EP1599275A1 - Method for separating dissolved or colloidal solids from non-aqueous solvents - Google Patents

Method for separating dissolved or colloidal solids from non-aqueous solvents

Info

Publication number
EP1599275A1
EP1599275A1 EP04710858A EP04710858A EP1599275A1 EP 1599275 A1 EP1599275 A1 EP 1599275A1 EP 04710858 A EP04710858 A EP 04710858A EP 04710858 A EP04710858 A EP 04710858A EP 1599275 A1 EP1599275 A1 EP 1599275A1
Authority
EP
European Patent Office
Prior art keywords
membrane
catalyst
complex compounds
retention
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04710858A
Other languages
German (de)
French (fr)
Inventor
Gregor Dudziak
Andreas Nickel
Kerstin Baumarth
Martina Mutter
Olaf Stange
Rafael Warsitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer Technology Services GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Technology Services GmbH filed Critical Bayer Technology Services GmbH
Publication of EP1599275A1 publication Critical patent/EP1599275A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4061Regeneration or reactivation of catalysts containing metals involving membrane separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2419Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising P as ring member
    • B01J31/2428Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising P as ring member with more than one complexing phosphine-P atom
    • B01J31/2433Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising P as ring member with more than one complexing phosphine-P atom comprising aliphatic or saturated rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • B01J31/2452Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/4038Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/4038Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals
    • B01J31/4046Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals containing rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/72Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Definitions

  • the invention relates to methods for separating dissolved or colloidal solids, in particular catalysts from solutions in non-aqueous solvents with the aid of a membrane.
  • EP 1 118 683 AI describes the separation of metals and other partially or completely dissolved solids in aqueous solutions with membranes made of ceramic, polymeric or metallic materials.
  • Membranes can be assigned, can now be produced with a pore size of less than 1 nm. Because of their chemical, mechanical and thermal stability, these microporous, ceramic membranes have great potential for use, as Puhl Subß et al. (Puhl Subß et al., J. Membr. Sci. 174 [2000] 123-133). This publication also deals with the characterization of the membrane, which has a cut off ⁇ 500g / mol and
  • the catalyst In catalytic processes, the catalyst is hardly used or not at all, and could therefore theoretically be used for any length of time.
  • the problem that usually arises is the loss of the catalyst over the duration of the experiment e.g. when disconnecting the
  • Laid-open specification EP 0 263 953 AI describes the retention of rhodium complex compounds, which are components of the catalyst system, from aqueous solutions.
  • the catalyst is separated off using a polymer membrane.
  • the material of the polymer membrane is cellulose acetate.
  • Polymer membranes are primarily used in the above-described processes for retaining catalysts with increased molecular weight.
  • Membranes for the retention of dissolved, molecular weight-enlarged catalysts in organic solvents are stacked. Increasing the size of the catalyst increases the size difference between the product to be discharged and the catalyst to be retained. In addition, good retention can be achieved with larger pores, which is not impaired by the wetting of the solvent on the pore walls.
  • a ceramic membrane can only be used really economically if a material flow through the membrane is achieved that meets industrial requirements.
  • Solvent molecules not permeable. Transport takes place over larger pores and / or defects instead, which only make up a small proportion of the total pore volume. This causes the river to sink compared to the water flow. The retention due to these larger pores or defects is clearly above the average pore size of the membrane.
  • the object of the invention is to provide a process which avoids the disadvantages of the known processes and can retain the dissolved and / or colloidal solid (in particular catalyst) from a reaction solution in organic solvent with the aid of an inorganic membrane, the product-containing solvent the membrane happened unhindered.
  • the size of the solid (catalyst) should remain as unchanged as possible.
  • the object is achieved in that in a method of the type mentioned at the outset, a membrane is used which is hydrophobized and with which a high solvent flow can be generated which is significantly above the material flow of aqueous solution through this membrane.
  • a retention has been shown which, depending on the membrane, is less than 1000 g / mol, in special cases even less than 400 g / mol.
  • the invention relates to a process for separating dissolved and / or colloidal solids, in particular catalyst from solutions in non-aqueous
  • Solvents in particular in organic solvents with the aid of a membrane characterized in that the solution is passed through a membrane which has a hydrophobic coating and an average pore size of at most 30 nm.
  • the membrane is preferably a porous membrane, particularly preferably an inorganic membrane, particularly preferably a ceramic membrane, based on A1 2 0 3 , Ti0 2 , Zr0 2 or
  • the average pore size of the membrane is in particular at most 20 nm, preferably 2 nm to 10 nm, particularly preferably 2 nm to 5 nm.
  • the pore size is expediently selected such that the average pore size in the active region of the membrane is below the range of the average molecular size of the membrane to be separated
  • the membrane preferably has a multilayer structure. It is in particular an asymmetrical membrane that consists of at least 2, in special cases even of at least 3 layers.
  • the carrier layer is in particular a few millimeters thick and roughly porous with pores with an average diameter of 1 to 10 ⁇ m, preferably 3 to 5 ⁇ m
  • the intermediate layer built thereon is provided with a thickness of in particular 10 to 100 ⁇ m and has a pore size (average diameter) from 3 to 100 nm.
  • the separating layer has in particular a thickness of 0.5 to 2 ⁇ m and has pores with an average diameter of 0.9 to 30 nm.
  • the main advantage of this membrane is the uniform structure with very few imperfections ,
  • the hydrophobic coating is preferably produced on the membrane by means of silanes.
  • reactions of the membrane surface with silanes of the general formula R 2 R 3 t Si are suitable, preferably at least one but at most three of the groups R 1 to R 4 hydrolyzable groups, for example -Cl, -OCH3 or -O-CH 2 -CH 3 are and / or at least one but at most three of the groups R 1 to R 4 are non-hydrolyzable groups, for example alkyl groups or phenyl groups, the non-hydrolyzable substituents preferably being at least partially fluorinated to increase the hydrophobic effect.
  • the ceramic membranes can be modified using the hydrophobizing agents described, either in the liquid phase by soaking the membrane in a solution of the hydrophobizing agent, or by flowing the membrane with the hydrophobizing agent in the gaseous phase by using a carrier gas, for example N 2 or noble gas.
  • a carrier gas for example N 2 or noble gas.
  • the non-aqueous solvent is in particular an organic solvent and is particularly preferably selected from the series: alcohols, in particular methanol or ethanol, ethers, in particular tetrahydrofuran, aromatic hydrocarbons, in particular chlorobenzene or toluene, or optionally halogenated aliphatic hydrocarbons, in particular dichloromethane.
  • a preferred method is characterized in that the solution contains homogeneously dissolved and / or colloidally present catalysts, in particular catalysts selected from the group of organometallic complex compounds, and ligands of these complex compounds, particularly preferably Ru-B AP, Pd-BLNAP and Rh- EtDUPHOS or complex compounds of triphenylphosphine with palladium (e.g. Pd (OAc) 2 (PPh 3 ) 2 ) or rhodium.
  • catalysts selected from the group of organometallic complex compounds, and ligands of these complex compounds, particularly preferably Ru-B AP, Pd-BLNAP and Rh- EtDUPHOS or complex compounds of triphenylphosphine with palladium (e.g. Pd (OAc) 2 (PPh 3 ) 2 ) or rhodium.
  • suitable catalysts are selected from complex compounds of the elements of group IVA, VA, VIA, VBA, VIHA or EB of the periodic table of the elements, particularly preferably of manganese, iron, cobalt, nickel, palladium, platinum, ruthenium, rhodium or iridium.
  • the ligands of these complex compounds can additionally be alkylated or arylated.
  • the separation of the solids from the solution is preferably carried out at a temperature of from -20 ° C. to 200 ° C., particularly preferably from 0 ° C. to 150 ° C.
  • the pressure across the membrane is 2,000 to 40,000 hPa.
  • the invention is particularly suitable for catalyst retention when carrying out a reaction in which the catalyst is dissolved or colloidal and is to be kept in a reaction kettle, while the reaction product is in particular continuously removed from the kettle. In this way, losses can be minimized and the product is free from unwanted ones
  • the catalyst can also be in a mixture of dissolved and undissolved fractions.
  • the process is also suitable for concentrating and cleaning active ingredient solutions in the pharmaceutical industry and in biotechnology, sectors in which high purity of the products is required.
  • the process can be combined with other purification processes, e.g. using chromatographic methods.
  • Fig. 1 is a schematic sketch of the separation device used in the examples
  • the appropriate solvent is filled into the reservoir 1 (see FIG. 1), the membrane 4 is installed in the module 3 and the solution with the pump 2 and by means of pressure superimposition in cross-flow mode is passed over the membrane 4.
  • a sample is taken from permeate 5 and retentate 6 at regular intervals and the specific flow is measured in kg / (h * m 2 * bar).
  • the solutions are prepared according to recipe 1 to 10 (cf. Table 1) and also filled into storage container 1.
  • the test procedure corresponds to the above.
  • the samples are measured for their content of the substances used using GPC analysis.
  • Storage container 1 5 1, stainless steel, pressure-resistant up to 40,000 hPa
  • Example 1 The experiment from Example 1 was carried out in the system described above (FIG. 1).
  • the pure substance flows of different solvents are measured for different membranes (A - D).
  • the membranes differ in their pore sizes and retention, as well as in their surface properties.
  • the exact description of the * membranes is shown in Table 2.
  • the complete test parameters are in Table 3.
  • the results are listed in Table 4.
  • Table 4 shows the pure substance flows of the different solvents.
  • Membrane A consists of a porous carrier made of ⁇ -aluminum oxide with an average pore size of 3 ⁇ m diameter, an intermediate layer made of TiO 2 with a pore size of 5 nm and a separating layer made of Ti0 2 with a pore size of 0.9 nm without a hydrophobizing coating.
  • a membrane shows a water flow of 16.37 kg / (h * m 2 * bar), a methanol flow of ll, 54 kg / (h * m 2 * bar), an ethanol flux of 3.64 kg / (h * m 2 * bar) and a toluene flow of 1.5 kg / (h * m 2 * bar).
  • Membrane B with properties corresponding to membrane A and a hydrophobization with 0.5% tridecafluor 1,1,2,2 tetrahydrooctyltriethoxysilane (hereinafter referred to as F6) and an addition of the hydrophobizing agent during the membrane synthesis the water flow to 10.44 kg / (h * m 2 * bar), the methanol flow to 3.12 kg / (h * m 2 * bar) and the toluene flow to 0.51 kg / (h * m 2 * bar) down.
  • F6 tridecafluor 1,1,2,2 tetrahydrooctyltriethoxysilane
  • Membrane C is a membrane that consists of the same Al2O3 carrier as membrane A with an intermediate layer of Ti0 2 with a pore size of 5 nm and a separating layer of Zr0 2 with a pore size of 3 nm.
  • the hydrophobization is achieved by impregnation of the finished product
  • Membrane carried out in the hydrophobizing agent F6. There was a water flow of 4.48 kg / (h * m 2 * bar), a methanol flow of 16.23 kg / (h * m 2 * bar) and a toluene flow of 7.7 kg / (h * m 2 *bar).
  • Membrane A shows a return of dextrans in water of 450 g / mol, PEG in water of 470 g / mol and PEG in methanol of 980 g / mol. The retention of toluene was not determined because no toluene flow through the membrane could be measured.
  • Membrane B shows a return of dextrans in water of 250 g / mol, PEG in methanol of> 1000 g / mol. The retention of toluene was not determined because no toluene flow through the membrane could be measured.
  • Membrane C shows no retention of dextrans in water since no water flow through the membrane could be measured.
  • the retention of PEG in methanol is 1000 g / mol, the retention of toluene is 500 g / mol.
  • Membrane D shows a retention of dextrans in water of> 2000 g / mol, of PEG in methanol> 2000 g / mol, the residue of toluene is 340 g / mol.
  • Example 3 Measurement of catalyst retention in toluene
  • Example 2 The devices and the system (FIG. 1) from Example 1 were used.
  • membrane D was used in the system.
  • the mixture to be separated consisted of 2.5 L toluene, dissolved therein BMAP (2,2'-bis (diphenylphosphino) -l, -binaphthyl) in a concentration of 0.132 g / L and Pd 2 (dba) 3 (tris (dibenzylidene acetone) ) dipalladium) in a concentration of 0.0929 g / L.
  • BMAP 2,2'-bis (diphenylphosphino) -l, -binaphthyl
  • Pd 2 (dba) 3 tris (dibenzylidene acetone) dipalladium
  • Examples 1 and 2 show that a ceramic membrane has a strong hydrophilicity (see membrane A). This can be seen in the high water flows and good retention of dextrans in aqueous solutions. The flows and the retention decrease with increasing polarity of the solvent. Retentions in toluene could not be measured because the strong hydrophilicity of the membrane pore walls does not allow wetting of the toluene, so that it cannot flow through the membrane pores at all.
  • polystyrene retention could not be determined again because the effective pore size decreased due to the treatment of the pore walls.
  • the toluene molecule is due to its
  • Example 3 one of these latter membranes (membrane D) was selected to the left
  • Example 2 The devices and the system (FIG. 1) from Example 1 were used.
  • a type D membrane (see Table 2) was used in the system.
  • the pure flow of toluene through the membrane was measured.
  • the flow is 5.66 L / (h * m 2 * bar) at a temperature of 20 ° C and a transmembrane pressure (TMP) over the membrane of 4 to 8 bar.
  • TMP transmembrane pressure
  • the reaction solution consisted of 2L toluene, educts p-bromotrifluoromethanobenzene (mol weight 225.01 g / mol, educt 1) used therein in a concentration of 75 g / L, aniline (mol weight 93.13 g / mol, educt 2) of 58.885 g / L, and sodium tertiary butoxide 42 g / L, also the catalyst components BINAP in a concentration of 0.8544 g / L and Pd 2 (dba) 3 in a concentration of 0.573 g / L.
  • the complex compound Pd-BINAP which was the catalyst, was formed with a molecular weight of at least 729 g / mol.
  • the reaction solution was filtered using the membrane mentioned above at a temperature of 19.5 ° C. and a transmembrane pressure of 10 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to a method for separating solids that are present in dissolved and/or colloidal form, more particularly catalysts, from solutions in a non-aqueous solvent with the aid of a membrane, wherein the solution is passed through a membrane having a hydrophobic coating and a maximum mean pore size of 30 nm.

