EP1595620B1 - Broken mould moulding method - Google Patents

Broken mould moulding method Download PDF

Info

Publication number
EP1595620B1
EP1595620B1 EP05103958A EP05103958A EP1595620B1 EP 1595620 B1 EP1595620 B1 EP 1595620B1 EP 05103958 A EP05103958 A EP 05103958A EP 05103958 A EP05103958 A EP 05103958A EP 1595620 B1 EP1595620 B1 EP 1595620B1
Authority
EP
European Patent Office
Prior art keywords
mullite
layer
layers
solidification
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05103958A
Other languages
German (de)
French (fr)
Other versions
EP1595620A1 (en
Inventor
Arnaud Biramben
Patrick Calero
Patrick Chevalier
Jean-Christophe Husson
Christian Marty
Patrice Ragot
Pierre Richard
Franck Truelle
Isabelle Valente
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1595620A1 publication Critical patent/EP1595620A1/en
Application granted granted Critical
Publication of EP1595620B1 publication Critical patent/EP1595620B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the present invention relates to the manufacture of parts such as metal vanes with complex geometries according to the technique known as lost-wax foundry.
  • turbofan bladders such as parts of rotors or stators, or structural parts according to this technique
  • a model wax or other equivalent material easily removable later. If necessary we group together several models into one cluster.
  • a ceramic mold is made around this model by dipping in a first slip to form a first layer of material in contact with its surface. The surface of this layer is sanded in order to reinforce it and facilitate the attachment of the next layer, and the assembly is dried: this constitutes the stuccage and drying operations respectively.
  • the soaking operation is then repeated in slips of possibly different compositions, an operation always associated with the successive operations of stuccage and drying.
  • a ceramic shell made of a plurality of layers is thus produced.
  • the slips are composed of particles of ceramic materials, in particular a flour, such as alumina, mullite, zircon or other, with a mineral colloidal binder and adjuvants where appropriate depending on the desired rheology.
  • a flour such as alumina, mullite, zircon or other
  • adjuvants where appropriate depending on the desired rheology.
  • It may be a wetting agent, a fluidizer or a texturizer depending, for the latter, the desired thickness for the deposit.
  • the carapace mold is then dewaxed, which is an operation by which the material constituting the original model is removed. After elimination of the model, we obtain a ceramic mold whose cavity reproduces all the details of the model. The mold then undergoes heat treatment at high temperature or "cooking", which gives it the necessary mechanical properties.
  • the shell mold is thus ready for the manufacture of the metal part by casting.
  • the next step is to pour a molten metal into the mold cavity and then to the solidify.
  • solidification techniques there are currently several solidification techniques, and therefore several casting techniques, depending on the nature of the alloy and the expected properties of the part resulting from the casting. It may be directed solidification with columnar structure (DS), directed solidification with monocrystalline structure (SX) or equiaxed solidification (EX) respectively.
  • DS columnar structure
  • SX directed solidification with monocrystalline structure
  • EX equiaxed solidification
  • the shell is broken by a shaking operation, and the manufacture of the metal part is completed.
  • each carapace must have specific properties that ensure the desired type of solidification.
  • equiaxed solidification several different processes can be implemented, one using an ethyl silicate binder, another using a colloidal silica binder.
  • the shells can be made from different fillers, based on silico-aluminous, silica-zircon or silica.
  • the invention achieves these objectives with the following method.
  • the method is characterized in that the ceramic particles of the slips comprise a refractory oxide or a mixture of refractory oxides without zircon, none of the layers comprising zircon so that the shell mold is not even weakly, radioactive.
  • the slip for the formation of the reinforcing layers is much more fluid than the second slip.
  • the binder for the various slips is a colloidal mineral solution such as colloidal silica.
  • the stucco grains for the contact, intermediate and reinforcement layers are made from mullite grains and not zircon grains.
  • the stuccage operations are carried out with stucco grains covering a size range between 80 and 1000 microns.
  • the stucco is preferably applied by dusting for the first layers, and is preferably applied by fluidized bed, for the layers from the fourth.
  • Stucco is applied automatically, so that the movements of the robot can achieve a shell mold having a porosity after baking, between 20 and 35%. The more porous the shell is, the more it reduces its sensitivity to thermal shocks such as those produced during different types of casting.
  • the mold baking cycle comprises heating to a temperature of between 1000 and 1150 ° C, preferably between 1030 ° C and 1070 ° C.
  • the first slip can be formed from mullite flours and alumina without zircon, with or without germinating.
  • the contact layer is composed mainly of mullite flour in an amount of between 40 and 80% by weight, optionally of alumina flour, a binder based on colloidal silica. , and organic adjuvants.
  • the contact layer is composed of a mixture of alumina flours and mullite in amounts respectively of between 40 and 80% by weight and between 2 and 30% by weight, the remainder comprising a binder based on colloidal silica, a germinator, and organic adjuvants.
  • the second and third slip are common to any solidification process, and comprise a mixture of alumina and mullite flours in an amount of between 45 and 95% by weight, and mullite grains in an amount of between 0 and 25% by weight.
  • the mold structure thus defined finds, indifferently, a use for the manufacture of a part with solidification of directed type with a columnar structure, the contact layer being formed mainly from a mullite flour, for the manufacture of a monocrystalline structured type solidification-type part, the contact layer being formed predominantly from a mullite flour or else for producing a piece with equiaxed type solidification, the contact layer being formed from a mixture of alumina flour and mullite.
  • the invention also relates to a method for manufacturing parts by casting of molten metal according to which, regardless of the type of solidification, directed with a columnar structure, directed with monocrystalline or equiaxed structure, molds having a skeleton of shells are used.
  • common intermediate layer and common reinforcement layer.
  • the invention also relates to an installation for the manufacture of parts by casting a molten metal in a shell mold comprising a mold manufacturing station and casting stations for different solidifications, said stations being fed with molds having identical reinforcement layers.
  • the method of manufacturing shell molds for common use in all types of parts comprises a first step of manufacturing the wax model or other equivalent material known in the art.
  • the most commonly known is wax.
  • the clustered models can be grouped so that several can be manufactured simultaneously.
  • the models are shaped to the dimensions of the final pieces, to the shrinkage near the alloys.
  • the carapace manufacturing steps are preferably carried out by a robot whose movements are common to all types of parts, programmed to have an optimal action on the quality of the deposits made, and to overcome the geometrical aspect of the different blading.
  • slips are prepared in which the models or the cluster are successively quenched to deposit a ceramic material.
  • the covered model undergoes a phase of dewatering and then topping. Then, stucco grains are applied by dusting so as not to disturb the thin layer of contact.
  • mullite is used, the particle size of which in this first layer is fine. It is between 80 and 250 microns. The surface condition of the final pieces depends in part.
  • the No. 1 layer is dried.
  • a stucco is deposited by dusting and dried.
  • mullite is used whose particle size is medium. It can be between 120 and 1000 microns.
  • the state of porosity of the shells finally depends on it.
  • the model is then quenched in a third slip to form the layer No. 3 which is the first so-called reinforcing layer.
  • the identical stucco is then applied to the No. 2 layer by dusting and dried.
  • the soaking operations are repeated in the third slip, stuccage and drying to form the layers of "reinforcement".
  • the stuccage is carried out by fluidized bed.
  • a glazing operation is performed which does not include a stuccage operation.
  • the carapace in final can consist of 5 to 12 layers.
  • the soaked layers for the different layers are made in different ways and are adapted to obtain a uniform distribution of thicknesses and to avoid the formation of bubbles, especially in enclosed areas.
  • Hardening programs are optimized for each type of layer, to overcome the geometric aspect of the different types of parts, and are therefore common to all references.
  • the interlayer drying range is optimized for each type of layer, in order to overcome the geometrical appearance of the different types of parts.
  • the range is therefore common.
  • the range makes it possible, for each type of layer, to dry molds with geometries as different as moving blades, distributors, or structural parts.
  • the mussel baking cycle is the same for all types of solidification, and thus also eliminates the type of part. It includes a temperature rise phase, a bearing at the baking temperature and a cooling phase.
  • the cooking cycle is chosen to optimize the mechanical properties of the shells so as to allow cold handling without risk of breakage, and so as to minimize the sensitivity to thermal shocks that can be generated during the various stages of casting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Description

