JPH09253790A - Pluidized vessel for coating powdery and granular material - Google Patents

Pluidized vessel for coating powdery and granular material

Info

Publication number
JPH09253790A
JPH09253790A JP7179096A JP7179096A JPH09253790A JP H09253790 A JPH09253790 A JP H09253790A JP 7179096 A JP7179096 A JP 7179096A JP 7179096 A JP7179096 A JP 7179096A JP H09253790 A JPH09253790 A JP H09253790A
Authority
JP
Japan
Prior art keywords
gas
fluidized
powder
bed
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7179096A
Other languages
Japanese (ja)
Inventor
Yoshie Shida
喜栄 至田
Takeshi Shinozaki
斌 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7179096A priority Critical patent/JPH09253790A/en
Publication of JPH09253790A publication Critical patent/JPH09253790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluidized vessel which can accurately stick powdery and granular materials to a material to be treated. SOLUTION: A venting bed 2 at the lower part of the vessel 1 and a gas supplying means 4 for supplying the gas from the lower part of the venting bed 2 are provided and the powdery and granular materials 9 to stick and coat the surface of the material 6 to be treated by the supplied gas are fluidized. A venting body 3 uniformly arranging disordered through-holes 3a over the whole surface, is provided on the venting bed 2 of the fluidized vessel for coating treatment to the powdery and granular materials, sticking the powdery and granular materials 9 on the material 6 to be treated by dipping the material 6 to be treated into the fluidized powdery and granular materials. Gas-tight pressure chamber 7A is formed at the lower part of the venting body 3 is formed and also, the gas supplying means 4 is arranged in the pressure chamber 7A so as to form a pressure space at the lower part of the venting bed 2 by supplied gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉粒体被覆処理用
流動槽に関し、詳しくは、容器の下方に通気床と、前記
通気床の下方から気体を供給する気体供給手段を備え、
前記供給される気体によって被処理物表面に付着させて
被覆すべき粉粒体を流動化して、前記流動化した前記粉
粒体の中に前記被処理物を浸漬して前記被処理物に前記
粉粒体を付着させる粉粒体被覆処理用流動槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid tank for coating powder or granular material, and more specifically, it comprises a vented bed below the container and a gas supply means for supplying gas from below the vented bed.
The powder to be adhered to the surface of the object to be treated is fluidized by the supplied gas, and the object to be treated is immersed in the fluidized granular material to the object to be treated. The present invention relates to a fluid tank for coating a powder or granular material to which powder or granular material is attached.

【0002】[0002]

【従来の技術】従来、例えば、精密鋳造の技術分野にお
いては、シェルモールド用のスタッコ材である鋳型材の
砂粒子を流動槽の容器内で流動化させ、その流動化させ
たスタッコ材の浮遊する層の中に精密鋳造用の模型を浸
漬して、前記スタッコ材の粒子を前記模型表面に付着さ
せて被覆し、造型する精密鋳型造型用流動槽としての粉
粒体被覆処理用流動槽が用いられているが、この流動槽
においては、図4(イ)に示すように、流動槽Fの容器
1には、その容器1を上下に2分する通気床2を設け、
その通気床2の上方を流動部10に形成し、前記通気床
2の下側に気体供給手段4を設けて給気部7を形成して
ある。前記通気床2として、前記スタッコ材9の粒子が
前記通気床2を透過して下方の給気部7内に落下するこ
とを防止し、同時に前記通気床2を通して上方の流動部
10に形成する前記スタッコ材9粒子の流動層17に供
給する気体(以下、給気と呼ぶ)を分散させるために、
細かい金網12aと、これを下方から支持する粗い金網
12bとを組み合わせたものが用いられている。そし
て、前記給気を供給するために、前記気体供給手段4と
して、前記通気床2の下方に、前記給気部7に横向きに
気密に挿入された、同図(ロ)に示すように上部に複数
の給気孔5aを備えて、上方に向けて気体を供給する複
数の気体供給管5が配置してあり、給気が上方に向けて
供給されるようにしてある。
2. Description of the Related Art Conventionally, for example, in the technical field of precision casting, sand particles of a mold material, which is a stucco material for shell mold, are fluidized in a container of a fluidized tank, and the fluidized stucco material floats. The model for precision casting is immersed in a layer to be coated, and the particles of the stucco material are adhered to the surface of the model to be coated, and a fluid tank for powdery granule coating treatment as a precision casting mold fluidizing tank for molding. In this fluidized vessel, as shown in FIG. 4 (a), the vessel 1 of the fluidized vessel F is provided with a vented floor 2 that divides the vessel 1 into upper and lower parts.
A fluidized portion 10 is formed above the ventilated floor 2, and gas supply means 4 is provided below the ventilated floor 2 to form an air supply portion 7. As the ventilation floor 2, particles of the stucco material 9 are prevented from passing through the ventilation floor 2 and falling into the air supply portion 7 below, and at the same time, are formed in the upper fluidized portion 10 through the ventilation floor 2. In order to disperse the gas (hereinafter referred to as air supply) to be supplied to the fluidized bed 17 of 9 particles of the stucco material,
A combination of a fine wire mesh 12a and a coarse wire mesh 12b that supports the wire mesh from below is used. Then, in order to supply the air supply, as the gas supply means 4, the air supply portion 7 is laterally and airtightly inserted below the aeration floor 2, as shown in FIG. Is provided with a plurality of air supply holes 5a, and a plurality of gas supply pipes 5 for supplying gas upward are arranged so that the supply air is supplied upward.

【0003】[0003]

