EP1595096A1 - Doppel wandiges behältnis für kryogene flüssigkeiten - Google Patents

Doppel wandiges behältnis für kryogene flüssigkeiten

Info

Publication number
EP1595096A1
EP1595096A1 EP04711952A EP04711952A EP1595096A1 EP 1595096 A1 EP1595096 A1 EP 1595096A1 EP 04711952 A EP04711952 A EP 04711952A EP 04711952 A EP04711952 A EP 04711952A EP 1595096 A1 EP1595096 A1 EP 1595096A1
Authority
EP
European Patent Office
Prior art keywords
container
inner container
parts
fiber
outer container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04711952A
Other languages
English (en)
French (fr)
Inventor
Klaus Brunnhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna Steyr Fahrzeugtechnik GmbH and Co KG
Original Assignee
Steyr Daimler Puch Fahrzeugtechnik AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steyr Daimler Puch Fahrzeugtechnik AG and Co KG filed Critical Steyr Daimler Puch Fahrzeugtechnik AG and Co KG
Publication of EP1595096A1 publication Critical patent/EP1595096A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • F17C3/06Vessels not under pressure with provision for thermal insulation by insulating layers on the inner surface, i.e. in contact with the stored fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • F17C2203/015Bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/227Assembling processes by adhesive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0194Applications for fluid transport or storage in the air or in space for use under microgravity conditions, e.g. space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/918Spacing element for separating the walls of a spaced-wall container

Definitions

  • the invention relates to containers for cryogenic liquids, which consist of an inner container and an outer container, which are positioned relative to one another and thermally decoupled from one another by a vacuum insulation layer.
  • Cryogenic liquids are to be understood as liquefied gases, for example helium, nitrogen or oxygen, but in particular hydrogen. In the liquid state, their temperature is only a few degrees Kelvin.
  • Such containers are used in space travel and will also be used in motor vehicle construction in the future. In these applications, low weight and the best thermal insulation are important.
  • Known generic containers for liquid hydrogen consist of metal, mostly of a light metal. Nevertheless and despite the storage, for example at atmospheric pressure, wall thicknesses are required for reasons of the required precise assignment of the inner and outer containers, in the vacuum in between, for reasons of strength and security, which still make such containers very difficult.
  • a container made of fiber-reinforced material is known from space travel (US 3,392,865), but its wall is made up of a number of different layers (including an insulation layer and a gas collection layer), but they are not two containers built into one another.
  • the inner container and outer container each consist of prepared fiber-reinforced elements (in in the technical field called "prepregs"), which are each wrapped together with a filament and connected to one another in this way, and that supports are provided for the relative positioning of the inner container with respect to the outer container, which also consist of a fiber-reinforced plastic.
  • Both the outer container and the inner container each consist of fiber-reinforced elements, each of which is held together by wrapping it in such a way that it can withstand the forces that arise.
  • the supports integrated in one way or another with the inner container solve the problem of sufficient precise assignment and relative mobility with different thermal expansions Because of their attachment to the inner container, they are easy to manufacture and assemble, and the elements can be combined in different ways or in several processing stages Container be assembled.
  • the inner container and outer container each consist of parts, each of which is composed of prepared fiber-reinforced elements (for example prepregs or tubes), which parts adjoin one another along certain joining lines and are subsequently wrapped together with a filament.
  • the filament is usually and advantageously the same as the fibers of the elements themselves (claim 2).
  • the inner container consists of carbon fibers and the outer container consists of glass fibers, each in a matrix made of epoxy resin (claim 4).
  • Carbon fibers have a particularly low thermal conductivity at low temperatures, glass fibers at room temperature.
  • the supports consist of fiber-reinforced parts which are connected to the fiber-reinforced elements or are in one piece (claim 5).
  • the supports can be made from prepared parts.
  • the supports are attached to the inner container and wound together with the fiber-reinforced elements by a filament (claim 6).
  • the supports are made of the same material as the inner container, thus practically form no thermal bridges to the outer container and still ensure the exact positioning of the inner container in the outer container, even with changing temperatures.
  • the supports on the inner container are individual by repeatedly wrapping the collar constructed with fiber-reinforced epoxy resin (claim 7).
  • the supports on the inner container are individual by repeatedly wrapping the collar constructed with fiber-reinforced epoxy resin (claim 7).
  • the supports on the inner container are individual by repeatedly wrapping the collar constructed with fiber-reinforced epoxy resin (claim 7).
  • they consist of carbon fibers in an epoxy resin matrix, they form because of this minimal thermal conductivity, practically no thermal bridges.
  • the adjoining parts of the vacuum space between the inner container and the outer container advantageously contain a multi-layer insulation which alternately consists of porous and reflective layers (claim 8).
  • containers constructed according to the invention can be of any shape as long as their contour does not have any noteworthy concave surface parts
  • the container in a preferred embodiment of the invention the container is axially symmetrical, it consists of a cylindrical, tubular middle part and end caps on both sides.
  • the middle section and end caps are each composed of prepared fiber-reinforced elements and connected to each other on joint lines lying in normal axes.
  • the middle part is then a prefabricated tube and the calottes are composed of prepregs (claim 9). This shape results in particularly favorable tension conditions, also with regard to the vacuum prevailing between the inner and outer container, and is particularly well suited for simple and quick assembly.
  • the cylindrical fitting surface suitable for gluing is arranged in the inner container such that the cylindrical central part overlaps the calottes on the inside and the cylindrical central part overlaps the calotte on the outer container (claim 10).
  • the adhesive points are stressed by the vacuum between the inner and outer container, which increases their durability, the subsequent wrapping under tension increases this effect even more.
  • the supports on the inner container are individual collars constructed by repeatedly wrapping the cylindrical middle part with fiber-reinforced epoxy resin (claim 11).
  • the calottes For centering and rotating the workpiece during wrapping, the calottes have a centering slug at the intersection with their axis of symmetry (claim 12). For this purpose, it has a central longitudinal opening (claim 13), through which the supply and discharge of the content takes place and other apparatus can be introduced into the container.
  • the centering slug of the inner container can also serve to center it with respect to the outer container. In this way, the pipe connections to the inside are made where there are minimal relative displacements of the two container walls to each other and where it is easiest through existing openings. This also leaves the large areas of the container walls free for undisturbed wrapping, which considerably simplifies their manufacture.
  • FIG. 1 a view of the subject of the invention, partially torn open
  • FIG. 2 a section according to AA in FIG. 1
  • FIG. 3 detail A in FIG. 2, enlarged
  • FIG. 4 detail B in FIG. 2, enlarged
  • Fig. 5 Detail C in Fig. 2, enlarged.
  • the container 1 and 2 show a container for cryogenic liquids, which consists of an inner container, generally designated 1, and an outer container, likewise designated 2.
  • the container can be of almost any shape, for example cuboid or box-shaped, or also axially symmetrical, then 3 is the axis of symmetry 3.
  • the inner container 1 consists of a central part 5 and end parts 6, 7. These parts 5, 6, 7 are composed of fiber-reinforced elements or are themselves such.
  • the end parts 6, 7 are composed in a manner known per se from prepared mats 14 (prepregs), which in turn consist of fibers in a plastic - in particular epoxy resin matrix.
  • prepregs prepared mats 14
  • these elements 14 are placed in a mold and then pressed to the part under the action of heat.
  • the central part 5 is essentially cylindrical and can be produced in the same way. If the central part is a circular cylinder, a piece of a tube made of fiber-reinforced plastic can be used. Centering slugs 8, 9 are formed in the end parts 6, 7, preferably already during manufacture from the elements 14. These three parts are joined together along the joining lines 21, 22 and wrapped with a filament 10, so that they are held together by this wrapping, with or without previous gluing. The centering slugs 8, 9 serve already at this stage for centering in the machine which carries out the wrapping. Another benefit comes from the fact that they are longitudinal Have openings 23, 24 through which the internal fittings are later introduced and the connections to these are made.
  • the middle part 5 is wrapped further at its ends where it abuts the end parts 6, 7, but in such a way that a collar 11, 12 builds up.
  • These collars 11, 12 serve for later support in the outer container 2. They can be produced practically in the same operation as the wrapping of the inner container with the filament 10 and form a rigid unit with the latter. It is understood that this filament wrapping is carried out with the addition of a suitable matrix material, here an epoxy resin.
  • the outer container 2 consists of a central part 15 to which the end parts 16, 17 connect on both sides.
  • These end parts are essentially spherical caps, spherical caps with corresponding transitions in the case of circularly symmetrical containers. They also have centering slugs 18, 19 on both sides and, after they have been joined together, are surrounded by a winding 20 made of a filament.
  • the orientation of the wrapping 20 (as well as that of the wrapping 10) is chosen in the known manner so that both radial and axial forces can be absorbed. A space 13 is thus created between inner container 1 and outer container 2, in which vacuum insulation is provided.
  • the finished inner container 1 with the collars 11, 12 serving as support is installed in the outer container 2, which has not yet been fully assembled, by inserting it into the central part 15 of the outer container 2, which is possibly already connected to one of the two end parts 16, 17 and then the two end parts 16, 17 of the outer container 2 or only the other end part with the middle part of the outer outer container can be connected.
  • the centering slugs prove to be
  • the middle part 5 of the inner container 1 forms a fitting surface 30 suitable as an adhesive surface and the end part 7 a corresponding fitting surface 31 and thus encompasses the middle part 5.
  • the middle part 15 of the outer container 2 also forms a fitting surface 32 suitable as an adhesive surface, which has a corresponding fitting surface 33 of the end part 17 overlaps. This overlap takes into account the fact that there is a vacuum in the space between the two containers, and thus the central part 5 of the inner container is under internal pressure and the central part 20 of the outer container is under external pressure. Furthermore, the wrapping 10 with a filament, which is only partially indicated in FIG. 2, can be seen more precisely in FIG. 3.
  • the collar 12 is produced from several layers of a filament strip, simply by wrapping it around the same location several times. Because the fiber-reinforced epoxy resin is a very poor heat conductor, a connection between the inner container 1 and the outer container 2, which is also strong in impact, is created in this way, which is nevertheless not a thermal bridge.
  • the vacuum insulation in space 13 is shown schematically and in sections. Only the middle part 5 of the inner container can be seen. Outside the wrap 10 connects to it, and then several on it following layers of porous layers 40 and reflective layers, known under the name multilayer insulation. With these successive layers and thanks to the vacuum that also exists in the porous layer, high-quality heat insulation is achieved.
  • FIG. 5 shows an alternative embodiment of the support of the inner container 1 in the outer container 2. It is indicated by dashed lines in FIG. 2 and is designated by 55.
  • the top view of the support 55 can be seen, which is either integrally formed with the end part 7 of the inner container 1 during the manufacture of the end part 7 or has a flat foot 56 which is placed on the end part 7 on the outside before the wrapping 10 with the filament is attached and connected to it by wrapping.
  • the foot 56 is therefore shown in broken lines in FIG. 5, it is located under the strands 50, 51, 52, 53 produced during wrapping.
  • a container made in this way for cryogenic liquids that are not under pressure manages with very thin walls. It is extremely light and stiff, which is important when used in vehicles, and yet offers excellent thermal insulation that prevents evaporation even after a long standstill.
  • a container constructed in this way is nevertheless cheap to manufacture, and not only as a container alone, but also including the assembly of the function-specific "innards". Characterized in that when all connections to these are passed through the centering slugs, they can be installed particularly simply and expediently, and it is not necessary to break through the other wall parts for this purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Ein Behälter für kryogene Flüssigkeiten besteht aus einem Innenbehälter (1) und einem Außenbehälter (2), welche zueinander positioniert und durch eine Vakuum-Isolationsschicht (13) voneinander thermisch entkop­pelt sind. Um bei geringstem Gewicht und in der Serienfertigung geringsten Kosten die bestmögliche Wärmeisolation zu erreichen, beste­hen der Innenbehälter (1) und der Außenbehälter (2) jeweils aus vorberei­teten faserverstärkten Elementen (14; 5, 15), die jeweils gemeinsam mit einem Filament (10, 20) umwickelt und auf diese Weise miteinander verbunden sind, und sind zur relativen Positionierung des Innenbehälters (1) bezüg-lich des Aussenbehälters (2) am Innenbehälter (1) Abstützungen (11, 12; 55) vorgesehen, die auch aus einem faserverstärkten Kunststoff bestehen.