Description

Verfahren zum Abtrennen von gelösten oder kolloidalen Feststoffen aus nicht wässrigem LösemittelProcess for separating dissolved or colloidal solids from non-aqueous solvents
Die Erfindung betrifft Verfahren zum Abtrennen von gelöst oder kolloidal vorliegenden Feststoffen, insbesondere von Katalysatoren aus Lösungen in nicht wässrigem Lösemittel mit Hilfe einer Membran.The invention relates to methods for separating dissolved or colloidal solids, in particular catalysts from solutions in non-aqueous solvents with the aid of a membrane.
Methoden zur Abtrennung gelöster kleiner und mittlerer Moleküle mit Membranen aus wässrigen Lösungen sind nach dem Stand der Technik bekannt. EP 1 118 683 AI beschreibt die Abtrennung von Metallen und anderen teilweise oder vollständig gelösten Feststoffen in wässrigen Lösungen mit Membranen aus keramischen, polymeren oder metallischen Werkstoffen.Methods for separating dissolved small and medium-sized molecules with membranes from aqueous solutions are known in the prior art. EP 1 118 683 AI describes the separation of metals and other partially or completely dissolved solids in aqueous solutions with membranes made of ceramic, polymeric or metallic materials.
Keramische Membranen aus Aluminium- bzw. Titanoxid, die den anorganischen Nanofiltrations-Ceramic membranes made of aluminum or titanium oxide, the inorganic nanofiltration
Membranen zuzuordnen sind, können mittlerweile mit einer Porengröße kleiner 1 nm produziert werden. Diese mikroporösen, keramischen Membranen haben auf Grund ihrer chemischen, mechanischen und thermischen Stabilität ein großes Anwendungspotential, wie Puhlfürß et al. (Puhlfürß et al., J. Membr. Sei. 174 [2000] 123-133) genauer beschreiben. Diese Veröffentlichung befasst sich ebenfalls mit der Charakterisierung der Membran, die einen Cut Off <500g/mol undMembranes can be assigned, can now be produced with a pore size of less than 1 nm. Because of their chemical, mechanical and thermal stability, these microporous, ceramic membranes have great potential for use, as Puhlfürß et al. (Puhlfürß et al., J. Membr. Sci. 174 [2000] 123-133). This publication also deals with the characterization of the membrane, which has a cut off <500g / mol and
Reinstoffflüsse von bis zu 20L/(h m2 bar) im wässrigen Medium zeigt.Pure substance flows of up to 20L / (hm 2 bar) in the aqueous medium shows.
Von besonderem Interesse ist dabei im Hinblick auf kleine und mittelgroße Moleküle (300 - 1000 g/mol) die Abtrennung von Katalysatoren aus Reaktionslösungen. Das Reaktionsprodukt katalytischer Reaktionen soll sich dabei anschließend im Permeat befinden, also die Membran ungehindert passieren können.With regard to small and medium-sized molecules (300 - 1000 g / mol), the separation of catalysts from reaction solutions is of particular interest. The reaction product of catalytic reactions should then be in the permeate, so that it can pass through the membrane unhindered.
In katalytischen Prozessen wird der Katalysator kaum oder gar nicht verbraucht, und könnte deshalb theoretisch beliebig lange eingesetzt werden. Das Problem, welches sich üblicherweise stellt, ist der Verlust des Katalysators über die Versuchsdauer z.B. beim Abtrennen desIn catalytic processes, the catalyst is hardly used or not at all, and could therefore theoretically be used for any length of time. The problem that usually arises is the loss of the catalyst over the duration of the experiment e.g. when disconnecting the
Reaktionsproduktes. Begrenzt man nun diesen Verlust, so können die Prozesskosten oft deutlich minimiert werden.Reaction product. If you limit this loss, the process costs can often be significantly reduced.
Offenlegungsschrift EP 0 263 953 AI beschreibt den Rückhalt von Rhodium-komplex- verbindungen, die Bestandteile des Katalysatorsystems sind, aus wässrigen Lösungen. Dabei erfolgt die Abtrennung des Katalysators mit einer Polymermembran. Der Werkstoff der Polymermembran ist Celluloseacetat.Laid-open specification EP 0 263 953 AI describes the retention of rhodium complex compounds, which are components of the catalyst system, from aqueous solutions. The catalyst is separated off using a polymer membrane. The material of the polymer membrane is cellulose acetate.
Im Patent US-A-5 681 473 wird ein Verfahren beschrieben, bei dem in organischen Lösungsmitteln gelöste Metallkomplexkatalysatoren (homogene Katalyse) und ihre Liganden aus einem organischen Lösemittel mittels organischer Polymermembranen (aus PDMS) abgetrennt werden. Um den Katalysator im Prozess zu halten, kann auch ein Verfahren angewendet werden, bei dem der Katalysator modifiziert wird. So existieren zahlreiche Veröffentlichungen zum Thema der mit Hilfe von Polymeren molmassenvergrößerten Katalysatoren, Dendrimeren oder „Chemzymes" in Anlehnung an Funktionsweise und Größe von Enzymen (Wöltinger et al., Applied Catalysis A 221 [2001] 171-185), (Laue et al., Adv. Synth. Catal. 343(6-7) [2001] 711-720). Auf diese Weise wird ein Größenunterschied zwischen dem Produkt, das die Membran passieren soll und dem Katalysator, der zurückgehalten werden soll, geschaffen. Die Selektivität der Membranen ist somit ausreichend. Nachteil ist die nötige chemische Modifizierung des Katalysators.US Pat. No. 5,681,473 describes a process in which metal complex catalysts (homogeneous catalysis) dissolved in organic solvents and their ligands are separated from an organic solvent by means of organic polymer membranes (from PDMS). In order to keep the catalyst in the process, a method can also be used in which the catalyst is modified. There are numerous publications on the subject of catalysts, dendrimers or “chemzymes” which have been increased in molecular weight with the aid of polymers, based on the mode of operation and size of enzymes (Woeltinger et al., Applied Catalysis A 221 [2001] 171-185), (Laue et al. , Synth. Catal. 343 (6-7) [2001] 711-720), which creates a size difference between the product that is to pass the membrane and the catalyst that is to be retained Membranes are therefore sufficient, but the disadvantage is the chemical modification of the catalyst.
In den oben beschriebenen Verfahren zum Rückhalt von molmassenvergrößerten Katalysatoren werden vor allem Polymermembranen eingesetzt. Die Lösemittelstabilität solcherPolymer membranes are primarily used in the above-described processes for retaining catalysts with increased molecular weight. The solvent stability of such
Polymermembranen ist jedoch nicht ausreichend, wie Van der Bruggen et al. (Van der Bruggen et al. Sep. Sei. Techn. 37(4) [2002] 783-797) anhand von Langzeittests dargelegt haben.However, polymer membranes are not sufficient, as Van der Bruggen et al. (Van der Bruggen et al. Sep. Sei. Techn. 37 (4) [2002] 783-797) using long-term tests.
Darüber hinaus ist das Quellen von Polymermembranen in organischen Lösemitteln ein unerwünschter Nebeneffekt solcher Trennverfahren.In addition, the swelling of polymer membranes in organic solvents is an undesirable side effect of such separation processes.
Die Offenlegungsschrift EP 1 088 587 A2 beschreibt die Verwendung von keramischenThe published patent application EP 1 088 587 A2 describes the use of ceramic
Membranen zum Rückhalt von gelösten, molmassenvergrößerten Katalysatoren in organischen Lösemitteln. Durch die Vergrößerung des Katalysators vergrößert sich die Größendifferenz zwischen dem auszuschleusenden Produkt und dem zurückzuhaltenden Katalysator. Außerdem kann mit größeren Poren ein guter Rückhalt erzielt werden, der nicht von der Benetzung des Lösungsmittels an den Porenwänden beeinträchtigt wird.Membranes for the retention of dissolved, molecular weight-enlarged catalysts in organic solvents. Increasing the size of the catalyst increases the size difference between the product to be discharged and the catalyst to be retained. In addition, good retention can be achieved with larger pores, which is not impaired by the wetting of the solvent on the pore walls.
Wirklich wirtschaftlich kann eine keramische Membran jedoch nur verwendet werden, wenn ein Stofffluss durch die Membran erreicht wird, der industriellen Anforderungen entspricht.However, a ceramic membrane can only be used really economically if a material flow through the membrane is achieved that meets industrial requirements.