【発明が解決しようとする課題】上記従来の精密鋳型造
型用流動槽においては、上述のように、通気床2が金網
12a,12bをもって構成されており、その通気床2
の下方の給気部7に設けられた気体供給管5の給気孔5
aから、その通気床2に向けて前記給気が吹き付けられ
るので、前記金網12a,12bは通気度が高く、その
金網を透過する気体の気流の方向に殆ど影響を及ぼさな
いために、前記給気の吹き付けられる方向に前記給気が
通過し、さらに、前記金網12bの下面には、前記給気
の気流の動圧と静圧が同時に加わり、前記給気孔5aか
ら噴出する給気が直接到達し、前記給気の動圧が均一に
作用しないので、前記通気床2上に前記スタッコ材9粒
子を流動化させるための給気が前記通気床2には均一に
は供給されず、前記給気孔5aの向かっている方向にあ
って前記給気の動圧の大きな前記通気床2の部分を通過
する気流は前記通気床2上の流動層11のスタッコ材9
粒子を強く押し上げ、この部分より前記給気が分散して
前記給気の動圧の小さくなっている他の部分を通過する
気流が前記通気床2上の流動層11のスタッコ材9粒子
を押し上げる強さは前者の部分よりも弱く、その結果、
前記給気流の流速にむらがある上に、前記流動層11の
通気抵抗に位置的なむらが生じ、前記通気床2上に形成
される流動層11の中で前記スタッコ材9粒子を流動化
させる給気の上昇流速が均一とならず、形成される流動
層11の流動状態が不均一になるという問題があった。
殊に、スタッコ材がジルコン砂の場合には、その粒子の
密度が大きいために、従来の構造では通気流が局部的に
偏るために、従来用いていた圧力では通気圧力が不足し
て、粉粒体を押し上げ得ず、圧力を高めると局部的に圧
力が加わり、給気圧力の位置的な変化が大きくなり、上
記問題は顕著となる。その結果として、前記通気床2の
面の方向にスタッコ材9の粒径の偏りを招くと同時に、
前記スタッコ材9粒子を充分に浮遊させ得ないので、前
記スタッコ材9を前記流動層11に浸漬することが困難
になり、さらに浸漬出来た部分の模型6の表面に近接す
る前記スタッコ材9粒子の粗密を招き、その結果、前記
表面に精度良く前記スタッコ材9粒子を付着させること
を困難にし、所望の精度を有するシェル鋳型が形成でき
ないという問題を招いていた。そこで、本発明の目的
は、上記の問題点を解決し、例えば、精密鋳造用のシェ
ル鋳型を造型する場合に、流動部を形成するスタッコ材
粒子に粒径の偏りを招くことなく、前記スタッコ材粒子
を均一に浮遊させる流動層を容易に形成出来て、精密鋳
造用鋳型の造型に際して、模型に精度良くスタッコ材粒
子を付着させることを可能とする、粉粒体を被処理物に
精度良く付着させることの出来る粉粒体被覆処理用流動
槽を提供するところにある。
In the above-described conventional precision casting mold fluidizing tank, as described above, the ventilation floor 2 is composed of the wire nets 12a and 12b.
Air supply hole 5 of the gas supply pipe 5 provided in the air supply unit 7 below
Since the supply air is blown toward the ventilation floor 2 from a, the wire nets 12a and 12b have a high air permeability and hardly affect the direction of the gas flow passing through the wire nets. The supply air passes in the direction in which the air is blown, and the dynamic pressure and static pressure of the air flow of the supply air are simultaneously applied to the lower surface of the wire net 12b, so that the supply air jetted from the supply hole 5a directly arrives. However, since the dynamic pressure of the supply air does not act uniformly, the supply air for fluidizing the stucco material 9 particles on the ventilation floor 2 is not uniformly supplied to the ventilation floor 2, The airflow passing through the portion of the ventilated floor 2 having a large dynamic pressure of the supply air in the direction of the pores 5a is a stucco material 9 of the fluidized bed 11 on the ventilated floor 2.
The particles are strongly pushed up, and the airflow is dispersed from this portion and passes through the other portion where the dynamic pressure of the air supply is small, and pushes up the stucco material 9 particles of the fluidized bed 11 on the aerated floor 2. The strength is weaker than the former part, and as a result,
In addition to the unevenness of the flow velocity of the air supply, the ventilation resistance of the fluidized bed 11 is locally uneven, and the stucco material 9 particles are fluidized in the fluidized bed 11 formed on the aerated bed 2. There was a problem that the rising flow velocity of the supplied air was not uniform and the fluidized state of the fluidized bed 11 formed was not uniform.
In particular, when the stucco material is zircon sand, the density of the particles is large, so the ventilation flow is locally biased in the conventional structure, and the ventilation pressure is insufficient at the pressure conventionally used, and powder If the particles cannot be pushed up and the pressure is increased, the pressure is locally applied, and the positional change of the supply pressure becomes large, and the above-mentioned problem becomes remarkable. As a result, the grain size of the stucco material 9 is biased in the direction of the surface of the ventilation floor 2, and at the same time,
Since the stucco material 9 particles cannot be sufficiently suspended, it becomes difficult to immerse the stucco material 9 in the fluidized bed 11, and the stucco material 9 particles that are close to the surface of the model 6 that can be further immersed. As a result, it is difficult to deposit the stucco material 9 particles on the surface with high accuracy, and a shell mold having desired accuracy cannot be formed. Therefore, the object of the present invention is to solve the above problems, for example, in the case of molding a shell mold for precision casting, without causing a deviation in the particle size of the stucco material particles forming the fluidized portion, the stucco A fluidized bed that uniformly suspends material particles can be easily formed, and it is possible to accurately attach stucco material particles to a model when molding a precision casting mold. The present invention is to provide a fluidized tank for coating powder particles that can be adhered.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