La présente invention porte sur la fabrication de pièces telles que des aubages métalliques à géométries complexes selon la technique connue sous le nom de fonderie à cire perdue.The present invention relates to the manufacture of parts such as metal vanes with complex geometries according to the technique known as lost-wax foundry.

Pour la fabrication des aubages de turboréacteurs, tels que les pièces de rotors ou de stators, ou bien des pièces de structure selon cette technique, on en réalise d'abord un modèle en cire ou autre matériau équivalent facilement éliminable par la suite. Le cas échéant on regroupe plusieurs modèles en une grappe. On confectionne autour de ce modèle un moule céramique par trempage dans une première barbotine pour former une première couche de matière au contact de sa surface. On sable la surface de cette couche afin de la renforcer et de faciliter l'accrochage de la couche suivante, et on sèche l'ensemble : ce qui constitue respectivement les opérations de stuccage et de séchage. On répète ensuite l'opération de trempage dans des barbotines de compositions éventuellement différentes, opération toujours associée aux opérations successives de stuccage et de séchage. On réalise ainsi une carapace céramique constituée d'une pluralité de couches. Les barbotines sont composées de particules de matériaux céramiques, notamment une farine, tel que l'alumine, la mullite, le zircon ou autre, avec un liant colloïdal minéral et des adjuvants le cas échéant en fonction de la rhéologie souhaitée. Ces adjuvants permettent de maîtriser et de stabiliser les caractéristiques des différents types de couches, tout en s'affranchissant des effets des différentes caractéristiques physico-chimiques des matières premières constituant les barbotines. Il peut s'agir d'un agent mouillant, d'un fluidifiant ou d'un texturant en fonction, pour ce dernier, de l'épaisseur désirée pour le dépôt.For the manufacture of turbofan bladders, such as parts of rotors or stators, or structural parts according to this technique, it is first made a model wax or other equivalent material easily removable later. If necessary we group together several models into one cluster. A ceramic mold is made around this model by dipping in a first slip to form a first layer of material in contact with its surface. The surface of this layer is sanded in order to reinforce it and facilitate the attachment of the next layer, and the assembly is dried: this constitutes the stuccage and drying operations respectively. The soaking operation is then repeated in slips of possibly different compositions, an operation always associated with the successive operations of stuccage and drying. A ceramic shell made of a plurality of layers is thus produced. The slips are composed of particles of ceramic materials, in particular a flour, such as alumina, mullite, zircon or other, with a mineral colloidal binder and adjuvants where appropriate depending on the desired rheology. These adjuvants make it possible to control and stabilize the characteristics of the different types of layers, while avoiding the effects of the different physicochemical characteristics of the raw materials constituting the slips. It may be a wetting agent, a fluidizer or a texturizer depending, for the latter, the desired thickness for the deposit.

On procède ensuite au décirage du moule carapace, qui est une opération par laquelle on élimine le matériau constituant le modèle d'origine. Après élimination du modèle, on obtient un moule céramique dont la cavité reproduit tous les détails du modèle. Le moule subit ensuite un traitement thermique à haute température ou « cuisson », qui lui confère les propriétés mécaniques nécessaires.The carapace mold is then dewaxed, which is an operation by which the material constituting the original model is removed. After elimination of the model, we obtain a ceramic mold whose cavity reproduces all the details of the model. The mold then undergoes heat treatment at high temperature or "cooking", which gives it the necessary mechanical properties.