In der Schrift WO 2001/07157 AI, wird eine nanoporöse Membran mit einer Porengröße unter 3 nm beschrieben, mit der gelöster Metallkomplexkatalysator und seine Liganden aus einem organischen Lösemittel abzutrennen sind. Der Stofffluss durch solche Keramikmembranen ist ebenfalls unzureichend. Tsuru et al. (J. Membr. Sei. 185 (2001) 253-261), untersuchten das Verhalten von Siθ2/Zr02-Membranen. Sie variierten die Porengröße zwischen 1 nm und 5 nm. Auch dies führte nicht zu einem Fluss, wie er im wässrigen Lösemittel erreicht wurde.In the document WO 2001/07157 AI, a nanoporous membrane with a pore size of less than 3 nm is described, with which dissolved metal complex catalyst and its ligands can be separated from an organic solvent. The flow of material through such ceramic membranes is also insufficient. Tsuru et al. (J. Membr. Sci. 185 (2001) 253-261) investigated the behavior of SiO 2 / ZrO 2 membranes. They varied the pore size between 1 nm and 5 nm. This also did not lead to a flow, as was achieved in the aqueous solvent.
Eigene Untersuchungen ergaben, dass die Ursache für dieses Verhalten in der starken Hydrophilie der keramischen Mikroporen besteht, die dadurch hervorgerufen wird, dass sich Wasser bzw. OH-Our own studies have shown that the cause of this behavior is the strong hydrophilicity of the ceramic micropores, which is caused by the fact that water or OH
Gruppen an die oxidische Oberfläche anlagern. Diese Mikroporen sind für organischeAttach groups to the oxidic surface. These micropores are for organic
Lösemittelmoleküle nicht durchlässig. Ein Transport findet über größere Poren und/oder Defekte statt, die nur einen geringen Anteil am Gesamtporenvolumen haben. Hierdurch sinkt der Fluss im Vergleich zum Wasserfluss. Die Rückhaltung durch diese größeren Poren bzw. Defekte liegt deutlich oberhalb der durchschnittlichen Porengröße der Membran.Solvent molecules not permeable. Transport takes place over larger pores and / or defects instead, which only make up a small proportion of the total pore volume. This causes the river to sink compared to the water flow. The retention due to these larger pores or defects is clearly above the average pore size of the membrane.
Es mangelt also an einem Verfahren, mit dem man Feststoffe, insbesondere Katalysatoren aus organischen Lösemitteln bei hohem Rückhalt und hohem Stofffluss zurückhalten kann.There is therefore a lack of a process with which solids, in particular catalysts from organic solvents, can be retained with high retention and high material flow.
Aufgabe der Erfindung ist es, ein Verfahren bereitzustellen, das die Nachteile der bekannten Verfahren vermeidet und aus einer Reaktionslösung in organischem Lösungsmittel mit Hilfe einer anorganischen Membran den gelöst und/oder kolloidal vorliegenden Feststoff (insbesondere Katalysator) zurückhalten kann, wobei das produkthaltige Lösungsmittel die Membran ungehindert passiert. Dabei soll der Feststoff (Katalysator) bzgl. seiner Größe möglichst unverändert bleiben.The object of the invention is to provide a process which avoids the disadvantages of the known processes and can retain the dissolved and / or colloidal solid (in particular catalyst) from a reaction solution in organic solvent with the aid of an inorganic membrane, the product-containing solvent the membrane happened unhindered. The size of the solid (catalyst) should remain as unchanged as possible.
Die Aufgabe wird erfϊndungsgemäß dadurch gelöst, dass in einem Verfahren der eingangs genannten Art eine Membran eingesetzt wird, die hydrophobisiert ist und mit der ein hoher Lösemittelfluss generiert werden kann, der deutlich über dem Stofffluss wässriger Lösung durch diese Membran liegt. Überraschenderweise hat sich ein Rückhalt gezeigt, der je nach Membran unter 1000 g/mol, in besonderen Fällen sogar unter 400 g/mol liegt.According to the invention, the object is achieved in that in a method of the type mentioned at the outset, a membrane is used which is hydrophobized and with which a high solvent flow can be generated which is significantly above the material flow of aqueous solution through this membrane. Surprisingly, a retention has been shown which, depending on the membrane, is less than 1000 g / mol, in special cases even less than 400 g / mol.
Unter Rückhalt im Sinne der Erfindung wird hier verstanden, dass eine gelöste Komponente dieses Molekulargewichtes in einem organischen Lösemittel von der Membrane zu mindestens 90 % zurückgehalten wird.Backing in the sense of the invention is understood here to mean that at least 90% of the membrane contains a component of this molecular weight which is dissolved in an organic solvent.
Gegenstand der Erfindung ist ein Verfahren zum Abtrennen von gelöst und/oder kolloidal vorliegenden Feststoffen, insbesondere von Katalysator aus Lösungen in nicht wässrigemThe invention relates to a process for separating dissolved and / or colloidal solids, in particular catalyst from solutions in non-aqueous
Lösemittel insbesondere in organischen Lösemitteln mit Hilfe einer Membran, dadurch gekennzeichnet, dass die Lösung durch eine Membran geleitet wird, die eine hydrophobe Beschichtung und eine mittlere Porengröße von höchstens 30 nm aufweist.Solvents in particular in organic solvents with the aid of a membrane, characterized in that the solution is passed through a membrane which has a hydrophobic coating and an average pore size of at most 30 nm.
Die Membran ist bevorzugt eine poröse Membran, besonders bevorzugt eine anorganische Membran, insbesondere bevorzugt eine keramische Membran, auf Basis von A1203, Ti02, Zr02 oderThe membrane is preferably a porous membrane, particularly preferably an inorganic membrane, particularly preferably a ceramic membrane, based on A1 2 0 3 , Ti0 2 , Zr0 2 or
Si02 oder Mischungen der genannten Oxide.Si0 2 or mixtures of the oxides mentioned.
Die mittlere Porengröße der Membran beträgt insbesondere höchstens 20 nm, bevorzugt 2 nm bis 10 nm, besonders bevorzugt 2 nm bis 5 nm.The average pore size of the membrane is in particular at most 20 nm, preferably 2 nm to 10 nm, particularly preferably 2 nm to 5 nm.
Die Porengröße wird zweckmäßigerweise so ausgewählt, dass die mittlere Porengröße im aktiven Bereich der Membran unterhalb des Bereichs der mittleren Molekülgröße des abzutrennendenThe pore size is expediently selected such that the average pore size in the active region of the membrane is below the range of the average molecular size of the membrane to be separated
Katalysators und über den Abmessungen des durchzulassenden Produktes liegt. Dabei weist die Membran bevorzugt einen mehrschichtigen Aufbau auf. Es handelt sich dabei insbesondere um eine asymmetrische Membran, die mindestens aus 2 in besonderen Fällen sogar aus mindestens 3 Schichten besteht. Die Trägerschicht ist z.B. bei einem Dreischichtenaufbau insbesondere einige Millimeter dick und grobporös mit Poren eines mittleren Durchmesser von 1 bis 10 μm, bevorzugt 3 bis 5 μm, die darauf aufgebaute Zwischenschicht ist mit einer Dicke von insbesondere 10 bis 100 μm versehen und hat eine Porengröße (mittlerer Durchmesser) von 3 bis 100 nm. Die Trennschicht hat insbesondere eine Dicke von 0,5 bis 2 μm und besitzt Poren mit einem mittleren Durchmesser von 0,9 bis 30 nm. Der wesentliche Vorteil dieser Membran ist der gleichmäßige Aufbau mit sehr wenigen Fehlstellen.Catalyst and is above the dimensions of the product to be let through. The membrane preferably has a multilayer structure. It is in particular an asymmetrical membrane that consists of at least 2, in special cases even of at least 3 layers. For example, in the case of a three-layer structure, the carrier layer is in particular a few millimeters thick and roughly porous with pores with an average diameter of 1 to 10 μm, preferably 3 to 5 μm, the intermediate layer built thereon is provided with a thickness of in particular 10 to 100 μm and has a pore size ( average diameter) from 3 to 100 nm. The separating layer has in particular a thickness of 0.5 to 2 μm and has pores with an average diameter of 0.9 to 30 nm. The main advantage of this membrane is the uniform structure with very few imperfections ,
Die hydrophobe Beschichtung wird auf der Membran bevorzugt mittels Silanen erzeugt.The hydrophobic coating is preferably produced on the membrane by means of silanes.
