-Signale, um das Positionssignal möglichst genau berechnen zu können. Auf diese Weise wird verhindert, dass sich die in den Eingangs-Signalen vorhandenen Fehler verstärkt in den Ausgangs-Signalen mit vervielfachter Signalperiode wiederfinden. Alle diese Filterungsvorgänge vor der eigentlichen Frequenzerhöhung finden in einer Signalkonditionierungseinheit statt.
  • So kann in einer Ausführungsform eine Signalkonditionierungseinheit vorgesehen sein, durch die Abweichungen im Eingangs-Sinus und Eingangs-Cosinus von der Soll-Form berechenbar und zur Ausregelung dieser Abweichungen an den Eingangs-Sinus und den Eingangs-Cosinus zurückführbar sind. Grundsätzlich kann die rückgekoppelte Konditionierung der Eingangs-Signale vor und/oder nach deren Digitalisierung durch Analog-Digital-Wandler stattfinden, d.h. die Signalkonditionierung kann rein analog, oder rein digital bzw. gemischt analog und digital ausgeführt sein. Aufgrund des einfachen Aufbaus ist die Ausregelung des bereits digitalisierten Eingangs-Signale bevorzugt.
  • Die Fehlerkorrektur bei der Konditionierung kann die Erfassung von Abweichungen -der Amplitude des Eingangs-Sinus von der Amplitude des Eingangs-Cosinus und das Ausregeln eventueller Amplitudenunterschiede, bzw. das Einregeln beider Signalamplituden auf einen gleichen Sollwert, umfassen. Ähnlich können Signal-Offsets, d.h. Abweichungen des über eine oder mehrere Perioden berechneten Mittelwerts des Eingangs-Sinus-Signals und des Eingangs-Cosinus-Signals von einem Soll-Mittelwert, beispielsweise einer vorbestimmten Null-Lage, berechnet und ausgeregelt werden. Auch die relative Phasenlage des Eingangs-Sinus-Signals zum Eingangs-Cosinus-Signal kann im Zuge der Signalkonditionierung erfasst und Abweichungen von der Soll-Phasenlage 90° können insbesondere durch gegenseitige Addition eines Teils des jeweils anderen Eingangs-Signals ausgeglichen werden. Diese Schritte können in der Interpolationseinheit ausgeführt werden.
  • Des weiteren kann die Signalkonditionierungseinheit einen digitalen Filter, insbesondere einen Tiefpass-Filter, jeweils für das bereits mit hoher Abtastrate digitalisierte Eingangs-Sinus- und das Eingangs-Cosinus-Signal umfassen, der hochfrequente Störungen und Rauschanteile, hervorgerufen beispielsweise durch Frequenzumrichter reduziert und damit die Qualität der digitalisierten Eingangssignale erhöht. Die Grenzfrequenz dieses Digitalfilters, das in unterschiedlichster Art, vorzugsweise aber als einfach zu realisierendes digitales Mittelwertfilter realisiert werden kann, kann so bemessen sein, dass diese auch bei maximaler Verfahrgeschwindigkeit, bzw. Drehzahl unter der dann auftretenden Frequenz der Eingangssignale liegt.
  • Unabhängig von der Vorkonditionierung kann in weiteren, an sich vorteilhaften Ausgestaltungen ein weiterer Verarbeitungsschritt vorgesehen sein, durch den Fehleranteile herausgefiltert werden, die der Signalquelle innewohnen. Gemäß einer vorteilhaften Ausgestaltung findet eine solche vorzugsweise digitale Filterung erst nach der Berechnung des digitalen Positionssignals statt. Gegenüber einer Filterung jeweils der beiden Eingangs-Signale kann dadurch der Rechenaufwand verringert werden.
  • Dabei können die vom Messsystem und von den Umgebungsbedingungen abhängigen Fehleranteile beispielsweise dadurch herausgefiltert werden, dass das aus den Eingangs-Signalen, die auch wie oben beschrieben vorverarbeitet sein können, berechnete Positionssignal mit vorab gespeicherten Fehlercharakteristiken verglichen wird. Insbesondere können für verschiedene, messsystemtypische Fehler verschiedene Charakteristiken abgespeichert sein. Stimmt das Positionssignal mit einer vorab bestimmten Fehlercharakteristik oder mit mehreren vorab bestimmten Fehlercharakteristiken überein, so kann durch in Abhängigkeit von dieser Fehlercharakteristik bestimmte, vorgegebene Algorithmen
    oder durch Verwendung von vorab abgespeicherten Look-up-Tabellen der signalgeberabhängige Fehler im Positionssignal eliminiert werden.
  • Um die vorab gespeicherten Fehlercharakteristiken und die dazugehörigen Eliminations-Algorithmen und/oder Look-up-Tabellen zu erzeugen, werden die Messsysteme experimentell auf systembedingte Fehler untersucht. In Abhängigkeit von den bei diesen Untersuchungen entdeckten Fehlern werden beispielsweise Look-up-Tabellen generiert, die Werte enthalten, die diese Fehler berücksichtigen und damit die fehlerbehafteten Werte korrigieren.
  • Die im Positionssignal auftretenden, messsystemabhängigen Fehler- und insbesondere Rauschanteile (auch Quantisierungsrauschen) können durch einen oder mehrere Digitalfilter, beispielsweise digitale Tiefpass-Filter, herausgefiltert werden. Die Grenzfrequenz der Tiefpass-Filters muss jedoch höher als die für die nachfolgende Regelung relevante Frequenz sein.
  • Insbesondere besteht eine Möglichkeit zum Herausfiltern der geberabhängigen Fehlersignale darin, dass aus dem digitalen Positionssignal ein gleitender Mittelwert aus mehreren zeitlich kurz aufeinanderfolgenden Werten gebildet wird. Durch diese Maßnahme lassen sich hochfrequente Rauschanteile herausfiltern.
  • Ein weiterer Vorteil der Bildung eines gleitenden Mittelwertes liegt darin, dass der Mittelwert mit einer Auflösung angegeben werden kann, die größer ist als die Auflösung der einzelnen zu mittelnden Werte. Wird beispielsweise der Mittelwert aus mehreren zeitlich kurz aufeinanderfolgenden Positionssignalen gebildet, die jeweils eine Auflösung von i Bits aufweisen, so kann der berechnete Mittelwert eine Auflösung von k Bits aufweisen, wobei k größer i gilt.