〔第1特徴構成〕上記の目的のための本発明の粉粒体被
覆処理用流動槽の第1特徴構成は、その上方に被覆処理
用の粉粒体の流動層を形成させるために、前記粉粒体を
支持すると同時に、前記流動層を形成させるために給気
を分散供給させるための通気床に、無秩序な方向の透孔
をその全面に亘って均一に有する通気体を備え、前記通
気体の下方に気密の加圧室を形成するとともに、前記気
体供給手段を前記加圧室に設けて、前記供給する気体に
よって前記通気床の下方に加圧空間を形成するようにし
た(請求項1に対応)点にある。 〔第1特徴構成の作用効果〕従って、上記第1特徴構成
によれば、通気体の下方に気密の加圧室を形成するとと
もに、気体供給手段を前記加圧室に設けて供給する気体
(以下、給気という)によって前記通気床の下方に加圧
空間を形成するように構成し、その加圧空間を給気の静
圧によって加圧するようにしたので、通気床の下方に均
一な圧力を及ぼすようになり、従来のように、前記通気
床に局部的に給気の動圧によって下方からの圧力が大き
くなる部分を生ずることがなく、この部分を通過する気
流が前記通気床上の流動層内の粉粒体を局部的に強く押
し上げることを防止出来、さらに、通気体を無秩序な透
孔をその全面に亘って均一に有するものとしたので、前
記無秩序な透孔によって、通過給気流の方向が透孔によ
って誘導されるので、前記通気体に充分な厚さを持たせ
れば前記通気体を通過する給気流の圧損が増大し、ま
た、仮に給気の流動方向に異なる部分があっても、前記
通気床の透孔を通過する気体は、前記透孔に誘導され
て、流動方向が分散させるので、通過後の流動方向が前
記通気床の下方の気流の方向に影響されず、前記粉粒体
の層の下部に均一な圧力を生ぜしめることが可能となる
結果、局部的に粉粒体を上方に持ち上げようとすること
を防止出来、前記給気が分散して均一な圧力で前記粉粒
体の層を上方に向けて透過しようとするので、良好な流
動層を形成し、前記粉粒体の粒子を前記通気床の面方向
に偏ることなく浮遊させることが出来る。尚、前記無秩
序な透孔とは、多数の透孔が夫々方向性を備えておら
ず、且つ、望ましくは、透孔が分岐を有して他と連通し
ているものを意味する。その結果、粉粒体被覆処理用流
動槽の流動部に形成する粉粒体を、粒径の前記通気床の
面方向の偏りを招くことなく、均一に浮遊させる流動層
を容易に形成することが可能となり、被処理物表面に粉
粒体を付着させて被処理物表面を被覆するに際して、被
処理物に満遍なく、従って、精度良く粉粒体を付着させ
ることが可能となる。尚、前記通気体の通気度は5〜1
0Nm3/m3/s程度であり、その透孔は口径が60〜
100μmであることが好ましい。さらに、前記通気体
は厚さが0.5〜3mmであればなお良い。 〔第2特徴構成及び作用効果〕尚、本発明の粉粒体被覆
処理用流動槽の第2特徴構成として、前記第1特徴構成
における粉粒体を精密鋳型形成用の耐火物粒子であるス
タッコ材とし、前記第1特徴構成における被処理物を精
密鋳型形成用の模型として精密鋳型造型に用いる(請求
項2に対応)ようにすれば、例えば、ジルコン砂のよう
に粒子密度の高い砂をスタッコ材として用いる場合に
も、粉粒体(ジルコン砂)を均一に浮遊させることがで
き、その浮遊した粉粒体の中に模型を挿入して、模型の
表面に付着するスタッコ材粒子を精度良く付着させるこ
とが可能になる。その結果、スタッコ材の流動層中に模
型を浸漬することによって、模型表面には精度良くスタ
ッコ粒が層を形成して、良好なシェル鋳型を形成するこ
とが可能になる。 〔第3特徴構成及び作用効果〕尚、本発明の粉粒体被覆
処理用流動槽の第3特徴構成として、前記第2特徴構成
における通気体としてフェルトを用いる(請求項3に対
応)ようにすれば、フェルトは羊毛等を縮絨して形成さ
れたものであり、従って、フェルトは多孔質体であり、
その透孔は無秩序に形成されており、且つ、フェルトは
適度に圧密されており、その通気度が適度に低いので、
その厚さが充分であれば、流動床用通気体としての良好
な特性を有している。つまり、透孔は複雑な曲線を描く
経路を有し、分岐し、且つ、他の透孔と連通してるので
ある。従って、フェルトの下方に給気の圧力を加える
と、その中を透過する給気流は、フェルト内の透孔に誘
導される結果、効果的な圧損を生じ、フェルト内で拡散
し、下方の給気流の方向の影響を抑制すると同時に、フ
ェルト透過後の給気流は分散して均一に上方のスタッコ
材の流動層に供給される。その結果、通気床の下方に動
圧の作用を及ぼすことを避けながら静圧を作用させるよ
うにしてあるので、流動層には前記通気床の上面から均
一な圧力を生ずる給気が供給されることになり、従っ
て、前記流動層内ではスタッコ粒がよく分散しながら浮
遊するようになり、浸漬する模型の表面に均一に、精度
良くスタッコ粒を付着させることが可能になる。尚、フ
ェルトは、圧密の度合いによっても異なるが、嵩密度が
0.25〜0.4g/cm3程度のものが好ましく、例
えば、通気度が15〜30Nm3/m3/s程度であれ
ば、その厚さが1〜10mmであることが好ましく、そ
の厚さが3〜5mmであればさらに好ましい。嵩密度が
0.25g/cm3より小さいと、透孔の開口径が大き
くなり、必然的に通気度が大となり、通気床の下方の動
圧或いは圧力分布の作用を通気床の上方に及ぼさないよ
うにするのに必要とするフェルトの厚さが極端に大きく
なり、通気床の構成を複雑なものにしがちであり、嵩密
度が0.4g/cm3よりも大きいと、透孔の開口径が
小さくなり、通気度が低下し、圧損が高まる結果、加圧
室の圧力を高くしなければならなくなり、加圧室及び通
気床の耐圧強度を高める必要を生じ、構造が大きく、且
つ、複雑になる結果を招き、何れも好ましくない。その
厚さは嵩比重に関連して定め得るものである。 〔第4特徴構成及び作用効果〕また、本発明の粉粒体被
覆処理用流動槽の第4特徴構成として、前記第2特徴構
成又は前記第3特徴構成における気体供給手段を、通気
床の下方で、前記通気床下面に沿う方向に配置し、且
つ、下方に向けて開口する複数の給気孔を備えた気体供
給管を設けて構成して(請求項4に対応)あればさらに
よく、このようにすれば、前記気体供給手段からの給気
流の動圧は前記加圧室の床面に作用するのみで、前記通
気床の下面に作用することなく、前記給気流によって前
記加圧室内を加圧することになり、従って、前記通気床
の下面には、均一な給気の静圧のみが作用するので、前
記通気床の下面から上面に向けて前記通気床の透孔に沿
って通過することになり、前記通気床の上面からは均一
な圧力を生ずる給気が、前記通気床の上方に形成される
スタッコ材の流動層に供給されるようになる。その結
果、前記第2特徴構成又は前記第3特徴構成の効果を確
実なものとすることが出来る。
[First Characteristic Structure] The first characteristic structure of the fluid tank for coating powder and granular material of the present invention for the above-mentioned purpose is to form a fluidized bed of the powder and granular material for coating processing above it. The ventilation bed for supporting the powdery particles and at the same time distributing and supplying the supply air to form the fluidized bed is provided with a ventilation body having perforations in random directions uniformly over the entire surface thereof. An airtight pressurizing chamber is formed below the gas, and the gas supply means is provided in the pressurizing chamber so that the pressurizing space is formed below the aeration floor by the supplied gas. (Corresponding to 1) point. [Operation and Effect of First Characteristic Configuration] Therefore, according to the first characteristic structure, an airtight pressurizing chamber is formed below the ventilation body, and a gas supply unit is provided in the pressurizing chamber to supply gas ( (Hereinafter referred to as air supply), a pressure space is formed below the aeration bed, and the pressure space is pressurized by the static pressure of the air supply. Therefore, unlike the conventional case, a portion where the pressure from below is increased due to the dynamic pressure of the supply air is not locally generated in the aerated bed, and the air flow passing through this portion causes the flow on the aerated bed. It is possible to prevent the powder and granules in the layer from being strongly pushed up locally, and furthermore, since the ventilation body is made to have the disordered through-holes evenly over its entire surface, the disordered through-holes allow the passing air supply to pass through. The direction of is guided by the through hole If the ventilation body has a sufficient thickness, the pressure loss of the supply air flow passing through the ventilation body increases, and even if there is a portion where the flow direction of the supply air is different, The passing gas is guided by the through holes to disperse the flow direction, so that the flow direction after passing is not affected by the direction of the air flow below the aeration bed, and is uniform in the lower part of the layer of the granular material. As a result, it is possible to prevent the powder and granules from being locally lifted upward, and the supply air is dispersed to raise the powder and granules layer upward with a uniform pressure. Since it tends to permeate toward the surface, a good fluidized bed can be formed, and the particles of the granular material can be suspended without being biased in the surface direction of the aerated bed. The disordered through-holes mean that a large number of through-holes are not directional, and preferably the through-holes have branches and communicate with each other. As a result, it is possible to easily form a fluidized bed in which the powder and granular material formed in the fluidized portion of the powder and granular material coating treatment tank is uniformly suspended without causing deviation of the particle diameter in the surface direction of the aerated bed. Therefore, when the powder or granular material is attached to the surface of the object to be processed to cover the surface of the object to be processed, it is possible to evenly adhere the particle to the object to be processed. The air permeability of the aeration body is 5 to 1