Zur Hydrophobisierung kommen Reaktionen der Membranoberfläche mit Silanen der allgemeinen Formel RιR2R3 tSi in Betracht, wobei vorzugsweise mindestens eine höchstens jedoch drei der Gruppen Ri bis R4 hydrolysierbare Gruppen z.B. -Cl, -OCH3 oder -O-CH2-CH3 sind und/oder mindestens eine jedoch höchstens drei der Gruppen Ri bis R4 nicht hydrolysierbare Gruppen z.B. Alkylgruppen oder Phenylgruppen sind, wobei zur Erhöhung der hydrophoben Wirkung die nicht hydrolysierbaren Substituenten bevorzugt zumindest teilweise fluoriert sein können.For hydrophobization, reactions of the membrane surface with silanes of the general formula R 2 R 3 t Si are suitable, preferably at least one but at most three of the groups R 1 to R 4 hydrolyzable groups, for example -Cl, -OCH3 or -O-CH 2 -CH 3 are and / or at least one but at most three of the groups R 1 to R 4 are non-hydrolyzable groups, for example alkyl groups or phenyl groups, the non-hydrolyzable substituents preferably being at least partially fluorinated to increase the hydrophobic effect.
Die Modifizierung der keramischen Membranen unter Verwendung der beschriebenen Hydrophobierungsmittel kann entweder in flüssiger Phase durch Tränken der Membran in einer Lösung des Hydrophobierungsmittel erfolgen, oder aber durch Anströmen der Membran mit dem Hydrophobierungsmittel in gasförmiger Phase durch Verwendung eines Trägergases beispielsweise N2 oder Edelgas.The ceramic membranes can be modified using the hydrophobizing agents described, either in the liquid phase by soaking the membrane in a solution of the hydrophobizing agent, or by flowing the membrane with the hydrophobizing agent in the gaseous phase by using a carrier gas, for example N 2 or noble gas.
Das nicht-wässrige Lösemittel ist insbesondere ein organisches Lösungsmittel und besonders bevorzugt ausgewählt aus der Reihe: Alkohole, insbesondere Methanol oder Ethanol, Ether, insbesondere Tetrahydrofuran, aromatische Kohlenwasserstoffe, insbesondere Chlorbenzol oder Toluol, oder gegebenenfalls halogenierte aliphatische Kohlenwasserstoffe, insbesondere Dichlor- methan.The non-aqueous solvent is in particular an organic solvent and is particularly preferably selected from the series: alcohols, in particular methanol or ethanol, ethers, in particular tetrahydrofuran, aromatic hydrocarbons, in particular chlorobenzene or toluene, or optionally halogenated aliphatic hydrocarbons, in particular dichloromethane.
Ein bevorzugtes Verfahren ist dadurch gekennzeichnet, dass die Lösung homogen gelöste und/oder kolloidal vorliegende Katalysatoren enthält, insbesondere Katalysatoren ausgewählt aus der Gruppe der metallorganischen Komplexverbindungen, sowie Liganden dieser Komplexverbin- düngen, besonders bevorzugt Ru-B AP, Pd-BLNAP und Rh-EtDUPHOS oder Komplexverbindungen des Triphenylphosphins mit Palladium (z.B. Pd(OAc)2(PPh3)2) oder Rhodium. Weitere bevorzugt geeignete Katalysatoren sind ausgewählt aus komplexen Verbindungen der Elemente der Gruppe IVA, VA, VIA, VBA, VIHA oder EB des Periodensystems der Elemente, insbesondere bevorzugt von Mangan, Eisen, Kobald, Nickel, Palladium, Platin, Ruthenium, Rhodium oder Iridium. Die Liganden dieser Komplexverbindungen können zusätzlich alkyliert oder aryliert sein.A preferred method is characterized in that the solution contains homogeneously dissolved and / or colloidally present catalysts, in particular catalysts selected from the group of organometallic complex compounds, and ligands of these complex compounds, particularly preferably Ru-B AP, Pd-BLNAP and Rh- EtDUPHOS or complex compounds of triphenylphosphine with palladium (e.g. Pd (OAc) 2 (PPh 3 ) 2 ) or rhodium. Further preferably suitable catalysts are selected from complex compounds of the elements of group IVA, VA, VIA, VBA, VIHA or EB of the periodic table of the elements, particularly preferably of manganese, iron, cobalt, nickel, palladium, platinum, ruthenium, rhodium or iridium. The ligands of these complex compounds can additionally be alkylated or arylated.
Die Abtrennung der Feststoffe aus der Lösung wird bevorzugt bei einer Temperatur von - 20°C bis 200°C, besonders bevorzugt von 0°C bis 150°C durchgeführt.The separation of the solids from the solution is preferably carried out at a temperature of from -20 ° C. to 200 ° C., particularly preferably from 0 ° C. to 150 ° C.
Der Druck über der Membran (Transmembrandruck) beträgt in einem bevorzugten Verfahren 2 000 bis 40 000 hPa.In a preferred process, the pressure across the membrane (transmembrane pressure) is 2,000 to 40,000 hPa.
Je nach Auswahl der Einsatzstoffe und Parameter ist es möglich mit Hilfe des erfindungsgemäßenDepending on the selection of the starting materials and parameters, it is possible with the help of the invention
Verfahrens einen Stoffrückhalt von 250g/mol bis lOOOg/mol (je nach Lösemittel) zu erzielen.Process to achieve a substance retention of 250g / mol to lOOOg / mol (depending on the solvent).
Die Erfindung eignet sich besonders für die Katalysatorrückhaltung bei Durchführung einer Reaktion, bei der der Katalysator gelöst oder kolloidal vorliegt und in einem Reaktionskessel gehalten werden soll, während das Reaktionsprodukt insbesondere kontinuierlich aus dem Kessel entfernt wird. So können Verluste minimiert werden und das Produkt ist frei von unerwünschtenThe invention is particularly suitable for catalyst retention when carrying out a reaction in which the catalyst is dissolved or colloidal and is to be kept in a reaction kettle, while the reaction product is in particular continuously removed from the kettle. In this way, losses can be minimized and the product is free from unwanted ones
Katalysatoranteilen.Catalyst shares.
Der Katalysator kann außerdem in einer Mischung aus gelösten und ungelösten Anteilen vorliegen.The catalyst can also be in a mixture of dissolved and undissolved fractions.
Das oben beschriebene Verfahren ist aus wirtschaftlicher Sicht besonders reizvoll, da die Katalysatoren bei den Feinchemikalien, hochpreisigen Produkten in kleinen Mengen, ebenso wie * Chemikalien, die in großen Mengen hergestellt werden, große Kosten verursachen. Bestimmte Verfahren können z.B. ohne ein lückenloses Katalysator Recycling wirtschaftlich nicht entwickelt bzw. betrieben werden.The process described above is particularly attractive from an economic point of view, since the catalysts for fine chemicals, high-priced products in small quantities, as well as * chemicals that are produced in large quantities, cause great costs. Certain methods can e.g. cannot be developed or operated economically without a complete catalyst recycling.
Außerdem kann eine Aufkonzentrierung kleiner Moleküle in organischem Lösemittel durchgeführt werden.In addition, small molecules can be concentrated in organic solvents.
Das Verfahren eignet sich weiterhin zur Aufkonzentrierung und Reinigung von Wirkstofflösungen in der pharmazeutischen Industrie und in der Biotechnologie, Sektoren, in denen hohe Reinheit der Produkte gefordert ist. Das Verfahren kann mit anderen Aufreinigungsverfahren kombiniert werden, z.B. mit chromatographischen Verfahren.The process is also suitable for concentrating and cleaning active ingredient solutions in the pharmaceutical industry and in biotechnology, sectors in which high purity of the products is required. The process can be combined with other purification processes, e.g. using chromatographic methods.
Die Erfindung wird nachfolgend anhand der folgenden Figuren durch die Beispiele, welche jedoch keine Beschränkung der Erfindung darstellen, näher erläutert. Es zeigt:The invention is explained in more detail below with reference to the following figures by the examples, which, however, do not represent any restriction of the invention. It shows:
Fig. 1 eine schematische Skizze der in den Beispielen verwendeten Trennvorrichtung Fig. 1 is a schematic sketch of the separation device used in the examples
BeispieleExamples
Zur Messung des Reinstoffflusses wird das entsprechende Lösemittel in den Vorlagebehälter 1 gefüllt (siehe Fig. 1), die Membran 4 in das Modul 3 eingebaut und die Lösung mit der Pumpe 2 und mittels Drucküberlagerung im Cross-flow Modus über die Membran 4 geführt. In regelmäßigen Abständen wird aus Permeat 5 und Retentat 6 eine Probe gezogen, und der spezifische Fluss in kg/(h*m2*bar) gemessen.To measure the pure substance flow, the appropriate solvent is filled into the reservoir 1 (see FIG. 1), the membrane 4 is installed in the module 3 and the solution with the pump 2 and by means of pressure superimposition in cross-flow mode is passed over the membrane 4. A sample is taken from permeate 5 and retentate 6 at regular intervals and the specific flow is measured in kg / (h * m 2 * bar).