Description

DOPPEL WANDIGES BEHÄLTNIS FÜR KRYOGENE FLÜSSIGKEITEN
Die Erfindung betrifft Behältnisse für kryogene Flüssigkeiten, die aus einem Innenbehälter und einem Außenbehälter bestehen, welche zueinander positioniert und durch eine Vakuum-Isolationsschicht voneinander thermisch entkoppelt sind. Unter kryogene Flüssigkeiten sind verflüssigte Gase zu verstehen, beispielsweise Helium, Stickstoff oder Sauerstoff, insbesondere aber Wasserstoff. Im flüssigen Zustand betragt ihre Temperatur nur einige Grade Kelvin. Derartige Behältnisse finden in der Raumfahrt Verwendung und werden in Zukunft auch im Kraftfahrzeugbau eingesetzt. Bei diesen Anwendungen kommt es auf geringes Gewicht und beste Wärmeisolation an.
Beim Einsatz in Kraftfahrzeugen mit Wasserstoff als Treibstoff treffen diese Anforderungen in höchstem Maße zu, weil Gewicht die zu bewegenden Massen und damit den Verbrauch an Treibstoff erhöht. Dazu kommen aber noch für den Alltagsgebrauch typische Anforderungen, etwa die nach erhöhter Sicherheit und die nach besonders guter Wärmeisolation. Weil es sein kann, dass ein Fahrzeug im Alltagsgebrauch wochenlang außer Betrieb ist, sind die Abdampfverluste zu minimieren. Prinzipiell gibt es zwei Möglichkeiten, flüssigen Wasserstoff aufzubewahren: In einem Druckbehältnis - dann steigt durch Abdampfen der Druck; oder unter atmosphärischem Druck - dann entweicht das abgedampfte Gas. Die Forderung nach minimalen Abdampfverlusten besteht daher in beiden Fällen.
Bekannte gattungsgemäße Behältnisse für flüssigen Wasserstoff bestehen aus Metall, meist aus einem Leichtmetall. Trotzdem und trotz der Speicherung etwa bei Atmosphärendruck sind aus Gründen der erforderlichen genauen Zuordnung von Innen- und Außenbehälter, bei dem dazwischen herrschenden Vakuum aus Gründen der Festigkeit und Sicherheit, Wandstärken erforderlich, die solche Behältnisse noch immer sehr schwer machen.
Aus der Raumfahrt ist zwar ein aus faserverstärktem Material bestehender Behälter bekannt (US 3,392,865), doch ist dessen Wandung zwar aus einer Reihe verschiedener Schichten (darunter auch eine Isolationsschicht und eine Gassammeischicht) aufgebaut, jedoch handelt es sich nicht um zwei ineinander gebaute Behälter.
Es ist daher Aufgabe der Erfindung, ein gattungsgemäßes Behältnis so auszubilden, dass es bei geringstem Gewicht und in der Serienfertigung geringsten Kosten die bestmögliche Wärmeisolation bietet und auch sonst allen Sicherheitsanforderungen gerecht wird.
Erfindungsgemäß wird das dadurch erreicht, dass Innenbehälter und Außenbehälter jeweils aus vorbereiteten faserverstärkten Elementen (in der Fachwelt „Prepregs" genannt) bestehen, diejeweils gemeinsam mit einem Filament umwickelt und auf diese Weise miteinander verbunden sind, und dass zur relativen Positionierung des Innenbehälters bezüglich des Außenbehälters am Innenbehälter Abstützungen vorgesehen sind, die auch aus einem faserverstärkten Kunststoff bestehen. Mit anderen Worten: Sowohl der Außenbehälter als auch der Innenbehälter bestehen jeder für sich aus faserverstärkten Elementen, die jeder für sich durch Umwickeln so zusammengehalten sind, dass sie den auftretenden Kräften standhalten. Die auf die eine oder andere Weise mit dem Innenbehälter integrierten Abstützungen lösen das Problem der ausreichend genauen Zuordnung und relativen Beweglichkeit bei unterschiedlichen Wärmedehnungen. Wegen ihrer Anbringung am Innenbehälter sind sie einfach genau zu fertigen und leicht zusammenbaubar. Die Elemente können in verschiedener Weise beziehungsweise in mehreren Verarbeitungsstufen zu dem jeweiligen Behälter zusammengesetzt sein.
In Weiterverfolgung des Erfindungsgedankens bestehen Innenbehälter und Außenbehälter jeweils aus Teilen, die jeder für sich aus vorbereiteten faserverstärkten Elementen (beispielsweise Prepregs oder Rohren) zusammengesetzt sind, welche Teile längs bestimmter Fügelinien aneinander anschließen und in der Folge gemeinsam mit einem Filament umwickelt sind. Das Filament ist in der Regel und mit Vorteil dasselbe wie die Fasern der Elemente selbst (Anspruch 2). Der stufenweise Aufbau zuerst der einzelnen Teile aus Prepregs und dann des einzelnen (Innen- und/ oder Außen-) Behälters aus den Teilen ergeben einen besonders guten Zusammenhalt bei niedersten Fertigungskosten.
Für das Umwickeln mit dem Filamant ist es vorteilhaft, die Teile des Innenbehälters und des Außenbehälters an diesen Fügelinien mit für eine Klebung geeigneten Passflächen auszustatten (Anspruch 3). Die Passflächen sichern den maßgenauen Zusammenbau. An die Klebung brauchen dann keine besonderen Ansprüche gestellt zu werden, da sie vorwiegend dem Zusammenhalt der Teile bis zum und beim Umwickeln dienen.
In einer den Anforderungen bei besonders tiefen Temperaturen genügenden Ausfuhrungsform besteht der Innenbehälter aus Kohlefasern und besteht der Außenbehälter aus Glasfasern, jeweils in einer Matrix aus Epoxyharz (Anspruch 4). Kohlefasern haben bei Tiefsttemperaturen eine besonders kleine thermische Leitfähigkeit, Glasfasern bei Raumtemperatur.
In Weiterbildung der Erfindung bestehen die Abstützungen aus faserverstärkten Teilen, die mit den faserverstärkten Elementen verbunden oder einstückig sind (Anspruch 5). Die Abstützungen können aus vorbereiteten Teilen hergestellt sein. Die Abstützungen sind am Innenbehälter angebracht und gemeinsam mit den faserverstärkten Elementen von einem Filament umwunden (Anspruch 6). So bestehen die Abstützungen aus demselben Werkstoff wie der Innenbehälter, bilden somit praktisch keine Wärmebrücken zum Außenbehälter und sichern trotzdem die genaue Positionierung des Innenbehälters im Außenbehälter, auch bei wechselnden Temperaturen.