It is about 0 Nm 3 / m 3 / s, and the through hole has a diameter of 60-
It is preferably 100 μm. Furthermore, it is even better if the ventilator has a thickness of 0.5 to 3 mm. [Second Characteristic Configuration and Operation and Effect] As a second characteristic configuration of the fluid tank for coating powder and granular material of the present invention, the powder and granular material in the first characteristic configuration is stucco which is refractory particles for forming a precision mold. When the material to be processed in the first characteristic configuration is used as a model for forming a precision mold in precision mold making (corresponding to claim 2), sand having a high particle density such as zircon sand is used as a material. Even when used as stucco material, powder particles (zircon sand) can be suspended evenly, and the model is inserted into the suspended powder particles to accurately measure the stucco particles that adhere to the surface of the model. It becomes possible to adhere well. As a result, by immersing the model in the fluidized bed of stucco material, a layer of stucco particles can be accurately formed on the model surface, and a good shell mold can be formed. [Third Characteristic Configuration and Action and Effect] As a third characteristic configuration of the fluid tank for coating particles according to the present invention, a felt is used as a vent in the second characteristic configuration (corresponding to claim 3). If so, the felt is formed by compressing wool or the like, and thus the felt is a porous body,
The through holes are randomly formed, and the felt is appropriately compacted, and the air permeability thereof is appropriately low.
If the thickness is sufficient, it has good characteristics as a fluid bed ventilator. That is, the through hole has a path that draws a complicated curve, branches, and communicates with another through hole. Therefore, when the pressure of the charge air is applied below the felt, the charge air flow passing through the felt is induced by the through holes in the felt, resulting in effective pressure loss, diffusion in the felt, and the lower charge. At the same time as suppressing the influence of the direction of the air flow, the air supply after passing through the felt is dispersed and uniformly supplied to the fluidized bed of the upper stucco material. As a result, the static pressure is applied while avoiding the effect of the dynamic pressure below the aeration bed, so that the fluidized bed is supplied with the supply air that generates a uniform pressure from the upper surface of the aeration bed. Therefore, in the fluidized bed, the stucco particles are well dispersed while floating, and the stucco particles can be evenly and accurately adhered to the surface of the model to be dipped. It should be noted that the felt preferably has a bulk density of about 0.25 to 0.4 g / cm 3, although it depends on the degree of compaction, for example, if the air permeability is about 15 to 30 Nm 3 / m 3 / s. The thickness is preferably 1 to 10 mm, and more preferably 3 to 5 mm. When the bulk density is less than 0.25 g / cm 3 , the opening diameter of the through hole becomes large, and the air permeability is inevitably large, so that the dynamic pressure or the pressure distribution below the aeration bed exerts the action above the aeration bed. If the bulk density is larger than 0.4 g / cm 3 , the opening of the through holes will be excessively large because the felt thickness required to prevent it will be extremely large, and the structure of the aerated floor tends to be complicated. As a result of the smaller diameter, lower air permeability, and higher pressure loss, the pressure in the pressure chamber must be increased, and it becomes necessary to increase the pressure resistance of the pressure chamber and the aeration bed. Both of them are not preferable because they result in complicated results. Its thickness can be determined in relation to the bulk specific gravity. [Fourth Characteristic Configuration and Operation and Effect] As the fourth characteristic configuration of the fluid tank for coating powder and granular material of the present invention, the gas supply means in the second characteristic configuration or the third characteristic configuration is provided below the aeration bed. It is further preferable that the gas supply pipe is arranged in a direction along the lower surface of the ventilation floor and has a plurality of air supply holes that open downward (corresponding to claim 4). With this configuration, the dynamic pressure of the air supply from the gas supply means acts only on the floor surface of the pressurizing chamber, and does not act on the lower surface of the ventilating floor. Therefore, since only the static pressure of uniform air supply acts on the lower surface of the ventilation floor, it passes along the through holes of the ventilation floor from the lower surface to the upper surface of the ventilation floor. Therefore, the air supply from the upper surface of the ventilated floor creates uniform pressure. It will be supplied to the fluidized bed of stucco material formed above the ventilation floor. As a result, the effects of the second characteristic configuration or the third characteristic configuration can be ensured.