Zur Charakterisierung des Rückhalts (Cut-Off) der Membran 4 werden die Lösungen nach Rezeptur 1 bis 10 (vgl. Tab. 1) zubereitet und ebenfalls in den Vorlagebehälter 1 gefüllt. Der Versuchsablauf entspricht dem obigen. Die Proben werden auf ihren Gehalt an den eingesetzten Stoffen über eine GPC Analytik vermessen.To characterize the retention (cut-off) of membrane 4, the solutions are prepared according to recipe 1 to 10 (cf. Table 1) and also filled into storage container 1. The test procedure corresponds to the above. The samples are measured for their content of the substances used using GPC analysis.
Beispiel 1: Messung des ReinstoffflussesExample 1: Measurement of the pure substance flow
Es wurden folgende Geräte benutzt:The following devices were used:
Vorlagebehälter 1 : 5 1, Edelstahl, druckfest bis 40 000 hPaStorage container 1: 5 1, stainless steel, pressure-resistant up to 40,000 hPa
Pumpe 2: Zahnradpumpe, Hersteller GartherPump 2: gear pump, manufacturer Garther
Der Versuch aus Beispiel 1 wurde in der oben beschriebenen Anlage (Fig. 1) durchgeführt.The experiment from Example 1 was carried out in the system described above (FIG. 1).
In diesem Beispiel werden bei verschiedenen Membranen (A - D) die Reinstoffflüsse verschiedener Lösungsmittel gemessen. Die Membranen unterscheiden sich in ihren Porengrößen bzw. Rückhalten, sowie in ihren Oberflächeneigenschaften. Die genaue Beschreibung der * Membranen zeigt Tabelle 2. Die vollständigen Versuchsparameter befinden sich in Tabelle 3. Die Ergebnisse sind in Tabelle 4 aufgelistet.In this example, the pure substance flows of different solvents are measured for different membranes (A - D). The membranes differ in their pore sizes and retention, as well as in their surface properties. The exact description of the * membranes is shown in Table 2. The complete test parameters are in Table 3. The results are listed in Table 4.
Tabelle 4 zeigt die Reinstoffflüsse der verschiedenen Lösungsmittel.Table 4 shows the pure substance flows of the different solvents.
Membran A besteht aus einem porösen Träger aus α-Aluminiumoxid mit einer mittleren Porengröße von 3 μm Durchmesser, einer Zwischenschicht aus TiO2 mit einer Porengröße von 5 nm und einer Trennschicht aus Ti02 mit einer Porengröße von 0,9 nm ohne hydrophobisierende Beschichtung. Membran A zeigt einen Wasserfluss von 16,37 kg/(h*m2*bar), einen Methanolfluss von ll,54 kg/(h*m2*bar), einen Ethanolfluss von 3,64 kg/(h*m2*bar) und einen Toluolfluss von 1,5 kg/(h*m2*bar). Membran B mit Eigenschaften entsprechend Membran A und einer Hydrophobisierung mit 0,5 % Tridekafluor 1,1,2,2 tetrahydrooctyltriethoxysilan (im Folgenden F6 genannt) und einer Zugabe des Hydrophobisierungsmittels während der Membransynthese setzte den Wasserfluss auf 10,44 kg/(h*m2*bar), den Methanolfluss auf 3,12 kg/(h*m2*bar) und den Toluolfluss auf 0,51 kg/(h*m2*bar) herab.Membrane A consists of a porous carrier made of α-aluminum oxide with an average pore size of 3 μm diameter, an intermediate layer made of TiO 2 with a pore size of 5 nm and a separating layer made of Ti0 2 with a pore size of 0.9 nm without a hydrophobizing coating. A membrane shows a water flow of 16.37 kg / (h * m 2 * bar), a methanol flow of ll, 54 kg / (h * m 2 * bar), an ethanol flux of 3.64 kg / (h * m 2 * bar) and a toluene flow of 1.5 kg / (h * m 2 * bar). Membrane B with properties corresponding to membrane A and a hydrophobization with 0.5% tridecafluor 1,1,2,2 tetrahydrooctyltriethoxysilane (hereinafter referred to as F6) and an addition of the hydrophobizing agent during the membrane synthesis the water flow to 10.44 kg / (h * m 2 * bar), the methanol flow to 3.12 kg / (h * m 2 * bar) and the toluene flow to 0.51 kg / (h * m 2 * bar) down.
Membran C ist eine Membran, die aus dem gleichen AI2O3 -Träger wie Membran A besteht mit einer Zwischenschicht aus Ti02 mit einer Porengröße von 5 nm und einer Trennschicht aus Zr02 mit einer Porengröße von 3 nm. Die Hydrophobisierung wird durch Tränkung der gefertigtenMembrane C is a membrane that consists of the same Al2O3 carrier as membrane A with an intermediate layer of Ti0 2 with a pore size of 5 nm and a separating layer of Zr0 2 with a pore size of 3 nm. The hydrophobization is achieved by impregnation of the finished product
Membran im Hydrophobisierungsmittel F6 durchgeführt. Es ergaben sich ein Wasserfluss von 4,48 kg/(h*m2*bar), ein Methanolfluss von 16,23 kg/(h*m2*bar) und einen Toluolfluss von 7,7 kg/(h*m2*bar).Membrane carried out in the hydrophobizing agent F6. There was a water flow of 4.48 kg / (h * m 2 * bar), a methanol flow of 16.23 kg / (h * m 2 * bar) and a toluene flow of 7.7 kg / (h * m 2 *bar).
Schließlich wurde der Reinstofffluss mit Membran D vermessen. Diese entspricht der Membran C wurde aber mit 0,5% Trimethylchlorsilan (im folgenden mit M3 bezeichnet) behandelt. Dabei ergaben sich ein Wasserfluss von 1,52 kg/(h*m2*bar), ein Methanolfluss von 2,48 kg/(h*m2*bar) und einen Toluolfluss von 14,8 kg/(h*m2*bar).Finally, the pure substance flow was measured with membrane D. This corresponds to membrane C but was treated with 0.5% trimethylchlorosilane (hereinafter referred to as M3). This resulted in a water flow of 1.52 kg / (h * m 2 * bar), a methanol flow of 2.48 kg / (h * m 2 * bar) and a toluene flow of 14.8 kg / (h * m 2 *bar).
Beispiel 2: Messung von Rückhalten in verschiedenen LösemittelnExample 2: Measurement of retention in various solvents
Es wurden die Geräte und die Anlage (Fig. 1) aus Beispiel 1 benutzt.The devices and the system (FIG. 1) from Example 1 were used.
In diesem Beispiel wurden bei verschiedenen Membranen die Rückhalte verschiedener Stoffe im jeweiligen Lösungsmittel gemessen. Die Stoffe und Lösungsmittel wurden nach Rezepturen 1 bis 10 aus Tabelle 1 dargestellt. Die Membranen unterscheiden sich in ihren Porengrößen bzw. Rückhalten, sowie in ihren Oberflächeneigenschaften (vgl. Tab. 2). Die vollständigen Versuchsparameter befinden sich in Tabelle 4. Die Ergebnisse sind in Tabelle 5 aufgelistet.In this example, the retention of different substances in the respective solvent was measured for different membranes. The substances and solvents were presented according to recipes 1 to 10 from table 1. The membranes differ in their pore sizes and retention, as well as in their surface properties (see Tab. 2). The complete test parameters are shown in Table 4. The results are listed in Table 5.
Membran A zeigt einen Rücklialt von Dextranen in Wasser von 450 g/mol, PEG in Wasser von 470 g/mol und PEG in Methanol von 980 g/mol. Der Rückhalt von Toluol wurde nicht bestimmt, da kein Toluolfluss durch die Membran gemessen werden konnte.Membrane A shows a return of dextrans in water of 450 g / mol, PEG in water of 470 g / mol and PEG in methanol of 980 g / mol. The retention of toluene was not determined because no toluene flow through the membrane could be measured.
Membran B zeigt einen Rücklialt von Dextranen in Wasser von 250 g/mol, PEG in Methanol von > 1000 g/mol. Der Rückhalt von Toluol wurde nicht bestimmt, da kein Toluolfluss durch die Membran gemessen werden konnte.Membrane B shows a return of dextrans in water of 250 g / mol, PEG in methanol of> 1000 g / mol. The retention of toluene was not determined because no toluene flow through the membrane could be measured.
Membran C zeigt keinen Rückhalt von Dextranen in Wasser, da kein Wasserfluss durch die Membran gemessen werden konnte. Der Rückhalt von PEG in Methanol liegt bei 1000 g/mol, der Rückhalt von Toluol bei 500 g/mol.Membrane C shows no retention of dextrans in water since no water flow through the membrane could be measured. The retention of PEG in methanol is 1000 g / mol, the retention of toluene is 500 g / mol.
Membran D zeigt einen Rückhalt von Dextranen in Wasser von > 2000 g/mol, von PEG in Methanol > 2000 g/mol, der Rücklialt von Toluol liegt bei 340 g/mol. Beispiel 3: Messung von Katalystorrückhalt in ToluolMembrane D shows a retention of dextrans in water of> 2000 g / mol, of PEG in methanol> 2000 g / mol, the residue of toluene is 340 g / mol. Example 3: Measurement of catalyst retention in toluene