Le moule carapace est ainsi prêt pour la fabrication de la pièce métallique par coulée. Après contrôle de l'intégrité interne et externe du moule carapace, l'étape suivante consiste à couler un métal en fusion dans la cavité du moule puis à le solidifier. Dans le domaine de la fonderie à cire perdue on distingue actuellement plusieurs techniques de solidification, donc plusieurs techniques de coulée, selon la nature de l'alliage et les propriétés attendues de la pièce résultant de la coulée. Il peut s'agir de solidification dirigée à structure colonnaire (DS), de solidification dirigée à structure monocristalline (SX) ou de solidification équiaxe (EX) respectivement. Les deux premières familles de pièces concernent des superalliages pour pièces soumises à de fortes contraintes tant thermiques que mécaniques dans le turboréacteur, comme les aubes de turbines HP.The shell mold is thus ready for the manufacture of the metal part by casting. After checking the internal and external integrity of the shell mold, the next step is to pour a molten metal into the mold cavity and then to the solidify. In the field of lost-wax foundry, there are currently several solidification techniques, and therefore several casting techniques, depending on the nature of the alloy and the expected properties of the part resulting from the casting. It may be directed solidification with columnar structure (DS), directed solidification with monocrystalline structure (SX) or equiaxed solidification (EX) respectively. The first two families of parts concern superalloys for parts subjected to strong thermal and mechanical stresses in the turbojet engine, such as HP turbine blades.

Après coulée de l'alliage, on casse la carapace par une opération de décochage, et on parachève la fabrication de la pièce métallique.After casting of the alloy, the shell is broken by a shaking operation, and the manufacture of the metal part is completed.

Des procédés de réalisation de moules carapaces sont notamment décrits dans les documents publiés sous les références US5618633 et EP0399727 , qui divulguent différents types de barbotine.Methods of producing shell molds are described in particular in the documents published under the references US5618633 and EP0399727 , which disclose different types of slip.

Lors de l'étape de moulage, plusieurs types de carapaces peuvent être réalisés au travers de plusieurs procédés. Chaque carapace doit posséder des propriétés spécifiques qui permettent d'assurer le type de solidification désiré. Par exemple, pour la solidification équiaxe, plusieurs procédés différents peuvent être mis en oeuvre, l'un utilisant un liant silicate d'éthyle, un autre utilisant un liant silice colloïdale. Pour la solidification dirigée, les carapaces peuvent être réalisées à partir de charges différentes, à base silico-alumineuse, silice-zircon ou silice.During the molding step, several types of shells can be made through several processes. Each carapace must have specific properties that ensure the desired type of solidification. For example, for equiaxed solidification, several different processes can be implemented, one using an ethyl silicate binder, another using a colloidal silica binder. For directed solidification, the shells can be made from different fillers, based on silico-aluminous, silica-zircon or silica.

Dans un but de simplification et d'uniformisation des procédés mis en oeuvre, il existe un besoin pour une carapace à structure dite « unique » dont les propriétés lui permettraient d'être utilisée dans les différents cas de solidification.In order to simplify and standardize the processes used, there is a need for a so-called "unique" structure shell whose properties would enable it to be used in the various cases of solidification.

D'autre part, pour des raisons de respect des normes environnementales et de coûts, il existe aussi un besoin d'éviter l'emploi de liants à base alcool tel que le silicate d'éthyle.On the other hand, for reasons of compliance with environmental standards and costs, there is also a need to avoid the use of alcohol-based binders such as ethyl silicate.

Pour des raisons de coûts de rejet, il est aussi souhaitable de mettre au point une structure de carapace ne comprenant pas de zircon. Ce matériau, même faiblement radio-actif, nécessite en effet l'établissement de procédures de traitement des déchets très contraignantes industriellement et financièrement.For reasons of rejection costs, it is also desirable to develop a shell structure not including zircon. This material, even a weakly radioactive one, requires the establishment of waste treatment procedures that are very demanding both industrially and financially.

L'invention parvient à ces objectifs avec le procédé suivant.The invention achieves these objectives with the following method.

Le procédé de fabrication de moule carapace céramique à plusieurs couches, dont au moins une couche de contact, une couche intermédiaire et plusieurs couches de renfort à partir d'un modèle en cire ou autre matériau semblable, consiste à réaliser les opérations suivantes :

  • trempage dans une première barbotine contenant des particules céramiques et un liant, dépôt de particules de sable sur la couche et à sécher ladite couche, de manière à former la couche de contact,
  • trempage dans une deuxième barbotine contenant des particules céramiques, un liant, dépôt de particules de sable sur ladite couche et à sécher celle-ci, de manière à former la couche intermédiaire
  • trempage dans au moins une troisième barbotine contenant des particules céramiques, un liant, dépôt de particules de sable sur ladite couche, à sécher celle-ci, de manière à former une couche de renfort, On répète la formation de couches de renfort jusqu'à obtenir une épaisseur de moule carapace définie.
The multi-layer ceramic shell mold manufacturing method, including at least one contact layer, an intermediate layer and a plurality of layers reinforcement from a model in wax or other similar material, consists in carrying out the following operations:
  • dipping in a first slip containing ceramic particles and a binder, depositing sand particles on the layer and drying said layer, so as to form the contact layer,
  • dipping in a second slip containing ceramic particles, a binder, deposition of sand particles on said layer and drying it, so as to form the intermediate layer
  • dipping in at least a third slip containing ceramic particles, a binder, deposition of sand particles on said layer, to dry it, so as to form a reinforcing layer, the formation of reinforcement layers is repeated up to obtain a defined shell mold thickness.

Conformément à l'invention le procédé est caractérisé par le fait que les particules céramique des barbotines comprennent un oxyde réfractaire ou un mélange d'oxydes réfractaires sans zircon, aucune des couches ne comportant de zircon de sorte que le moule carapace ne soit pas, même faiblement, radioactif.According to the invention, the method is characterized in that the ceramic particles of the slips comprise a refractory oxide or a mixture of refractory oxides without zircon, none of the layers comprising zircon so that the shell mold is not even weakly, radioactive.