  • In Abhängigkeit von dem in der Signalkonditionierungseinheit und gegebenenfalls im Digitalfilter von signalgeberabhängigen Fehler- und Rauschanteilen befreiten Positionssignal, insbesondere von dem durch Mittelwertbildung berechneten hochaufgelösten Positionssignal, wird dann in der Signalerzeugungseinheit das Ausgangs-, Sinus- und Cosinussignal erzeugt. Insbesondere kann das Positionssignal, wie oben erwähnt, zur Adressierung der Ausgangs-Tabellen des Ausgangs-Sinus und des Ausgangs-Cosinus verwendet werden.
  • Falls für das Herausfiltern der signalgeberabhängigen Fehleranteile eine Mittelwertbildung vorgenommen wurde, so kann, um die Genauigkeit der Berechnung des Positionssignals weiter zu verbessern, in einer vorteilhaften Weiterbildung die aufgrund der Mittelwertbildung eingetretene Laufzeitverzögerung kompensiert werden. Bei einer derartigen Kompensation der Laufzeitverzögerung wird der Mittelwert in Abhängigkeit vom bisherigen Signalverlauf und in Abhängigkeit von der Anzahl der in den Mittelwert einfließenden Stützpunkte korrigiert, um möglichst nahe an den tatsächlichen Momentanwert zu kommen.
  • Das Ausgangs-Sinus-Signal und das Ausgangs-Cosinus-Signal, die wie oben erwähnt jeweils eine höhere Frequenz aufweisen als das Eingangs-Sinus-Signal bzw. das Eingangs-Cosinus-Signal, können schließlich mittels Digital-Analog-Wandler in analoge Signale umgewandelt werden und als analoge Signale an eine, üblicherweise in der Regelbaugruppe oder der Steuerung befindlichen, Auswerteeinheit geleitet werden.
  • Parallel zur Verarbeitung der Eingangs-Signale, d.h. des Eingangs-Sinus-Signals und des Eingangs-Cosinus-Signals, können auch die Referenz-Signale in ihrer Phasenlage und Impulsdauer an die erhöhte Signalperioden-Zahl angepasst werden.
  • Im Folgenden wird die Erfindung beispielhaft an einer Ausführungsform mit Bezug auf die Zeichnungen erläutert. Gemäß den oben beschriebenen möglichen Ausgestaltungsvarianten können dabei einzelne Merkmale bei der beschriebenen Ausführungsform unabhängig voneinander hinzugefügt oder weggelassen sowie kombiniert werden.
  • Kurze Beschreibung der Zeichnungen
  • Es zeigen:
  • Fig. 1
    ein schematisches Blockdiagramm einer erfindungsgemäßen Vorrichtung zur Signalperioden-Vervielfachung bei der Verwendung mit einer Positionsmesseinrichtung;
    Fig. 2
    ein schematisches Blockdiagramm mit Einzelheiten des Aufbaus der Vorrichtung zur Signalperioden-Vervielfachung der Fig. 1;
    Fig. 3
    eine schematische Darstellung des Aufbaus und der Funktion einer Ausführungsform eines Signalgenerators der Fig. 2;
    Fig. 4
    ein schematisches Blockdiagramm mit Einzelheiten des Aufbaus einer Positionsbestimmungseinheit der Vorrichtung der Fig. 2.
    Wege zur Ausführung der Erfindung
  • In Fig. 1 ist das erfindungsgemäße System zur Vervielfachung der Signalperiode schematisch als Funktionsblock 1 zwischen einem Wegmessmittel 2 und einer Auswerteeinheit 3 gezeigt.
  • Das Wegmessmittel 2 umfasst eine Maßstabsteilung 4, die in regelmäßigen Abständen mit Markierungen 5, 6 versehen ist, sowie einen relativ dazu beweglichen Positionssensor 7. Die Maßstabsteilung 4 wird durch den Positionssensor 7 abgetastet. Das Wegmessmittel bzw. der Signalgeber 2 liefert dem System 1 ein Eingangs-Sinus-Signal SIN und ein Eingangs-Cosinus-Signal COS.
  • Bei einem optischen Signalgeber können die Markierungen 5, 6 Hell-Dunkel-Bereiche bzw. transparente und nicht transparente Bereiche darstellen; bei magnetischer Funktionsweise sind die Markierungen 5, 6 Bereiche, die unterschiedlich magnetisiert sind. Ebenso sind andere Funktionsprinzipien wie z.B. induktive und kapazitive Prinzipien möglich. Allen Prinzipien gemeinsam ist, dass bei der Relativbewegung zwischen der Maßstabsteilung 4 und dem Positionssensor 7, das Wegmessmittel 2 periodisch modulierte, analoge Inkrementalsignale SIN und COS erzeugt. Über diese steht sowohl die Positionsinformation bezüglich der Relativlage von Maßstabsteilung 4 und Positionssensor 7 als auch die entsprechende Information über die Bewegungsrichtung zur Verfügung.
  • Beim Ausführungsbeispiel der Fig. 1 ist ein Wegmessmittel 2 dargestellt, die über eine linear ausgebildete Maßstabsteilung 4 eine lineare Relativbewegung erfasst. Alternativ kann auch eine Maßstabsteilung 4 vorgesehen sein, welche eine rotatorische Bewegung erfasst. In diesem Fall wird anstelle der linearen Maßstabsteilung 4, wie sie in Fig. 1 dargestellt ist, eine scheibenförmige Maßstabsteilung verwendet. Das Abtastprinzip bleibt dabei im Wesentlichen gleich.
  • Zusätzlich zu den Signalen SIN und COS kann über eine oder mehrere Markierungen 9 ein Referenzsignal REF von einem Sensor 10 zur Verfügung gestellt werden. Das Referenzsignal REF dient dazu, eine oder mehrere vordefinierte Stellungen 11 als Referenzpositionen zu markieren.
  • Die Signale SIN, COS und REF werden dem System 1 zugeführt, das aus den Eingangs-Signalen veränderte Ausgangssignale SIN', COS' und REF' erzeugt. Die Ausgangs-Signale SIN' und COS' weisen dabei eine gegenüber den Eingangs-Signalen SIN und COS erhöhte Periodenzahl, d.h. erhöhte Frequenz, auf. Das Signal REF' wird von der Vorrichtung 1 entsprechend angepasst.
  • Durch die erhöhte Periodenzahl ermöglichen die Ausgangs-Signale SIN' und COS' gegenüber den Eingangs-Signalen SIN und COS eine um den Faktor der Periodenanzahlvervielfachung verbesserte Auflösung der Lage des Wegmessmittels 4. Dadurch lassen sich in der Fig. 1 nicht gezeigte Antriebe, Achsen bzw. Positioniereinrichtungen u.a., an welche das Positionsmesssystem angebaut ist, genauer regeln bzw. steuern.
  • Fig. 2 zeigt schematisch den Aufbau einer Ausführungsform der Vorrichtung 1 der Fig. 1.
  • Die Eingangs-Signale SIN und COS werden zunächst einer Interpolationseinheit 12 zugeführt, wo sie digitalisiert, fehlerkorrigiert und in ein für die Position des Messmittels repräsentatives Positionssignal, POS mit einer Auflösung von i Bit umgewandelt werden. Das Positionssignal POS kann beispielsweise eine Auflösung von (i = 10) Bit aufweisen. Im Positionssignal POS ist die Lageänderung der Maßstabsteilung 4 relativ zur Signalerzeugungseinheit 7 abgebildet. Bei konstanter Bewegung in einer Richtung ergeben sich dabei sägezahnförmige Signalverläufe.