In einer besonders vorteilhaften Ausführungsform sind die Abstützungen am Innenbehälter einzelne durch mehrfaches Umwickeln dessen mit faserverstärktem Epoxyharz aufgebaute Kragen (Anspruch 7). So entstehen rundum besonders tragfähige Abstützungen einfach und ohne einen besonderen Arbeitsgang. Wenn sie, so wie der Innenbehälter selbst, aus Kohlefasern in einer Epoxyharzmatrix bestehen, bilden sie wegen deren minimaler Wärmeleitfähigkeit auch praktisch keine Wärmebrücken. Die anschließenden Teile des Vakuumraumes zwischen Innenbehälter und Außenbehälter enthalten vorteilhafterweise eine Mehrschichtisolation, die abwechselnd aus porösen und reflektierenden Schichten besteht (Anspruch 8).
Obwohl erfindungsgemäß aufgebaute Behälter von beliebiger Form sein können, solange ihre Kontur nur keine nennenswerten konkaven Flächenteile aufweist, so ist das Behältnis in einer bevorzugten Ausführungsform der Erfindung achssymmetrisch, es besteht aus einem zylindrischen, rohr- förmigen, Mittelteil und beiderseits Endkalotten. Mittelteil und Endkalotten sind jeweils aus vorbereiteten faserverstärkten Elementen zusammengesetzt und an in achsnormalen Ebenen liegenden Fügelinien miteinander verbunden. Der Mittelteil ist dann ein vorgefertigtes Rohr und die Kalotten sind aus Prepregs zusammengesetzt (Anspruch 9). Diese Form ergibt besonders günstige Spannungsverhältnisse, auch hinsichtlich des zwischen Innen- und Außenbehälters herrschenden Vakuums, und ist für einfachen und schnellen Zusammenbau besonders gut geeignet.
Eine weitere Verbesserung der Kraftleitung wird erreicht, wenn beim Innenbehälter die für eine Klebung geeignete zylindrische Passfläche so angeordnet sind, dass der zylindrische Mittelteil die Kalotten innen überlappt und beim Außenbehälter der zylindrische Mittelteil die Kalotte außen überlappt (Anspruch 10). Dadurch werden die Klebestellen durch das zwischen Innen- und Außenbehälter herrschende Vakuum auf Druck beansprucht, was deren Haltbarkeit erhöht, das spätere Umwickeln unter Vorspannung erhöht diese Wirkung sogar noch. In einer Ausführungsform, die eine besonders günstige Spannungsverteilung ergibt, sind die Abstützungen am Innenbehälter einzelne durch mehrfaches Umwickeln des zylindrischen Mittelteiles mit faserverstärktem Epoxyharz aufgebaute Kragen (Anspruch 11). Bei der zylindrischen Form gestaltet sich dieser Aufbau besonders einfach, weil er auf einer Wickelmaschine ohne Umspannen des Werkstückes erfolgen kann. Zum Aufwickeln eines schmalen Bandes in Umfangsrichtung braucht ja nur die Wickelmaschine ohne axialen Vorschub betrieben zu werden. Zudem ist ein derart aufgebauter Kragen besonders tragfähig, was bei Kraftfahrzeugen im Kollisionsfall erwünscht ist.
Dadurch können unterschiedliche Wärmedehnungen ohne asymmetrische Verschiebungen zwischen Innen- und Außenbehälter aufgenommen werden. Zum Zentrieren und in Drehung versetzen des Werkstückes beim Umwickeln haben die Kalotten im Schnittpunkt mit ihrer Symmetrieachse einen Zentrierbutzen (Anspruch 12). Dazu hat er eine zentrale längsgerichtete Durchbrechung (Anspruch 13), durch die auch gleich die Zuleitung und Ableitung des Inhaltes erfolgt und andere Apparaturen in den Behälter eingeführt werden können. Insbesondere der Zentrierbutzen des Innenbehalters kann auch dessen Zentrierung bezüglich des Außenbehälters dienen. So werden die Leitungsverbindungen ins Innere dort hergestellt, wo minimale relative Verschiebungen der beiden Behälterwände zueinander auftreten und wo es am einfachsten ist, durch bereits vorhandene Öffnungen. Dadurch bleiben auch die großen Flächen der Behälterwände für ungestörtes Umwickeln frei, was deren Herstellung erheblich vereinfacht.
Im Folgenden wird die Erfindung anhand von Abbildungen beschrieben und erläutert. Es stellen dar: Fig. 1 : eine Ansicht des Erfindungsgegenstandes, teilweise aufgerissen, Fig. 2: einen Schnitt nach AA in Fig. 1, Fig. 3: Detail A in Fig. 2, vergrößert, Fig. 4: Detail B in Fig. 2, vergrößert, Fig. 5: Detail C in Fig. 2, vergrößert.
In Fig. 1 und Fig. 2 ist ein Behälter für kryogene Flüssigkeiten zu sehen, der aus einem insgesamt mit 1 bezeichneten Innenbehälter und einem ebenso mit 2 bezeichneten Außenbehälter besteht. Das Behältnis kann von beinahe beliebiger Gestalt sein, etwa quader- oder kofferförmig, oder auch achssymmetrisch, dann ist 3 die Symmetrieachse 3. Der Innenbehälter 1 besteht aus einem Mittelteil 5 und Endteilen 6,7. Diese Teile 5,6,7 sind aus faserverstärkten Elementen zusammengesetzt beziehungsweise sind selbst solche. So sind etwa die Endteile 6,7 in an sich bekannter Weise aus vorbereiteten Matten 14 (Prepregs), die ihrerseits aus Fasern in einer Kunststoff - insbesondere Epoxyharz -Matrix bestehen, zusammengesetzt. Dazu werden diese Elemente 14 in eine Form gelegt und sodann unter Wärmeeinwirkung zu dem Teil verpreßt. Der Mittelteil 5 ist im wesentlichen zylindrisch und kann in derselben Weise hergestellt sein. Ist der Mittelteil ein Kreiszylinder, so kann ein Stück eines aus faserverstärktem Kunststoff bestehenden Rohres verwendet werden. In den Endteilen 6,7 sind, vorzugsweise bereits bei der Herstellung aus den Elementen 14, Zentrierbutzen 8,9 ausgebildet. Diese drei Teile werden entlang der Fügelinien 21,22 aneinandergefügt und mit einem Filament 10 umwickelt, sodass sie durch diese Umwicklung jedenfalls fest zusammengehalten werden, mit oder ohne vorhergehende Klebung. Die Zentrierbutzen 8,9 dienen bereits in diesem Stadium der Zentrierung in der Maschine, die das Umwickeln vornimmt. Weiterer Nutzen ergibt sich daraus, dass sie längsgerichtete Durchbrechungen 23,24 haben, durch die später die Inneneinbauten eingebracht und die Verbindungen zu diesen hergestellt werden.