Es wurden die Geräte und die Anlage (Fig. 1) aus Beispiel 1 benutzt. In diesem Beispiel wurde Membran D in die Anlage eingesetzt. Das zu trennende Gemisch bestand aus 2,5 L Toluol, darin gelöst BMAP (2,2'-Bis(diphenylphosphino)-l, -binaphthyl) in einer Konzentration von 0,132 g/L und Pd2(dba)3 (Tris(dibenzylidenacetone)dipalladium) in einer Konzentration von 0,0929 g/L. In diesem Ansatz bildete sich die Komplexverbindung Pd-BINAP mit einem Molgewicht von mind. 729 g/mol, die, als Beispielsubstanz für einen Katalysator, zurückgehalten werden sollte. Die genauen Versuchsparameter finden sich in Tabelle 3.The devices and the system (FIG. 1) from Example 1 were used. In this example, membrane D was used in the system. The mixture to be separated consisted of 2.5 L toluene, dissolved therein BMAP (2,2'-bis (diphenylphosphino) -l, -binaphthyl) in a concentration of 0.132 g / L and Pd 2 (dba) 3 (tris (dibenzylidene acetone) ) dipalladium) in a concentration of 0.0929 g / L. In this approach, the complex compound Pd-BINAP with a molecular weight of at least 729 g / mol was formed, which should be retained as a sample substance for a catalyst. The exact test parameters can be found in Table 3.
Bei einem Toluolfluss von 1,1 kg/(h*m2*bar) wurde der homogen gelöste Komplexkatalysator Pd- BINAP zu 99,3% zurückgehalten.At a toluene flow of 1.1 kg / (h * m 2 * bar), the homogeneously dissolved complex catalyst Pd-BINAP was retained to 99.3%.
Die Beispiele 1 und 2 zeigen, dass eine keramische Membran eine starke Hydrophilie aufweist (vgl. Membran A). Das zeigt sich in hohen Wasserflüssen und guten Rückhalten von Dextranen in wässrigen Lösungen. Die Flüsse und die Rückhalte nehmen mit zunehmender Polarität des Lösemittels ab. Rückhalte in Toluol konnten nicht gemessen werden, da die starke Hydrophilie der Membranporenwände keine Benetzung des Toluols zulässt, so dass dieses überhaupt nicht durch die Membranporen fließen kann.Examples 1 and 2 show that a ceramic membrane has a strong hydrophilicity (see membrane A). This can be seen in the high water flows and good retention of dextrans in aqueous solutions. The flows and the retention decrease with increasing polarity of the solvent. Retentions in toluene could not be measured because the strong hydrophilicity of the membrane pore walls does not allow wetting of the toluene, so that it cannot flow through the membrane pores at all.
Behandelt man nun diese Membran (Membran A) mit. einer Porengröße von 0,9 nm mit einem entsprechenden Hydrophobisierungsmittel, sinkt zwar der Wasserfluss, einen Toluolfluss, sowieNow treat this membrane (membrane A) with. a pore size of 0.9 nm with an appropriate hydrophobizing agent, the water flow, a toluene flow decreases, and
Polystyrolrückhalte konnten jedoch wieder nicht bestimmt werden, da die effektive Porengröße durch die Behandlung der Porenwände abgesunken ist. Das Toluolmolekül wird auf Grund seinerHowever, polystyrene retention could not be determined again because the effective pore size decreased due to the treatment of the pore walls. The toluene molecule is due to its
^ Größe selbst zurückgehalten.^ Size retained itself.
Um dieses Problem zu überwinden, wurde eine Membran mit entsprechend größerem Porendurchmesser verwendet (Membran C, dP = 3 nm) und anschließend hydrophobisiert (Membran C mit 0,5 % F6 und Membran D mit 0,5 % M3). Die Ergebnisse zeigen einen stark verringerten Wasserfluss und parallel dazu einen angestiegenen Toluolfluss von 7,7 und 14,8 kg/(h*m2*bar). So konnten zum ersten Mal hohe Flüsse organischer Lösemittel in keramischen Membranen erzeugt werden.In order to overcome this problem, a membrane with a correspondingly larger pore diameter was used (membrane C, dP = 3 nm) and then hydrophobized (membrane C with 0.5% F6 and membrane D with 0.5% M3). The results show a greatly reduced water flow and, in parallel, an increased toluene flow of 7.7 and 14.8 kg / (h * m 2 * bar). For the first time, high flows of organic solvents could be generated in ceramic membranes.
In Beispiel 3 wurde eine dieser letztgenannten Membranen (Membran D) ausgewählt, um denIn Example 3, one of these latter membranes (membrane D) was selected to the
Katalysatorversuch durchzuführen. Der Rückhalt des Katalysatorkomplexes von 99,3 % zeigt die Funktionsfahigkeit dieser Membran. Obwohl der Fluss in diesem Beispiel gering ist, wird ein hoher Rückhalt erzielt. Diese Tatsache spiegelt wieder, dass der Transport durch die größeren Poren und die Defektporen überwunden wurde, und sich mit dieser Membran die Mögliclikeit zu wirtschaftlich betreibbaren Verfahren ergibt.Carrying out a catalyst test. The retention of the catalyst complex of 99.3% shows the functionality of this membrane. Although the flow is low in this example, high retention is achieved. This fact reflects that the transportation through the larger Pores and the defect pores have been overcome, and this membrane offers the possibility of economically feasible processes.
Beispiel 4: Messung von Katalysatorrückhalt aus einer ReaktionslösungExample 4: Measurement of catalyst retention from a reaction solution
Es wurden die Geräte und die Anlage (Fig. 1) aus Beispiel 1 benutzt. In diesem Beispiel wurde eine Membran des Typs D (vgl. Tabelle 2) in die Anlage eingesetzt.The devices and the system (FIG. 1) from Example 1 were used. In this example, a type D membrane (see Table 2) was used in the system.
Zuerst wurde der Reinstofffluss des Toluol durch die Membran gemessen. Der Fluss beträgt bei einer Temperatur von 20°C und einem Transmembrandruck (TMP) über der Membran von 4 bis 8 bar 5,66 L/(h*m2*bar).First, the pure flow of toluene through the membrane was measured. The flow is 5.66 L / (h * m 2 * bar) at a temperature of 20 ° C and a transmembrane pressure (TMP) over the membrane of 4 to 8 bar.
Anschließend wurde der Rückhalt des Katalysators Pd-BINAP aus einer Reaktionslösung bestimmt.The retention of the catalyst Pd-BINAP was then determined from a reaction solution.
Die Reaktionslösung bestand aus 2L Toluol, darin eingesetzte Edukte p-Bromo- trifluormethanbenzol (Molgewicht 225,01g/mol, Edukt 1) in einer Konzentration von 75 g/L, Anilin (Molgewicht 93,13 g/mol, Edukt 2) von 58,885 g/L, sowie Natrium-tertiär-butylat 42 g/L, außerdem den Katalysatorbestandteilen BINAP in einer Konzentration von 0,8544 g/L und Pd2(dba)3 in einer Konzentration von 0,573 g/L. In diesem Ansatz bildete sich die Komplexverbindung Pd-BINAP, die den Katalysator darstellte, mit einem Molgewicht von mindestens 729 g/mol.The reaction solution consisted of 2L toluene, educts p-bromotrifluoromethanobenzene (mol weight 225.01 g / mol, educt 1) used therein in a concentration of 75 g / L, aniline (mol weight 93.13 g / mol, educt 2) of 58.885 g / L, and sodium tertiary butoxide 42 g / L, also the catalyst components BINAP in a concentration of 0.8544 g / L and Pd 2 (dba) 3 in a concentration of 0.573 g / L. In this approach, the complex compound Pd-BINAP, which was the catalyst, was formed with a molecular weight of at least 729 g / mol.
Nach Ablauf der Reaktion (vgl. Abb.) wurde die Reaktionslösung mittels oben genannter Membran bei einer Temperatur von 19,5°C und einem Transmembrandruck von 10 bar filtriert.After the reaction had ended (see Fig.), The reaction solution was filtered using the membrane mentioned above at a temperature of 19.5 ° C. and a transmembrane pressure of 10 bar.
Edukt 1 Edukt 2 ProduktEduct 1 Educt 2 product
Bei einem Toluolfluss von 4,5 L/(h*m2*bar) wurde der homogen gelöste Katalysator Pd-BINAP zu >94,5 % zurückgehalten. Das Produkt (Molgewicht 237,23 g/mol) wurde im Durchschnitt zu <15 % zurückgehalten, die Edukte Anilin und p-Bromo-trifluormethan-benzol zeigten keinen Rücklialt (Rückhalt 0 %). In Beispiel 4 wurde gezeigt, dass die Membran in einem Verfahren zur Rückgewinnung von Katalysator eingesetzt werden kann. Das Produkt könnte dabei kontinuierlich ausgeschleust werden. At a toluene flow of 4.5 L / (h * m 2 * bar), the homogeneously dissolved catalyst Pd-BINAP was retained to> 94.5%. The product (molecular weight 237.23 g / mol) was retained on average to <15%, the starting materials aniline and p-bromotrifluoromethane-benzene showed no residue (retention 0%). In example 4 it was shown that the membrane can be used in a process for the recovery of catalyst. The product could be continuously discharged.
Tabelle 1: Rezepturen für die Beispiele 1 und 2Table 1: Formulations for Examples 1 and 2
Tab. 2: Membranen Tab. 2: Membranes
Tab. 3: VersuchsparameterTab. 3: Test parameters
Tab. 5: Rückhalte von verschiedenen Stoffen im jeweiligen LösemittelTab. 5: Retention of various substances in the respective solvent