【0005】[0005]

【発明の実施の形態】上記本発明の粉粒体被覆処理用流
動層の実施の形態として、精密鋳型造型用流動槽の一例
について、以下に、図面を参照しながら説明する。図1
(イ)に本発明による粉粒体被覆処理用流動槽を用いて
シェル鋳型を形成するのに模型6Aにスタッコ粒9Aを
付着させるために用いる精密鋳型造型用流動槽を示す。
流動槽Fは、上端部を開放した円筒状の容器1の下部に
給気部7を設け、給気部7上端の位置に、その給気部7
と上方の流動部10とを区画する通気床2が設けられて
おり、前記給気部7は気体供給手段4を備えて気密の加
圧室7Aに形成されている。気体供給手段4は、加圧室
7Aの側壁部から気密に挿入されて通気床2に沿って配
設された気体供給管5を備えており、その気体供給管5
の下方に設けられた複数の給気孔5aから加圧室7A内
に気体が供給されるようにしてある。給気孔5aは、図
1(ロ)に軸切断面を示すように、断面視左右斜下方に
向けて設けられており、給気孔5aから供給される気体
(以下、給気という)は、左右に斜下方向に流出し、そ
の気流は加圧室7Aの底部に衝突し運動エネルギーが吸
収され、静圧によって加圧室7A内を加圧するようにな
る。前記通気床2は、多孔の通気体3と、その通気体3
を下方に支持する粗い金網13からなる下部支持体2b
と、下方からの給気によって通気体3が浮き上がること
と、上方に装入される粉粒体9であるスタッコ材9Aの
粒子が通気体3上に落下することとを防止するために、
細かい金網12からなる上部支持体2aとから構成され
ている。通気体3は一枚のフェルトで形成されている。
このフェルト3は厚さ3mmで、嵩密度が0.3g/c
3のもので、その通気度は20Nm3/m3/sであ
る。そして、このフェルトは、全体に亘って均一に透孔
3aを有し、この透孔3aは、フェルト3の縮充させた
繊維の間隙が形成しているもので、無秩序に形成されて
いる。つまり、透孔3aはフェルト3の上下面に連通す
ると同時に、フェルト3内においては曲がりくねった経
路を形成し、さらに、フェルト3の上下面に連通する他
の透孔3aとも連通している。従って、フェルト3の下
面から透孔3aを通じてフェルト3内に流入した給気
は、透孔3aに沿って方向を変えながら上昇すると同時
に、拡散し、フェルト3の上面から流動部10に流入す
ることになる。従って、フェルト3を透過する給気は、
フェルト3を通過する間に均圧される。さらに、フェル
ト3上面における透孔3aの開口部が拡大しているの
で、流出する給気は拡散流出する。上記のように方向を
変更しながら上昇するので、流動抵抗は増し、従って、
フェルト3を透過する給気の圧損が増大する。その結
果、フェルト3下面に加わる給気の圧力によってフェル
ト3を透過する給気は、フェルト3上面から流動部10
に充分に分散して拡散供給される。
BEST MODE FOR CARRYING OUT THE INVENTION As an embodiment of the fluidized bed for coating powder and granular material of the present invention, an example of a precision casting mold fluidizing tank will be described below with reference to the drawings. FIG.
(A) shows a precision casting mold forming fluidizing tank used for adhering stucco grains 9A to the model 6A to form a shell mold by using the fluidizing container for coating powder particles according to the present invention.
The fluid tank F is provided with an air supply unit 7 at the lower portion of a cylindrical container 1 having an open upper end, and the air supply unit 7 is provided at the upper end of the air supply unit 7.
A ventilation floor 2 for partitioning the above and the upper fluidized section 10 is provided, and the air supply section 7 is provided with a gas supply means 4 and is formed in an airtight pressurizing chamber 7A. The gas supply means 4 is equipped with a gas supply pipe 5 which is airtightly inserted from the side wall of the pressurizing chamber 7 </ b> A and arranged along the ventilation floor 2.
The gas is supplied into the pressurizing chamber 7A from a plurality of air supply holes 5a provided below. The air supply hole 5a is provided so as to be directed obliquely downward to the left and right in a sectional view, as shown in the axial cut surface in FIG. 1B, and the gas supplied from the air supply hole 5a (hereinafter, referred to as air supply) is left and right. Then, the airflow collides with the bottom of the pressurizing chamber 7A, the kinetic energy is absorbed, and the interior of the pressurizing chamber 7A is pressurized by static pressure. The ventilation floor 2 includes a porous ventilation body 3 and the ventilation body 3
Lower support 2b consisting of a coarse wire mesh 13 for supporting the lower part
In order to prevent the ventilation body 3 from rising due to air supply from below, and to prevent the particles of the stucco material 9A, which is the powdery or granular material 9 charged upward, from falling onto the ventilation body 3,
The upper support 2a is composed of a fine wire mesh 12. The ventilation body 3 is formed of one sheet of felt.
This felt 3 has a thickness of 3 mm and a bulk density of 0.3 g / c.
intended m 3, the air permeability is 20Nm 3 / m 3 / s. The felt has through-holes 3a uniformly throughout, and the through-holes 3a are formed randomly because of the gaps between the fibers filled with the felt 3. That is, the through hole 3a communicates with the upper and lower surfaces of the felt 3, forms a meandering path in the felt 3, and further communicates with other through holes 3a communicating with the upper and lower surfaces of the felt 3. Therefore, the supply air flowing from the lower surface of the felt 3 into the felt 3 through the through holes 3a rises while changing the direction along the through holes 3a, at the same time, diffuses and flows into the flow section 10 from the upper surface of the felt 3. become. Therefore, the supply air passing through the felt 3 is
The pressure is equalized while passing through the felt 3. Furthermore, since the opening of the through hole 3a on the upper surface of the felt 3 is enlarged, the outflowing air diffuses out. As it changes direction and rises as above, the flow resistance increases and therefore
The pressure loss of the supply air passing through the felt 3 increases. As a result, the supply air passing through the felt 3 by the pressure of the supply air applied to the lower surface of the felt 3 flows from the upper surface of the felt 3 to the flow part 10
It is sufficiently dispersed and diffusely supplied.

【0006】図1に示した流動槽Fには、前記通気床2
の上方の流動部10にはジルコン砂からなるスタッコ材
9Aが装入される 。そして、装入されたスタッコ材9
Aの層を前記通気床2を透過して昇する気流によって流
動化させて流動層11を形成するようにしてある。上記
のようにフェルト3からは給気が拡散供給されるので、
スタッコ材9Aの層の下面下に均一な圧力を生じ、スタ
ッコ材9A粒の間隙を通じて給気が均一に上昇し、スタ
ッコ材9Aを浮上させて流動層11を形成する。
The fluidized tank F shown in FIG.
A stucco material 9A made of zircon sand is charged in the fluidized portion 10 above the. And the inserted stucco material 9
The layer A is fluidized by the air flow passing through the aerated bed 2 and rising to form the fluidized bed 11. As mentioned above, since the air supply is diffusely supplied from the felt 3,
A uniform pressure is generated below the lower surface of the layer of stucco material 9A so that the supply air uniformly rises through the gaps between the grains of stucco material 9A to float the stucco material 9A and form the fluidized bed 11.