Der Mittelteil 5 ist an seinen Enden, dort wo er an die Endteile 6,7 anstoßt, weiter umwickelt, jedoch so, dass sich ein Kragen 11,12 aufbaut. Diese Kragen 11,12 dienen der späteren Abstützung im Außenbehälter 2. Sie können praktisch in demselben Arbeitsgang wie das Umwickeln des Innenbehälters mit dem Filament 10 hergestellt sein und bilden mit diesem eine steife Einheit. Es versteht sich, dass dieses Umwickeln mit einem Filament unter Hinzufügung eines geeigneten Matrixmateriales, hier eines Epoxyharzes, erfolgt.
In derselben Weise besteht der Außenbehälter 2 aus einem Mittelteil 15, an dem beiderseits die Endteile 16,17 anschließen. Diese Endteile sind im wesentlichen Kalotten, bei kreissymmetrischem Behälter Kugelkalotten mit entsprechenden Übergängen. Auch sie haben beiderseits Zentrierbutzen 18,19 und werden nach deren Zusammenfügen mit einer Umwicklung 20 aus einem Filament umgeben. Die Ausrichtung der Umwicklung 20 ist (ebenso wie die der Umwicklung 10) in der bekannten Weise so gewählt, dass sowohl radiale als auch achsiale Kräfte aufgenommen werden können. Zwischen Innenbehälter 1 und Außenbehälter 2 entsteht so ein Raum 13, in dem eine Vakuumisolation vorgesehen ist.
Der Einbau des fertigen Innenbehälters 1 mit den als Abstützung dienenden Kragen 11,12 erfolgt in dem noch nicht fertig zusammengebauten Außenbehälter 2, indem er in den Mittelteil 15 des Außenbehälters 2, der gegebenenfalls bereits mit einem der beiden Endteile 16,17 verbunden ist, eingeschoben wird und dann die beiden Endteile 16,17 des Außenbehälters 2 beziehungsweise nur der andere Endteil mit dem Mittelteil des Au- ßenbehälters verbunden werden. Dabei erweisen sich die Zentrierbutzen
8,9 wieder als nützlich. Erst dann wird der Außenbehälter mit dem Filament 20 umwickelt. Dann ist das Behältnis im wesentlichen fertig.
In Fig. 3 ist eine vorteilhafte Verbindung zwischen den Mittelteilen 5,15 und den Endteilen 6,7,16,17 genauer zu sehen. Der Mittelteil 5 des Innenbehälters 1 bildet eine als Klebefläche geeignete Paßfläche 30 und der Endteil 7 eine entsprechene Paßfläche 31 und umgreift damit den Mittelteil 5. Der Mittelteil 15 des Außenbehälters 2 bildet auch eine als Klebefläche geeignete Paßfläche 32, die eine entsprechende Paßfläche 33 des Endteiles 17 überlappt. Diese Überlappung trägt der Tatsache Rechnung, dass in dem Raum zwischen den beiden Behältern Vakuum herrscht und dadurch der Mittelteil 5 des Innenbehalters unter Innendruck und der Mittelteil 20 des Außenbehälters unter Außendruck steht. Weiters ist in Fig. 3 die in Fig. 2 nur teilweise angedeutete Umwicklung 10 mit einem Filament genauer zu sehen. Sie reicht über die Fügelinie 21,22 hinweg und verbindet so die Mittelteile 5,15 mit den Endteilen 7,17. Die Klebung zwischen den Klebeflächen 30,31 und 32,33 ist somit vor allem eine Montagehilfe und kann unter Umständen unterbleiben. Ebenso ist in Fig. 3 zu erkennen, dass der Kragen 12 aus mehreren Schichten eines Filamentstrei- fens, einfach durch mehrmaliges Umwickeln an derselben Stelle hergestellt ist. Weil das faserverstärkte Epoxyharz ein sehr schlechter Wärmeleiter ist, ist auf diese Weise eine auch starken Stößen gewachsene Verbindung zwischen Innenbehälter 1 und Außenbehälter 2 geschaffen, die trotzdem keine Wärmebrücke ist.
In Fig. 4 ist schematisch und ausschnittsweise die Vakuumisolation im Raum 13 dargestellt. Zu sehen ist nur der Mittelteil 5 des Innenbehälters. Außen schließt die Umwicklung 10 daran an, und dann mehrere darauf folgende Lagen poröser Schichten 40 und reflektierender Schichten, bekannt unter der Bezeichnung Multilayer - Isolation. Mit diesen aufeinanderfolgenden Schichten und dank des Vakuums, das auch in der porösen Schicht herrscht, wird eine hochwertige Wärmeisolation erzielt.
Fig. 5 zeigt eine alternative Ausführung der Abstützung des Innenbehälters 1 im Außenbehälter 2. Sie ist in Fig. 2 strichliert angedeutet und mit 55 bezeichnet. Zu sehen ist die Draufsicht auf die Stütze 55, welche entweder bereits bei der Herstellung des Endteiles 7 des Innenbehälters 1 integral mit diesem ausgebildet ist oder einen flachen Fuß 56 besitzt, der vor dem Anbringen der Umwicklung 10 mit dem Filament außen auf den Endteil 7 aufgesetzt und durch das Umwickeln mit diesem verbunden ist. Der Fuß 56 ist daher in Fig. 5 strichliert dargestellt, er befindet sich unter den beim Umwickeln hergestellten Strängen 50, 51, 52, 53.
Ein so hergestelltes Behältnis für nicht unter Druck stehende kryogene Flüssigkeiten kommt mit sehr dünnen Wandstärken aus. Es ist außerordentlich leicht und steif, was bei der Verwendung in Fahrzeugen von Bedeutung ist, und bietet trotzdem eine ausgezeichnete Wärmeisolation, die ein Ausdampfen auch bei längerem Stillstand hintanhält. Ein so aufgebautes Behältnis ist trotzdem billig in der Herstellung, und das nicht nur als Behältnis alleine, sondern auch einschließlich der Montage der funk- tionsspezifischen "Innereien". Dadurch, dass bei Hindurchführung aller Verbindungen zu diesen durch die Zentrierbutzen diese besonders einfach und zweckmäßig eingebaut werden können und eine Durchbrechung der sonstigen Wandteile zu diesem Zweck nicht erforderlich ist.