Claims

Patentansprüche claims
1. Verfahren zum Abtrennen von gelöst und/oder kolloidal vorliegenden Feststoffen, insbesondere von Katalysator aus Lösungen in nicht wässrigem Lösemittel insbesondere in organischen Lösungsmitteln mit Hilfe einer Membran, dadurch gekennzeichnet, dass die Lösung durch eine Membran geleitet wird, die eine hydrophobe Beschichtung und eine mittlere Porengröße (mittlerer Durchmesser) von höchstens 30 nm aufweist.1. A method for separating dissolved and / or colloidal solids, in particular catalyst from solutions in non-aqueous solvents, in particular in organic solvents with the aid of a membrane, characterized in that the solution is passed through a membrane having a hydrophobic coating and a has an average pore size (average diameter) of at most 30 nm.
2. Verfalrren nach Anspruch 1, dadurch gekennzeichnet, dass die Membran eine poröse Membran, bevorzugt eine anorganische Membran, insbesondere bevorzugt eine keramische Membran, auf Basis von A1203, Ti02, Zr02 oder Si02 oder Mischungen der genannten Oxide ist.2. distortion according to claim 1, characterized in that the membrane is a porous membrane, preferably an inorganic membrane, particularly preferably a ceramic membrane, based on A1 2 0 3 , Ti0 2 , Zr0 2 or Si0 2 or mixtures of the oxides mentioned ,
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mittlere Porengröße der Membran höchstens 20 nm, bevorzugt jedoch 2 nm bis 10 nm beträgt.3. The method according to claim 1 or 2, characterized in that the average pore size of the membrane is at most 20 nm, but preferably 2 nm to 10 nm.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die hydrophobe Beschichtung durch Reaktion der Membranoberfläche mit Silanen erzeugt ist.4. The method according to any one of claims 1 to 3, characterized in that the hydrophobic coating is produced by reaction of the membrane surface with silanes.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das nicht-wässrige Lösemittel ausgewählt ist aus der Reihe: Alkohole, insbesondere Methanol oder Ethanol, Ether, insbesondere Tetrahydrofuran, aromatische Kohlenwasserstoffe, insbesondere Chlorbenzol oder Toluol, oder gegebenenfalls halogenierte aliphatische Kohlenwasserstoffe, insbesondere Dichlormethan.5. The method according to any one of claims 1 to 4, characterized in that the non-aqueous solvent is selected from the series: alcohols, in particular methanol or ethanol, ethers, in particular tetrahydrofuran, aromatic hydrocarbons, in particular chlorobenzene or toluene, or optionally halogenated aliphatic Hydrocarbons, especially dichloromethane.
* 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Lösung homogen und/oder kolloidal gelöste Katalysatoren enthält, insbesondere ausgewählt aus der Gruppe der metallorganischen Komplexverbindungen, sowie Liganden dieser Komplexverbindungen oder komplexe Verbindungen der Elemente der Gruppe TVA, VA, VIA, VIIA, VIΓIA oder IB des Periodensystems der Elemente, insbesondere Mangan, Eisen, Kobalt, Nickel, Palladium, Platin, Ruthenium, Rhodium oder Iridium, wobei es sich besonders bevorzugt um Ru-BINAP, Pd-BINAP, Rh-EtDUPHOS oder Komplexverbindungen des Triphenylphosphins mit Palladium oder Rhodium handelt.6. The method according to any one of claims 1 to 5, characterized in that the solution contains homogeneously and / or colloidally dissolved catalysts, in particular selected from the group of organometallic complex compounds, and ligands of these complex compounds or complex compounds of the elements of the group TVA, VA , VIA, VIIA, VIΓIA or IB of the Periodic Table of the Elements, in particular manganese, iron, cobalt, nickel, palladium, platinum, ruthenium, rhodium or iridium, which is particularly preferably Ru-BINAP, Pd-BINAP, Rh-EtDUPHOS or Complex compounds of triphenylphosphine with palladium or rhodium.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die7. The method according to any one of claims 1 to 6, characterized in that the
Abtrennung bei einer Temperatur von -20°C bis 200°C, bevorzugt von 0°C bis 150°C durchgeführt wird . Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Druck über der Membran (Transmembrandruck) 2000 bis 40000 hPa.beträgt. Separation at a temperature of -20 ° C to 200 ° C, preferably from 0 ° C to 150 ° C. Method according to one of claims 1 to 7, characterized in that the pressure across the membrane (transmembrane pressure) is 2000 to 40,000 hPa.
EP04710858A 2003-02-26 2004-02-13 Method for separating dissolved or colloidal solids from non-aqueous solvents Withdrawn EP1599275A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10308111A DE10308111A1 (en) 2003-02-26 2003-02-26 Process for separating dissolved or colloidal solids from non-aqueous solutions
DE10308111 2003-02-26
PCT/EP2004/001419 WO2004076039A1 (en) 2003-02-26 2004-02-13 Method for separating dissolved or colloidal solids from non-aqueous solvents