【0007】上述の精密鋳型形成用流動槽Fを用いるシ
ェル鋳型の形成方法について説明すると、図2に示すよ
うに、流動槽Fの流動部10にジルコン砂9Aを装入し
ておき、下方の給気部7の気体供給管5から圧力5〜1
0MPaの空気を供給してジルコン砂9Aを流動化して
流動層11を形成させておく。前記気体供給管5からの
給気の圧力を5〜10MPaとしたのは、厚さ3mm、
嵩密度0.3g/cm 3で、通気度が20Nm3/m3
sのフェルト3を用いたのに対応するもので、前記流動
層11の下方から加わる圧力は7〜15MPaとなり、
給気は充分に分散して、スタッコ材9粒の浮遊状態の良
好な流動層が形成される。予め恒温室で精密に成形され
たロウ模型6Aをインベストメント・スラリに浸漬し、
そのロウ模型6Aを、インベストメント・スラリが乾燥
しない間に図2(イ)→(ロ)に示すように、流動層1
1の表面から流動層11中に挿入する。挿入した前記ロ
ウ模型6Aの表面には、図3(イ)に示すように、その
周囲の空間に浮遊するジルコン砂9A粒がロウ模型6A
の表面のインベストメント・スラリ膜に付着する。ジル
コン砂9Aが付着すると、図2(ハ)に示すようにロウ
模型6Aを流動層11から引き上げる。一度の挿入操作
ではジルコン砂9A層が充分な厚さにはならないので、
再度ジルコン砂9A粒付着後のロウ模型6Aを流動層1
1中に繰り返し挿入操作してジルコン砂9Aを付着させ
て、図3(ロ)に示すような付着層8で被覆されたロウ
模型6Aを得る。尚、上記ジルコン砂等のスタッコ材を
ロウ模型に付着させる操作をサンディングと言うが、上
記サンディングの繰り返しの初期の段階ではスタッコ材
の粒径は小さくするのが好ましく、100〜300μm
程度のものが好ましく、この程度の粒径の肌砂を用いる
ことによって鋳肌を良好なものに出来るので、ロウ模型
に接する部分を細かい耐火物で覆い、後のサンディング
に用いるスタッコ材は粗い耐火物を用いて、細かい耐火
物の層を補強する。この粗い耐火物は精密鋳型内での通
気性を良好にするものでもあり、300〜1000μm
程度のものが好ましい。このようにして、ロウ模型をス
タッコ材で被覆して精密鋳型を形成し、インベストメン
ト・スラリを乾燥させたのち、脱ロウして精密鋳造の用
に供する。
A system using the above-described precision mold forming fluid tank F
The method for forming the mold is shown in Fig. 2.
Then, the zircon sand 9A is charged into the fluidizing portion 10 of the fluidizing tank F.
Aside from the gas supply pipe 5 of the lower air supply unit 7, the pressure is 5 to 1
Supplying 0 MPa air to fluidize the zircon sand 9A
The fluidized bed 11 is formed. From the gas supply pipe 5
The supply pressure was set to 5 to 10 MPa because the thickness was 3 mm,
Bulk density 0.3g / cm ThreeAnd the air permeability is 20 NmThree/ MThree/
It corresponds to the use of felt 3 of s
The pressure applied from below the layer 11 is 7 to 15 MPa,
Air supply is well dispersed, and 9 stucco materials are in good floating condition.
A favorable fluidized bed is formed. Preformed in a thermostatic chamber
Dip the wax model 6A into the investment slurry,
The investment slurry is dried on the wax model 6A.
In the meantime, as shown in FIG. 2 (a) → (b), the fluidized bed 1
1 into the fluidized bed 11 from the surface. The inserted b
3) On the surface of the model 6A, as shown in FIG.
Zircon sand 9A particles floating in the surrounding space are wax model 6A
It adheres to the investment slurry film on the surface of. Jill
When the Kon sand 9A adheres, as shown in FIG.
The model 6A is pulled up from the fluidized bed 11. One-time insert operation
Then, since the 9A layer of zircon sand does not have a sufficient thickness,
The wax model 6A after the 9A particles of zircon sand were adhered again to the fluidized bed 1
Insert zircon sand 9A by repeating insertion operation in 1
The wax coated with the adhesion layer 8 as shown in FIG.
Obtain the model 6A. In addition, the above stucco material such as zircon sand
The operation of attaching to the wax model is called sanding.
Stucco wood in the early stages of repeated sanding
The particle size of is preferably small, 100-300 μm
It is preferable that the size is about the same, and skin sand with this size is used.
By doing so, the casting surface can be improved, so a wax model
Cover the part in contact with a fine refractory, and then sand
The stucco material used for is a coarse refractory and a fine refractory
Reinforce layers of objects. This coarse refractory will pass through in a precision mold.
It also improves the temper and is 300-1000 μm.
Something is preferable. In this way, the wax model
It is covered with taco material to form a precision mold.
After drying the slurry, dewaxing and precision casting
To serve.