Claims

P a t e n t a n s p r ü c h e
1. Behältnis für kryogene Flüssigkeiten, bestehend aus einem Innenbehälter und einem Außenbehälter, welche zueinander positioniert und durch eine Vakuum-Isolationsschicht thermisch entkoppelt sind, dadurch gekennzeichnet, dass der Innenbehälter (1) und der Außenbehälter (2) jeweils aus vorbereiteten faserverstärkten Elementen (14; 5,15) bestehen, die jeweils gemeinsam mit einem Filament (10,20) umwickelt und auf diese Weise miteinander verbunden sind, und dass zur relativen Positionierung des Innenbehälters (1) bezüglich des Außenbehälters (2) am Innenbehälter (1) Abstützungen (11,12; 55) vorgesehen sind, die auch aus einem faserverstärkten Kunststoff bestehen.
2. Behältnis nach Anspruch 1, dadurch gekennzeichnet, dass Innenbehälter (1) und Außenbehälter (2) jeweils aus Teilen (5,6,7, 15,16,17) bestehen, diejeweils aus faserverstärkten Elementen (14; 5,15) zusammengesetzt sind, welche Teile längs bestimmter Fügelinien (21,22) aneinander anschließen und gemeinsam mit einem Filament (10,20) umwickelt sind.
3. Behältnis nach Anspruch 2, dadurch gekennzeichnet, dass die Teile (5,6,7) des Innenbehälters (1) und die Teile (15,16,17) des Außenbehälters (2) an diesen Fügelinien (21,22) für eine Klebung geeignete Passflächen (30,31,32,33) haben.
4. Behältnis nach Anspruch 1, dadurch gekennzeichnet, dass die Teile (5,6,7) des Innenbehälters (1) aus Kohlefasern und die Teile (15,16,17) des Außenbehälters (2) aus Glasfasern, jeweils in einer Matrix aus Epoxyharz, bestehen.
5. Behältnis nach Anspruch 1, dadurch gekennzeichnet, dass die Abstützungen (11,12,55) aus faserverstärkten Teilen bestehen, die mit den Teilen (5, 7; 6) verbunden oder einstückig sind.
6. Behältnis nach Anspruch 1, dadurch gekennzeichnet, dass die Abstützungen (55) am Innenbehälter (1) angebrachte gemeinsam mit den Teilen (5,7;6) von einem Filament (10) umwundene Stützen (55) sind.
7. Behältnis nach Anspruch 1, dadurch gekennzeichnet, dass die Abstützungen (11,12) am Innenbehälter (1) durch einzelne durch mehrfaches Umwickeln mit faserverstärktem Epoxyharz aufgebaute Kragen sind.
8. Behältnis nach Anspruch 1, dadurch gekennzeichnet, dass der Vakuumraum (13) zwischen Innenbehälter (1) und Außenbehälter (2) eine Multilayer-Isolation (40,41) enthält.
9. Behältnis nach Anspruch 2, wobei, Innenbehälter (1) und Außenbehälter (2) jeweils aus einem zylindrischen Mittelteil (5,15) und beiderseits je einer Endkalotte (6,7,16,17) bestehen, dadurch gekennzeichnet, dass Mittelteil (5,15) und Endkalotten (6,7,16,17) jeweils aus vorbereiteten faserverstärkten Elementen (14) zusammengesetzt und an in achsnormalen Ebenen liegenden Fügelinien (21,22) miteinander verbunden sind.
10. Behältnis nach Anspruch 9, dadurch gekennzeichnet, dass beim Innenbehälter (1) die für eine Klebung bestimmten zylindrischen Passflächen (30,31) so angeordnet sind, dass der zylindrische Mittelteil (5) die Kalotten (6,7) innen überlappt und beim Außenbehälter (2) der zylindrische Mittelteil (15) die Kalotten (16,17) außen überlappt.
11. Behältnis nach Anspruch 9, dadurch gekennzeichnet, dass die Abstützungen (11,12) am Innenbehälter (1) durch einzelne durch mehrfaches Umwickeln des zylindrischen Mittelteiles mit Bändern aus faserverstärktem Epoxyharz aufgebaute Kragen sind.
12. Behältnis nach Anspruch 10, dadurch gekennzeichnet, dass die Kalotten (6,7,16,17) im Schnittpunkt mit ihrer Symmetrieachse (3) einen Zentrierbutzen (8,18,9,19) haben.
13. Behältnis nach Anspruch 13, dadurch gekennzeichnet, dass der Zentrierbutzen eine zentrale längsgerichtete Durchbrechung (23,24) hat.
EP04711952A 2003-02-18 2004-02-18 Doppel wandiges behältnis für kryogene flüssigkeiten Withdrawn EP1595096A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0009603U AT7582U1 (de) 2003-02-18 2003-02-18 Doppelwandiges behältnis für kryogene flüssigkeiten
AT9603U 2003-02-18
PCT/AT2004/000048 WO2004074737A1 (de) 2003-02-18 2004-02-18 Doppel wandiges behältnis für kryogene flüssigkeiten