  • Das Positionssignal POS wird anschließend in ein digitales Filter 13 geleitet, wo verschiedenartige Fehler herausgefiltert und durch die Filterung eventuell entstehende Signalverzögerungen ausgeglichen werden. Im Filter 13 werden insbesondere Stör- und Rauschanteile im Positionssignal POS, hervorgerufen durch entsprechende, dem Positionsmesssystem 2 aufgrund seiner Bauart immanente Stör- und Rauschanteile in den Eingangs-Signalen, ausgeglichen. Außerdem wird die Auflösung des Positionssignals erhöht. Als Ergebnis der Filterung erhält man einen korrigierten, hochaufgelösten Positionswert POS', der in ein Register 14 abgelegt wird.
  • Der korrigierte Positionswert POS' ist, wie in Fig. 3 dargestellt ist, im Register 14 als ein digitaler Wert aus k Bits, im Folgenden als k Wort bezeichnet, abgelegt, vorzugsweise im Integer-Format. Da durch die Korrekturalgorithmen im digitalen Filter 13 die Genauigkeit des korrigierten Positionssignals POS' gegenüber dem Positionssignal POS aus der Interpolationseinheit erhöht ist, gilt die Beziehung (k > i).
  • Im nächsten Schritt findet im Signalgenerator des Systems 1 die Frequenzerhöhung bzw. Perioden-Vervielfachung statt, die im folgenden genauer erläutert wird.
  • Aus dem k-Wort im Register 14 werden von einer Ausleseeinheit 15 m zusammenhängend aufeinanderfolgende Bits, im Folgenden als m-Wort bezeichnet, mit vorzugsweise mindestens derselben Taktrate ausgelesen, mit der der hochaufgelöste Positionswert POS' im Register 14 aktualisiert wird.
  • Der Wert des m-Wortes ändert sich periodisch mit einer höheren Frequenz als der Wert des k-Wortes, wenn das höchstwertige Bit des m-Wortes nicht auf das höchstwertige Bit des k-Wortes fällt:
  • Die Lage des ausgelesenen m-Wortes im k-Wort wird durch die Lage km seines höchstwertigen Bits m bestimmt. Das niederwertigste Bit des m-Wortes weist dabei die Lage kl im k-Wort auf, wobei die Beziehung (km - kl = m) gilt.
  • Wird die Lage des m-Wortes im k-Wort so gewählt, dass die Beziehung (km < k) gilt, so erhöht sich die Frequenz, mit der sich das ausgelesene m-Wort ändert, um den Faktor 2(k-km) gegenüber der Frequenz, mit der das sägezahnähnliche Positionssignal POS' bei konstanter Relativbewegung von Maßstabsteilung und Signalerzeugungseinheit variiert. Die erhöhte Signalperiodenanzahl des m-Wortes ist in Fig. 2 schematisch durch das Signal POS" dargestellt. Hat mit anderen Worten die Frequenz des Positionssignals POS', die insbesondere der Frequenz der Eingangs-Signale SIN und COS entsprechen kann, einen Wert fP' und die Frequenz des frequenzerhöhten Positionssignals POS" einen Wert fP" , so gilt für den Faktor n der Frequenzerhöhung: n = f / f = 2 k - km
    Figure imgb0001
  • Anhand der Formel (1) ist zu erkennen, dass sich die Signalfrequenz des Signals POS" durch die Position des m-Wortes innerhalb des k-Wortes bestimmt. Zur Erläuterung dieses Zusammenhanges sind in Fig. 3 zwei unterschiedlich positionierte m-Worte innerhalb des k-Wortes dargestellt, die jeweils zu unterschiedlichen Frequenzen führen.
  • Das erste m-Wort beginnt an der Position (kl1 = 1) und endet an der Position (km1 = m). Bei dieser Variante werden also die m niederwertigsten Bits des k-Wortes ausgelesen. Die Signalperiode, mit der sich das Bit km1 im k-Wort ändert und damit die Signalperiode des m-Wortes bestimmt, beträgt in diesem Fall das 2(k-km1)-fache, also das 2(k-m)-fache, der Signalperiode des k-Wortes. Da in dieser Position des m-Wortes die Differenz (k- km1 ) für gegebenes m und k maximal ist, stellt dies die maximal mögliche Periodenvervielfachung dar.
  • Im zweiten Fall erstreckt sich das m-Wort innerhalb des k-Wortes von der Anfangsposition beim Bit kl2 bis zum Bit km2 = (k - 1). In diesem Fall ist eine Signalperioden-Vervielfachung um den Faktor 2(k-km2) = 2[k-(k-1)] = 21 = 2 möglich. In diesem Fall wird also eine Frequenzverdopplung erreicht.
  • Fällt das höchstwertige Bit des m-Wortes, also km, mit dem höchstwertigen Bit des k-Wortes, also k, zusammen, so entspricht die Signalperiode des m-Wortes der Signalperiode des k-Wortes. In diesem Fall findet durch die Vorrichtung 1 lediglich eine Fehlerkorrektur durch die Interpolationseinheit 12 und den Digitalfilter 13 statt.
  • Das oben beschriebene Verfahren zur Frequenzerhöhung lässt auf einfach zu implementierende Weise eine einstellbare Frequenzerhöhung zu: Durch eine einfache Bit-Verschiebung, angedeutet durch den Doppelpfeil 15' in Fig. 2, des m-Wortes innerhalb des k-Wortes lassen sich Frequenzvervielfachungen in Zweierpotenz-Schritten zwischen 2 und 2(k-m) erreichen. Die Verschiebung des m-Wortes innerhalb des k-Wortes kann durch einfache Bit-Maskierung und Bit-Verschiebung durch die Ausleseeinheit 15 erfolgen.
  • Das Ausgangs-Sinus-Signal SIN' wird in Abhängigkeit vom m-Wort durch eine Sinus-Erzeugungseinrichtung 16a, das Ausgangs-Cosinus-Signal COS' durch eine Cosinus-Erzeugungseinrichtung 16b erzeugt. Hierzu wird beispielsweise das m-Wort von der Ausleseeinheit zur Adressierung von Ausgangs-Signal-Tabellen 16a, 16b in der Sinus- bzw. Cosinus-Erzeugungseinrichtung verwendet, die in der Vorrichtung 1 in einem flüchtigen oder nicht-flüchtigen Speicher abgelegt sind. Die Tabelle 16b enthält beispielsweise in Form eines eindimensionalen bzw. eindimensional adressierbaren Feldes die aufeinanderfolgenden digitalen Werte eines Cosinus-Signals COS' in einer Auflösung von p Bits. Die Bit-Auflösung p des Ausgangs-Signals COS' ist unabhängig von der Bit-Auflösung i des Eingangs-Signals COS oder der Bit-Auflösung k des Positionssignals POS". Die Ausgangs-Signal-Tabelle 16b enthält entsprechend ein Ausgangs-Sinus-Signal SIN'.