De préférence la barbotine pour la formation des couches de renfort est beaucoup plus fluide que la deuxième barbotine.Preferably the slip for the formation of the reinforcing layers is much more fluid than the second slip.

On a constaté qu'un moule carapace présentant cette composition et cette structure, à la couche de contact près, pouvait être conçu pour être commun à tous les types de pièces coulées selon les techniques rapportées plus haut. On peut ainsi avantageusement ajuster les propriétés mécaniques du moule, en particulier, sa sensibilité aux chocs thermiques, pour satisfaire aux conditions de coulée répondant aux contraintes des différents procédés de solidification (EX, DS ou SX).It has been found that a shell mold having this composition and this structure, at the contact layer, could be designed to be common to all types of castings according to the techniques mentioned above. It is thus possible advantageously to adjust the mechanical properties of the mold, in particular its sensitivity to thermal shocks, to satisfy the casting conditions that meet the constraints of the various solidification processes (EX, DS or SX).

De préférence et pour satisfaire aux contraintes économiques et environnementales, le liant pour les différentes barbotines est une solution colloïdale minérale telle que la silice colloïdale. De même pour satisfaire aux contraintes économiques liées aux rejets, les grains de stucco pour les couches de contact, intermédiaire et de renfort sont constitués à partir de grains de mullite et non de zircon.Preferably and to meet the economic and environmental constraints, the binder for the various slips is a colloidal mineral solution such as colloidal silica. Similarly, to satisfy the economic constraints related to rejects, the stucco grains for the contact, intermediate and reinforcement layers are made from mullite grains and not zircon grains.

Afm de maîtriser la porosité du moule, et de ce fait maîtriser la sensibilité de la carapace aux chocs thermiques, les opérations de stuccage sont réalisées avec des grains de stucco couvrant une gamme granulométrique comprise entre 80 et 1000 microns. Par ailleurs, le stucco est appliqué de préférence par saupoudrage pour les premières couches, et est appliqué de préférence par lit fluidisé, pour les couches à partir de la quatrième. On applique le stucco automatiquement, de sorte que les mouvements du robot permettent de réaliser un moule carapace présentant une porosité après cuisson, comprise entre 20 et 35%. Plus la carapace est poreuse, plus on diminue sa sensibilité aux chocs thermiques tels que ceux produits lors des différents types de coulées.In order to control the porosity of the mold, and thus to control the sensitivity of the shell to thermal shocks, the stuccage operations are carried out with stucco grains covering a size range between 80 and 1000 microns. Furthermore, the stucco is preferably applied by dusting for the first layers, and is preferably applied by fluidized bed, for the layers from the fourth. Stucco is applied automatically, so that the movements of the robot can achieve a shell mold having a porosity after baking, between 20 and 35%. The more porous the shell is, the more it reduces its sensitivity to thermal shocks such as those produced during different types of casting.

En particulier, pour pouvoir être appliqué à deux modes distincts de solidification, le cycle de cuisson du moule comprend un chauffage jusqu'à une température comprise entre 1000 et 1150°C, de préférence entre 1030°C et 1070°C.In particular, in order to be applied to two distinct modes of solidification, the mold baking cycle comprises heating to a temperature of between 1000 and 1150 ° C, preferably between 1030 ° C and 1070 ° C.

Il suffit d'adapter seulement la couche de contact au mode de solidification. Ainsi la première barbotine peut être formée à partir de farines de mullite et d'alumine sans zircon, avec ou sans germinant.It suffices to adapt only the contact layer to the solidification mode. Thus the first slip can be formed from mullite flours and alumina without zircon, with or without germinating.

Dans un cas particulier, pour des solidifications de types DS ou SX, la couche de contact est composée majoritairement de farine de mullite en quantité comprise entre 40 et 80% en poids, éventuellement de farine d'alumine, un liant à base de silice colloïdale, et des adjuvants organiques.In a particular case, for DS or SX type solidifications, the contact layer is composed mainly of mullite flour in an amount of between 40 and 80% by weight, optionally of alumina flour, a binder based on colloidal silica. , and organic adjuvants.

Dans le cas particulier de la solidification équiaxe, la couche de contact est composée d'un mélange de farines d'alumine et de mullite en quantités respectivement comprises entre 40 et 80% en poids et entre 2 et 30% en poids, le reste comprenant un liant à base de silice colloïdale, un germinant, et des adjuvants organiques.In the particular case of equiaxed solidification, the contact layer is composed of a mixture of alumina flours and mullite in amounts respectively of between 40 and 80% by weight and between 2 and 30% by weight, the remainder comprising a binder based on colloidal silica, a germinator, and organic adjuvants.

Conformément à une autre caractéristiques, les deuxième et troisième barbotines sont communes à tout procédé de solidification, et comprennent un mélange de farines d'alumine et de mullite en quantité comprise entre 45 et 95% en poids, et des grains de mullite en quantité comprise entre 0 et 25% en poids.According to another characteristic, the second and third slip are common to any solidification process, and comprise a mixture of alumina and mullite flours in an amount of between 45 and 95% by weight, and mullite grains in an amount of between 0 and 25% by weight.

La structure de moule ainsi définie trouve, indifféremment, une utilisation
pour la fabrication d'une pièce avec solidification de type dirigé à structure colonnaire, la couche de contact étant formée majoritairement à partir d'une farine de mullite,
pour la fabrication d'une pièce avec solidification de type dirigé à structure monocristalline, la couche de contact étant formée majoritairement à partir d'une farine de mullite ou bien
pour la fabrication d'une pièce avec solidification de type équiaxe, la couche de contact étant formée à partir d'un mélange de farine d'alumine et de mullite.
The mold structure thus defined finds, indifferently, a use
for the manufacture of a part with solidification of directed type with a columnar structure, the contact layer being formed mainly from a mullite flour,
for the manufacture of a monocrystalline structured type solidification-type part, the contact layer being formed predominantly from a mullite flour or else
for producing a piece with equiaxed type solidification, the contact layer being formed from a mixture of alumina flour and mullite.