Publications (1)

Publication Number Publication Date
EP1595096A1 true EP1595096A1 (de) 2005-11-16

Family

ID=32873253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04711952A Withdrawn EP1595096A1 (de) 2003-02-18 2004-02-18 Doppel wandiges behältnis für kryogene flüssigkeiten

Country Status (6)

Country Link
US (1) US7743940B2 (de)
EP (1) EP1595096A1 (de)
AT (1) AT7582U1 (de)
CA (1) CA2516379C (de)
DE (1) DE112004000261B4 (de)
WO (1) WO2004074737A1 (de)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168726A1 (en) * 2004-04-23 2011-07-14 Amtrol Licensing Inc. Hybrid pressure vessels for high pressure applications
US7731051B2 (en) * 2005-07-13 2010-06-08 Gm Global Technology Operations, Inc. Hydrogen pressure tank including an inner liner with an outer annular flange
FR2893116B1 (fr) * 2005-11-10 2009-11-20 Air Liquide Procede de production d'un reservoir et reservoir obtenu selon le procede
AT9456U1 (de) * 2006-04-14 2007-10-15 Magna Steyr Fahrzeugtechnik Ag Behälter für kryogene flüssigkeiten
US20090308864A1 (en) * 2008-06-11 2009-12-17 Chi-Lung Tsai Chemical storage tank
US20110084080A1 (en) * 2008-06-11 2011-04-14 Chi Men Precision Industrial Co., Ltd. Chemical storage tank
US8701926B2 (en) * 2008-06-23 2014-04-22 The Boeing Company Tank having integral restraining elements and associated fabrication method
US8074826B2 (en) * 2008-06-24 2011-12-13 Composite Technology Development, Inc. Damage and leakage barrier in all-composite pressure vessels and storage tanks
DE202009017967U1 (de) * 2008-12-19 2010-11-25 Erhard & Söhne GmbH Druckluftbehälter für Nutzfahrzeuge
DE102009004066A1 (de) 2009-01-06 2010-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Barriereschichtanordnung für Tanksysteme
US8561829B1 (en) 2009-10-23 2013-10-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite pressure vessel including crack arresting barrier
US20110168722A1 (en) * 2010-01-13 2011-07-14 BDT Consultants Inc. Full containment tank
JP5938215B2 (ja) * 2012-01-12 2016-06-22 サムテック株式会社 圧力容器
US8844760B2 (en) * 2012-08-08 2014-09-30 CNG Storage Solutions, LLC Storage vessel for compressed fluids
US8881932B1 (en) 2013-06-25 2014-11-11 Quantum Fuel Systems Technology Worldwide, Inc. Adapterless closure assembly for composite pressure vessels
US11353160B2 (en) 2014-02-27 2022-06-07 Hanwha Cimarron Llc Pressure vessel
DE102014207300B4 (de) * 2014-04-16 2021-07-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Tanks, insbesondere eines Kraftfahrzeugtanks
CN105333301A (zh) * 2014-08-14 2016-02-17 丹阳市利旺车辆部件有限公司 一种lng车载气瓶内胆加工工艺
EP3191399B1 (de) * 2014-09-08 2020-02-19 Growlerwerks, Inc. Getränkespender
US11525545B2 (en) * 2014-10-07 2022-12-13 Raytheon Technologies Corporation Composite pressure vessel assembly and method of manufacturing
CN104406041A (zh) * 2014-11-28 2015-03-11 无锡纳润特科技有限公司 化工液化气瓶前端内外支撑管的连接结构
DE102016204075A1 (de) * 2016-03-11 2017-09-14 Bayerische Motoren Werke Aktiengesellschaft Druckbehältersystem sowie Verfahren zum Druckentlasten eines Druckbehälters
DE102017209378A1 (de) 2017-06-02 2018-12-06 Audi Ag Robuster Hochdruckbehälteraufbau mit Fügemittel
JP6904168B2 (ja) * 2017-08-28 2021-07-14 トヨタ自動車株式会社 真空断熱容器
CN108194833A (zh) * 2018-03-14 2018-06-22 新兴能源装备股份有限公司 一种立式低温储罐的支撑结构
CN108895304B (zh) * 2018-09-14 2023-11-24 北京明晖天海气体储运装备销售有限公司 一种液化天然气储罐的支撑结构
CA3115306C (en) 2018-10-24 2023-10-31 Amtrol Licensing, Inc. Hybrid pressure vessel with plastic liner
JP7213363B2 (ja) 2019-03-07 2023-01-26 ラティステクノロジー カンパニー リミテッド 低温タンク用真空断熱装置
US11440399B2 (en) 2019-03-22 2022-09-13 Agility Fuel Systems Llc Fuel system mountable to a vehicle frame
US20200347992A1 (en) 2019-05-02 2020-11-05 Agility Fuel Systems Llc Polymeric liner based gas cylinder with reduced permeability
USD931979S1 (en) 2019-10-23 2021-09-28 Amtrol Licensing, Inc. Cylinder
KR102245348B1 (ko) * 2019-11-29 2021-04-28 한국과학기술원 유체탱크의 진공단열장치
JP7259734B2 (ja) * 2019-12-25 2023-04-18 トヨタ自動車株式会社 高圧タンクの製造方法
DE102020007826A1 (de) 2020-12-22 2022-06-23 Airbus Operations Gmbh Tanksystem zur Lagerung kühler Medien
DE102021110452A1 (de) 2021-04-23 2022-10-27 Airbus Operations Gmbh Fluidkryogendruckbehälter sowie Luftfahrzeug
EP4112993A1 (de) * 2021-06-30 2023-01-04 Airbus Operations GmbH Halterung für einen doppelwandigen behälter, behälter mit einer halterung und fahrzeug mit einem behälter
KR102634810B1 (ko) 2021-12-31 2024-02-07 (주)동성화인텍 단열지지체 및 이 단열지지체를 포함하는 자동차용 액화수소 저장용기
US11697507B1 (en) 2022-04-28 2023-07-11 Blended Wing Aircraft, Inc. Aircraft with a multi-walled fuel tank and a method of manufacturing
EP4269860A1 (de) * 2022-04-29 2023-11-01 Airbus Operations, S.L.U. Verfahren zur herstellung eines behälters und eines doppelwandigen tanks
EP4269859A1 (de) * 2022-04-29 2023-11-01 Airbus Operations, S.L.U. Verfahren zur herstellung eines gefässes und eines doppelwandigen tanks
EP4339503A1 (de) * 2022-09-13 2024-03-20 Airbus Operations, S.L.U. Doppelwandiger tank und verfahren zur montage des doppelwandigen tanks