Publications (1)

Publication Number Publication Date
EP1599275A1 true EP1599275A1 (en) 2005-11-30

Family

ID=32841882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04710858A Withdrawn EP1599275A1 (en) 2003-02-26 2004-02-13 Method for separating dissolved or colloidal solids from non-aqueous solvents

Country Status (5)

Country Link
US (1) US20040168981A1 (en)
EP (1) EP1599275A1 (en)
JP (1) JP2006519093A (en)
DE (1) DE10308111A1 (en)
WO (1) WO2004076039A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005328706A1 (en) * 2004-07-16 2006-09-14 California Institute Of Technology Water treatment by dendrimer-enhanced filtration
DE102006003618A1 (en) 2006-01-26 2007-08-02 Oxeno Olefinchemie Gmbh Separation of a metal complex catalyst from a reaction mixture obtained from telomerization process comprises using at least a membrane
DE102006050381A1 (en) * 2006-10-25 2008-05-08 Bayer Materialscience Ag Process for the separation of an organic from an electrolyte-containing aqueous and organic phase
DE102009001230A1 (en) 2009-02-27 2010-09-02 Evonik Oxeno Gmbh Process for the separation and partial recycling of transition metals or their catalytically active complex compounds from process streams
DE102011082441A1 (en) 2011-09-09 2013-03-14 Evonik Oxeno Gmbh Jet loop reactor with nanofiltration
DE102012202779A1 (en) 2012-02-23 2013-08-29 Evonik Oxeno Gmbh Process and apparatus for the technical hydroformylation of isobutene and for separating the product mixture
CN102633378A (en) * 2012-03-30 2012-08-15 神华集团有限责任公司 Method and system for recycling catalyst from coal chemical liquid waste
US9586183B2 (en) * 2012-06-26 2017-03-07 Fujifilm Manufacturing Europe Bv Membranes
DE102012223572A1 (en) 2012-12-18 2014-06-18 Evonik Industries Ag Control of the viscosity of reaction solutions in hydroformylation processes
DE102014206520B4 (en) 2013-05-03 2017-09-14 Evonik Degussa Gmbh New tetradentate phosphorus ligands with Hostanox O3 lead structure
DE102013221708A1 (en) 2013-10-25 2015-04-30 Evonik Industries Ag Jet loop reactor with nanofiltration and gas separator
CN108778446A (en) * 2016-03-07 2018-11-09 国际壳牌研究有限公司 Method for recycling metal component
CN113318608B (en) * 2021-05-17 2022-07-08 浙江理工大学 Dynamically catalyzed water treatment ceramic membrane and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288818A (en) * 1991-08-20 1994-02-22 Exxon Chemical Patents Inc. Method for separating a water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction
KR970703805A (en) * 1995-05-01 1997-08-09 유니온 카바이드 케미칼즈 앤드 플라스틱스 테크놀러지 코포레이션 Membrane Separation
JPH11285625A (en) * 1998-02-09 1999-10-19 Toray Ind Inc Catalytic separation membrane, catalytic reaction method ahd production of compound
US6252123B1 (en) * 1998-07-09 2001-06-26 Union Carbide Chemicals & Plastics Technology Corporation Membrane separation process for metal complex catalysts
DE19947505A1 (en) * 1999-10-01 2001-04-05 Degussa Process for the production of organic compounds in a membrane reactor
US6440309B1 (en) * 2000-05-17 2002-08-27 Yoram Cohen Ceramic-supported polymer (CSP) pervaporation membrane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004076039A1 *

Also Published As

Publication number Publication date
WO2004076039A1 (en) 2004-09-10
US20040168981A1 (en) 2004-09-02
JP2006519093A (en) 2006-08-24
DE10308111A1 (en) 2004-09-09

Similar Documents

Publication Publication Date Title
EP1706197B1 (en) Composite membrane
EP1931472B1 (en) Method for separating organic transition metal complex catalysts
WO2004076039A1 (en) Method for separating dissolved or colloidal solids from non-aqueous solvents
EP2424647B1 (en) Method for discharge and conditioning of catalysts by membrane filtration
DE3782119T2 (en) ASYMMETRIC GAS SEPARATION MEMBRANES WITH MODIFIED PERSISTENCY, THE SKIN OF WHICH HAS A DENSITY RADIENT.
EP1712270A1 (en) Composite material, especially composite membrane and process of manufacture
EP2817284B1 (en) Method and device for the hydroformylation of isobutene and for the separation of the product mixture
EP3750627B1 (en) Method for the separation of one or more components from a mixture
EP1935479B1 (en) Hybrid process for saltwater desalination
DE2918027C2 (en) Ultrafiltration membranes made from linear polyurethanes
DE102014209421A1 (en) Membrane-assisted catalyst separation in the epoxidation of cyclic, unsaturated C12 compounds, for example cyclododecene (CDEN)
EP1858629B1 (en) Process for producing a polymer membrane, and polymer membrane
EP1807175B1 (en) Membrane for the separation of material mixtures and method for production thereof
DE102009017498A1 (en) Use of a catalyst composition for olefin metathesis in the gas phase, comprising a porous inorganic carrier coated with an ionic liquid, where a homogeneous catalyst system for the olefin metathesis is present dissolved in the ionic liquid
DE60317652T2 (en) Process for the purification of polyether polyols
EP1926683A1 (en) Inherent and reliable selective method for directly synthesising hydrogen peroxide from oxygen and hydrogen with the aid of a catalytically coated wettable porous membrane
DE4117501C2 (en) Amine modified polyimide membrane for gas separation and ultrafiltration
DE19912582A1 (en) Microporous membrane with a polymer matrix and process for its production
DE4303610A1 (en) Process for the production of poison-proof catalysts
DE112014003589B4 (en) An antibacterial membrane and a manufacturing process therefor
DE19925475B4 (en) Composite membrane made of a porous carrier membrane, process for its production and its use
EP1056687A1 (en) Method for purifying waste water by combining hydrogen-peroxide supported oxidation with a membrane separation method
EP0996496A1 (en) Integral non woven reinforcement porous membbranes
DE68924854T2 (en) METHOD FOR DRYING GAS, IN PARTICULAR COMPRESSED AIR, MEMBRANE FOR CARRYING OUT THIS METHOD AND METHOD FOR PRODUCING THE MEMBRANE.
DE60102189T2 (en) Process for the separation of p-xylene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: NICKEL, ANDREAS

Inventor name: MUTTER, MARTINA

Inventor name: STANGE, OLAF

Inventor name: DUDZIAK, GREGOR

Inventor name: WARSITZ, RAFAEL

Inventor name: BAUMARTH, KERSTIN

17Q First examination report despatched

Effective date: 20120320

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160506

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160917