  • Aufgrund der Phasenverschiebung zwischen der Sinus- und Cosinus-Funktion kann natürlich auch lediglich eine einzige Tabelle 16 (nicht gezeigt) verwendet werden kann. Bei dieser Variante wird die Tabelle zur Erzeugung des SIN'- und des COS'-Signals an zwei im konstanten Abstand voneinander liegenden Positionen ausgelesen. Dieser Abstand entspricht unter Berücksichtigung der Auslesefrequenz der gerade dem Phasenversatz von 90° zwischen Sinus und Cosinus. Ebenso ist es denkbar, anstelle der Erzeugung des SIN'- und des COS'-Signals durch die Tabelle 16 bzw. die Tabellen 16a und 16b einen Berechnungsalgorithmus zu verwenden. Dazu kann vorzugsweise der Cordic-Algorithmus herangezogen werden.
  • Das Register 14, die Sinus-Erzeugungseinrichtung 16a und die Cosinus-Erzeugungseinrichtung 16b sowie, bei entsprechender Ausführung, die Auslese- bzw. Adressiereinheit 15 können funktionell zu einer Signalerzeugungseinheit 16 zusammengefasst werden, die in Abhängigkeit vom Positionssignal die Ausgangssignale erzeugt.
  • Jede der beiden Ausgangs-Tabellen 16a, 16b weist entsprechend dem Wertebereich des m-Wortes eine Anzahl von 2 m tabellierten Sinus- bzw. Cosinus-Werten auf und gibt vorzugsweise den vollständigen Verlauf einer Periode des jeweiligen Sinus- bzw. Cosinus-Signals wieder. Folglich ist die Periode des jeweiligen Sinus- und Cosinus-Signals SIN' und COS' in den Tabellen 16a, 16b mit 2 m aufeinanderfolgenden Stützstellen aus jeweils p Bits aufgelöst.
  • Der Wert des m-Wortes dient der Adressierung der Ausgangs-Tabellen 16a, 16b. Dies ist in der Fig. 3 durch die Darstellung des Wertes des ausgelesenen m-Wortes in der Form *("Wert des m-Wortes") wiedergegeben. Hat das ausgelesene m-Wort beispielsweise den Zahlenwert 0, so wird der an der Position 0 gelegene Wert der beiden Ausgangs-Tabellen 16a, 16b ausgelesen. Dieser Wert ist in Fig. 3 symbolisch mit *(0) dargestellt. Maximal kann das m-Wort den Wert (2 m- 1) annehmen, wenn nämlich sämtliche Bits des m-Wortes auf 1 gesetzt sind. In diesem Fall wird der letzte Wert der jeweiligen Tabelle 16a, 16b an der Position (2 m - 1) ausgelesen. Dieser Wert ist in Fig. 3 symbolisch durch *(2 m -1) wiedergegeben.
  • Die jeweils von der Ausgangs-Tabelle 16a, 16b ausgelesenen Werte werden schließlich jeweils einem Digital-Analog-Wandler 17a, 17b zugeführt, der diese in Analog-Signale umwandelt. Die analogen Signale werden dann aus der Vorrichtung 1 geleitet. Zuvor können sie durch in der Fig. 2 nicht gezeigte Verstärker Schaltungen auf standardisierte Signalpegel gesetzt und durch ebenfalls nicht dargestellte Filter geglättet werden. Gleichfalls kann anstelle der Digital-Analog-Wandler jeweils ein der Werte der Ausgangstabelle 16a und 16b entsprechendes Pulsmuster (PWM) ausgegeben werden, das mit hoher Frequenz erzeugt wird und durch einen Tiefpass gefiltert die Signale SIN' und COS' erzeugt.
  • Die Vorrichtung 1 enthält schließlich eine Einheit 19, mit der das Referenzsignal REF an die veränderten Signale SIN' und COS' angepasst wird. Das Referenzsignal REF' wird durch die Einheit 19 neu synthetisiert, so dass es nur in den Quadranten der Signale SIN' und COS' auftritt, die der Lage der ursprünglichen Quadranten des Signals REF in den Eingangs-Signalen SIN und COS entsprechen. Hierzu wird durch die Einheit 19 der durch die Interpolationseinheit 12 interpolierte und das digitale Filter 13 gefilterte Positionswert POS' verwendet.
  • Mit Bezug auf die Fig. 4 werden nun Aufbau und Funktion einer Ausführungsform der Interpolationseinheit 12 und des digitalen Filters 13 erläutert. Die Interpolationseinheit 12 und das digitale Filter 13 sind funktionell Teil einer Positionsbestimmungseinheit 20, durch die das korrigierte und hochaufgelöste Positionssignal POS' erzeugt wird, dessen Signalperiode noch der Signalperiode der Eingangs-Signale SIN und COS entspricht, dessen Auflösung mit k Bit jedoch erhöht ist.
  • Die analogen Eingangs-Signale SIN und COS aus dem Positionsmesssystem 2 werden der Interpolationseinheit 12 zugeführt, wo sie in einer Eingangsschnittstelle 21 durch jeweils einen Analog-Digital-Wandler 22a, 22b getrennt digitalisiert und in digitaler Form einer Signalkonditionierungseinheit 23 zugeführt werden.
  • Anstelle der beiden separaten Leitungen für das Sinus-Eingangs-Signal SIN und das Cosinus-Eingangs-Signal COS kann auch eine einzige Datenleitung vorgesehen sein, wobei die Eingangs-Signale SIN und COS dann im Multiplex-Verfahren verarbeitet werden können. Ebenso können die Signale SIN und COS bereits in digitaler Form vorliegen, so dass auf die Analog-Digital-Wandler 22a, 22b verzichtet werden kann.
  • Die Signalkonditionierungseinheit 23 dient dazu, die Signalqualität der Eingangs-Signale SIN und COS vor der weiteren Verarbeitung zu verbessern. Die Signalkonditionierungseinheit 23 berechnet Abweichungen von Soll-Zuständen der Eingangs-Signale SIN und COS und korrigiert die Eingangs-Signale SIN und COS.
  • Die Interpolationseinheit 12 kann insbesondere die Funktionen aufweisen, die in Kirchberger, R., und Hiller, B., "Oversamplingverfahren zur Verbesserung der Erfassung von Lage und Drehzahl an elektrischen Antrieben mit inkrementellem Gebersystem", in: SPS/IPC/Drives, Nümberg 1999, Conf.-rec. pp. 598-606, beschrieben sind.
  • Beispielsweise werden durch die Signalkonditionierungseinheit 23 jeweils die Signal-Offsets, d.h. z.B. die Mittelwerte der Eingangs-Signale SIN und COS über einen vorbestimmten Zeitraum, berechnet und bei Abweichung von ihren Soll-Wert über die Kompensationseinheiten 24a, 24b korrigiert. Für jedes Eingangs-Signal SIN bzw. COS findet der Abgleich getrennt statt. Der Abgleich ist in Fig. 3 schematisch durch die punktierten Pfeile 25a, 25b dargestellt.