【0008】次に、本発明の他の実施の形態について説
明する。 〈1〉上記実施の形態においては、被処理物6を精密鋳
造に用いるロウ模型6Aとし、粉粒体9としてスタッコ
材9Aを付着させる例を示したが、本発明の粉粒体被覆
処理用流動槽はこの用途に限らず、例えば粉末塗装等の
ような粉粒体を固体表面に付着させる処理には好適に用
い得る。例えば、粉粒体9として、熱融着塗料の一種で
あるテフロンの粉末を前記通気床2上に装填して流動層
11を形成し、適宜過熱した被処理物6を浮遊するテフ
ロン粉末中に浸漬しすれば、その被処理物6の表面にテ
フロンを融着させることが容易に行えるようになる。 〈2〉上述の他、本発明の流動槽は、粉粒体の分級にも
利用可能である。つまり、上述のとおり、給気が微細孔
から無方向に分散して流動層11に供給されるので、給
気が均一化された分散状態で前記流動層11内を上昇す
るので、浮力によって粉粒体を分級することも可能であ
る。つまり、粒径分布を広く有する粉粒体を通気床2上
に装填して、給気量を段階的に次第に増加しつつ、各給
気量増加の段階で、流動層の上層部を取り出すことによ
り、給気の上昇線速度に対応した粒径(狭い粒径範囲)
の粉粒体に分別できる。これは、先述のように、給気の
偏流が少なく、前記流動層11の上表面部全面に亘って
均等な線速度で上昇する給気の上昇気流によって粉粒体
を浮遊させることが出来るからである。 〈3〉上記実施の形態には、気体供給手段4として通気
床2に沿って気体供給管5を配設し、その気体供給管5
に複数の下方に向けて開口する給気孔5aを設けた例を
示したが、この気体供給手段4は通気体3の下面に動圧
を作用させるような気流を生じないものであればよく、
従って、前記給気孔5aの位置及び開口方向は前記実施
の形態の記載に限られるものではない。さらに、前記給
気部7を上下に区画する通気性の隔壁を設けて、前記隔
壁の下方に給気管を設けるというように給気管を通気床
2に対して間接的に配置してあってもよく、また、気体
供給管5を給気部の壁部に開口させ、その開口部に多孔
質体を設けて、給気が分散して、気流が通気体3の下面
に全圧の分布を生じないようにしてあってもよい。 〈4〉前記通気床の上・下部支持体2a,2bは、金網
12,13でなくても良く、上部支持体2aは、下方か
らの給気の圧力に対して通気体3の上方への浮き上がり
を防止できるものであれば良く、下部支持体2bに比し
て強度を要せず、また、下部支持体2bは、通気床2の
上方に充填される粉粒体9の重量に対して、及び、充填
された粉粒体9の形成する流動層11の通気抵抗によっ
て通気床2の上方に生ずる背圧に耐え得るものであれば
良く、上・下部支持体2a,2b共に、格子状体であっ
てもよく、また、平行体であってもよく、上記の要求を
満たす強度を有すれば良い。 〈5〉上記実施の形態においては、通気体3を、厚さ3
mm、嵩密度0.3g/cm3で、通気度が20Nm3
3/sの一枚のフェルトで構成するものを示したが、
フェルトの枚数は一枚に限るものではなく、また、厚
さ、嵩比重、通気度も上記の諸元に限定されるものでも
なく、所要の給気に対する流動抵抗及び給気の拡散を達
成できればよく、また、この通気体3の材料はフェルト
に限るものでもなく、多孔質体であって、上述の要件を
満たすものであれば、合成樹脂、焼結金属等であっても
良い。 〈6〉上記実施の形態においては、シェル鋳型を形成す
るスタッコ材9Aとしてジルコン砂を用いる例を示した
が、オリビン砂、硅砂等の鋳物砂、セラミック粉末等も
使用可能である。さらに、シェル鋳型用に限らず、ソリ
ッド・モールドにも適用可能である。 〈7〉上記実施の形態においては、気体供給管5からの
供給気体の圧力を5〜10MPaとしたが、この圧力は
通気体3及び流動層11の通気特性並びに流動層11の
流動化特性に依存するもので、5〜10MPaに限定さ
れるものではない。 〈8〉上記実施の形態においては、初期の段階でのスタ
ッコ材の粒径を100〜 300μm程度、後のスタッコに用いるスタッコ材の粒
径を300〜1000μm程度のものが好ましいとした
が、鋳造金属に応じて適宜変更することが好ましく、ス
タッコ材の粒径を上記の範囲に限定するものではない。
Next, another embodiment of the present invention will be described. <1> In the above-described embodiment, an example in which the object 6 to be processed is the wax model 6A used for precision casting and the stucco material 9A is attached as the powder 9 has been described. The fluidized tank is not limited to this application, but can be suitably used for a treatment for adhering powdery or granular material onto a solid surface such as powder coating. For example, Teflon powder, which is a kind of heat-sealing paint, is loaded on the aeration bed 2 as the granular material 9 to form the fluidized bed 11, and the appropriately heated object 6 is suspended in Teflon powder. By dipping, it becomes easy to fuse Teflon to the surface of the object 6 to be processed. <2> In addition to the above, the fluidized tank of the present invention can also be used for classification of powder and granules. That is, as described above, since the air supply is non-directionally distributed from the fine holes and supplied to the fluidized bed 11, the air supply rises in the fluidized bed 11 in a uniform and dispersed state, so that the buoyancy causes the powder to flow. It is also possible to classify the granules. That is, the granular material having a wide particle size distribution is loaded on the aeration bed 2, and the air supply amount is gradually increased, and the upper layer portion of the fluidized bed is taken out at each increase of the air supply amount. The particle size corresponding to the rising linear velocity of the air supply (narrow particle size range)
Can be separated into powder and granules. This is because, as described above, the uneven distribution of the supply air is small, and the powdery particles can be suspended by the upward airflow of the supply air that rises at a uniform linear velocity over the entire upper surface of the fluidized bed 11. Is. <3> In the above-described embodiment, the gas supply pipe 5 is provided as the gas supply means 4 along the aerated floor 2, and the gas supply pipe 5 is provided.
Although an example in which a plurality of air supply holes 5a opening downward are provided in the above, the gas supply means 4 may be any one as long as it does not generate an air flow that exerts a dynamic pressure on the lower surface of the ventilation body 3,
Therefore, the position and opening direction of the air supply hole 5a are not limited to those described in the above embodiment. Further, even if a gas-permeable partition wall that divides the air supply unit 7 into upper and lower parts is provided and an air supply pipe is provided below the partition wall, the air supply pipe may be indirectly arranged with respect to the ventilation floor 2. Well, the gas supply pipe 5 is opened in the wall of the air supply part, and a porous body is provided in the opening so that the air supply is dispersed and the air flow distributes the total pressure on the lower surface of the ventilation body 3. It does not have to occur. <4> The upper and lower supports 2a and 2b of the ventilation floor do not have to be the wire nets 12 and 13, and the upper support 2a moves upwards of the ventilation body 3 against the pressure of air supply from below. Any material can be used as long as it can prevent floating, and does not require strength as compared with the lower support body 2b, and the lower support body 2b has a weight relative to the weight of the granular material 9 filled above the aeration floor 2. , And the back pressure generated above the aeration floor 2 due to the ventilation resistance of the fluidized bed 11 formed by the filled powder and granules 9, both the upper and lower supports 2a and 2b are in a grid shape. It may be a body or a parallel body as long as it has the strength satisfying the above requirements. <5> In the above embodiment, the ventilation member 3 has a thickness of 3
mm, bulk density 0.3 g / cm 3 , air permeability 20 Nm 3 /
The one composed of one felt of m 3 / s is shown,
The number of felts is not limited to one, and the thickness, bulk specific gravity, and air permeability are not limited to the above specifications, and if the flow resistance to the required air supply and the diffusion of the air supply can be achieved. Of course, the material of the ventilation body 3 is not limited to felt, but may be synthetic resin, sintered metal, or the like as long as it is a porous body and satisfies the above requirements. <6> In the above-described embodiment, an example of using zircon sand as the stucco material 9A forming the shell mold is shown, but casting sand such as olivine sand and silica sand, ceramic powder, and the like can also be used. Further, it is applicable not only to the shell mold but also to the solid mold. <7> In the above embodiment, the pressure of the gas supplied from the gas supply pipe 5 is set to 5 to 10 MPa, but this pressure affects the ventilation characteristics of the ventilation body 3 and the fluidized bed 11 and the fluidization characteristics of the fluidized bed 11. However, it is not limited to 5 to 10 MPa. <8> In the above embodiment, it is preferable that the grain size of the stucco material in the initial stage is about 100 to 300 μm and the grain size of the stucco material used for the subsequent stucco is about 300 to 1000 μm. It is preferable to change it appropriately according to the metal, and the particle size of the stucco material is not limited to the above range.