L'invention porte aussi sur un procédé de fabrication de pièces par coulée de métal en fusion selon lequel, quel que soit le type de solidification, dirigée à structure colonnaire, dirigée à structure monocristalline ou équiaxe, on utilise des moules présentant un squelette de carapaces commun : couche intermédiaire et couche de renfort communes.The invention also relates to a method for manufacturing parts by casting of molten metal according to which, regardless of the type of solidification, directed with a columnar structure, directed with monocrystalline or equiaxed structure, molds having a skeleton of shells are used. common: intermediate layer and common reinforcement layer.

L'invention porte aussi sur une installation pour la fabrication de pièces par coulée d'un métal en fusion dans un moule carapace comprenant un poste de fabrication de moules et des postes de coulée pour des solidifications différentes, lesdits postes étant alimentés avec des moules présentant des couches de renfort identiques.The invention also relates to an installation for the manufacture of parts by casting a molten metal in a shell mold comprising a mold manufacturing station and casting stations for different solidifications, said stations being fed with molds having identical reinforcement layers.

On décrit ci-après le procédé plus en détail.The process is described in more detail below.

Le procédé de fabrication des moules carapaces permettant une utilisation commune à tous types de pièces comprend une première étape de fabrication du modèle en cire ou en un autre matériau équivalent connu dans le domaine. Le plus généralement connu est la cire. Selon le type de pièce, on peut regrouper les modèles en grappe de manière à pouvoir en fabriquer plusieurs simultanément. Les modèles sont façonnés aux dimensions des pièces définitives, au retrait près des alliages.The method of manufacturing shell molds for common use in all types of parts comprises a first step of manufacturing the wax model or other equivalent material known in the art. The most commonly known is wax. Depending on the type of part, the clustered models can be grouped so that several can be manufactured simultaneously. The models are shaped to the dimensions of the final pieces, to the shrinkage near the alloys.

Les étapes de fabrication de la carapace sont de préférence menées par un robot dont les mouvements sont communs à tous types de pièces, programmés pour avoir une action optimale sur la qualité des dépôts réalisés, et pour s'affranchir de l'aspect géométrique des différents aubages.The carapace manufacturing steps are preferably carried out by a robot whose movements are common to all types of parts, programmed to have an optimal action on the quality of the deposits made, and to overcome the geometrical aspect of the different blading.

On prépare parallèlement des barbotines dans lesquelles on trempe successivement les modèles ou la grappe pour effectuer un dépôt de matière céramique.In parallel, slips are prepared in which the models or the cluster are successively quenched to deposit a ceramic material.

On distingue une première barbotine pour la solidification EQX.We distinguish a first slip for solidification EQX.

Elle comprend en pourcentage pondéral :

  • un mélange de farines d'alumine (40 - 80%) et de mullite (2 - 30%) ;
  • un germinant, aluminate de cobalt (0 - 10%) ;
  • un liant silice colloïdale (18 - 30%) ;
  • de l'eau (0 - 5%) ;
  • trois adjuvants : agents mouillant, fluidifiant et texturant ;
It includes in weight percentage:
  • a mixture of flours of alumina (40-80%) and mullite (2 - 30%);
  • a germinant, cobalt aluminate (0-10%);
  • a colloidal silica binder (18 - 30%);
  • water (0 - 5%);
  • three adjuvants: wetting, thinning and texturing agents;

Pour la solidification dirigée à structure colonnaire ou monocristalline, la composition de la première barbotine en pourcentage pondéral est la suivante :

  • un mélange de farines d'alumine (2 - 30%) et de mullite (40 - 80%) ;
  • un liant silice colloïdale (18 - 30%) ;
  • de l'eau (0-5%) ;
  • trois adjuvants : agents mouillant, fluidifiant et texturant ;
For columnar or monocrystalline columnar solidification, the composition of the first slip in percent by weight is as follows:
  • a mixture of flours of alumina (2 - 30%) and mullite (40 - 80%);
  • a colloidal silica binder (18 - 30%);
  • water (0-5%);
  • three adjuvants: wetting, thinning and texturing agents;

La deuxième barbotine intermédiaire, commune à tous types de solidification, comprend en pourcentage pondéral les composants suivants :

  • un mélange de farines d'alumine (50 - 75%) et de mullite (5 - 20%) ;
  • un liant silice colloïdale (20 - 30%) ;
  • de l'eau (0 - 5%) ;
  • trois adjuvants : agents mouillant, fluidifiant et texturant ;
The second intermediate slip, common to all types of solidification, comprises in percentage by weight the following components:
  • a mixture of flours of alumina (50-75%) and mullite (5-20%);
  • a colloidal silica binder (20 - 30%);
  • water (0 - 5%);
  • three adjuvants: wetting, thinning and texturing agents;

La troisième barbotine de renfort, commune à tous types de solidification, comprend les composants suivants en pourcentage pondéral :

  • un mélange de farines d'alumine (30 - 45%) et de mullite (15 - 30%) ;
  • des grains de Mullite (14 - 24%) ;
  • un liant silice colloïdale (10 - 20%) ;
  • de l'eau (5 - 15%) ;
  • quatre adjuvants : agents mouillant, fluidifiant, texturant et de frittage ;
The third reinforcing slip, common to all types of solidification, comprises the following components in percentage by weight:
  • a mixture of flours of alumina (30 - 45%) and mullite (15 - 30%);
  • Mullite grains (14 - 24%);
  • a colloidal silica binder (10-20%);
  • water (5 - 15%);
  • four adjuvants: wetting, thinning, texturizing and sintering agents;

Les 3 premiers adjuvants ont respectivement les fonctions suivantes :