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168817A (en) * 1959-12-31 1965-02-09 Union Carbide Corp Insulation apparatus
US3134237A (en) * 1960-12-21 1964-05-26 Union Carbide Corp Container for low-boiling liquefied gases
US3357594A (en) * 1962-02-21 1967-12-12 United Aircraft Corp Clevis joint
US3122000A (en) * 1962-03-30 1964-02-25 Paul J Sirocky Apparatus for transferring cryogenic liquids
US3372075A (en) * 1964-03-06 1968-03-05 Amercoat Corp Method of making an insulated storage tank
US3341051A (en) * 1964-12-24 1967-09-12 Exxon Research Engineering Co Cryogenic insulation system
US3392865A (en) * 1965-10-29 1968-07-16 Nasa Usa Filament-wound container
US3289423A (en) * 1965-11-30 1966-12-06 Union Carbide Corp Load support means for thermally insulated containers
US3487971A (en) * 1968-05-01 1970-01-06 Beech Aircraft Corp Cryogenic tank supporting system
US3698588A (en) * 1970-10-21 1972-10-17 Louis A Pogorski Thermally insulated device
US3695483A (en) * 1970-11-27 1972-10-03 Louis A Pogorski Thermal insulation and thermally insulated device
FR2130873A5 (de) * 1971-03-24 1972-11-10 Aerospatiale
US3815773A (en) * 1971-05-17 1974-06-11 Brunswick Corp Cyclic pressure vessel
US3937781A (en) * 1971-05-20 1976-02-10 Structural Fibers, Inc. Method for forming fiber-reinforced plastic articles
US3762175A (en) * 1971-07-08 1973-10-02 P Jones Liquefied gas containers
US3814275A (en) * 1972-04-03 1974-06-04 Mc Donnell Douglas Corp Cryogenic storage vessel
US4170952A (en) * 1976-03-09 1979-10-16 Mcdonnell Douglas Corporation Cryogenic insulation system
CA1141930A (en) * 1980-04-25 1983-03-01 Terence Cotgreave Heat-insulated container provided with a locating and/or supporting device
GB2089950A (en) * 1980-12-22 1982-06-30 Duncan Ronald Frederick Henry Thermally insulated containers
US4579249A (en) * 1982-03-29 1986-04-01 Union Carbide Corporation Fiberglass insulation for mobile cryogenic tankage
US4674674A (en) * 1982-03-29 1987-06-23 Union Carbide Corporation Method for fabricating fiberglass insulated mobile cryogenic tankage
US4785956A (en) * 1982-08-23 1988-11-22 Essef Industries, Inc. Tank fitting for a filament-wound vessel
US4496073A (en) * 1983-02-24 1985-01-29 The Johns Hopkins University Cryogenic tank support system
US4514450A (en) * 1983-11-01 1985-04-30 Union Carbide Corporation Peg supported thermal insulation panel
US4660738A (en) * 1985-03-25 1987-04-28 Ives Frank E Leak-resistant fiberglass tank and method of making the same
FR2599468B1 (fr) * 1986-06-03 1988-08-05 Technigaz Structure de paroi thermiquement isolante de reservoir etanche
US4793491A (en) * 1986-11-24 1988-12-27 Fluoroware, Inc. Pressurizable chemical shipping vessel
US4848103A (en) * 1987-04-02 1989-07-18 General Electric Company Radial cryostat suspension system
DE3725163A1 (de) * 1987-07-29 1989-02-16 Schatz Oskar Waermespeicher, insbesondere latentwaermespeicher fuer durch motorabwaerme gespeiste kraftfahrzeugheizungen
US4773952A (en) * 1987-08-03 1988-09-27 Biomagnetic Technologies, Inc. Nonmetallic cylindrical cryogenic container
US4933040A (en) * 1987-08-03 1990-06-12 Biomagnetic Technologies, Inc. Hollow article formed of composite material
US4796432A (en) * 1987-10-09 1989-01-10 Unisys Corporation Long hold time cryogens dewar
US5167352A (en) * 1988-03-21 1992-12-01 Robbins Howard J Double wall tank system
US4821914A (en) * 1988-04-01 1989-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low temperature storage container for transporting perishables to space station
US5379507A (en) * 1988-04-11 1995-01-10 State Industries, Inc. Method of manufacturing a tank
US5259895A (en) * 1988-07-05 1993-11-09 Sharp Bruce R Method of building double walled storage tanks
US4925046A (en) * 1988-12-27 1990-05-15 Sharp Bruce R Double walled ribbed storage tank systems
US4944251A (en) * 1989-03-03 1990-07-31 Fulton Boiler Works, Inc. Condensate return tanks
US4982856A (en) * 1989-06-23 1991-01-08 General Electric Company High temperature, high pressure continuous random glass fiber reinforced thermoplastic fluid vessel and method of making
US5150812A (en) * 1990-07-05 1992-09-29 Hoechst Celanese Corporation Pressurized and/or cryogenic gas containers and conduits made with a gas impermeable polymer
US5368670A (en) * 1990-07-16 1994-11-29 Theresa M. Kauffman Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
US5232119A (en) * 1990-07-16 1993-08-03 Theresa M. Kauffman Multi-walled pipes and storage tanks for toxic and corrosive fluids
US5308423A (en) * 1990-07-16 1994-05-03 Theresa M. Kauffman Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
FR2669396B1 (fr) * 1990-11-19 1997-05-09 Inst Francais Du Petrole Reservoir de poids unitaire faible utilisable notamment pour le stockage de fluides sous pression et son procede de fabrication.
DE4121762C1 (de) * 1991-07-01 1992-09-10 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
US5228585A (en) * 1991-08-28 1993-07-20 Minnesota Valley Engineering, Inc. Variable capacity vehicle-mounted cryogenic storage vessels and method of making same
US5284996A (en) * 1992-02-28 1994-02-08 Mcdonnell Douglas Corporation Waste gas storage
US5346570A (en) * 1992-07-30 1994-09-13 Biomagnetic Technologies, Inc. Cryogenic dewar and method of fabrication
US5287987A (en) * 1992-08-31 1994-02-22 Comdyne I, Inc. Filament wound pressure vessel
US5327730A (en) * 1993-05-12 1994-07-12 American Gas & Technology, Inc. Method and apparatus for liquifying natural gas for fuel for vehicles and fuel tank for use therewith
US5499739A (en) * 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
US5575875A (en) * 1994-02-24 1996-11-19 Wilson Sporting Goods Co. Filament wound fiber reinforced thermoplastic frame for a game racquet
US5763027A (en) * 1994-06-30 1998-06-09 Thiokol Corporation Insensitive munitions composite pressure vessels
US5522340A (en) * 1995-01-10 1996-06-04 Skogman; Darrel Vessels having a double-walled laminated frame
JPH0996399A (ja) * 1995-07-25 1997-04-08 Toyoda Gosei Co Ltd 圧力容器
US5829625A (en) * 1995-09-04 1998-11-03 Imaharu Kasei Co., Ltd FRP double-wall tank and producing method therefor
CA2212244C (en) * 1995-12-04 2007-05-29 Toray Industries, Inc. Pressure vessel and process for producing the same
US5822838A (en) * 1996-02-01 1998-10-20 Lockheed Martin Corporation High performance, thin metal lined, composite overwrapped pressure vessel
US5797513A (en) * 1996-02-29 1998-08-25 Owens Corning Fiberglas Technology, Inc. Insulated vessels
SE511172C2 (sv) * 1996-11-04 1999-08-16 Composite Scandinavia Ab Armerad plastbehållare, förfarande för dess framställning samt apparat för genomförande av förfarandet
US6565793B1 (en) * 1998-09-11 2003-05-20 Essef Corporation Method for fabricating composite pressure vessels
US6485668B1 (en) * 1998-12-30 2002-11-26 Essef Corporation Method for fabricating composite pressure vessels and products fabricated by the method
US6460721B2 (en) * 1999-03-23 2002-10-08 Exxonmobil Upstream Research Company Systems and methods for producing and storing pressurized liquefied natural gas
US6189723B1 (en) * 1999-05-10 2001-02-20 Gary R. Davis Composite laminated transport container for liquids
US20030111473A1 (en) * 2001-10-12 2003-06-19 Polymer & Steel Technologies Holding Company, L.L.C. Composite pressure vessel assembly and method
US6820762B2 (en) * 2002-01-07 2004-11-23 Xerxes Corporation High strength rib for storage tanks
US7803241B2 (en) * 2002-04-12 2010-09-28 Microcosm, Inc. Composite pressure tank and process for its manufacture
US6953129B2 (en) * 2002-08-27 2005-10-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pressure vessel with impact and fire resistant coating and method of making same
US6708502B1 (en) * 2002-09-27 2004-03-23 The Regents Of The University Of California Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage
US7121423B2 (en) * 2002-11-14 2006-10-17 Sanders Stan A Ovoid flexible pressure vessel, apparatus and method for making same
KR100589450B1 (ko) * 2003-01-24 2006-06-14 가부시키가이샤 도요다 지도숏키 고압탱크
US7165698B2 (en) * 2003-04-03 2007-01-23 General Motors Corporation Construction for multi-layered vacuum super insulated cryogenic tank
CN100434788C (zh) * 2003-08-28 2008-11-19 三菱丽阳株式会社 高性能压力容器及压力容器用碳纤维
US20080274383A1 (en) * 2004-04-08 2008-11-06 Showa Denko K.K. Process for Fabricating Pressure Vessel Liner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004074737A1 *