【0009】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の粉粒体被覆処理用流動槽の一例を示す
説明用断面図
FIG. 1 is an explanatory cross-sectional view showing an example of a fluid tank for coating powder and granules of the present invention.

【図2】本発明の一適用例としての精密鋳型造型用流動
槽の使用説明図
FIG. 2 is an explanatory view of the use of a precision casting mold flow tank as an application example of the present invention.

【図3】本発明の粉粒体被覆処理用流動槽の被覆作用説
明図
FIG. 3 is an explanatory view of the coating operation of the fluid tank for coating powder and granular material of the present invention.

【図4】従来の精密鋳型造型用流動槽の説明図FIG. 4 is an explanatory view of a conventional precision casting mold flow tank.

【符号の説明】[Explanation of symbols]

1 容器 2 通気床 3 通気体 3a 通気体の内部の透孔 4 気体供給手段 5 気体供給管 5a 給気孔 6 被処理物 6A 模型 7A 加圧室 9 粉粒体 9A スタッコ材 DESCRIPTION OF SYMBOLS 1 Container 2 Aeration floor 3 Aeration body 3a Through hole inside a ventilation body 4 Gas supply means 5 Gas supply pipe 5a Air supply hole 6 Object to be treated 6A Model 7A Pressurization chamber 9 Powder granules 9A Stucco material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 容器(1)の下方に通気床(2)と、前
記通気床(2)の下方から気体を供給する気体供給手段
(4)を備え、前記供給される気体によって被処理物
(6)表面に付着させて被覆すべき粉粒体(9)を流動
化して、前記流動化した粉粒体の中に前記被処理物
(6)を浸漬して前記被処理物(6)に前記粉粒体
(9)を付着させる粉粒体被覆処理用流動槽であって、 前記通気床(2)に、無秩序な透孔(3a)をその全面
に亘って均一に有する通気体(3)を備え、前記通気体
(3)の下方に気密の加圧室(7A)を形成するととも
に、前記気体供給手段(4)を前記加圧室(7A)に設
けて前記供給する気体によって前記通気床(2)の下方
に加圧空間を形成するようにした粉粒体被覆処理用流動
槽。
1. An aeration bed (2) below a container (1), and a gas supply means (4) for supplying a gas from below the aeration bed (2), the object to be treated by the supplied gas. (6) The granular material (9) to be adhered to the surface to be coated is fluidized, and the article to be treated (6) is immersed in the fluidized granular material to form the article to be treated (6). A fluid tank for coating a powder or granules to which the powder or granules (9) are attached to, wherein the ventilating bed (2) has random through holes (3a) uniformly over its entire surface ( 3), an airtight pressurizing chamber (7A) is formed below the ventilation body (3), and the gas supply means (4) is provided in the pressurizing chamber (7A) to supply the gas. A fluid tank for coating powder and granules, wherein a pressurized space is formed below the aerated floor (2).
【請求項2】 前記粉粒体(9)を精密鋳型形成用のス
タッコ材(9A)とし、前記被処理物(6)を精密鋳型
形成用の模型(6A)とした精密鋳型造型に用いる請求
項1記載の粉粒体被覆処理用流動槽。
2. A method for use in precision mold making, wherein the granular material (9) is used as a stucco material (9A) for forming a precision mold, and the object (6) is used as a model (6A) for forming a precision mold. Item 2. A fluidized tank for coating powder or granules according to item 1.
【請求項3】 前記通気体(3)としてフェルトを用い
る請求項2記載の粉粒体被覆処理用流動槽。
3. The fluid tank for coating powder particles according to claim 2, wherein a felt is used as the ventilation body (3).
【請求項4】 前記気体供給手段(4)に、前記通気床
(2)の下方に、前記通気床(2)下面に沿う方向に配
置し、且つ、下方に向けて開口する複数の給気孔(5
a)を備えた気体供給管(5)を設けて構成してある請
求項2又は3に記載の粉粒体被覆処理用流動槽。
4. A plurality of air supply holes arranged in the gas supply means (4) below the ventilation floor (2) in a direction along the lower surface of the ventilation floor (2) and opening downward. (5
The fluid tank for powder-particle coating treatment according to claim 2 or 3, wherein a gas supply pipe (5) having a) is provided.
JP7179096A 1996-03-27 1996-03-27 Pluidized vessel for coating powdery and granular material Pending JPH09253790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7179096A JPH09253790A (en) 1996-03-27 1996-03-27 Pluidized vessel for coating powdery and granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7179096A JPH09253790A (en) 1996-03-27 1996-03-27 Pluidized vessel for coating powdery and granular material

Publications (1)

Publication Number Publication Date
JPH09253790A true JPH09253790A (en) 1997-09-30

Family

ID=13470731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7179096A Pending JPH09253790A (en) 1996-03-27 1996-03-27 Pluidized vessel for coating powdery and granular material

Country Status (1)

Country Link
JP (1) JPH09253790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324253A (en) * 2004-05-12 2005-11-24 Snecma Moteurs Lost-wax casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324253A (en) * 2004-05-12 2005-11-24 Snecma Moteurs Lost-wax casting method

Similar Documents

Publication Publication Date Title
JP4980233B2 (en) Pulp mold and usage of pulp mold
US20030133822A1 (en) Method and apparatus for producing free-form products
CA1050727A (en) Vacuum bonded dry sand cores
JPH06504321A (en) Equipment for coating hollow workpieces using gas diffusion
US20210356310A1 (en) Particulate height calculations from pressure gradients
US2987413A (en) Process and apparatus for producing continuous coatings
GB1572860A (en) Casting metal articles
JPH09253790A (en) Pluidized vessel for coating powdery and granular material
EP0599507B1 (en) Lost foam processes for casting ferrous metals
US3362463A (en) Method of making a porous investment mold
US5169577A (en) Molding a component by blowing powder into a porous mold
US3099493A (en) Supports for aerating particulate materials
US2729194A (en) Apparatus for dusting plastic film and like sheet material
CN215542740U (en) Material screening device
Hayert et al. Fluidization control in the Wurster coating process
JPH04224604A (en) Preparation of part from metal powder or ceramic powder
CN108495719A (en) Improved aerosol apparatus for coating and method
US20200269512A1 (en) Gas supply control for conditioning particulate material
JPH10204384A (en) Fluidized bonding method and apparatus therefor
JPS6246233B2 (en)
JPS595474Y2 (en) sand flow tank
JP4715717B2 (en) Porous body manufacturing apparatus and porous body manufacturing method
JP2514533B2 (en) Model coating layer forming device made of foamed synthetic resin.
JPH09141185A (en) Method for powder coating
JPS62247833A (en) Method for continuously granulating powder