  • Le fluidifiant permet d'obtenir plus rapidement la rhéologie désirée lors de la fabrication de la couche. Il agit en tant que dispersant. Il peut appartenir à la famille des acides aminés, à la gamme des polyacrylates d'ammonium, ou à la famille des tri - acides carboxyliques à groupements alcools ;
  • Le mouillant permet de faciliter le nappage de la couche lors du trempé. Il peut appartenir à la famille des alcools gras poly - alkylènes, ou alcools alkoxylates ;
  • Le texturant permet d'optimiser la rhéologie de la couche afin d'obtenir des dépôts adaptés. Il peut appartenir à la famille des polymères de l'oxyde d'éthylène, des gommes de xanthane, ou des gommes de guar ;
The first 3 adjuvants respectively have the following functions:
  • The fluidizer makes it possible to obtain the desired rheology more quickly during the manufacture of the layer. It acts as dispersant. It may belong to the family of amino acids, to the range of ammonium polyacrylates, or to the family of carboxylic tri-acids with alcohol groups;
  • The wetting agent makes it easier to coat the layer during dipping. It may belong to the family of polyalkylene fatty alcohols, or alkoxylated alcohols;
  • The texturizer makes it possible to optimize the rheology of the layer in order to obtain suitable deposits. It may belong to the family of polymers of ethylene oxide, xanthan gums, or guar gums;

Pour la couche N°1, de contact, une fois le modèle retiré de la première barbotine après une phase d'immersion, le modèle recouvert subit une phase d'égouttage puis de nappage. Puis, on applique des grains de stucco par saupoudrage afin de ne pas perturber la fine couche de contact. Pour l'opération de stuccage, on utilise de la mullite dont la granulométrie dans cette première couche est fine. Elle est comprise entre 80 et 250 microns. L'état de surface des pièces en final en dépend en partie.For the No. 1 contact layer, once the model removed from the first slip after an immersion phase, the covered model undergoes a phase of dewatering and then topping. Then, stucco grains are applied by dusting so as not to disturb the thin layer of contact. For the stuccage operation, mullite is used, the particle size of which in this first layer is fine. It is between 80 and 250 microns. The surface condition of the final pieces depends in part.

On sèche la couche N°1.The No. 1 layer is dried.

On procède ensuite au trempé dans une seconde barbotine pour former une couche N°2, dite intermédiaire. La composition est la même quel que soit le mode de solidification adopté.It is then quenched in a second slip to form a layer No. 2, said intermediate. The composition is the same whatever the method of solidification adopted.

Comme précédemment, on dépose un stucco par saupoudrage, et on sèche. Pour l'opération de stuccage, on utilise de la mullite dont la granulométrie est moyenne. Elle peut être comprise entre 120 et 1000 microns. L'état de porosité des carapaces en final en dépend en partie.As before, a stucco is deposited by dusting and dried. For the stuccage operation, mullite is used whose particle size is medium. It can be between 120 and 1000 microns. The state of porosity of the shells finally depends on it.

On trempe ensuite le modèle dans une troisième barbotine pour former la couche N°3 qui est la première couche dite de renfort.The model is then quenched in a third slip to form the layer No. 3 which is the first so-called reinforcing layer.

On applique ensuite le stucco identique à la couche N°2 par saupoudrage, et on sèche. On répète les opérations de trempage dans la troisième barbotine, de stuccage et de séchage pour former les couches « de renfort ». Pour ces couches de renfort, le stuccage s'effectue par lit fluidisé.The identical stucco is then applied to the No. 2 layer by dusting and dried. The soaking operations are repeated in the third slip, stuccage and drying to form the layers of "reinforcement". For these reinforcement layers, the stuccage is carried out by fluidized bed.

Pour la dernière couche, on procède à une opération de glaçage qui ne comprend pas d'opération de stuccage.
La carapace en final peut être constituée de 5 à 12 couches.
For the last layer, a glazing operation is performed which does not include a stuccage operation.
The carapace in final can consist of 5 to 12 layers.

Les trempés pour les différentes couches sont effectués de manières différentes et sont adaptés afin d'obtenir une répartition homogène des épaisseurs et d'éviter la formation de bulles, notamment dans les zones d'enfermées.The soaked layers for the different layers are made in different ways and are adapted to obtain a uniform distribution of thicknesses and to avoid the formation of bubbles, especially in enclosed areas.

Les programmes de trempés sont optimisés pour chaque type de couche, afin de s'affranchir de l'aspect géométrique des différents types de pièces, et sont donc communs à toutes références.Hardening programs are optimized for each type of layer, to overcome the geometric aspect of the different types of parts, and are therefore common to all references.

La gamme de séchage intercouche est optimisée pour chaque type de couche, afin de s'affranchir de l'aspect géométrique des différents types de pièces. La gamme est donc commune. La gamme permet en effet pour chaque type de couche, un séchage de moules à géométries aussi différentes que des aubes mobiles, des distributeurs, ou bien des pièces de structure.The interlayer drying range is optimized for each type of layer, in order to overcome the geometrical appearance of the different types of parts. The range is therefore common. The range makes it possible, for each type of layer, to dry molds with geometries as different as moving blades, distributors, or structural parts.

On procède à un séchage final après la formation de la dernière couche, commun à tous types de pièces.Final drying is carried out after the formation of the last layer, common to all types of parts.

Le cycle de cuisson des moules est le même pour tous les types de solidification, et s'affranchit donc aussi du type de pièce. Il comprend une phase de montée en température, un palier à la température de cuisson et une phase de refroidissement. Le cycle de cuisson est choisi pour optimiser les propriétés mécaniques des carapaces de manière à permettre les manipulations à froid sans risques de casses, et de manière à minimiser la sensibilité aux chocs thermiques pouvant être générés lors des différentes étapes de coulées.The mussel baking cycle is the same for all types of solidification, and thus also eliminates the type of part. It includes a temperature rise phase, a bearing at the baking temperature and a cooling phase. The cooking cycle is chosen to optimize the mechanical properties of the shells so as to allow cold handling without risk of breakage, and so as to minimize the sensitivity to thermal shocks that can be generated during the various stages of casting.