  • Bei der Ausführungsform der Fig. 4 sind die Kompensationseinheiten 24a, 24b im analogen Signalweg von jeweils SIN und COS dargestellt. Natürlich kann eine Off-set-Korrektur auch an den bereits digitalisierten Signalen SIN und COS vorgenommen werden.
  • Durch die Signalkonditionierungseinheit 23 werden auch die relativen Signal-Amplituden des Eingangs-Sinus-Signals SIN und des Eingangs-Cosinus-Signals COS bestimmt. Im Idealzustand weisen beide Eingangs-Signale SIN und COS die gleiche Amplitude auf. Abweichungen der Amplitude der tatsächlich vorliegenden Signale SIN und COS werden ebenfalls durch Rückkopplung von den Kompensationseinheiten 24a, 24b ausgeregelt.
  • Außerdem können von der Signalkonditionierungseinheit 23 Phasenfehler in den Eingangs-Signalen SIN und COS erfasst und über die Kompensationseinheiten 24a, 24b korrigiert werden. Nicht exakt sinusförmige Verläufe der Eingangs-Signale SIN und COS können durch eine in der Signalkonditionierungseinheit 23 abgespeicherte Korrekturtabelle (nicht gezeigt) korrigiert werden. Natürlich kann eine Amplituden- und Phasenkorrektur ebenso an den bereits digitalisierten Signalen SIN und COS vorgenommen werden.
  • Zusätzlich kann die Auflösung der digitalisierten Eingangs-Signale SIN und COS durch ein in der Signalkonditionierungseinheit 23 implementiertes schnelles, digitales Filter gegenüber der Auflösung der AD-Wandler erhöht und das Quantisierungsrauschen bzw. andere Störungen reduziert werden.
  • Aus der Signalkonditionierungseinheit 23 werden die fehlerkorrigierten und ausgeregelten digitalen Zwischensignale SINd und COSd zu einer Berechnungseinheit 30 geleitet.
  • In der Berechnungseinheit 30 wird aus den beiden Signalen SINd und COSd ein Positionssignal POS erzeugt, welches die Position der Maßstabsteilung 4 über die Zeit wiedergibt. Bei einer Bewegung der Maßstabsteilung 4 relativ zur Signalerzeugungseinheit 7 mit konstanter Geschwindigkeit, also einer linearen Lageveränderung, ist das Positionssignal idealerweise eine Gerade, deren Steigung der Bewegungsgeschwindigkeit entspricht.
  • Anstelle einer durchgängigen Positionskurve wird aus den Eingangs-Signalen SIN und COS vorzugsweise ein periodisches Positionssignal POS gebildet, um die Berechnung der Position einfach zu gestalten und den begrenzten Wertevorrat der digitalen Zahlenwerte besser auszuschöpfen. Für eine Bewegung mit konstanter Geschwindigkeit weist ein solches periodisches Positionssignal POS im Wesentlichen die Form eines Sägezahns mit einer schrägen und einer senkrechten Flanke auf.
  • Die Periodendauer des Positionssignals entspricht der Periode des SIN- und COS-Signals und der Anstieg des schrägen Astes des Positionssignals POS entspricht der Geschwindigkeit der Bewegung der Maßstabsteilung 4 relativ zur Signalerzeugungseinheit 7.
  • Das Positionssignal POS kann auf einfache Weise durch Bildung des Arkustangens (atan) aus dem Quotienten des SINd- und dem COSd-Signals gebildet wird. Es gilt also POS = atan SINd / COSd
    Figure imgb0002
  • Die Berechnung des Arkustangens des Quotienten SINd / COSd kann beispielsweise über eine Look up-Tabelle erfolgen oder über den CORDIC-Algorithmus.
  • Das Positionssignal POS wird mit einer Genauigkeit von i Bit berechnet und in sehr kurzer zeitlicher Folge, beispielsweise jede Mikrosekunde, aktualisiert. Nach seiner Berechnung wird das digitale Positionssignal POS an das digitale Filter 13 geleitet.
  • Das digitale Filter 13 arbeitet mit hoher Taktfrequenz, beispielsweise 1 MHz. Durch das Digitalfilter 13 werden Rauschanteile und höherfrequente Fehleranteile im Positionswort POS reduziert und gleichzeitig die Auflösung des Positionswortes POS von i auf k Bit des korrigierten, hochaufgelösten Positionswortes POS' erhöht. Die durch den Filtervorgang entstehende Verzögerung wird durch einen von der bisherigen Signalgeschichte des Positionssignal POS abhängigen Korrekturwert, der dem gefilterten Positionswert aufaddiert wird, kompensiert. Insbesondere kann der Korrekturwert von der bisher gemessenen Bewegungsgeschwindigkeit, die leicht aus ein oder mehreren in einem zeitlichen Abstand bestimmten Positionswerten POS' berechnet werden kann, ermittelt werden.
  • Das digitale Filter 13 kann verschiedene Filteralgorithmen einzeln oder in Kombination anwenden.
  • So können hochfrequente Rauschanteile durch Bildung eines gleitenden Mittelwertes von q aufeinanderfolgenden Werten des Positionssignals POS gebildet werden. In dieser Ausgestaltung wirkt das Digitalfilter 13 als ein Tiefpass-Filter. Dabei ist darauf zu achten, dass das Digitalfilter 13 keine informationstragenden, d.h. für die nachfolgende Regelung bzw. Steuerung relevanten Frequenzen im Positionssignal POS herausfiltert.
  • Außerdem kann das Digitalfilter 13 signalgeberabhängige Fehler herausfiltern. Hierzu können typische Fehlerkurven von bekannten Positionsmesssystemen experimentell vorab bestimmt und im Digitalfilter 13 abgespeichert werden. Eine solche Fehlerkurve in Form einer Fehlercharakteristik ist in Fig. 3 schematisch als ERR angegeben. Die signalgeberabhängigen Fehler im Positionssignal POS können dann durch Multiplikation im Frequenzbereich mit einer vorab im Digitalfilter 13 gespeicherten Übertragungsfunktion kompensiert werden. Alternativ oder zusätzlich können die Fehlerkurven auch als Zeitreihen oder Frequenzkurven abgespeichert werden, die im Digitalfilter laufend mit dem Verlauf oder dem Frequenzgehalt des Positionssignals POS verglichen werden. Bei einem vorbestimmten Maß an Übereinstimmung zwischen dem Positionssignal POS und der gespeicherten Fehlerkurve kann dann eine vorbestimmte Fehlerkompensation durchgeführt werden.
  • Durch die Positionsbestimmungseinheit 20 lässt sich die Qualität der Eingangs-Signale soweit verbessern, dass die erhöhte Auflösung des Positionswortes mit k Bit voll ausgenutzt werden kann.