Also Published As

Publication number Publication date
WO2004074737A1 (de) 2004-09-02
AT7582U1 (de) 2005-05-25
CA2516379A1 (en) 2004-09-02
DE112004000261B4 (de) 2013-12-19
US7743940B2 (en) 2010-06-29
US20060169704A1 (en) 2006-08-03
DE112004000261D2 (de) 2006-01-26
CA2516379C (en) 2012-09-11

Similar Documents

Publication Publication Date Title
DE112004000261B4 (de) Doppelwandiges Behältnis für kryogene Flüssigkeiten
DE102016201477A1 (de) Druckbehälter sowie Verfahren zur Herstellung eines Druckbehälters
DE102017108043B4 (de) Verfahren zur Herstellung eines Hochdruckgastanks
WO2017080723A1 (de) Druckbehälter mit einem lastring, kraftfahrzeug und verfahren zur herstellung eines druckbehälters
DE69737236T2 (de) Verstärkter plastikcontainer
DE102019118323B4 (de) Tank sowie Verfahren
DE102021100139A1 (de) Verfahren zur herstellung eines hochdrucktanks
WO2021037983A1 (de) Druckbehälter
DE1650154B2 (de) Verfahren zur Herstellung eines mehr lagigen, rotationssymmetrischen Be halters fur hohe Drucke
DE102020117910A1 (de) Druckgastank für ein Kraftfahrzeug
DE102017201420A1 (de) Tank, insbesondere Drucktank, insbesondere Wasserstoff-Drucktank
DE102018204804B4 (de) Druckbehälter sowie Verfahren zur Herstellung einer Außenhülle für einen Druckbehälter
EP3870497B1 (de) Strukturbauteil für einen fahrgestellrahmen eines fahrzeuges und verfahren zur herstellung eines strukturbauteils
WO2021038000A1 (de) Verfahren zur herstellung eines druckbehälters und druckbehälter
DE102020117916A1 (de) Druckgastank
EP1322888B1 (de) Rohrartige leitung oder behälter zum transport bzw. zum aufbewahren kryogener medien und verfahren zur herstellung
EP1993938B1 (de) Doppelwandiger behälter
DE102017204658B3 (de) Strukturbauteil eines Fahrzeugrahmens mit einem integrierten Speicherbehälter mit einem Verbindungselement aus Faserverbundlaminat
EP4146460B1 (de) Verwendung eines faserverbundwerkstoff-verbindungsabschnitts zur verbindung einer rohrförmigen faserverbundwerkstoffstruktur mit einer anschlusseinrichtung
EP4267388A1 (de) Tanksystem zur lagerung kühler medien
DE102019207484B3 (de) Verfahren zur Herstellung eines Drucktanks mit Außenringen, sowie verfahrensgemäß hergestellter Drucktank mit Außenringen
WO1995003519A1 (de) Wärmespeicher, insbesondere latentwärmespeicher
EP0976593A1 (de) Trocknerbehälter
WO2022194320A1 (de) Endstück für ein drucktanksystem und drucktanksystem
WO2024027951A1 (de) Speicherbehälter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060901