On constate, que l'on peut réaliser une cuisson unique au lieu des deux types de cuisson qui étaient réalisées auparavant pour préparer les carapaces EQX, DS et SX aux différents modes de coulée.It can be seen that a single cooking can be achieved instead of the two types of cooking that were previously performed to prepare the EQX, DS and SX shells for different casting modes.

Claims (17)

  1. Method for producing a ceramic shell mould having a plurality of layers, including at least one contact layer, one intermediate layer and a plurality of reinforcement layers, from a model of the part to be produced, the model being made of wax or another similar material, consisting in carrying out the following successive operations:
    dipping in a first slip containing ceramic particles and a binder, depositing sand particles on said layer and drying it so as to form the contact layer,
    dipping in a second slip containing ceramic particles and a binder, depositing sand particles on said intermediate layer and drying it so as to form the intermediate layer,
    dipping in at least a third slip containing ceramic particles and a binder, depositing sand particles on said layer and drying it so as to form a reinforcement layer, the formation of reinforcement layers being repeated until a defined thickness of the shell mould is obtained,
    characterised by the fact that the ceramic particles of the slips comprise a refractory oxide or
    a mixture of refractory oxides without zircon, none of the layers comprising zircon, in such a way that the shell mould is not even slightly radioactive.
  2. Method according to claim 1, wherein the refractory oxide is mullite or alumina.
  3. Method according to either claim 1 or claim 2, wherein the binders for the different slips are based on mineral colloidal solutions, in particular colloidal silica.
  4. Method according to claim 1, 2 or 3, wherein said sand particles consist of refractory oxide grains without zircon, in particular mullite grains.
  5. Method according to claim 4, wherein the grains have a grain size of between 80 and 1000 microns.
  6. Method according to either claim 4 or claim 5, wherein for certain layers, preferably the first three layers, the sand particles are applied by dusting.
  7. Method according to claims 4, 5 and 6, wherein for certain layers, preferably from the fourth layer onwards, the sand particles are applied by means of a fluidised bed.
  8. Method according to any one of claims 4 to 7, wherein the sand particles are applied in such a way that the shell has a porosity of between 20 and 35 % after firing.
  9. Method according to claim 1, wherein drying between two successive layers is carried out according to the same route sheet, regardless of the type of part and the shape thereof.
  10. Method according to claim 1, wherein the dipping is carried out by a robot which is programmed in such a way that the movements of said robot are the same regardless of the shape of the part.
  11. Method according to any one of the preceding claims, wherein the sand particles are deposited on the mould automatically by a robot, in such a way that the movements of said robot are the same regardless of the shape of the part.
  12. Method according to any one of the preceding claims, wherein the firing cycle of the final shell mould is the same regardless of the type of part and comprises heating to a temperature between 1000 and 1150 °C, preferably between 1030 and 1070 °C.
  13. Method according to any one of the preceding claims, wherein the first slip has an alumina and mullite composition which differs depending on whether the part is produced by a directional solidification method or an equiaxed solidification method.
  14. Method according to any one of the preceding claims, wherein the second and third slips comprise a mixture of alumina filler and mullite filler and mullite grains, and are common to all directional solidification and equiaxed solidification methods.
  15. Method according to claim 13, wherein the first slip for directional solidification comprises predominantly mullite filler, in an amount between 40 and 80 % by weight, optionally alumina filler, a binder based on colloidal silica and organic additives.
  16. Method according to claim 13, wherein the first slip for equiaxed solidification comprises a mixture of alumina filler and mullite filler, in amounts between 40 and 80 % by weight and between 2 and 30 % by weight respectively, a binder based on colloidal silica, a nucleating agent and organic additives.
  17. Method according to claim 14, wherein the second and third slips are common to all solidification methods and comprise a mixture of alumina filler and mullite filler in an amount between 45 and 95 % by weight and mullite grains in an amount between 0 and 25 % by weight.
EP05103958A 2004-05-12 2005-05-11 Broken mould moulding method Active EP1595620B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0405143A FR2870147B1 (en) 2004-05-12 2004-05-12 LOST WAX FOUNDRY PROCESS
FR0405143 2004-05-12

Publications (2)

Publication Number Publication Date
EP1595620A1 EP1595620A1 (en) 2005-11-16
EP1595620B1 true EP1595620B1 (en) 2011-07-20

Family

ID=34939801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05103958A Active EP1595620B1 (en) 2004-05-12 2005-05-11 Broken mould moulding method

Country Status (5)

Country Link
US (1) US7318466B2 (en)
EP (1) EP1595620B1 (en)
JP (1) JP4937528B2 (en)
CA (1) CA2507170C (en)
FR (1) FR2870147B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1935530A1 (en) * 2006-12-21 2008-06-25 Siemens Aktiengesellschaft Method for manufacturing a ceramic casting die and utilisation of the same
JP5178366B2 (en) * 2008-07-14 2013-04-10 伊藤忠セラテック株式会社 Stucco material for mold manufacturing for precision casting and mold for precision casting using the same
US8307881B2 (en) 2009-01-06 2012-11-13 General Electric Company Casting molds for use in directional solidification processes and methods of making
CN104646633B (en) * 2013-11-20 2017-06-30 沈阳工业大学 The single crystal blade of local retractable labyrinth ceramic core preparation technology
JP6317995B2 (en) * 2014-05-08 2018-04-25 伊藤忠セラテック株式会社 Slurry filler material for manufacturing precision casting mold, slurry obtained by using the filler, and precision casting mold
JP2016002572A (en) * 2014-06-18 2016-01-12 伊藤忠セラテック株式会社 Slurry composition for manufacturing precision casting mold and manufacturing method of the same
JP6368596B2 (en) * 2014-09-11 2018-08-01 伊藤忠セラテック株式会社 Slurry composition for producing precision casting mold and method for producing the same
FR3068271B1 (en) 2017-06-29 2021-12-10 Safran Aircraft Engines FOUNDRY PROCESS WITH HOT MOLD CASTING
FR3071423B1 (en) 2017-09-22 2019-10-18 Safran FOUNDRY BARBOTINE
CN108115088B (en) * 2017-12-23 2020-01-21 青田保俐铸造有限公司 Investment shell casting process of gypsum composite polymer viscous mortar
FR3085286B1 (en) 2018-08-28 2021-08-06 Safran Aircraft Engines METHOD OF MANUFACTURING A MULTI-LAYER CERAMIC LAYER TEST, TEST OBTAINED BY THE IMPLEMENTATION OF SUCH MANUFACTURING PROCESS AND USE OF SUCH A TEST FOR A UNIAXIAL HOT COMPRESSION TEST
FR3103400B1 (en) 2019-11-21 2022-08-19 Safran Aircraft Engines FOUNDRY MOLD, METHOD FOR MAKING THE MOLD AND FOUNDRY METHOD