Claims (26)

  1. Positionsmessverfahren, bei dem aus einem von einem Positionssensor erzeugten Eingangs-Sinus-Signal (SIN) und Eingangs-Cosinus-Signal (COS), ein digitales Positionssignal (POS), das eine vom Positionssensor gemessene Position repräsentiert, berechnet und digital gefiltert wird, und wobei in Abhängigkeit vom gefilterten Positionssignal (POS', POS") ein Ausgangs-Sinus-Signal (SIN') und ein Ausgangs-Cosinus-Signal (COS') mit jeweils einer gegenüber der Frequenz (fp' ) der Eingangs-Signale (SIN, COS) vervielfachten Signalperiode (fp" ) erzeugt werden, dadurch gekennzeichnet, dass im Zuge der Filterung aus dem Positionssignal ein digitales Positionssignal (POS') mit einer gegenüber dem berechneten Positionssignal (POS) erhöhten Auflösung (k) gebildet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Positionssignal Tiefpass-gefiltert wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Positionssignal durch Bildung eines gleitenden Mittelwertes gefiltert wird.
  4. Verfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass aus dem Positionssignal signalgebertypische Fehler herausgefiltert werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Positionssignal (POS) durch Verwendung von gespeicherten, signalgeberabhängigen Fehlerkurven (ERR) gefiltert wird.
  6. Verfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass das Positionssignal (POS) aus dem Arkustangens (atan) im Wesentlichen des Quotienten aus dem Eingangs-Sinus-Signal (SIN) und dem Eingangs-Cosinus-Signal (COS) berechnet wird.
  7. Verfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass das Eingangs-Sinus-Signal (SIN) und das Eingangs-Cosinus-Signal (COS) vor der Berechnung des Positionssignals (POS) fehlerkorrigiert werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass bei der Fehlerkorrektur unterschiedliche Amplituden des Eingangs-Sinus-Signals (SIN) und des Eingangs-Cosinus-Signals (COS) ausgeglichen werden.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass bei der Fehler korrektur Abweichungen des Offsets im Eingangs-Sinus-Signal (SIN) und/oder Eingangs-Cosinus-Signal (COS) von einem Soll-Offset ausgeregelt werden.
  10. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass bei der Fehlerkorrektur Phasenfehler im Eingangs-Sinus-Signal (SIN) und/oder im Eingangs-Cosinus-Signal (COS) korrigiert werden.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Korrekturwerte, mit denen die Fehler im Eingangs-Sinus-Signal (SIN) und/oder im Eingangs-Cosinus-Signal (COS) korrigiert werden, aus dem Eingangs-Sinus-Signal (SIN) und/oder dem Eingangs-Cosinus-Signal (COS) selbst berechnet werden.
  12. Verfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass das Positions signal (POS, POS', POS") in Form eines sich im Wesentlichen periodisch ändernden, digitalen Zahlenwertes aus k Bit erzeugt wird, aus dem ein Teilwort (m-Wort) aus m aufeinanderfolgenden Bit ausgelesen wird,
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das m-Wort zur Adressierung wenigstens einer Ausgangs-Tabelle (16a, 16b) zur Erzeugung der Ausgangs-Signale (SIN', COS') verwendet wird.
  14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Position (km ) des m-Wortes innerhalb des k-Wortes durch eine Ausleseeinheit (15) verschoben wird, um die Frequenz der Ausgangs-Signale (SIN', COS') zu ändern.
  15. Verfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Frequenz der Eingangssignale (SIN, COS) um einen ganzzahligen Faktor erhöht wird.
  16. Verfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Frequenz der Eingangssignale (SIN, COS) in den Ausgangs-Signale (SIN', COS') um den Faktor 2k-km erhöht wird.
  17. Verfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Ausgangs-Signale (SIN', COS') in Abhängigkeit vom Positionssignal (POS, POS', POS") aus wenigstens einer Ausgangs-Tabelle (16a, 16b) enthaltend digitalisierte Werte (*(0),...,*(2m-1)) einer Sinusfunktion ausgelesen werden.
  18. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass zwei, jeweils dem Ausgangs-Sinus-Signal (SIN') und dem Ausgangs-Cosinus-Signal (COS') zugeordnete Ausgangs-Tabellen (16a, 16b) verwendet werden.
  19. Verfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Eingangssignale (SIN, COS) von einem Weg- oder Winkelmesssystem (2) erzeugt werden.
  20. Verfahren nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Quadrantenlage eines Referenzsignals (REF) relativ zu den Eingangs-Signalen (SIN, COS) an die Ausgangs-Signale (SIN', COS') angepasst wird.
  21. Positionsmesssystem (1) zur Verarbeitung von Signalen (SIN, COS, REF) eines Positionssensors (1) mit einer Eingangsschnittstelle (21), der im Betrieb ein Eingangs-Sinus-Signal (SIN) und Eingangs-Cosinus-Signal (COS) eines Positionssensors (7) zuführbar ist, mit einer Berechnungseinheit (30), durch die aus dem Eingangs-Sinus-Signal (SIN) und dem Ausgangs-Cosinus-Signal (COS) ein digitales, eine vom Positionssensor gemessene Position repräsentierendes Positionssignal (POS) erzeugbar ist, und mit einer Signalerzeugungseinheit (16), durch die in Abhängigkeit vom Positionssignal (POS) ein Ausgangs-Sinus-Signal (SIN') und ein Ausgangs-Cosinus-Signal (COS') mit jeweils einer gegenüber dem Eingangs-Sinus-Signal (SIN) und Eingangs-Cosinus-Signal (COS) vervielfachten Signalperiode erzeugbar ist, und mit einem zwischen der Berechnungseinheit (30) und der Eingangsschnittstelle (21) angeordneten Digitalfilter (13), dadurch gekennzeichnet, dass das Positionssignal (POS) vor dem Digitalfilter eine Auflösung von i Bit und nach dem Digitalfilter eine Auflösung von k Bit aufweist, wobei k > i gilt.
  22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass ein Register (14), in dem das Positionssignal als k-Wort in einer Auflösung von k Bits ablegbar ist, und eine Adressiereinheit, durch die aus dem k-Wort ein m-Wort aus m aufeinanderfolgenden Bits, m < k, auslesbar ist, vorgesehen sind.
  23. Vorrichtung nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass zwischen der Berechnungseinheit (30) und der Eingangsschnittstelle (21) eine Signalkonditionierungseinrichtung (23) angeordnet ist, durch die Signalfehler im Eingangs-Sinus-Signal (SIN) und Eingangs-Cosinus-Signal (COS) korrigierbar sind.
  24. Vorrichtung nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, dass durch den Digitalfilter (13) signalgeberabhängige Fehler aus dem Positionssignal (POS) herausfilterbar sind.
  25. Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, dass das Digitalfilter (13) im Wesentlichen als ein Tiefpass-Filter ausgestaltet ist.
  26. Vorrichtung nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass die Vorrichtung ein Wegmessmittel (2) umfasst, durch das die Eingangs-Signale (SIN, COS) als die Bewegung eines Messmittels (4) repräsentierende Signale erzeugbar sind.
EP03788883A 2003-03-25 2003-12-18 Positionsmessverfahren und positionsmesssystem zur signalperioden-vervielfachung Expired - Lifetime EP1606590B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10313518A DE10313518A1 (de) 2003-03-25 2003-03-25 Positionsmessverfahren und Positionsmesssystem zur Signalperioden-Vervielfachung
DE10313518 2003-03-25
PCT/DE2003/004213 WO2004085971A1 (de) 2003-03-25 2003-12-18 Positionsmessverfahren und positionsmesssystem zur signalperioden-vervielfachung