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859153A (en) * 1970-06-25 1975-01-07 Du Pont Refractory laminate having improved green strength
JPS51126922A (en) * 1975-04-30 1976-11-05 Hitachi Metals Ltd Investment casting mold
GB8911666D0 (en) * 1989-05-20 1989-07-05 Rolls Royce Plc Ceramic mould material
JPH07116773A (en) * 1993-10-20 1995-05-09 Mitsubishi Heavy Ind Ltd Production of casting mold for precision casting
US5618633A (en) * 1994-07-12 1997-04-08 Precision Castparts Corporation Honeycomb casting
JPH09155503A (en) * 1995-12-05 1997-06-17 Hitachi Ltd Mold for precision casting and method thereof
JPH09253790A (en) * 1996-03-27 1997-09-30 Kubota Corp Pluidized vessel for coating powdery and granular material
US5766329A (en) * 1996-05-13 1998-06-16 Alliedsignal Inc. Inert calcia facecoats for investment casting of titanium and titanium-aluminide alloys
JPH10156484A (en) * 1996-11-20 1998-06-16 Mitsubishi Heavy Ind Ltd Mold for precision casting
CN1101284C (en) * 1997-01-27 2003-02-12 联合讯号公司 Integrated crucible and mold for low cost 'gamma'-tial castings
US6431255B1 (en) * 1998-07-21 2002-08-13 General Electric Company Ceramic shell mold provided with reinforcement, and related processes
JP2000280047A (en) * 1999-03-31 2000-10-10 Meidensha Corp Lost-wax coating system
WO2001045876A1 (en) * 1999-12-21 2001-06-28 Howmet Research Corporation Crack resistant shell mold and method
US6582197B2 (en) * 2001-02-22 2003-06-24 Simon E. Coulson Method of investment casting with casting identification
US6648060B1 (en) * 2002-05-15 2003-11-18 Howmet Research Corporation Reinforced shell mold and method

Also Published As

Publication number Publication date
EP1595620A1 (en) 2005-11-16
FR2870147A1 (en) 2005-11-18
CA2507170C (en) 2012-12-11
US20050252634A1 (en) 2005-11-17
FR2870147B1 (en) 2007-09-14
CA2507170A1 (en) 2005-11-12
JP2005324253A (en) 2005-11-24
JP4937528B2 (en) 2012-05-23
US7318466B2 (en) 2008-01-15

Similar Documents

Publication Publication Date Title
EP1595620B1 (en) Broken mould moulding method
CA2527837C (en) Manufacturing process of ceramic refractory cores for turbine engine blades
JP5450976B2 (en) Equipment for making ceramic casting cores for turbomachine blades
EP1595618B1 (en) Lost wax pattern moulding process with contact layer
US20080000611A1 (en) Method for Forming Casting Molds
EP1854569B1 (en) Method of manufacturing foundry ceramic cores for turbomachine vanes
WO2018122516A1 (en) Cluster model and shell for obtaining an accessory for the independent handling of formed parts, and associated method
CA2759647C (en) Method for manufacturing an assembly including a plurality of blades mounted in a platform
CN111299510A (en) Preparation method of aluminum alloy casting shell
US6845811B2 (en) Reinforced shell mold and method
KR102599520B1 (en) A vacuum investment casting system and method of turbine wheel for a turbocharger
FR2954193A1 (en) Fabricating shell mold by foundry lost wax casting and wax model, comprises dipping wax model in slurry, depositing sand particles on slurry film, drying the film coated by sand particles, and incorporating pore forming agent to layers
CN1895816B (en) Lost-wax casting process
KR101755832B1 (en) Method of manufacturing precision cast parts for vehicle exhaust system
WO2021001633A1 (en) Method for manufacturing a metal part
EP0479672B1 (en) Soluble shell mould for foundry and method for disposal
FR3099999A1 (en) Additive manufacturing process for a foundry mold and manufacturing process for a metal part using said process
FR2666528A1 (en) PROCESS FOR PREPARING A FOUNDRY MOLD FROM ALVEOLARY FOAM AND CERAMIC BARBOTINS USED.
EP3487649B1 (en) Process for manufacturing a shell mold
FR3071422A1 (en) CERAMIC CARAPACE MOLD FOR LOST WAX FOUNDRY
FR3123365A1 (en) METHOD FOR COATING A PART IN REFRACTORY ALLOY AND PART THUS COATED.
FR3044569A1 (en) METHOD FOR MANUFACTURING CERAMIC MOLDS FOR LOST WAX FOUNDRY AND INSTALLATION FOR PERFORMING SUCH A METHOD
FR3115220A1 (en) Foundry shell mold for metal parts
FR2967364A1 (en) Fabricating shell molding pattern by applying refractory layers including discontinuous flax fibers on destructible pattern to form shell around pattern, heating shell to remove fibers by combustion, and solidifying molten metal material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20090528

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005029056

Country of ref document: DE

Effective date: 20110908

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120423

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005029056

Country of ref document: DE

Effective date: 20120423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230420

Year of fee payment: 19

Ref country code: DE

Payment date: 20230419

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 19