Publications (2)

Publication Number Publication Date
EP1606590A1 EP1606590A1 (de) 2005-12-21
EP1606590B1 true EP1606590B1 (de) 2009-03-25

Family

ID=32980717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03788883A Expired - Lifetime EP1606590B1 (de) 2003-03-25 2003-12-18 Positionsmessverfahren und positionsmesssystem zur signalperioden-vervielfachung

Country Status (5)

Country Link
US (1) US7251575B2 (de)
EP (1) EP1606590B1 (de)
AT (1) ATE426795T1 (de)
DE (2) DE10313518A1 (de)
WO (1) WO2004085971A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8191399B2 (en) 2005-12-16 2012-06-05 Siemens Aktiengesellschaft Monitoring device and monitoring method for a drive device
EP3124920A1 (de) 2015-07-27 2017-02-01 Dr. Johannes Heidenhain GmbH Positionsmesseinrichtung und Verfahren zu deren Betrieb
DE102022004196A1 (de) 2022-11-11 2024-05-16 Baumer Germany Gmbh & Co. Kg Gebersignalverarbeitungseinheit mit Eingangssignalumschaltung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244583A1 (de) * 2002-09-25 2004-04-08 Dr. Johannes Heidenhain Gmbh Messsystem und Verfahren zu dessen Funktionsüberprüfung
DE102004053715A1 (de) * 2004-11-06 2006-05-11 Bosch Rexroth Aktiengesellschaft Verfahren zur Berechnung von Bewegungsdaten
DE102005036719A1 (de) * 2005-07-28 2007-02-01 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Korrigieren von Interpolationsfehlern einer Maschine, insbesondere eines Koordinatenmessgerätes
JP4602411B2 (ja) * 2005-11-28 2010-12-22 三菱電機株式会社 位置検出誤差補正方法
DE102006012074B4 (de) * 2006-03-16 2015-11-05 Robert Bosch Gmbh Postionsmesseinrichtung mit Überwachungsvorrichtung
EP1876423B1 (de) * 2006-07-04 2015-10-28 Toyo Denso Kabushiki Kaisha Sensor für Steuerruderwinkel
US7863850B2 (en) * 2007-05-11 2011-01-04 GM Global Technology Operations LLC Apparatus, system, and method for simulating outputs of a resolver to test motor-resolver systems
DE102007057376A1 (de) * 2007-11-26 2009-05-28 Baumer Hübner GmbH Drehgeber mit interner Fehlerkontrolle und Verfahren hierzu
JP2010014646A (ja) * 2008-07-07 2010-01-21 Canon Inc 計測装置
JP2010256081A (ja) * 2009-04-22 2010-11-11 Fujifilm Corp 光学式位置検出器及び光学装置
DE102009022084B4 (de) * 2009-05-20 2015-07-09 Sew-Eurodrive Gmbh & Co Kg Verfahren zur Bestimmung der Winkelstellung eines drehbaren Teils
JP5371720B2 (ja) * 2009-12-03 2013-12-18 キヤノン株式会社 位置信号補正装置および位置信号補正方法
US8612065B2 (en) * 2010-03-05 2013-12-17 Gsi Group Corporation Position encoder with programmable trigger output signal
JP5327656B2 (ja) * 2011-07-13 2013-10-30 株式会社デンソー 物理量検出装置、および物理量検出装置の検査方法
DE102014216295A1 (de) * 2014-08-15 2016-02-18 Continental Teves Ag & Co. Ohg Auflösungserhöhung im Drehzahlsignal zwischen Drehzahlpulsen
DE102015200475A1 (de) * 2015-01-14 2016-07-14 Schaeffler Technologies AG & Co. KG Verfahren und Messsignalverarbeitungseinheit zur Generierung eines mehrkanaligen Messsignals für eine Drehzahlmessung sowie Sensoreinheit
EP3635591A4 (de) * 2017-06-09 2021-03-24 Companion Medical, Inc. Intelligente medikamentenabgabesysteme und -verfahren
JP7258609B2 (ja) * 2019-03-15 2023-04-17 ミネベアミツミ株式会社 位置検出装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138640C1 (de) * 2001-06-27 2003-01-09 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Vorbereiten eines analogen Sensorsignals eines Positionsensors für eine Übertragung zu einer Auswerteeinheit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449914A (en) 1987-08-20 1989-02-27 Fanuc Ltd Signal processor for pulse encoder
JP3313750B2 (ja) 1992-01-21 2002-08-12 キヤノン株式会社 信号処理装置及びこれを用いた装置
EP0872714B1 (de) 1997-04-16 2005-08-17 Dr. Johannes Heidenhain GmbH Positionsmesseinrichtung und Verfahren zu deren Betrieb
ATE346279T1 (de) * 2001-06-27 2006-12-15 Fraunhofer Ges Forschung Verfahren und vorrichtung zum vorbereiten eines sensorsignals eines positionssensors für eine übertragung zu einer auswerteeinheit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138640C1 (de) * 2001-06-27 2003-01-09 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Vorbereiten eines analogen Sensorsignals eines Positionsensors für eine Übertragung zu einer Auswerteeinheit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8191399B2 (en) 2005-12-16 2012-06-05 Siemens Aktiengesellschaft Monitoring device and monitoring method for a drive device
EP3124920A1 (de) 2015-07-27 2017-02-01 Dr. Johannes Heidenhain GmbH Positionsmesseinrichtung und Verfahren zu deren Betrieb
US9927234B2 (en) 2015-07-27 2018-03-27 Dr. Johannes Heidenhain Gmbh Position-measuring device and method for operating the same
DE102022004196A1 (de) 2022-11-11 2024-05-16 Baumer Germany Gmbh & Co. Kg Gebersignalverarbeitungseinheit mit Eingangssignalumschaltung

Also Published As

Publication number Publication date
WO2004085971A1 (de) 2004-10-07
US7251575B2 (en) 2007-07-31
EP1606590A1 (de) 2005-12-21
DE50311354D1 (de) 2009-05-07
US20060052973A1 (en) 2006-03-09
ATE426795T1 (de) 2009-04-15
DE10313518A1 (de) 2004-10-14

Similar Documents

Publication Publication Date Title
EP1606590B1 (de) Positionsmessverfahren und positionsmesssystem zur signalperioden-vervielfachung
DE19712622B4 (de) Anordnung und Verfahren zur automatischen Korrektur fehlerbehafteter Abtastsignale inkrementaler Positionsmeßeinrichtungen
DE3024716C2 (de) Digitales Längen- oder Winkelmeßsystem
EP0575843B1 (de) Drehwinkelmesssystem
DE19641035C2 (de) Vorrichtung und Verfahren zur Positionsmessung
DE112006002928B4 (de) Positionsabtastfehler-Korrekturverfahren
DE3046797A1 (de) Elektrooptisches messsystem mit fehlerkorrektur
EP1195579B1 (de) Verfahren zur absoluten Positionsbestimmung
DE10034733B4 (de) Ermittlungsverfahren für ein Lagesignal und/oder für Korrekturwerte für Messsignale
DE102006012074B4 (de) Postionsmesseinrichtung mit Überwachungsvorrichtung
EP0204897B1 (de) Verfahren und Einrichtung zur Regelung des Tastverhältnisses eines elektrischen Signals
DE10246408B4 (de) Einrichtung zum Ablesen einer linearen Skala
EP3124920B1 (de) Positionsmesseinrichtung und Verfahren zu deren Betrieb
EP0872714A1 (de) Positionsmesseinrichtung und Verfahren zur deren Betrieb
DE4443898C2 (de) Positionsmeßverfahren und Positionsmeßeinrichtung
DE19913139C5 (de) Vorrichtung zum Erzeugen eines Ursprungssignales einer optischen Linearskala
EP1674830A2 (de) Verfahren zur Verbesserung der Signalqualität von sinusförmigen Spursignalen
CH666348A5 (de) Verfahren zum auswerten von messsignalen, die durch abtastung eines inkrementalmassstabes mit einer abtasteinheit erhalten werden und messeinrichtung zur durchfuehrung dieses verfahrens.
EP2295939B1 (de) Verfahren zur Ermittelung des Feinpositionswertes eines zu überwachenden Körpers
EP0652419B1 (de) Verfahren zur Korrektur des Phasenfehlers bei der Auswertung von Inkrementalgebern mit sinusförmigen Ausgangssignalen
DE102017222508B4 (de) Verfahren und Vorrichtung zur Korrektur von Messsystemabweichungen
DE3417015C2 (de) Interpolationsverfahren
WO2016004927A1 (de) Verfahren und vorrichtung zur bestimmung einer motorposition
DE10138640C1 (de) Verfahren und Vorrichtung zum Vorbereiten eines analogen Sensorsignals eines Positionsensors für eine Übertragung zu einer Auswerteeinheit
DE2735325A1 (de) Verfahren zur messwertermittlung bei inkrementalen weg- und winkelmessystemen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17P Request for examination filed

Effective date: 20050204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

TPAA Information related to observations by third parties modified

Free format text: ORIGINAL CODE: EPIDOSCTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAUMER HUEBNER GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HILLER, BERNHARD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50311354

Country of ref document: DE

Date of ref document: 20090507

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090901

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091229

BERE Be: lapsed

Owner name: BAUMER HUBNER G.M.B.H.

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090626

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110107

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101216

Year of fee payment: 8

Ref country code: GB

Payment date: 20101224

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BAUMER HUEBNER GMBH

Free format text: BAUMER HUEBNER GMBH#PLANUFER 92 B#10967 BERLIN (DE) -TRANSFER TO- BAUMER HUEBNER GMBH#PLANUFER 92 B#10967 BERLIN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BAUMER INNOTEC AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20131218

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220519

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50311354

Country of ref document: DE

Owner name: BAUMER GERMANY GMBH & CO. KG, DE

Free format text: FORMER OWNER: BAUMER HUEBNER GMBH, 10967 BERLIN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50311354

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50311354

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701